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ABSTRACT Traditional simultaneous localization andmapping (SLAM)methodologies predominantly rely
on the assumption of a static environment. This constraint limits the applicability of most visual SLAM
systems in various real-world scenarios. In this paper, we introduce a real-time semantic visual SLAM
algorithm tailored for complex dynamic environments (DRV-SLAM). DRV-SLAM leverages image analysis
to identify potential moving objects and determine their current motion states. By dynamically adjusting
the rejection of unreliable dynamic feature points based on the proportion of potential moving objects in
the environment, DRV-SLAM significantly enhances the system’s localization accuracy and robustness
in complex dynamic environments. Additionally, DRV-SLAM employs a dense mapping approach that
combines global downsampling and targeted object data enhancement. This method effectively reduces the
memory footprint of dense point cloud maps, enabling DRV-SLAM to efficiently construct large-scale dense
point cloud maps in diverse scenarios. Experimental results show that in a highly dynamic environment, the
DRV-SLAM algorithm shows an order of magnitude performance improvement compared to the traditional
ORB-SLAM2 algorithm. The performance index of absolute trajectory error is significantly improved by
more than 98%, and DRV-SLAM is currently one of the most real-time, accurate and robust systems for
dynamic scenes.

INDEX TERMS Visual simultaneous localization and mapping (SLAM), dynamic environment, motion
states, mapping.

I. INTRODUCTION
Simultaneous Localization and Mapping (SLAM) addresses
the challenge of estimating one’s own position and con-
structing a map using sensory data from the environment,
solely relying on the sensors carried, without prior knowledge
of the surroundings. Modern visual SLAM frameworks are
well-established and typically consist of several modules:
sensor data acquisition, front-end visual odometry, back-
end nonlinear optimization, loop closure detection, and
map creation. Furthermore, some advanced visual SLAM
algorithms have demonstrated superior performance, such as
ORB-SLAM2 [1], LSD-SLAM [2], and others [3], [4].

The associate editor coordinating the review of this manuscript and

approving it for publication was Laura Celentano .

However, these vision SLAM algorithms have been pri-
marily studied under the assumption of a static environment.
While motion constraints can be used to treat feature points
on a small portion of dynamic objects as anomalous static
points, when the surrounding environment contains a higher
number of dynamic objects, it leads to significant drift in self-
pose estimation. In reality, the environments encountered by
robots are complex and dynamic, making it challenging to
ensure constant static conditions. Therefore, vision SLAM
algorithms based on static assumptions limit their application
in scenarios involving service robots, autonomous driving,
Augmented Reality/Virtual Reality(AR/VR), and other com-
plex dynamic environments.

In addition, dynamic environments pose a significant
challenge to the robustness of visual SLAM systems. When
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FIGURE 1. The overview of DRV-SLAM. The raw RGB image is utilized to instance segmentation and motion region constraint simultaneously. Then
remove outliers and estimate pose. Dense map is built in an independent thread based on the pose, depth image, and instance segmentation results.

a large portion of the extracted features in the system
originates from moving objects, utilizing these features
for position estimation not only significantly increases the
errors in position estimation but also compromises system
stability, potentially leading to system failures. Experiments
have demonstrated that when ORB-SLAM2 [1] is applied
to datasets with dynamic environments, such as the TUM
RGB-D DynamicObjects dataset [5], the system frequently
encounters failures, resulting in unsuccessful and incomplete
operation.

This paper introduces a method that combines target detec-
tion, instance segmentation, and motion region constraints,
utilizing both semantic a priori information and geometric
instance segmentation information. The aim is to mitigate
the impact of dynamic objects in the visual SLAM system,
thereby enhancing the system’s localization accuracy and
robustness in complex dynamic environments. Furthermore,
the paper offers sparse and dense point cloud maps to cater to
robots in various scenarios. An overview of the DRV-SLAM
system is illustrated in Fig. 1.

