
Received 3 March 2024, accepted 13 March 2024, date of publication 20 March 2024, date of current version 27 March 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3379273

FedDBO: A Novel Federated Learning Approach
for Communication Cost and Data
Heterogeneity Using Dung
Beetle Optimizer
DONGYAN WANG 1,2, LIMIN CHEN 3, XIAOTONG LU1,2, YIDI WANG1,2,
YUE SHEN1,2, AND JINGJING XU1,2
1School of Mathematical Science, Mudanjiang Normal University, Mudanjiang 157011, China
2Institute of Applied Mathematics, Mudanjiang Normal University, Mudanjiang 157011, China
3School of Computer and Information Technology, Mudanjiang Normal University, Mudanjiang 157011, China

Corresponding author: Limin Chen (chenlimin_clm@126.com)

This work was supported in part by the Natural Science Foundation of Heilongjiang Province under Grant LH2019F051; and in part by the
Science and Technology Innovation Projects of Mudanjiang Normal University under Grant kjcx2023-123mdjnu, Grant
kjcx2023-124mdjnu, and Grant kjcx2023-126mdjnu.

ABSTRACT As an emerging distributed machine learning technology, federated learning has gained
widespread attention due to its critical privacy protection mechanism. However, it also faces challenges such
as high communication costs and heterogeneous client data.In order to address the above issues. This paper
proposes a federated learning approach based on the dung beetle optimizer, named FedDBO. In this method,
the model parameters uploaded from clients to the server are transformed into model scores. In each round
of training, only some of the clients with high model scores need to be selected to upload their parameters
to the server, thus reducing communication costs; Simultaneously, a model retraining strategy is introduced.
After aggregating the model parameters sent by clients, the server performs a second iterative training on
the aggregated model using its own metadata, thereby reducing data heterogeneity and improving model
performance. In addition, a proof of convergence is provided, demonstrating that the model aggregated
by FedDBO converges to the aggregated model of FedAvg after each training round. Finally, experiments
indicate that when simulating various data heterogeneous environments on datasets, FedDBO exhibits higher
accuracy and better stability compared to three other algorithms: FedAvg, FedShare, and FedPSO.

INDEX TERMS Federated learning, dung beetle optimizer, model scores, data heterogeneous,
communication cost.

I. INTRODUCTION
In classical machine learning (ML), data is typically collected
and stored on a centralized server or a single node, which
is then used for training and testing [1], [2]. However,
the majority of data is distributed across various mobile
devices [3], posing significant challenges for data aggregation
and model training [4]. Numerous scholars have proposed
improvements [5], e.g., in the case of face recognition
technology, there are no publicly available datasets that

The associate editor coordinating the review of this manuscript and

approving it for publication was Yudong Zhang .

provide comprehensive face images and corresponding
geometric interpretations of 3D faces, and thus Khan et al.
[6] generate data by rendering a large number of realistic
and uniquely attributed face images by using learning-based
inverse face rendering. On the other hand, the privacy of
data is not well-protected when models directly transmit data
during the training process, leading to common examples
of introducing privacy protection in ML algorithms [7],
[8]. Nevertheless, inherent patterns in centralized machine
learning data storage still pose privacy issues. In this
context, attention has shifted from data aggregation to model
aggregation.
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Federated learning (FL) has emerged as a new technologi-
cal solution to address the aforementioned challenges [9]. It is
a form of distributed ML, with an overall architecture that
includes a central server and numerous local devices or nodes.
The goal is to allow models to be trained on local devices,
coordinated and aggregated through the central server to
improve the global model. One of the key mechanisms
of FL is ‘‘data staying local’’. Clients initially download
the global model from the server, train the global model
locally based on their own data, and then upload the trained
model to the server. The server performs model aggregation
updates, iteratively improving the global model. Throughout
this training process, only the models trained with data are
transferred between the server and clients, eliminating the
direct transmission of data.

However, most FL models use the FedAvg and still face
some challenges. On one hand, in scenarios with large
volumes of data, frequent model transmissions can increase
communication costs. On the other hand, in real-world
applications, due to the unknown nature of local devices,
data heterogeneity among different clients often leads to a
decrease in model accuracy during the training process, and
even convergence issues.

Current research aims to enhance model update speed by
applying the Dung Beetle Optimizer (DBO), an algorithm
that obtains optimal solutions in a distributed environ-
ment [10]. DBO requires multiple repetitions as it acquires
optimal solutions through a random method, aligning well
with the iterative nature ofML. It is well suited to the dynamic
and heterogeneous environment of FL.

In this paper, for the shortcomings of the high communi-
cation cost in FL and the advantages of DBO which is very
suitable for FL, a new FL method, FedDBO, is proposed,
which transforms the form of the data transmitted from the
client to the server from the model parameters to the model
scores (the accuracy of the client’s local model versus the
globalmodel), and uploads to the server themodel parameters
of the part of the client with higher model scores only in each
round of training, so as to reduce the communication cost and
improve the communication efficiency, and the experiments
also show that the method can effectively alleviate the
situation of the client’s data isomorphism.

The remaining structure of this paper is as follows.
Sec. II discusses the development and applications of FL and
federated optimization, as well as related work combining
themwith swarm intelligence technologies. Sec. III describes
FL and the underlying theory of DBO. Sec. IV introduces the
mainmethods and provides key proofs. The experimental part
will be shown in Sec. V. Finally, conclusions and future work
are proposed in Sec. VI.

