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ABSTRACT The assessment of tomato firmness is pivotal in determining optimal harvest time, evaluating
shelf life, and gauging ripeness. This attribute plays a crucial role in guiding the distribution and transporta-
tion processes. Post-harvest, tomatoes tend to lose firmness and can deteriorate into a rotten state during
transportation within the supply chain, mainly due to environmental fluctuations. To mitigate such losses
and uphold tomato quality, the cold supply chain, with its controlled environmental conditions, proves
instrumental. Monitoring this cold supply chain is imperative to combat the adverse impact of ambient
temperatures on tomatoes during logistics. This research introduces an innovative approach, employing an
Internet of Things (IoT) framework and theWhale Optimization Algorithm for temperature prediction within
the cold supply chain. Ambient and tomato temperatures, along with stable temperature calculations under
variable conditions using theWhale Optimization Algorithm, were collected. The predictions were executed
using the Extreme Learning Machine of Artificial Intelligence. The data is collected during tomato cold
storage for experimentation. The proposed technique with mean average precision 84.957%, mean average
recall 96.9% and accuracy 99.83%. Evaluation through precision, recall, and F-measure accuracy metrics
demonstrates the superior performance of the proposed approach compared to conventional models such as
Decision Tree, Linear Model, Naïve Bays, Random Forest, and Support Vector Machine.

INDEX TERMS Artificial intelligence, cold supply chain, deep learning, Internet of Things, Newton’s law
of cooling.

I. INTRODUCTION
According to the Food and Agriculture Organization of the
United Nations (FAO), half of vegetables and fruits are
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wasted during different stages of the supply chain (SC) [1],
which causes famine for millions of people in the world [2].
The reduction of vegetable and fruit loss is critical for reduc-
ing famine. Several studies of tomato fruit have addressed
the fact that the firmness decrease during ripening depends
on significant solubilization and the depolymerization of
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polysaccharide in the cell wall and the middle lamella [3].
The lack of flavor complaints by consumers of tomatoes has
been focused on for decades. The tomato breeding focused
on disease resistance, firmness, and yield, but the flavor was
not focused on [4].

The postharvest handling of tomatoes causes the depre-
ciation of flavor [5] and for postharvest handling, firmness
and appearance are the main factors that signal the shelf life
of tomatoes. The tomatoes are harvested at the premature
stage for the SC purpose from field to market with high firm-
ness [6]. The postharvest quality is measured by consumers
or wholesale buyers by considering parameters such as total
soluble solids content, firmness, color change, and weight
loss [7], [8]. Themanagement of SC for tomato fruit increases
the life of the tomato. In food, the SC freezing technique is
used at various levels [9]. The traditional freezing techniques
reduce the temperature of food products to − 18◦C or lower.

The freezing temperature impacts the freshness of the
tomato during the supply [10] and requires effective man-
agement to maintain the tomato’s quality. In cold SC,
temperature variations impact the life of tomatoes during stor-
age and transportation. The freshness of tomatoes degrades
over time and requires certain pressure, humidity, compo-
sition, and temperature to maintain freshness during SC
storage. At every stage of SC, constant temperature and
humidity are required [11]. Due to temperature variations, the
economic loss affects the farmer and other participants in the
storage process and transportation [12]. Continuous temper-
ature control is challenging due to the modern complexities
of the supply chain for different geographical locations.

Due to advancements in sensor technologies, tempera-
ture monitoring systems have been developed for sensing,
storing, and transferring environmental measurements [13]
in cold SC [14]. The tracing and tracking of products in
cold SC is done by monitoring applications [15], [16], [17].
Artificial intelligence enables these applications to complete
or partially automate the gathered environmental measure-
ments [18], [19], [20], [21], [22], [23], [24]. The acceptable
temperature ranges based on laboratory experiments for the
cold supply chain provide the basis for monitoring applica-
tions [25]. The monitoring applications in practice [26] notify
of occurrences but do not predict deviations. In practice, cold
SC faces several situations, including rapid changes in the
temperature of cargo and the ambient temperature, which
require preemptive identification. The mentioned situations
are not limited to the cooling unit or sensor malfunctioning
or physical handling.