The main contributions of this paper include:
1) DRV-SLAM is a complete adaptive real-time semantic

visual SLAM system based on the ORB-SLAM2 [1]
framework. It is specially designed for complex dynamic
environments and can dynamically adjust the feature extrac-
tion strategy according to the surrounding environment.
Improving the pose estimation accuracy and robustness of the
system. The performance of the system is evaluated on the
TUM RGB-D DynamicObjects dataset [5]. The results show
that DRV-SLAM is significantly better thanORB-SLAM2 [1]
and ORB-SLAM3 [3] in terms of accuracy and robustness
of pose estimation in highly dynamic environments. Its

performance is superior to other advanced visual dynamic
SLAM systems.

2) This paper proposes a method for partitioning potential
moving objects into motion states, which can classify
perceived potential moving objects into those in motion and
those in a static state. When the proportion of potential
moving objects in the surrounding environment is high,
the system only removes feature points on highly dynamic
potential moving objects. This method significantly improves
the robustness and accuracy of the system in dynamic scenes.
We also employed TensorRT for optimizing the deployment
of the instance segmentation network, thereby enhancing
the inference speed post-deployment, ensuring real-time
compliance for the instance segmentation network.

3) Additionally, this paper presents a dense map-building
method employing global downsampling and targeted object
data enhancement. This approach reduces the systemmemory
utilization for dense point cloud maps, thereby enabling
the DRV-SLAM system to create dense point cloud maps
across a broader range of scenarios. Consequently, the
DRV-SLAM system can function in a more extensive array of
scenarios.

II. RELATED WORKS
Dealing with the impact of dynamic objects on the system in
visual SLAM has been a widely researched topic in recent
years. Research ideas can be broadly categorized into two
types: one relies on traditional computer vision methods for
dynamic point detection, such as motion estimation, optical
flow computation, multi-view geometry, and so on. The other
approach involves the use of deep learning methods for
dynamic object detection.
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The former approach typically involves detecting moving
objects or regions through the analysis and modeling of pixel
or feature point motion in an image sequence.

• Kundu et al. [6] define geometric constraints by
constructing basis matrices that are considered dynamic
if matching features in subsequent frames are far from
the poles.

• Zou and Tan [7] project features from the previous
frame to the current frame by analyzing the triangulation
consistency and calculating the reprojection error of the
feature tracking; if the error is large, the map points are
considered dynamic.

• Wang et al. [8] designed a moving target discrimination
model based on statistical features by clustering the
depth images into several objects, counting the number
and percentage of features on each object, and eliminat-
ing all features on the model if the target is considered
to be moving.

However, this type of method cannot acquire the semantic
a priori information for individual pixels, potentially resulting
in incorrect detections or missed detections, particularly
in environments characterized by complex motion patterns,
noise, occlusions, and dynamic lighting conditions. Conse-
quently, it fails to deliver precise dynamic object detection.

Deep learning-based methods enable machines to learn
higher-level feature representations, typically resulting in
more accurate detection outcomes. As a result, the current
mainstream approach in the field of SLAM for dynamic
object detection involves the use of deep learning methods.
Notably, methods like DynaSLAM and others [9], [10], [11],
[12], [13], [14], [15], [16], [17], [18], [19], [20] all employ
deep learning strategies for motion object recognition.

• DynaSLAM [9] uses multi-view geometry to help the
Mask R-CNN [21] instance segmentation network to
perform segmentation in a way to get better segmenta-
tion results, to detect the moving objects in the image
and repair the background around the moving objects.

• Detect-SLAM [10] by performing target detection only
on keyframes and propagating themovement probability
through feature matching and match point expansion
The method solves the real-time problem by removing
feature points on potentially moving objects, assigning
an ID to each object and constructing an object model in
the map.

• DS-SLAM [11] uses SegNet [22] semantic segmen-
tation network in combination with the optical flow
method to remove dynamic feature points and construct
an octree semantic map.

• YOLO-SLAM [23] uses the YOLOv3 [24] target
detection network to monitor a priori potential moving
objects in the scene, and then combines it with the
RANSAC [25] method to eliminate feature points within
the dynamic object range.

• SG-SLAM [26] utilizes the SSDlite [27] target detec-
tion network in combination with epipolar constraints
between image frames to discern motion objects.