II. RELATED WORK
A. THE DEVELOPMENT AND APPLICATION OF FEDERATED
LEARNING
With the proposal and development of FL, its scope has
expanded significantly. Nilsson et al. [11] initially evaluated

federated averaging (FedAvg), federated stochastic gradient
descent (FedSGD), and CO-OP on the MNIST dataset, con-
sidering both independent and identically distributed (IID)
and non-independent and identically distributed (Non-IID)
data. In 2019, Yang et al. [12] categorized FL into horizontal
FL, vertical FL, and federated transfer learning based on data
features and samples. In 2022, Wu et al. [13] introduced
the application of graph neural networks (GNN) in FL,
proposing a federated GNN framework called FedPerGNN.
This framework incorporates personalized advantages from
GNN into FL, allowing for privacy-preserving exploration of
decentralized graph data.

Traditional machine learning methods such as linear
models (LM), decision trees (DT), and support vector
machine models (SVM) have been applied to FL. Various
approaches, including federated linear algorithms [14],
federated tree models [15], [16], and federated support vector
machines [17], have been proposed. As FL gained attention
in research, scholars integrated expertise from the Internet
of Things (IoT) and foundational mathematics to enhance
and refine the basic framework. Examples include the
introduction of the FL algorithm based on global momentum
(FedCNM) for IoT [18], and the development of differential
privacy FL algorithms based on function mechanisms [19].
Numerous other methods for improving FL have been
proposed [20], [21], [22], [23], [24].

In 2020, Li et al. summarized the characteristics of existing
FL approaches [25], followed by a detailed discussion of
the opportunities and challenges faced by FL in practical
applications by Mammen [26]. The application areas of FL
have expanded to fields with high requirements for data
security and privacy, such as industrial drones [27], smart
healthcare [28], [29], [30], and finance and insurance [31].
The unpredictable prospects of FL, particularly in health-
care applications, where the stakes are high, have been
highlighted [32]. In healthcare [33], where the privacy of
personal data is crucial, FL plays a vital role. For instance,
in DNA sequencing, collaboration among multiple hospitals
is required to inform patients about diseases. FL can facilitate
joint learning on diverse datasets from multiple hospitals,
creating a federated model encompassing various hospital
data. Simultaneously, the DNA repositories of each hospital
and patient DNA sequences remain mutually unknown,
ensuring data and privacy security for all parties involved.
In 2021, Zhang et al. [34] presented broader applications of
FL, providing a systematic introduction to existing work in
five aspects: data partitioning, privacy mechanisms, machine
learning models, communication architectures, and system
heterogeneity. Subsequently, Li et al. [35] reviewed the
challenges and future research directions of FL, summarizing
its characteristics and practical applications.

B. FEDERATED OPTIMIZATION FOR COMMUNICATION
COST AND DATA HETEROGENEITY
In practical scenarios of FL, the multitude of devices
storing data and the contradiction between data heterogeneity
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and the generalization of global models, leading to non-
independent and identically distributed (Non-IID) datasets,
is common. Lizhi-Peng and Yong [36] proposed a class-
balanced federated learning (CBFL) method based on data
generation to address this issue. CBFL aims to balance
class distribution in client data through data generation
techniques. It incorporates a class-balanced sampler and data
generator, where the sampler prioritizes sampling classes
with insufficient client data, and the generator produces
virtual data for sampled classes to balance class distribution
and aid subsequent model training.

In each round of global model training in FL, each
participant may send different model parameter updates to
the server, resulting in significant communication overhead.
Researchers have proposed methods building on FedAvg to
improve communication efficiency. In 2017, Konecný [37]
introduced two strategies for updating model parameters,
presenting structured updates (SU), which directly learns
updates from a limited parameter space. It utilizes combi-
nations of quantization, random rotation, and sub-sampling
to compress client data. In 2020, Nishio and Yonetani [38]
addressed the issue of long communication times in FL
and limited client computational resources. They proposed a
new method called FedCS, solving the problem of resource-
constrained client selection, allowing the server to aggregate
updates from multiple clients and accelerate performance
improvements in ML models.

Given the scenario of Non-IID data in FL [39], per-
sonalized FL methods have been proposed. In 2023,
Long et al. [40] introduced personalized FL, presenting a
novel multi-center aggregation mechanism grouping client
model parameters. It learns multiple global models as cluster
centers from data and determines the optimal match between
users and centers to send more appropriate model parameters.
The same year, Mu et al. [41] proposed FedProc to address
imbalances in data distribution. FedProc utilizes a global
model to correct local training for each client, designing a
local network structure and a global model contrast loss to
regulate local model training, ensuring local objectives align
with global objectives. Yanhua and Yahui [42] introduced FL
based on meta-distillation, combining knowledge distillation
and meta-learning with FL. In each global iteration, the local
model of each client distills the global model while providing
feedback on its own situation to the central server, enabling
continuous updates and obtaining an improved global model
for personalized learning. Addressing heterogeneous client
data, Khojir et al. [43] proposed the FedShare, considering
a secure multiparty computation setting where clients use
additive secret sharing to model multiple servers. They
demonstrated that as long as there are at least two non-
colluding servers, the solution can provide secure aggrega-
tion. Additionally, mathematical proofs indicated that the
secure aggregated model at the end of each training round
is identical to the model provided by FedAvg, with efficient
communication and computation.

In 2023, Sai and Tianrui [44] addressed the high com-
munication costs and client heterogeneity issues in FL
by proposing an algorithm optimized for communication
costs. The server receives generated models from clients,
generates simulated data, trains a global model with the
simulated data, and communicates with clients only once
in this process. Clients fine-tune their models with the
global model to resolve client heterogeneity issues. Gong
and Gao [45] introduced an adaptive FL algorithm based on
evolutionary strategy. Each client is treated as an individual
in the evolutionary strategy, adapting to generate different
personalized sub-models through global optimization. They
also introduced network pruning, where clients receive model
parameters from the central server, perform chromosome-
guided local network pruning and subnetwork generation,
and send evolved chromosomes and corresponding sub-
networks to the server for iterative updates. Consequently,
each client establishes a subnet adapted to its private data
distribution, optimizing it using evolutionary strategy.