The existing research on temperature prediction approaches
for cold SC focuses on the cargo’s temperature approx-
imation with relatively stable or unstable environmental
temperatures for a long time span and does not address the
immediate predictions [27], [28], [29]. For decision-making,
unstable environmental temperature conditions are required
for predicting temperatures. The stakeholders in cold SC
for short-, medium-, and long-term requires temperature

prediction for managing the potential variation of tempera-
ture. The real-time temperature prediction integration with
the intelligent system for decision support overcomes the
loss of tomato during the cold SC. Intelligent decision sup-
port systems perform the task, including informing users
of the variations, interpolating the measurements in case of
missing data, finding the cause of the variations, developing
countermeasures, measuring the impact of the variation with
predicted information, improving the service by monitoring
and predicting, and avoiding the variation with immediate
countermeasures.

Currently, the research on cold SC for tomato fruit is
limited, and the temperature prediction of refrigerated trucks
for tomato fruit supply chains is not covered by the research.
The shortcoming of existing research raised the question:
how will the temperature of a refrigerated truck be predicted
with higher accuracy and temperature deviation adjustments
over time? The mathematical modelling of temperature for
refrigerated trucks was difficult due to the impact of several
factors on the temperature of the truck and the difficulties
in temperature prediction [30]. The machine learning (ML)
approaches of AI have revealed the prospects for addressing
the above-mentioned issue. The understanding of physical
relationships among the several variables is not required by
the ML, which is able to predict temperatures using driving
data as well as avoid the establishment of complex mathemat-
ical models [27].
In ML approaches, extreme learning machine (ELM)-

based approaches have been widely used for prediction due to
their robust generalization ability and fast learning rate [31],
[32], [33]. Parameter optimization is the key issue in ELM,
as parameters like hidden bias and input weight have a
great impact on prediction outcomes [34]. The behaviour of
humpback whales for searching for prey is mimicked by the
Whale Optimization Algorithm (WOA) [35]. The WOA uses
the bubble-net chasing approach for the selection of optimal
prey from the best search agent. The cold supply chain for
tomato fruit requires long-term prediction to maintain the
environmental temperature and reduce food loss. Previous
studies achieved limited accuracy in cold SC temperature
prediction due to its exclusion of key influencing factors.
In this study, the use of multiple parameters, including tomato
box temperature, humidity, and the surrounding temperature
and humidity within the refrigerated truck, for improved
temperature prediction. To reduce tomato fruit loss, a real-
time temperature prediction approach is proposed in research
based on WOA-ELM. The proposed technique selects the
optimal number of measurements to enhance the accuracy
of the prediction for stabilizing the ambient temperature
by decreasing the error in measurements. The presented
method uses environmental temperature stability under the
variation conditions and considers the errors in sensor mea-
surement for robust predictions. The WOA and ELM use
the environmental temperature for temperature prediction.
Furthermore, the experimental outcome demonstrates the
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TABLE 1. Related literature with reference, title, used sensors and purpose of study.

outstanding performance of the presented system as com-
pared to Decision Tree, Linear Model, Naïve Bays, Random

Forest, Support Vector Machine, Mine Blast Optimization
Algorithm based Extreme learning Machine models.
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The rest of the study is organized into five sections. The
related studies are discussed in Section II, and the pro-
posed approach is elaborated in Section III. The experimental
outcomes are represented in Section IV, discussions, and
limitations in Sections V, VI, and at the end, the study is
concluded in Section VII.