However, when dealing with moving objects, most of
their work focuses on eliminating the feature points on
the detected potential moving objects, and the research on
judging whether the potential moving objects are moving
is not in-depth enough. Some of these methods, outliers
detected by the optical flow method are used to determine
whether the segmented potential moving objects are moving.
However, due to the influence of light changes, noise,
etc., it is easy to misjudge the potential moving objects
as moving. When there are many potential moving objects
in the surrounding environment, if it cannot be accurately
determined whether they are moving, directly eliminating
feature points on potential moving objects will waste many
useful feature points, thus reducing the robustness of the
SLAM system. Especially when potential moving objects
occupy a high proportion in the image, it is easy to cause the
SLAM system to fail to track.

In addition, there are research efforts dedicated to design-
ing robust methods for dynamic SLAM based on filters and
probabilistic models, effectively enhancing the robustness of
SLAM algorithms in dynamic environments.

• Demim et al. [28] proposed a method based on
Adaptive Smoothed Variable Structure Filter (SVSF) to
address cooperative SLAM problems. By introducing
a covariance matrix to evaluate the uncertainty of
adaptive SVSF, the method enhances its performance
and expands its useful applications, effectively improv-
ing system robustness when encountering complex
environments.

• Tang et al. [29] proposed an improved H-Infinity
unscented FastSLAM (IHUFastSLAM) with adaptive
genetic resampling. The H-Infinity unscented Kalman
filter algorithm was enhanced using an adaptive fac-
tor and applied as importance sampling in particle
filtering. Subsequently, process noise and measure-
ment noise were estimated using a time-varying noise
estimator. Additionally, an adaptive genetic algorithm
was employed for particle filter resampling. Finally,
the improved IHUFastSLAM with adaptive genetic
resampling was introduced for robot tracking. The
proposed algorithm enables accurate robot tracking with
robustness in complex environments.

• Zhang et al. [30] proposed a semi-supervised point
cloud registration (PCR) method for accurately esti-
mating point correspondences and handling large-scale
transformations using limited prior datasets. Themethod
treats two point clouds as implementations of Gaus-
sian Mixture Models (GMM), and PCR between
the two point clouds is achieved by minimizing the
KL divergence between these probability distributions.
Subsequently, an augmented regression network is
employed to estimate the correspondence between the
point clouds and latent GMM components. Finally, the
parameters of the GMM are updated based on the corre-
spondence, and the transformation matrix is computed
using weighted singular value decomposition (SVD).
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Extensive experiments on synthetic and real-world data
validated the superior performance of the proposed
method compared to state-of-the-art registration meth-
ods. These experiments also highlighted the method’s
advantages in terms of accuracy, robustness, and
generalization.

Although methods based on filters and probabilistic
models can improve robustness and stability to some extent,
they often involve complex numerical optimization problems
that require significant computational resources and time.
Moreover, in practical applications, they are affected by
factors such as environmental changes, sensor noise, and
model errors, making it difficult to establish accurate
mathematical models and leading to poor generalization
ability. Therefore, their practical application in the field of
SLAM is subject to many limitations.

III. SYSTEM INTRODUCTION
In this section, the framework of the DRV-SLAM system
is described in detail. This section contains five aspects,
firstly, we introduce the DRV-SLAM system overview
diagram, secondly, we briefly introduce the YOLOv8 real-
time instance segmentation network used in DRV-SLAM and
the improvements we have made, then we introduce our
proposed method for motion region constraint, then we show
how to perform dynamic feature point culling, and lastly we
introduce the method of constructing a dense map.

A. FRAMEWORK OF DRV-SLAM
The DRV-SLAM system builds upon the existing framework
of ORB-SLAM2 [1] and introduces several enhancements,
including an instance segmentation module, dynamic feature
point filtering module, and dense mapping module. During
system operation, five threads run in parallel: the tracking
thread, instance segmentation thread, local mapping thread,
loop detection thread, and dense mapping thread. The overall
system architecture is illustrated in Figure 1.