C. APPLICATION OF SWARM INTELLIGENCE TECHNIQUES
IN FEDERATED LEARNING
With the widespread adoption of swarm intelligence tech-
niques in recent years, there is an increasing interest in
applying such algorithms to FL. Particle swarm optimizer
(PSO) [46] has demonstrated advantages such as fast
convergence and good results for complex optimization
problems or non-convex problems. In recent years, there has
been a surge in research combining machine learning with
PSO, primarily for optimizing hyperparameters of neural
networks [47], [48], [49], aiming to improve model accuracy
in classification tasks.

In the context of distributed learning environments, only a
few studies have explored the combination of PSO and FL.
Qolomany et al. [50] proposed a PSO based technique to
optimize hyperparameters of client machine learning models
in a FL environment. However, PSO technology is not
employed in the training process of FL. Park et al. [51]
introduced the FedPSO, which combines PSO with the
training process of FL. Nevertheless, FedPSO simplifies
the combination of PSO with FL, assuming an idealized
IID client data distribution. The algorithm proves to be
extremely unstable in the case of Non-IID data. Current
applications of swarm intelligence techniques in FL are lim-
ited to dealing with IID data, overlooking the critical issues
of communication cost and data heterogeneity mentioned
earlier.

DBO primarily simulates the behaviors of dung beetles,
such as rolling balls, dancing, foraging, stealing, and
reproducing. It utilizes the rolling behavior of dung beetles
for iterative position updates, introduces a boundary selection
strategy to simulate the regions for female dung beetles to
reproduce and for small dung beetles to forage. The algorithm
then iterates the position information guided by thief dung
beetles to seek the optimal solution. It is characterized
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by strong optimization capabilities and fast convergence,
making it widely applied in the model optimization process
of ML after its proposal [52], [53].

In the field of air quality predictionmodels, Duan et al. [54]
combined DBO, convolutional neural network (CNN), and
long short-term memory (LSTM) to avoid the model’s
dilemma. They determined optimal hyperparameters to
achieve higher predictive accuracy. Additionally, DBO has
found extensive applications in various domains such as
function optimization, image processing, ML [55], energy
optimization [56], [57], [58], and path planning. Numerous
researchers have made improvements to DBO parameters
and applied them in practical scenarios. Zhang and Zhu [59]
used fragmental linear chaotic mapping to generate the
initial dung beetle population. They employed an adaptive
nonlinear producer rate decay model to control the number of
producers and applied dimension learning-enhanced foraging
search strategies. They proposed an improved dung beetle
optimization (IDBO), which was applied to optimize a
backpropagation neural network for predicting five mechan-
ical performance parameters of heat-treated larch sawn
timber.

In this paper, FedDBO is proposed to solve the problem of
high cost of federal learning communication as well as data
heterogeneity, and the main work done can be described by
the following four points:
• Combining DBO with the FL training process, FedDBO
transforms the communication data format in FL
from model parameters to model scores (accuracy).
It selects a subset of client models based on their
model scores and uploads their model parameters to
the server, significantly reducing the issues of high
communication costs and low communication efficiency
in FL.

• Proposing model retraining strategies (MRS): Con-
structing server data and conducting secondary training
optimization on the server. MRS not only alleviates the
impact of data heterogeneity on FL but also improves
model accuracy. Furthermore, this strategy guides the
optimization of federated models in a controllable
manner.

• Elaborating on the convergence of FedDBO’s model and
providing mathematical proofs. The proofs demonstrate
that the aggregated model obtained by FedDBO con-
verges to the aggregated model obtained by FedAvg.

• Simulating different data heterogeneity scenarios on
the MNIST, FashionMNIST, and CIFAR-10 datasets,
comparing the accuracy of FedDBO, FedAvg, FedShare,
and FedPSO. Experimental results show that the model
obtained by FedDBO has higher accuracy. The perfor-
mance losses of each algorithm under different data
heterogeneity scenarios are compared, demonstrating
that FedDBO not only achieves higher accuracy com-
pared to the other three algorithms but also exhibits
higher robustness.

III. BASIC THEORIES
A. FEDERATED LEARNING
Federated learning (FL) is a decentralized ML approach
designed to enable multiple devices or clients to locally train
models without the need to centralize the original dataset on
a single server as shown in Fig. 1.
FedAvg is the most typical FL algorithm. In this algorithm,

each local device or client trains a local model. Subsequently,
the parameters of these local models are transmitted to the
central server. The central server aggregates these parameters
through weighted averaging to obtain the global model. The
global model is then transmitted back to the local devices,
and this process is iterated further. The detailed procedure of
FedAvg is illustrated in Alg. 1.