II. RELATED WORK
The amount of tomato loss after harvesting is due to poor
postharvest management during the SC and storage. Effective
cold SC management approaches reduce the postharvest loss
of tomatoes. The ambient temperature in real-time is crucial
for cold SC management to reduce the risk of loss. With the
fourth industrial revolution, Internet of Things (IoT) based
smart systems are being focused on by researchers. A sig-
nificant amount of literature has been published on cold SC
management. An IoT-based SC model is discussed in [36]
from an agriculture product loss, cost, and income perspective
with multi-access edge computing in IoT.

The aroma modelling and heat transfer-based approach
for vegetable and fruit cold SC is presented in [28], and
during the experimentation, the environmental conditions are
measured at different positions. The temperature variation of
the product and air depends on the distance from the air inlet
and is controlled by means of fans. The aroma evaluation
of tomatoes was done by considering the tomato varieties
and ambient temperature, but the humidity effect was not
considered during the experimentation. A risk monitoring
system based on IoT was proposed in [37] to monitor the risk
of cold SC. The presented system design operates on a fuzzy
logic approach, cloud-based data services, and a wireless
sensor network. The data collection was done by temperature,
humidity, and light intensity sensors for ambient condition
monitoring and managed by a cloud database service. The
data coverage is not complete, and there is a lack of parameter
optimization.

A narrow-band IoT-based system is proposed in [11] which
reduces the cost of cold chain solutions by reducing power
consumption. The narrow-band IoT device is embedded with
a temperature sensor, humidity sensor, shock detector, and
GPS module for environmental condition monitoring with
simulation. The empirical validation of the data is missing
in the study. For monitoring the environmental conditions in
cold SC, an IoT-based intelligent tracking system is presented
in [38]. The wireless sensor network of the tracking system is
based on Zigbee for the collection and transmission of envi-
ronmental conditions [39]. The cold SC system, based on the
time temperature indication presented in [40], uses the critical
control point criteria for temperaturemanagement throughout
the food delivery process. The hybrid solution for food SC
management using cloud computing and IoT technologies is
presented in [41], whichmonitors the environmental variation
during the logistics process for two sector case studies.

The Newton’s law of cooling (NLC) based approach for
temperature prediction in cold SC is presented in [42], with
the implementation of NLC for ambient temperature variation

under consideration of stable temperature conditions. The
optimal stable measurements are selected, and ANN and
autoregressive moving average models are compared for
result evaluation, but the effect of other environmental param-
eters on temperature is ignored, such as location, humidity,
and shock. A cold SC management system with IoT tech-
nology proposed in [43] reduces human intervention and
the chance of product spoilage in the case of refrigeration
failure. The system communicates the environmental details
for better decision-making in SC management for vaccine
logistics, but empirical verification is not covered in the study.

The IoT based cargo monitoring system presented in [44]
monitors ambient changes for the improvement of functional
quality. The sensor network is implemented for data gather-
ing, and fuzzy logic is applied to the data for storage condition
suggestions to reduce the environmental effect on the product
and reduce the loss during the SC process. The ambient tem-
perature, object temperature, humidity, pressure, and light are
the parameters for functional quality management. The rules
set for fuzzy logic need to be refined to improve reliability
and feasibility for implementation.

The cold SC management system proposed in [45] tracks
the temperature during the SC. The box type testbed is
built for the simulation trailer of refrigerated vehicles with
four modes and four supervisory modules to detect temper-
ature variations and modes. The door state and temperature
collected from the testbed are represented by a correlation
matrix, and the data is arranged in seven classes for applying
machine learning. The SVM, decision tree, and weighted
k-NN algorithms were applied to the data for evaluation.
The empirical implication is not explored in the study. An
IoT-based automation system for cold chains is presented
in [46] to collect real-time humidity and temperature data
from storage boxes. The system provides temperature moni-
toring under the conditions of temperature-effective factors.