After entering the image data input system, it undergoes
parallel processing and is simultaneously sent to the tracking
thread and the instance segmentation thread. In the instance
segmentation thread, the YOLOv8 instance segmentation
network performs target detection and segmentation on the
images, outputting object detection boxes, and object area
masks. Meanwhile, in the tracking thread, feature points
are extracted from the images, awaiting the segmentation
results from the instance segmentation thread. Subsequently,
utilizing the instance segmentation results in combination
with the method of motion region constraint, the potential
moving objects in the images are categorized based on their
motion levels. The range of motion levels for feature point
removal is dynamically adjusted according to the proportion
of pixels occupied by potentially moving objects in the
image. The retained feature points are used for subsequent
pose estimation and optimization. In the dense map-building
thread, dynamic points in the depth map are first removed

using the instance segmentation results. Then, a dense point
cloud map is constructed using global downsampling and
targeted object data enhancement methods.

B. INSTANCE SEGMENTATION NETWORK
Currently, target detection and semantic segmentation meth-
ods based on convolutional neural networks continue to
make breakthroughs in speed and accuracy. Object detection
algorithms need to classify different objects in the image
and also need to give the location of each object. Traditional
target detection methods, such as R-CNN [31] series (such
as SPP-Net [32], Fast R-CNN [33], Faster R-CNN [34],
etc.), using convolutional neural networks to automatically
learn features, avoiding the limitations of manually designing
features. They achieve target detection through multiple steps
such as candidate frame extraction, feature extraction and
classification. Although these methods have high accuracy,
they are time-consuming because candidate box extraction
and target classification are performed separately.Traditional
semantic segmentation networks also use convolutional
neural networks to learn features. Different from target
detection, the goal of semantic segmentation is to assign
each pixel in the image to a specific semantic category,
such as FCN [35], SegNet [22], U-Net [36], etc., but due to
the use of a fully convolutional structure, the computational
complexity is high, and they are also not suitable for real-time
applications.

In contrast, the YOLO [37] algorithm abandons the
intermediate step of generating candidate regions, directly
processes the regression problem of each bounding box
through a single convolutional neural network, and predicts
the probability of the corresponding category, thereby
achieving high speed and Very good accuracy is maintained.
YOLOv8 provides a new SOTA model that can achieve
target detection and instance segmentation at the same time.
DRV-SLAM uses the YOLOv8 instance-level pixel semantic
segmentation network. It can segment 80 types of objects
by training on the MS COCO data set [38], and deploys
and optimizes the model through TensorRT. Testing on a
computer equipped with a GTX 1050ti graphics card, the
inference speed reaches 42 frames per second, meeting the
requirements for real-time detection.

C. MOTION REGION CONSTRAINT
The inference results of instance segmentation models have
two attributes: object bounding boxes and segmentation
masks. In conjunction with the motion consistency constraint
method, we introduce a motion region constraint method to
assess the motion status of potentially moving objects. This
method encompasses three key aspects: motion consistency
detection, instance-segmented object ID assignment, and
classification of the motion state of instance-segmented
objects.

Fig. 2 illustrates the schematic diagram of the motion
region constraint method. The left and right sections represent
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FIGURE 2. Schematic diagram of motion region constraints.

two consecutive frames of images within the dataset. In the
figure, the red mask represents potential motion objects
segmented by the instance segmentation network. The red
solid-line box denotes the target detection box for potential
motion objects, and the black dashed-line box is the
expansion box that enlarges the region around the target
detection box. Circular dots represent feature points extracted
from potentially moving objects, triangular dots represent
feature points extracted from regions outside the mask area
within the expansion frame, and diamond dots represent
feature points extracted from regions outside the expansion
rectangular box. Successfully matched feature points are
depicted in green and connected by solid green lines, while
unsuccessful matches are shown in black.

1) MOTION CONSISTENCY DETECTION
In this section, we employ the motion consistency detection
method to identify moving points within an image. This
process is executed in the following steps: First, we compute
an optical flow pyramid to obtain feature point pairs that have
been successfully matched between the current frame and the
previous one.We discard the matched pairs if they are located
within potentially moving objects or at the image edges.
Subsequently, we utilize the remaining matched point pairs
to estimate the fundamental matrix. Using the fundamental
matrix, we compute the epipolar line of the matched point
pairs in the current frame. Finally, we assess whether the
distance from the matching point to the epipolar line in the
current frame is below a predefined threshold. If it is less than
the threshold, the point is considered stationary; otherwise,
it is regarded as having moved.