Algorithm 1 FedAvg; K = Number of Clients; E = Client
Total Epochs; Select Client by the C Ratio
1: function SERVEREXECUTES
2: InitializeW0
3: for each round t = 1, 2, . . . do
4: St ← random set of max (C · K , 1) clients
5: end for
6: for each client k ∈ St in parallel do
7: W k

t+1← ClientUpdate(k , Wt )
8: Wt+1← averaging of the collected weights
9: Wt+1 of St clients
10: end for
11: function ClientUpdate(k , W0)
12: Perform learning process on client k with weightW until

the client reaches E epoch
13: Wt+1← updated weight after learning
14: returnWt+1 to server

B. DUNG BEETLE OPTIMIZER
DBO consists of a group of dung beetles, categorized into
four types: rolling ball dung beetle, breeding dung beetle,
small dung beetle, and stealing dung beetle. They perform
rolling behavior, breeding behavior, foraging behavior, and
stealing behavior, respectively. The specific processes are as
follows:

Rolling Ball: The rolling ball sub-population is further
divided into obstacle-free mode and obstacle mode. Obstacle-
free dung beetles iteratively update their positions based on
the intensity of the light source. The position update of a dung
beetle is expressed as follows:

xit+1 = xti + τ · k · xit−1 + z ·1x. (1)

1x =| xti − x
worst
i | . (2)

Here, t denotes the current iteration number, xti represents
the position information of the i-th dung beetle at the k-th
iteration, k ∈ (0,0.2] indicates a constant value that serves as a
deviation coefficient, z represents a constant value belonging
to the interval(0,1),τ is a natural coefficient assigned as either

VOLUME 12, 2024 43399



D. Wang et al.: FedDBO: A Novel Federated Learning Approach

FIGURE 1. Federated learning training process: (1) The server initializes the global
model W0 and sends it down to each client. (2) The i -th client trains W0 on its own
local data to obtain the local model W i

t and uploads it to the server. (3) The server
uses FedAvg to aggregate the received local model parameters to update the global
model to get Wt+1.

−1 or 1, and xworsti denotes the globally worst position, 1x
used to simulate changes in light intensity.

In the presence of obstacles, the beetle will use a tangent
function to simulate the dancing behavior and iteratively
update its position. The position update in this case is given
by Eq.(3):

xit+1 = xti + tan θ | xti − xi
t−1
| . (3)

where θ is the deflection angle belonging to [0,π].
Breeding: To simulate the breeding process of female

dung beetles and determine the boundaries of the breeding
subpopulation, as shown in Eq.(4):{

Lb∗ = max{xtlbest · (1− R),Lb}
Ub∗ = min{xtlbest · (1+ R),Ub}

(4)

where xtlbest represents the current local optimal position, Lb
and Ub respectively represent the lower and upper bounds
of the optimization problem, Lb∗ and Ub∗ respectively
represent the lower and upper limits of the oviposition area,
R = 1 − t/Tmax, Tmax represents the maximum number of
iterations.

The oviposition area dynamically adjusts with the number
of iterations. Therefore, the position of the larva ball is also
dynamic, denoted asBti for the position of the i-th larva ball at
the t-th iteration. The position of the larva ball must be strictly
limited to the oviposition area, defined as follows:

Bit+1 = xtgbest + A1 × (Bti − Lb
∗)+ A2 × (Bti − Ub

∗).

(5)

Here, Bti represents the position information of the i-
th nurturing ball at the t-th iteration, and A1,A2 denote
two independent random vectors of size 1 × D, where D
representing the dimensions of the optimization problem.

Foraging: The optimal foraging region for foraging beetles
is also dynamically updated, where xtlbest is the current
population’s local optimal position, Lbl andUbl are the lower
and upper bounds of the foraging region, defined as Eq.(6):{

Lbl = max{xtgbest · (1− R),Lb}
Ubl = min{xtgbest · (1+ R),Ub}

(6)

xtgbest represents the global optimal position, and the
position of the small beetles is updated with the defined
boundary positions, specifically defined as Eq.(7):

xit+1 = xti + ζ · (xtgbest − Lb
l )+ Γ × (xti − Ub

l ). (7)

where ζ represents a random number following a normal
distribution, and Γ represents a random vector belonging to
the range (0,1).

Stealing: In the population of dung beetles, there are some
stealing beetles. Their position is updated as follows:

xit+1 = xtlbest + S · g× (| xti − x
gbest
i | + | xti − x

lbest
i |).

(8)

Here, g is a random vector of size 1×D following a normal
distribution, and S represents a constant value.

IV. METHODOLOGY
A. FEDDBO
The DBO has the advantages of high parallelism, powerful
global search capabilities, and strong adaptability, making it
highly suitable for scenarios with heterogeneous clients in
FL. In order to reduce communication costs and enhance
the robustness of the FL model training process, this paper
proposes FedDBO. FedDBO applies the DBO to the training
process of Federated Learning, addressing the shortcom-
ings of traditional FL training, where the server transfers
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FIGURE 2. FedDBO training process:In the client update stage(left). The i -th client receives the Ds from the server,
calculates the accuracy of its own local model with respect to the Ds as the model score denoted as pbest i

t (one
round of dung beetle update with E round of local iteration is included). (3)Wait for the server to request the model
parameters of the top N clients. In the server aggregation phase(right), after receiving the model parameters, the top
N highest model scores are uniformly denoted as gbest , and their corresponding client indexes are L_gid . (2)Request
the model parameter W gid

t for the top N clients and update the model to Wt+1 using the FedAvg aggregation
parameters. (3)Train Wt+1 using the server’s own metadata to obtain a new model Wt+1 trained on the global data.

model parameters with a focus on reducing communication
costs. Instead, FedDBO introduces a novel approach by
exchanging model scores rather than model parameters,
aiming to improve the efficiency of communication and
enhance the robustness of model training in FL, especially
in heterogeneous client environments.

As shown in Fig. 2, FedDBO employs an alternative
approach to the traditional FLmethod. At the beginning of the
training process, the server sends the scoring dataset Ds (the
selection of Ds is discussed specifically in Sec. IV-B). Then,
the clients make updates and upload the accuracy as model
scores to the server. The server selects the top N clients, asks
them for model parameters, and updates the global model for
the round by averaging the FedAvg parameters.

In the traditional FL framework, the transmission involves
all client models’ parameters. However, in the FedDBO
framework, it only requires uploading themodel scores on the
evaluation model and the model parameters of N clients with
higher scores, which significantly reduces communication
costs and improves training efficiency.