The WOA technique is used to evaluate the long range
IoT network and then optimize LoRA network in [47]. The
WOA for load frequency control is presented in [48] to
assess the efficiency of 2DOFTIDF controller and to enhance
the controller parameters. The WOA-ELM is developed for
windspeed forecasting in [49]. The temperature and humidity
forecasting system based on IoT is presented in [50]. The
LSTMmodel is applied with WOA for humidity and temper-
ature forecasting. The fusedWOAand greywolf optimization
approach for inventory stock management presented in [51].
The WOA optimized extreme learning machine is proposed
for ageing assessment of shielded gate bipolar transistor mod-
ules in [52] for stability insurance in operational mode. The
key focus of the study was the optimization of biases in the
hidden layer and input weights for the ELM.

A mayfly algorithm (MA) with an ELM fusion-based
approach for the prediction of the temperature of a refrig-
erated truck is presented in [53]. The hidden layer biases
and input weights of ELM are improved using the MA for
the prediction of temperature by ELM. The model evaluation
is done by comparing the results with those of PSO and
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FIGURE 1. Flow graph for temperature prediction WOA-ELM.

GA. The MA with impulsive conjunction, which affects the
performance of MA-ELM, and the limited variants of ELM
are used for prediction in the study. The ELM-based model
for daily dew point prediction is proposed in [54], and the
daily averaged measured data of weather is used by ELM
for prediction. The performance evaluation of the model was
done by comparison with SVM and artificial neural networks
under nonlinear variations of daily temperature in different
ranges.

The ELM based model is represented in [55] for the pre-
diction of the daily water temperature of rivers, and the day
of year, discharge, and air temperature are the predictors
for the prediction task. The ELM and dragonfly algorithm
(DA)-based hybrid approach for prediction tasks is presented
in [56]. The huge number of hidden layer nodes in ELM
increases testing and evaluation time as optimal weights and
biases for the hidden layer are not available. The DA selects
the optimal biases and weights for ELM and reduces the
testing and evaluation time for the prediction tasks, but the
generalized ability is limited.

The multi-layer perception (MLP) model with WOA for
wind speed prediction for renewable energy is presented
in [57]. The data is collected from stations in the north of Iran,
and the dataset was generated using data from 2004 to 2014.
The result comparison was done with genetic Algorithm
based optimized MLP and simple MLP. The optimized
weights obtained by WOA for the MLP layers improve
the accuracy of prediction. The WOA optimized SVM for
tool-wear prediction was proposed in [58] for the promotion
of intelligent development in the manufacturing industry. The
SVM parameters are optimized by WOA. The WOA-SVM
was studied under fixed cutting conditions with limited
domain sensitive features.

FIGURE 2. Layered architecture of proposed approach.

The WOA and multivariate adaptive regression splines
(MARS) fusion based method is presented in [59] for the
prediction of the critical temperature of a superconductor. The
parameters for MARS are optimized by using the WOA and
the prediction done by MARS. In our research, we collected
the ambient and object’s temperatures and measured the sta-
bilized temperature under unstable conditions by developing
a prototype model. Last but not least, the key focus of our
study is cold SC temperature prediction for tomatoes to
reduce the loss.

III. PROPOSED MODEL
To achieve the objectives, the proposed solution is based
on ambient conditions such as temperature and humidity
monitoring during the cold SC of tomatoes to maintain the
environmental conditions for a reduction in tomato loss. The
deep learningmodel is applied to sensed data for prediction to
manage the temperature throughout the SC. The flow graph
of the proposed solution is illustrated in Fig. 1. The presented
solution is separated into four layers: the sensing layer, the
controlling and communication layer, the knowledge layer,
and the service layer, as shown in Fig. 2.

A. SENSING LAYER
The sensing layer includes the sensors for capturing environ-
mental details. In cold SC, humidity and temperature sensors
gather the temperature and humidity for monitoring during
the transportation of tomatoes.