The figure3 is an epipolar geometric constraint diagram,
where P represents a point in the three-dimensional space,O1
andO2 represent the camera centers of the two frames, l1 and
l2 represent epipolar lines, p1 and p2 represent the matching
points in the previous frame and the current frame. According
to [6], the fundamental matrix F can be calculated by the
following formula:

pT2 Fp1 = 0 (1)

The epipolar line l2 can be calculated by the following
formula:

l2 = FP2 = F

u2v2
1

 (2)

FIGURE 3. Epipolar constraints.

2) INSTANCE-SEGMENTED OBJECTS ID ASSIGNMENT
The process of assigning IDs to instance-segmented objects
in this paper can be divided into the following steps.

The first step involves utilizing the instance segmentation
result from the current frame in combination with the
extracted feature points to obtain feature points situated
within the segmented regions of each object in the current
frame.

The second step involves identifying the object in the
current frame with the highest count of matching pairs within
the mask of its target region from the previous frame for each
object. If these two objects share the same attribute and the
count of matching pairs exceeds a predefined threshold, they
are deemed to represent the same object.

The third step involves assigning an ID to the object. If the
object was not found in the previous frame, a new ID is
assigned to the current frame object. If the object was found
in the previous frame, it is checked whether the object already
has an ID from the previous frame. If it does have an ID, the
current frame object is assigned the same ID. If it does not
have an ID, both the object from the previous frame and the
current frame are assigned new IDs simultaneously.

3) MOTION STATE CLASSIFICATION OF
POTENTIAL MOVING OBJECTS
In this paper, objects with dynamic attributes, such as people
and cars, are referred to as potentially moving objects.
These potentially moving objects are classified into two
states: stationary and in motion, based on their movement
speed. Objects inherently lacking dynamic attributes, such
as books, chairs, computers, and similar items, are denoted
as static objects. The method employed for categorizing
instance-segmented objects into these motion states is as
follows:

Step 1: For each potential moving object in the current
frame, check whether there is an object with the same ID in
its previous frame.

Step 2: If there is a potential motion object with the same
ID, then the motion state is divided by the following method.
Firstly, calculate the number of successfully matched feature
points in the region other than the segmentation area within

VOLUME 12, 2024 43831



Q. Ji et al.: DRV-SLAM: An Adaptive Real-Time Semantic Visual SLAM Based on Instance Segmentation

the expanded rectangle box of the same object in the current
frame and the previous frame, denoted as m. Then calculate
the number of matched points in the region other than the
segmentation area within the expanded rectangle box of the
object in the current frame, denoted as n. Finally, calculate
the ratio of the number of matched feature points m to the
number of matched points n, denoted as δ. The potentially
moving objects are categorized into stationary and in-motion
states based on the interval in which δ is located. The formula
is as follows:

δ =
m
n

(3)

Step 3: In the absence of an object with the same ID,motion
consistency detection is conducted on the current frame. If the
number of detected moving points on the potential motion
object surpasses a specific threshold, it is categorized as a
potentially moving object in the motion state; otherwise, it is
classified as a potentially moving object in the stationary
state.

D. STRATEGY FOR DYNAMIC FEATURE POINT REMOVAL
When the proportion of pixels occupied by potential moving
objects in the image is relatively high, simply removing the
feature points on potential moving objects can potentially
lead to tracking thread failures due to the reduced number
of available feature points.

To address the aforementioned issues, this paper presents
the following methods. Firstly, prior to feature point
extraction, the proportion of pixels occupied by potential
moving objects in the previous frame is calculated, and if
this proportion is significant, the number of feature points
extracted in the current frame is increased. Secondly, prior
to dynamic feature point extraction, the proportion of pixels
occupied by potential motion objects in the current frame
image is calculated. If this proportion is small, all feature
points on potential motion objects are removed. Conversely,
if the proportion is large, only the feature points on highly
dynamic potential motion objects are eliminated. These
methods not only mitigate the impact of highly dynamic
moving objects on the position estimation of the visual
SLAM system but also substantially enhance the system’s
robustness.

E. DENSE MAPPING
The ORB-SLAM2 [1] system generates sparse maps with
a limited number of point clouds, which fail to capture
detailed information about the reconstructed environment.
In contrast, DRV-SLAM employs RGB images and depth
maps to produce dense point clouds with accurate depth
values while retaining the sparse point cloud maps.