During the training process, to leverage the guidance of
both the global optimal model and the local optimal model on
the client model training, analogous to the DBO algorithm,
the update of the client neural network model in FedDBO
involves one round of roach updates and E rounds of local
iteration. Specifically, in the obstacle-free mode, the update
process for the rolling ball model is as follows:

Wi
t+1
= W t

i + τ · k ·Wi
t−1
+ z ·1W . (9)

1W =| W t
i −W

worst
i | . (10)

where W t
i riepresents the local optimal model of the rolling

ball model in the tth iteration, and Wworst
i represents the

global worst model, and1W is used to simulate the variation
of light intensity.

In the obstacle mode, the model is updated using a tangent
function to simulate dancing behavior and iterate the model’s
position. The model update in this case is shown in Eq.(11):

Wi
t+1
= W t

i + tan θ | W t
i −Wi

t−1
| . (11)

To simulate the process of roach reproduction and
determine the boundaries of the breeding model’s position,
Lb∗ and Ub∗ represent the lower and upper limits of the
spawning area, respectively:{

Lb∗ = max{W t
lbest · (1− R),Lb}

Ub∗ = min{W t
lbest · (1+ R),Ub}

(12)

where W t
lbest represents the current local optimum model of

the breeding model.
The spawning region adjusts dynamically with the number

of iterations, and thus, the position of the pupa is also
dynamic. W t

i represents the updated position of the i-th
pupa in the t-th iteration, and the position of the pupa must
be strictly confined to the spawning region, defined as in
Eq.(13):

Wi
t+1
= W t

gbest + A1 × (W t
i − Lb

∗)+ A2 × (W t
i − Ub

∗).

(13)

The foraging model is similar to the boundary region of
the reproduction model in that its optimal foraging region
is also dynamically updated, with W t

lbest being the local
optimal position of the current model, and Lbl and Ubl being
the lower and upper bounds, respectively, of the position
update region of the foraging model, which are defined in
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equation (14) below:{
Lbl = max{W t

gbest · (1− R),Lb}
Ubl = min{W t

gbest · (1+ R),Ub}
(14)

Here, W t
gbest represents the global optimal model. The

model position is updated according to the defined boundary
position, specifically defined as follows in Eq.(15):

Wi
t+1
= W t

i + ζ · (W t
gbest − Lb

l )+ Γ × (W t
i − Ub

l ).

(15)

whereW t
i represents the local optimal model i of the foraging

model at the t-th iteration.
In the overall client model population, there will be the

presence of some stealing models, and their position updates
are given by Eq.(16):

Wi
t+1
=W t

lbest+S · g× (| W t
i −W

gbest
i | + | W t

i −W
lbest
i |).

(16)

where W t
lbest represents the local optimal position of the

current stealing model.

B. MODEL RETRAINING STRATEGY
In the FedDBO framework, the choice of the number N
of clients uploading model parameters affects the training
results of FL. A smaller N indicates that the server receives
fewer client models in each training round, resulting in lower
communication costs. However, selecting only a subset of
client models will lead to the exclusion of other clients from
training the global model, allowing a few clients with good
performance on the scoring model to dominate the global
model’s training. This can result in unfairness in FL.

When N is small, such as N equals 1, the server only
accepts the model from one client. However, a single client’s
data cannot represent all clients’ data, especially in a Non-
IID data environment. Simply setting a single client’s model
as the global model may lead to inconsistency between the
data distribution used to train the global model and the actual
data distribution, resulting in a decrease in model accuracy.
For example, if the MNIST dataset is used for training but
under extremely non-independent and identically distributed
(Non-IID) conditions, where each client only has one class
of data, the local model trained by a single client will have
poor generalization. If only the model from a single client is
sent to all clients as the global model, the global model will
only improve the recognition capability for a specific class
of label data. The final global model obtained through this
training process will also lack generalization ability [60].
As N increases, the server receives more client models

in one training round, which helps fully utilize client data
and train a more generalizable global model. However, as N
increases, the required communication costs also increase.
When N equals the number of clients, the communication
cost of FedDBO will be the same as FedAvg. To reduce
communication costs, decrease the number of client models

the server needs to receive, and alleviate the impact of
Non-IID problems on federated learning training, FedDBO
incorporates a model retraining strategy at the server side.

Specifically, in this paper, a server dataset Dm and a
scoring dataset Ds are constructed. Dm is an independently
and identically distributed (IID) subset of the overall training
data D,with the ratio of the size of Dm to D denoted as
α .Ds is an IID subset of Dm. In general, the server has
better information resources and can construct Dm based on
historical data and its own situation. Because only clients
with the highest accuracy on Dm can send models to the
server, Ds effectively represents the direction of client model
optimization in FedDBO.

During each communication round, after receiving the
client models, the server utilizes dataset Dm to retrain the
models as follows:

Wt = Wt−1 − η∇l(Wt ,Dm). (17)

Here,Wt represents the aggregated model at the server
during the communication round, η is the learning rate, and
Dm should reflect the data distribution of the overall client
training data. The detailed process of FedDBO is shown in
Alg. 2.

C. CONVERGENCE ANALYSIS
This section aims to demonstrate that the aggregated model
obtained by FedDBO closely approximates FedAvg at the
end of each training round. The strategy involves proving
the convergence for an arbitrary client’s training round and
then extrapolating this evidence to all rounds, ultimately
establishing that the FedDBO aggregated model converges to
the FedAvg aggregated model.