B. CONTROLLING AND COMMUNICATION LAYER
1) DATA GATHERING LAYER
The data collection task is managed by the data gathering
layer, which is also responsible for filtering the collected data
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FIGURE 3. Extreme learning machine input, hidden and output Layers.

and preparing it for physical unit conversion. The components
of this layer are the amplifiers, filters, and analog to digital
converters.

2) COMMUNICATION LAYER
The data transfer from themonitoring area to the control room
is managed by the communication layer. The data commu-
nication between the sensor and radio module is performed
by the communication layer. The communication types are
wireless, wired, and heterogeneous. In the monitoring area,
nodes communicate by means of ZigBee, and the monitoring
area controls the communication done by GSM, Ethernet,
LoRa, or Wi-Fi.

C. KNOWLEDGE LAYER
The knowledge layer is responsible for storing and analyz-
ing the collected data. For efficient monitoring of cold SC,
the ambient conditions were sensed, stored, and analyzed.
The cold SC based knowledge is maintained by this layer,
which helps maintain the firmness grades of tomatoes by
reducing environmental variations. The WOA-ELM based
model applied for temperature prediction for tomato fruit
during the cold SC.The variations in an object’s temperature
are proportional to the difference between the environmen-
tal temperature and the object’s temperature, according to
Newton’s law of cooling [60], which can be represented by a
differential equation as the temperature differences expressed
as a function of time.

(∂TEMP_OBJECT)/∂T ∝ TEMP_OBJECT

− TEMP_AMBIEN (1)

The solution to (1) shows the exponential deterioration of
temperature differences over time. The flow of energy to and
from an object is determined by the temperature difference
between the ambient and the object [61]. The temperature
prediction of the environment during the cold SC process
reduces the risk of failure by alerting before temperature
variations occur.

1) EXTREME LEARNING MACHINE (ELM)
The ELM is a Feed Forward Neural Network (FFNN) with
faster convergence than the traditional methods. The ELM

model is based on a tri-layer architecture with an input,
hidden, and output layers, as illustrated by Fig. 3.
The K random samples (ai, bi) where ai denotes the input

and bi represent the expected output and the predicted out-
put value expression represented by oj as given in (2) and
vi, di, g (a) , βi andM represent the input weight, hidden bias,
activation function, output weight and number of nodes of
hidden layer respectively.

K∑
I=1

BIG (VI.AI + DI) =OJ (2)

The key goal of ELM is error reduction of the output to zero
shown by (3).

K∑
J=1

∥OJ − TJ∥ = 0 (3)

There exists vi, di and βi such that.

K∑
I=1

BIG (VI.AJ + DI) 0 = TJ, J = 1, 2, 3, . . .K (4)

The representation of equation 4 in matrix form is H β = T
where H represents the hidden layers output as represented
by (5).

H (V1, . . . ,VK,D1, . . . ,DK,A1, . . . ,AK)

=

 G (V1.A1 + D1) . . . G (VK.A1 + DK)
... . . .

...

G (V1.AN + D1) . . . G (VK.AN + DK)


N×K

(5)

The output matrix is represented by H and weight matrix is
represented by β as given in (6).

β =

 βT
1
...

βT
K


K×M

H =

 HT
1
...

HT
K


K×M

(6)

During the training process of ELM, random generation of
hidden bias and input weights and values is not changed, and
output H is governed by (5).

2) WHALE OPTIMIZATION ALGORITHM (WOA)
The WOA is inspired by the Humpback Whale hunting
approach. The hunting process of WOA is based on four
stages: prey discovery, diving twelve meters deep in the sea,
bubble-net feeding (creating the bubble-net around the prey
in a spiral shape), and capturing the prey. The analysis of
ELM for the performance evaluation shows input weights
v and hidden biased d effect on the performance of ELM.
The WOA is applied for the optimization of v and d in the
presented study. The v and d optimization process consists of
three stages, including encircling the prey, a bubble-net attack
on the prey, and hunting the optimal prey.