DRV-SLAM is well-suited for localization and mapping
in dynamic scenes. Typically, our goal is to conduct dense
mapping on objects with static attributes, excluding any
potentially moving objects in the point cloud map. During the
dense mapping process, map points that are associated with

potentially moving objects are removed to ensure the accurate
construction of dense maps.

In large-scale SLAM scenarios, dense mapping increases
the global point cloud count significantly. This has a dual
impact: it prolongs the dense mapping phase, reducing
overall SLAM system speed, and imposes heavy memory
demands, risking memory overflow and reducing system
robustness. Typically, the focus is on the detailed repre-
sentation of prominent objects in the dense point cloud,
with less emphasis on background elements like walls and
tabletops.

Based on the above situation and requirements, this paper
proposes a global downsampling and targeted object data
enhancement scheme for dense mapping. Global downsam-
pling refers to downsampling all the point clouds in the
depth point cloud map of the keyframe and then transforming
the remaining point clouds to the world coordinate system
to save them as the global point cloud map. The method
of targeted object data enhancement is based on global
downsampling and then through the image information of
several common frames nearest to the keyframe and its
instance segmentation results, only the point clouds on the
segmented static key objects are transformed to the world
coordinate system and saved as the global point cloud map,
which enhances the details of the targeted objects in the
dense map.

Figure 4 for the targeted object data enhancement method
schematic, here assuming that the book on the table is the
‘‘key object’’, the instance segmentation network has been
detected in the figure and identified the book with a red mask.
The right image is the key frame image, the points above
are the point cloud in the camera coordinate system obtained
by downsampling the depth map of the current keyframe,
in which the red points represent the point clouds on the book,
the left multi-frame image is the image of several frames in
front of the keyframe, the red points on each frame represent
the point clouds of the pixels on the book in the camera
coordinate system of each frame. the point cloud on the left
frames and the point cloud on the right frame are added
together into the global point cloud map to realize the effect
of the targeted object data enhancement.

FIGURE 4. Schematic diagram of data enhancement methodology for
targeted objects.
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TABLE 1. Results of metrics absolute trajectory error (ATE).

TABLE 2. Comparison results of absolute trajectory error (ATE) between drv-slam and classical slam algorithms.

IV. EXPERIMENTAL RESULTS
In this section, we evaluate the performance of DRV-SLAM
in dynamic environments using the publicly available TUM
RGB-D dataset [5] provided by the Technical University
of Munich. The TUM RGB-D dataset includes multiple
sequences in dynamic environments and provides accurate
camera pose variations obtained through an external motion
capture system. In these sequences, individuals in extreme
motion scenarios occupy more than half of the image area,
posing significant challenges to the operation of visual
SLAM systems. This evaluation provides a rigorous test of
the accuracy and robustness of visual SLAM algorithms in
extremely dynamic environments.

All experimental parts of this paper were conducted on a
local laptop with an Intel i5-8300H CPU, 8GB of RAM, and
a GTX 1050ti graphics card with 4GB of video memory.

A. CULLING DYNAMIC OBJECTS EXPERIMENT
To illustrate the efficacy of DRV-SLAM’s motion region
constraint method in eliminating dynamic feature points,
Experiment 1 was conducted.

Figure 5 in (a) depicts two individuals in the image, both
of whom are potentially moving objects. In (b), the image
feature points extracted by the conventional ORB-SLAM2
system are shown, and it can be observed that many of these
feature points are distributed on the bodies of the people.
(c) presents the instance segmentation mask map generated
by the instance segmentation network for the potentially
moving objects in the image. The mask for the potentially
moving objects in the moving state (standing person) is
colored in red, while the mask for the potentially moving
objects in the stationary state (sitting person) is highlighted in
green, achieved through the application of the motion region
constraint method. (d) illustrates a scenario where potential

FIGURE 5. Motion object feature point rejection flowchart. Original RGB
image (a), feature point distribution image extracted by ORB-SLAM (b),
and mask image obtained by instance segmentation combined with
motion region constraint method (c), as well as the feature point
distribution image after removing dynamic feature points by
DRV-SLAM (d).

moving objects occupy a significant portion of the image.
In this case, only the feature points on the potential motion
objects in the motion state are eliminated and the feature
points on the potential motion objects in the stationary state
are retained.