Assume C = {C1,C2,C3, . . . ,Cn} to be a group of
clients participating in the current training round, and
b = {b1, b2, b3, . . . , bn} as the dataset of clients involved
in the current training. Simultaneously, consider any client’s
training round denoted as t . Each client’s model, obtained
through training with local data over rounds of iterations,
is denoted asW t

1,W
t
2,W

t
3, . . .W

t
n , where l(W0, bk ) represents

the local loss function of the k-th client. The server initializes
the global model as W0 and aggregates the uploaded model
parameters from clients after receiving them. The resulting
aggregated global model is denoted asW t+1.
Definition 1 (Locally Bounded Gradient): In this paper,

considering the use of accuracy instead of model scores,
in the context of non-convex optimization problems with
the objective of minimizing the loss function l(W0, bk ),
there exists a constant M, for all W0and k, such that
∥(W0, bk )∥≤ M.
Definition 2 (Bounded Learning Rate): There exists a

constant M such that the learning rate η satisfies η ⩽ 1
LM ,

where L is the Lipschitz constant.
Theorem 1: Let P be the aggregated result model by the

server in t rounds of FedAvg, and R be the aggregated result
model by the server in the same round of FedDBO, ∃σ >

0 such that | P− R |< σ .
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Algorithm 2 FedDBO
1: function SERVEREXECUTES
2: InitializeW0, pbest , gbest , gid ;
3: for each round t = 1, 2, . . . do
4: for each client k in parallel do
5: pbest ← ClientUpdate(k , Wt ,gid)
6: end for
7: end for
8: if gbest > pbest then
9: pbest ← gbest W t

k+1 of St clients
10: gid ← k
11: Wt+1←GetBestModel(gid)
12: Wt+1← Wt − η∇l(Wt ,Dm)
13: end if
14: function CLIENTUPATE(k ,Wt ,gid)
15: InitializeW ,Wworst , Wgbest , τ , A1,A2,ζ ,Γ ,S,g
16: β ←(split ρk into batches of size B)
17: l=1:t + 1
18: if l ∈PbroodRollingclient then
19: W t+1

i = W t
i + τ · k ·W t−1

i +z· | W t
i −W

t
worst |

20: else
21: W t+1

i =W t
i +tan θ | W t

i −W
t−1
i |

22: end if
23: if l ∈PbroodBallclient then
24: W t+1

i =W t
lbest+A1 · (W

t
i − Lb

∗)+A2 · (W t
i − Ub

∗)
25: end if
26: if l ∈PSmallBallclient then
27: W t+1

i =W t
i +ζ ·( W t

i -Lb
l)+Γ ·(W t

i -Ub
l)

28: end if
29: if l ∈Thiefclient then
30: W t+1

i =W t
lbest+S ·g·(| W

t
i −W

gbest
i | + | W t

i −W
t
lbest |)

31: end if
32: for each client epoch i from 1 to E do
33: for batch b ∈ B do
34: Wt+1=Wt − η∇l(Wt , b)
35: end for
36: end for
37: return pbest to sever
38: function GETBESTMODEL (gid)
39: request to Client(gid)
40: receiveWt+1 from Client
41: returnWt+1 to server

Proof: Let the Denclue algorithm estimate the density
function using the improved Gaussian density function
be f .

Wk = W0 − η∇l(W0, bk ). (18)

In this context, η represents the learning rate, and
∇l(W0,Pk ) corresponds to the gradient of the local loss
function for the k-th client.

η∇l(W0, bk )←− W0 −Wk . (19)

According to Def. 1 and Def. 2, we can derive that,

| W0 −Wk |≤
1
LN
· N =

1
L

. (20)

Let δ =
1
L
be such thatWk converges toW0,

Therefore, in the FedAvg training process, the globally
aggregated model at the server is

P =
n∑

k=1

Wk

n
→ W0. (21)

As a result,

| P−W0 |≤ δ. (22)

For FedDBO, the server first initializes the global model
W0 using a subset Ds of its own data Dm and distributes it to
various clients. The clients then calculate their model scores
using W0 and upload them to the server. The server selects
the top N clients with the highest scores and requests their
model parameters. Therefore, the globally aggregated model
in FedDBO, as aggregated by the server, is:

W t+1
g =

N∑
k=1

Wk

N
. (23)

FromEq.(21),W t+1
g → W0, then the server utilizes its own

dataDm to perform a second round of iterative training on the
global modelW t+1

g , yielding:

R←− W t+1
g − η∇l(W t+1

g ,Dm). (24)

Then, from Def. 1 and Def. 2, we can obtain:

R −→ W t+1
g −→ W0. (25)

| R−W0 | ⩽ δ. (26)

From Eq.(25) and Eq.(26), it can be observed that:

| P− R |⩽ δ. (27)

□
Hence, P converges to R, and both converge to the initially

initialized global modelW0.

V. EXPERIMENTATION AND ANALYSIS
A. EXPERIMENTAL ENVIRONMENT
The experimental environment was set up with an Apple
M2 8-core central processor running MacOS 14.0. The
experiments were implemented using the Python language
and the PyTorch neural network framework. Python version
3.11 was used, and the PyTorch version employed was 2.0.1.
The specific details of the experimental environment are
presented in the following table.
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TABLE 1. Experimental environment parameter settings.

B. EXPERIMENTAL DATA
This paper conducts experiments to evaluate FedDBO using
the MNIST dataset, FashionMNIST dataset, and CIFAR-10
dataset. The evaluation involves comparing FedDBO with
FedAvg, FedShare, and FedPSO algorithms under different
data heterogeneity scenarios. Additionally, experiments are
conducted to analyze the impact of server data on FedDBO.
The accuracy of FedDBO is compared across different
scenarios on theMNIST dataset, FashionMNIST dataset, and
CIFAR-10 dataset.