Encircle the Prey: The prey’s location is identified by the
humpback whales, which encircle the prey. The prior optimal
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position is not available in the search space, andWOA reflects
the present most excellent solution as the target prey. When
the finest agent is appointed, other search agents update
their locations with the most excellent search agent, and the
behaviour is represented by (7) and (8).

DIST = |C × BESTP (T) −P (T) | (7)

P (T + 1) = BESTP (T) −A.DIST (8)

where bestP is the position vector for the most excellent
solution and P is the position vector. The coefficient vec-
tors are represented by A and C, and the dot (.) shows the
multiplication element by element of vectors. The iterations
are represented by t. The (9) and (10) compute the values of
coefficients A and C.

A = 2 × A.R − A (9)

C = 2.R (10)

where the random vector with values from 0 to 1 denoted
by r and the vector a decrease linearly from 2 to 0 based on
iterations.

Bubble-net Attack: The bubble-net attack model is based
on shrinking the encircle and updating the spiral position.

Shrinking the Encircle: The encircling is shrinking on the
base of |A| as if |A| <1 then encircle shrinking done and
the whales move toward the whale in current best position.
The smaller value of |A| shows the smaller steps taken by
whales and greater value of |A| shows the larger steps taken
by whales.

Updating Spiral Position: The humpback whale from
group of whales initially computes its gap from the optimal
whale and goes along spiral path, the position update process
represented by (11).

P (T + 1) = DIST′.ELB.COS (2πL) + BESTP(T) (11)

where Dist′ is gap from separate whale to most excellent
whale. The b is the constant and l is the arbitrary value from
−1 to 1.

The location updated by the whale based on the spiral
path and contraction path has a value of 0.5, as shown by
equation 12.

P (T + 1)

=

{
BESTP (T) −A.DIST IF P < 0.5
DIST′.ELB. cos (2πL) +BESTP (T) IF P ≥ 0.5

(12)

where p is a random value from 0 to 1. The humpback whales
search for prey randomly using the bubble-net method.

Hunting the Optimal Prey: The humpback whales hunt
for prey randomly conferring to location of each other.
The global optimal solution achieved as the whales (search
agents) are pushed away from each other according to value
of |A| and current optimal search agent’s position substituted
by arbitrarily selected search agent and the behavior repre-
sented by (13) and (14).

P (T + 1) = PRAND−A.DIST (13)

FIGURE 4. WOA base optimized ELM.

DIST = |C.PRAND−P(T)| (14)

where Prand represents the arbitrarily selected search agent.

3) WOA-ELM
The input weights and biases are randomly given to ELM,
and due to randomization, the performance of ELM is
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FIGURE 5. Precision comparison of proposed and other approaches.

compromised due to the lengthy training time and weak
generalization ability.

The optimal selection of input weights and biases is
done by means of WOA for ELM to increase the perfor-
mance of ELM for temperature prediction. The algorithm
of WOA-ELM is represented in Table 2. The flowchart of
WOA-ELM visualized in Fig. 4.

D. SERVICE LAYER
This layer deals with the end users. The ambient conditions
during the cold SC of tomato fruit are presented to the user
through this layer.

IV. EXPERIMENTATION
Tomatoes are harvested from the field at an earlier stage of
maturity and transported for storage. The tomatoes, which
are a light red colour, are collected from the field for packing
and transportation. The collected tomatoes are then packed
for storage in boxes, and the boxes are shifted to the trans-
portation vehicle for cold storage. The transportation vehicle
is equipped with refrigeration devices and temperature-
collecting devices, including sensors and microcontrollers.
The vehicle used for the logistics of tomatoes reduced the
vibration impact on the tomatoes during the cold SC process.
The presented model is implemented in the logistic vehicle
to reduce the failure of temperature control and improve the
management of tomato logistics in the cold storage house.
The tomatoes are supplied to the market from the cold storage

house and require temperature management along with a
longer route to market to improve the life of the tomatoes
and reduce the loss to the stakeholders. The logistic process
of transporting tomatoes from the field to the market is illus-
trated in Fig. 5.