B. PERFORMANCE EVALUATION OF DRV-SLAM IN A
DYNAMIC ENVIRONMENT
In this section, we conduct experimental comparisons involv-
ing DRV-SLAM, ORB-SLAM2, and other state-of-the-art
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FIGURE 6. ATE graphs of DRV-SLAM and ORB-SLAM2 running five sequences. (a) fr3_walking_xyz. (b) fr3_walking_static. (c) fr3_walking_rpy.
(d) fr3_walking_halfsphere. (e) fr3_sitting_static.

SLAM algorithms. The performance metric used for these
comparisons is the Absolute Trajectory Error (ATE) [5].

Our entire Experiment 2 was conducted in the TUM
RGB-D dataset, and the sequences of the TUM RGB-D
dataset where the experiments were conducted were:
fr3_walking_xyz, fr3_walking_static, fr3_walking_rpy, fr3_-
walking_half and fr3_sitting_static, where walking and
sitting represent the scenarios of a person walking in an
image sequence and a person sitting in an image sequence,
respectively, and xyz, static, rpy, and half represent the four
types of self-motion of the camera, e.g., xyz indicates that the
camera is moving along the xyz axis.

The results of the absolute trajectory error comparison
between DRV-SLAM and ORB-SLAM2 [1] are shown in
Table 1, where we give the Root Mean Square (RMSE),
Standard Deviation (S.D.), Mean, and Median. In addition,
we show the trajectory enhancement rate of DRV-SLAM
concerning the original ORB-SLAM2 localization, and the
enhancement rate in the table is calculated as follows [5]:

η =
o− r
o

× 100% (4)

where o denotes the absolute trajectory error of ORB-
SLAM2, r denotes the absolute trajectory error of DRV-
SLAM, and η represents the trajectory enhancement rate
of DRV-SLAM relative to the original ORB-SLAM2
localization.

As can be seen fromTables 1, the performance exhibited by
DRV-SLAM in high dynamic sequences can be improved by
an order of magnitude compared to that with ORB-SLAM2,
with the highest improvement values of 98.28%, 98.27%,
98.31%, 98.29% in the four metrics, namely, RMSE, Mean,
Median, and S.D. In low dynamic sequences, such as the
fr3_sitting_static sequence, the performance also gets a good
boost, with improvement values of 42.02%, 43.96%, 46.41%,
and 37.16% in the four metrics of RMSE, Mean, Median, and
S.D., respectively.

TABLE 3. Time analysis.

Figures 6 and 7 display the ATE plots of ORB-SLAM2
and DRV-SLAM on the five high-dynamic sequences [5],
respectively. In these figures, the gray dashed line represents
the true reference value, while the colored solid line
represents the estimated pose by the SLAM system. We can
observe that DRV-SLAM significantly reduces trajectory
errors compared to ORB-SLAM2.

To further assess DRV-SLAM’s performance, this paper
conducts a comparative analysis with ORB-SLAM3,
DynaSLAM, DS-SLAM, YOLO-SLAM and SG-SLAM
using the TUMRGB-D dataset. The results of the experimen-
tal comparison of absolute trajectory errors across five sets
of sequences are presented in Table 2. The findings indicate
that DRV-SLAM significantly outperforms traditional visual
SLAM algorithms like ORB-SLAM3 in highly dynamic
environments, achieving an order of magnitude improvement
in performance. Additionally, DRV-SLAM exhibits greater
efficiency compared to most state-of-the-art SLAM systems
designed for dynamic scenes, such as DynaSLAM, DS-
SLAM, YOLO-SLAM and SG-SLAM, while maintaining
superior performance.

The deep learning network model inference experimental
time-consuming results and hardware platforms are shown
in Table 3. In the experiments, DRV-SLAM’s instance
segmentation network demonstrates exceptional performance
with an average inference speed of up to 24 milliseconds
per image. This speed is significantly faster than the
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FIGURE 7. ATE results of DRV-SLAM and ORB-SLAM2 running five sequences. (a) fr3_walking_xyz. (b) fr3_walking_static. (c) fr3_walking_rpy.
(d) fr3_walking_halfsphere. (e) fr3_sitting_static.