The MNIST dataset consists of 60,000 training samples
and 10,000 test samples, each representing a grayscale
hand-written digit image of size 28 pixels × 28 pixels.
The FashionMNIST dataset comprises 70,000 images of
10 different categories of fashion items, divided into 60,000
training samples and 10,000 test samples. Each sample is a
grayscale image of size 28 pixels × 28 pixels.
The CIFAR-10 dataset is composed of 50,000 training

samples and 10,000 test samples, with each sample being
a color image of size 32 pixels × 32 pixels. In contrast
to the samples in the MNIST and FashionMNIST datasets,
CIFAR-10 samples represent real-world objects with varying
features, sizes, and substantial noise, making object recogni-
tion more challenging.

To simulate the data distribution environment in FL,
the paper utilizes 100 clients as training nodes. Following
the dataset partitioning approach outlined in literature [57],
the training data is divided into IID, NonIID_one and
NonIID_two distributions.

(1) IID: The training data is uniformly and randomly
distributed among each client. Taking the partitioning of the
MNIST dataset as an example, each class in the dataset has
6,000 training samples. The 10 class datasets are distributed
randomly and uniformly among the 100 clients, ensuring that
each client receives 600 samples with all 10 class labels.
This partitioning method ensures that each client’s training
dataset has diversity and representativeness, contributing to
improved model generalization capabilities.

(2) NonIID_one: Each client possesses data with only one
class label. Using the partitioning of the MNIST dataset as
an example, the dataset is initially divided into 10 groups
based on the labels. Each group of data is evenly split into
100 data slices. Subsequently, each client randomly selects
10 data slices from a randomly chosen group, forming the
client’s training data.

(3) NonIID_two: Each client possesses data with only two
class labels. Using the partitioning of the MNIST dataset as

TABLE 2. FedAvg and FedShare experimental parameters (data sample
size) settings.

an example, the dataset is initially divided into 10 groups
based on the labels. Each group of data is evenly split into
200 data slices. Subsequently, each client randomly selects
10 data slices from two randomly chosen groups, forming the
client’s training data.

C. PARAMETER SETTING
The experimental model adopts a CNN with two 5 ×
5 convolutional layers, each followed by a 2 × 2 max-
pooling layer. Subsequently, three fully connected layers are
appended, leading to a final output vector with 10 dimensions.

For the MNIST, FashionMNIST, and CIFAR-10 dataset,
batch_size is set to 20, the number of local iterations E is set
to 10, and the learning rate η = 0.001. the ratio of selecting
clients for the FedAvg is B = 1.0. FedShare is an improved
algorithm of FedAvg, which is mainly investigated in the
FL NonIID problem in the algorithm, the parameter settings
of this algorithm refer to the literature [61], take a number
of samples from MNIST, FashionMNIST, and CIFAR-10
datasets to form a global shared dataset G, and then assign
each client proportion of the global shared dataset of β and
β = 0.05. To ensure that the experimental data sample size
is the same, the FedAvg, FedShare experimental parameters
will be set against FedDBO, and the data sample sizes under
different distributions of different datasets are shown in the
following table.

FedPSO and FedDBO are improved algorithms that
combine FedAvg with swarm intelligence techniques. They
primarily focus on addressing the challenges of high commu-
nication costs and data heterogeneity in FL. The parameters
for these algorithms are based on references [60], where
a subset of samples from the MNIST, FashionMNIST, and
CIFAR-10 datasets is used to form the server data Dm. The
ratio of the size of dataDm to dataD is set to α = 0.2, and the
optimal strategy parameter N is set to 10. The experimental
parameters for FedPSO and FedDBO are detailed in the Tab3
(further explanations will be provided in Sec. V-D.4)).

D. EXPERIMENTAL PERFORMANCE ANALYSIS
1) ANALYSIS OF NUMERICAL RESULTS
To validate the experimental results of FedAvg, FedShare,
FedPSO, and FedDBO on the MNIST dataset, Fashion-
MNIST dataset, and CIFAR-10 dataset, the experiments
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FIGURE 3. Accuracy of FedAvg, FedShare, FedPSO and FedDBO on three datasets under three client data heterogeneity conditions.

TABLE 3. FedPSO and FedDBO experimental parameter (data sample
size) settings.

consider three different data distribution scenarios: IID,
NonIID_one, and NonIID_two. The parameters for the
experiments are set according to Tab. 2 and Tab. 3. IID
data follows an independent and identically distributed
distribution, representing a scenario with no client data
heterogeneity. NonIID_one and NonIID_two data have non-
independent and non-identically distributed characteristics,
with NonIID_one having a higher degree of heterogeneity.
The experimental results are shown in Fig. 3.
It can be seen that, for the comparison between FedAvg,

FedPSO, and FedShare, in the case of IID client data, FedAvg
has a lower accuracy in the first few rounds but gradually
increaseswithmore iterations. By the 100th iteration, FedAvg
performs roughly on par with FedPSO, while FedShare has
lower accuracy.

In the case of Non_IID client data, FedAvg’s accuracy
significantly decreases, and the accuracies of FedShare and
FedPSO increase with the number of iterations, reaching
a stable state. Particularly, as the data volume increases,
and data heterogeneity becomes more severe, FedShare and
FedPSO achieve much higher accuracy than FedAvg.

For the proposed FedDBO in this paper, its accuracy
is higher than the three aforementioned algorithms in the
MNIST, FashionMNIST, and CIFAR-10 datasets, under IID,
NonIID_two, and NonIID_one scenarios. Moreover, with
an increase in the number of iterations, FedDBO maintains
stable accuracy.

2) COMPARISON OF ALGORITHM PERFORMANCE LOSS IN
CASE OF DATA HETEROGENEITY
The accuracies of FedAvg, FedShare, FedPSO and FedDBO
after 100 rounds of iterations of the experiment for the three
datasets as well as for the three data distributions are shown
in the Tab. 4 below.

It can be observed that, in the MNIST dataset, when
the data distribution changes from IID to NonIID_one, the
accuracies of FedAvg and FedShare decrease by 63.62%
and 1.88%, respectively. In contrast, the proposed FedDBO
experiences only a slight decrease of 0.12%. In the FashionM-
NIST and CIFAR-10 datasets, the accuracy drop of FedDBO
is within 2%, significantly less than the performance loss
observed in FedAvg and FedShare.
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TABLE 4. Accuracy of FedAvg, FedShare, FedPSO and FedDBO in three datasets after 100 rounds of training.

FIGURE 4. Accuracy of FedAvg, FedShare, FedPSO and FedDBO on three datasets under three client-side data heterogeneity conditions with
10 and 100 iterations respectively).

Compared to FedPSO, in the MNIST, FashionMNIST,
and CIFAR-10 datasets, as the degree of data heterogeneity
increases, the performance loss of FedPSO is lower than
that of FedDBO. However, FedDBO consistently achieves
significantly higher accuracy than FedPSO.

In summary, the proposed FedDBO exhibits higher
performance loss compared to FedPSO as the degree of
data heterogeneity increases, but its accuracy remains signif-
icantly higher than the other three algorithms, regardless of
the dataset or the level of data heterogeneity.

3) ANALYZING THE INFLUENCE OF THE NUMBER OF
ITERATIONS ON THE ALGORITHM’S IMPACTABILITY
The number of iterations m has a certain impact on the
accuracy of FedDBO. In order to compare the influence of m
on accuracy, this study sets the number of iterations to 10 and
100 for each of the four algorithms. The experimental results
are shown in the Fig. 4.

It can be seen that compared to FedAvg, FedShare, and
FedPSO, FedDBO has higher accuracy for both iteration
numbersm at 10 and 100.Moreover, the accuracy of FedDBO
remains relatively stable asm changes from 10 to 100, without
significant fluctuations. This indicates that FedDBO not only
outperforms the other three algorithms in terms of accuracy
but also exhibits strong robustness with less performance loss.

4) IMPACT ANALYSIS OF α ON FEDDBO
α represents the size of the required data samples in the
experiment, and the size of the data samples has a significant
impact on the accuracy of FedDBO. To analyze the specific
impact of data sample size on its accuracy, this paper
conducted experiments with four different settings of α =

0.002, 0.02, 0.1, and 0.2 under different data distributions
on various datasets.The experimental results are shown in the
Fig. 5.
It can be seen that, under the IID setting of the MNIST

dataset, as well as the IID settings of the FashionMNIST

43406 VOLUME 12, 2024



D. Wang et al.: FedDBO: A Novel Federated Learning Approach

FIGURE 5. Accuracy of FedDBO under three client data heterogeneity conditions α = 0.002, 0.02, 0.1, 0.2 on three datasets.

and CIFAR-10 datasets, the impact of α = 0.002, 0.02,
0.1, 0.2 on experimental accuracy is negligible. However,
under the NonIID settings of the FashionMNIST and CIFAR-
10 datasets, the experimental accuracy increases with the
increase of the dataset ratio. As the data sample size
increases, the communication cost increases, and the data
privacy and security decrease. Therefore, for the five data
heterogeneous scenarios with small impact on experimental
accuracy due to dataset ratio, and for the sake of experimental
stability, this paper chooses to set the experimental parameter
α = 0.2 under these scenarios. For the other four data
heterogeneous scenarios, this paper chooses to set α = 0.2.

5) PERFORMANCE COMPARISON OF FEDDBO AND SIMILAR
ALGORITHMS
To further validate the robustness of FedDBO, we conducted
a performance loss comparison with FedPSO, specifically
examining the impact of performance loss on FedPSO and
FedDBO. In this paper, we set up two sets of experiments
α = 0.02 and 0.2 to compare the performance loss of the two
algorithms.The experimental results are shown in the Fig. 6.

It can be observed that as α changes from 0.2 to 0.02,
regardless of the dataset and data heterogeneity, FedPSO
exhibits increasing performance loss with the deepening
of data heterogeneity. However, the performance loss of
FedDBO is consistently lower than that of FedPSO, indicat-
ing that FedDBO has stronger stability compared to FedPSO.

FIGURE 6. Accuracy loss values of FedPSO and FedDBO on three datasets
when α changes from 0.2 to 0.02 under three client data heterogeneity
conditions.

VI. CONCLUSION AND FUTURE WORK
This paper addresses challenges in federated learning, such
as high communication costs, low communication efficiency,
and heterogeneous client data. It introduces a federated
learning algorithm based on the cockroach optimization
algorithm, named FedDBO. Unlike traditional federated
learning, FedDBO replaces model parameters with model
scores during communication between the server and clients.
This innovation enables a communication process where
only a subset of clients needs to transmit model parameters,
significantly reducing communication costs. Additionally,
FedDBO incorporates a model retraining strategy at the
server, effectively improving the accuracy of the global
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model. It demonstrates robust performance even in scenarios
with heterogeneous client data. Finally, FedDBO provides
mathematical proofs supporting the convergence of its
aggregated model to the aggregated model provided by
FedAvg, ensuring accuracy without compromising efficiency
and robustness.

To achieve the goal of reducing communication costs,
FedDBO selects a limited number of clients for uploading
model parameters. Consequently, the model accuracy of
FedDBO is highly dependent on the quality of server
data. Future research in the federated learning field should
focus on finding ways to reduce communication costs while
maintaining accuracy and constructing high-quality server
data while preserving data privacy. These areas are likely to
be hot topics in future studies in FL.
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