FIGURE 8. Comparison of dense mapping results. Dense map without dynamic object removal (a), dense map after removing dynamic objects (b), and
Dense maps using global downsampling and target object data augmentation methods (c).

segmentation speed of other SLAM systems designed for
dynamic environments.

C. DRV-SLAM DENSE MAPPING EXPERIMENT
To evaluate the dense mapping performance of the DRV-
SLAM system, we conducted Experiment 3 using the TUM
RGB-D dataset. Figure 8 presents a comparison of the dense
mapping results. In Figure (a), the dense mapping results
without point cloud rejection for potentially moving objects
in the map-building module are displayed. It is observed that
a large number of point clouds are mapped onto potentially
moving objects in the dense point cloud map. Due to the
dynamic state of these objects, they cause a ‘smearing’ effect
when mapped into the dense point cloud map, significantly
degrading the map’s quality. Figure (b) illustrates the dense
mapping results after the point cloud removal of potentially
moving objects within the mapping module. In comparison
to Figure (a), it is evident that point clouds on potentially
moving objects have been largely eliminated, resulting in a
noticeable enhancement in the quality of the dense mapping.

In this paper, a dense mapping scheme is proposed in
the dense mapping module, featuring global downsampling

and targeted object data enhancement. Figure (c) in Fig. 8
illustrates the effects of the dense mapping scheme with
global downsampling and targeted object data enhancement
in DRV-SLAM. From Figure (b), it is evident that the
sampling frequency of the densemap point cloud is consistent
throughout the entire scene, resulting in a high number of
point clouds in the map. In Figure (c), it is evident that
a higher density of point clouds is exclusively present on
targeted objects, such as computers, keyboards, books, and
more, located on the table within the dense point cloud
map. This configuration offers a more detailed representation
of these specific details. Conversely, other regions of the
map contain a lower density of point clouds, resulting
in minimal or almost no detail representation. Figure (b)
contains 952,382 point clouds in the dense point cloud
map, while Figure (c) contains 326,987 point clouds. The
dense mapping scheme involving global downsampling and
targeted object data enhancement reduces the total number
of created point clouds by approximately 65.7% compared
to the global dense mapping scheme, effectively reducing the
system memory footprint occupied by the dense point cloud
map.
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V. CONCLUSION
In this paper, we propose a complete adaptive real-time
semantic visual SLAM (DRV-SLAM) system for complex
dynamic scenes.DRV-SLAM employs an improved instance
segmentation network YOLOv8 combined with motion
region constraints, which can detect potentially moving
objects and determine their motion states. According to the
proportion of potential moving objects in the image, the
system can dynamically adjust the range of dynamic feature
points that need to be rejected, thus improving the robustness
and accuracy of the system in dynamic environments. In the
dense mapping session, the system adopts the strategy of
global downsampling and targeted object data enhancement
to reduce the memory occupied by the dense point cloud
map, which makes it suitable for dense point cloud mapping
in spatially large environments. It is worth noting that
this mapping strategy is not commonly seen in previous
SLAM mapping algorithms. However, its effectiveness is
evident. This mapping method provides a direction for
reducing point cloud memory usage and focusing on target
reconstruction in the field of SLAM. The experimental
results show that DRV-SLAM significantly outperforms
ORB-SLAM2 and ORB-SLAM3 in terms of accuracy and
robustness in complex dynamic environments, and slightly
outperforms DynaSLAM and DS-SLAM, in addition, DRV-
SLAM significantly outperforms other advanced visual
dynamic SLAM systems in terms of image inference speed
for segmented networks.

There are still some disadvantages of the system that
need to be addressed in the future. For example, when
multiple potential moving objects overlap in the field of
view of the image, it may lead to errors in determining the
IDs of potential moving objects. Additionally, the instance
segmentation model’s ability to recognize object types and
accuracy needs further improvement.

In the future, our research will focus on building semantic
octree maps [39], and applying them to robot navigation
tasks in order to perform more advanced tasks in complex
dynamic environments. This direction will help to improve
the intelligent navigation of mobile robots and cope with
diverse dynamic scenarios.
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