The sensors set up at the logistics and cold storage houses
provide the collected temperature and humidity data for the
prediction. The WOA was applied to the collected data set
to optimize the biases and input weights for improving the
prediction of ELM. ELM is implemented with activation
function sigmoid and 100 neurons in hidden layer. The whale
population 110 is applied. The 28433 samples were collected
from the logistic vehicle over the course of ten hours. The
22746 random samples are selected for the training set, and
the test set consists of 5687 samples. The outcome of the pre-
sented model is evaluated using precision, recall, F1 measure,
and accuracy metrics.

During the cold SC, ambient temperature collection is done
by the temperature sensor. The DS18B20 and DHT11 tem-
perature sensors are used for temperature monitoring during
the cold SC of tomato fruit. DS18B20 digital sensor with
one wire interface and operates with 3 to 5.5 volts with a
temperature range of -55◦C∼ + 125◦C ( -67◦F∼ + 257◦F)
deviation ±2◦C and -10◦C∼ + 85◦C deviation ±0.5◦C. The
programable resolution of this sensor is 9 to 12 bits. DHT11
is used for sensing temperature and humidity. The operational
voltage of DHT11 is 3.5 to 5.5 volts, the temperature range
is 0◦C to 50◦C, and the humidity range is 20% to 90%. The
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TABLE 2. WOA-ELM algorithm for temperature prediction.

programable resolution is 16 bits, the accuracy for tempera-
ture is ±1◦C, and the accuracy for humidity is ±1%.

The Arduino Uno is an ATmega328P microchip based
open-source microcontroller developed by Arduino.cc. The
board has six analogue input/output pins and fourteen digital
input/output pins. The operational voltage is five volts, and
the input voltage is 7 to 20 volts. Arduino IDE is used for
programming and is connected to a USB type B cable. The
RF433MHz is used as a gateway module for communication.
The measuring range of the module is 105 dB, and the accu-
racy is ± 0.2 - ±0.5.

V. RESULTS
The experimental results of the presented technique are
described in this section. The prediction results evalua-
tion was done by means of Precision (P), Recall (R), and
F1-Measure (FM) accuracy.

A. ACCURACY ASSESSMENT
The accuracy assessment of the proposed approach is dis-
cussed in this section. The performance evaluation of the
presented approach is performed with P, R, and FM. The P
and R for the presented approach, Decision Tree (DT), Linear
Model (LM), Naïve Bays (NB), Support Vector Machine
(SVM), and Random Forest (RF), are computed and given

FIGURE 6. Operational visualization of cold supply chain.

by Tables 2 and 3. The precision criteria define how many
temperature predictions are correct, and the recall criteria the
how many temperature predictions are actually correct. The
P, R, and FM are elaborated by (15), (16) and (17).

P = True Positives(True Positives + False Positives)

(15)

R = True Positives/(True Positives + False Negatives)

(16)

FM = 2×P×R/(P + R) (17)

The P&R comparison of the presented model with NB, LM,
DT, RM, and SVM is shown in figs 6 and 7. The proposed
method shows higher precision than other approaches, which
shows the higher performance of the presented model as
depicted in Fig. 5. For ten iterations, the presentedmodel got a
mean average precision (MAP) of 84.957%, which is greater
than other models as given in Table 3. The 67.972% MAP
of LM shows deficient performance for predicting ambient
temperature during the SC process. The RF has the second
highest MAP of 83.977%, and the NB has the third highest
MAP. The SVM got a higher MAP of 80.135%, and the fifth
is DT with a 77.406% MAP for temperature prediction.

The recall rate comparison of the proposed model with
Decision Tree, Linear Model, Naïve Bays, Random Forest,
and Support Vector Machine verifies the outstanding perfor-
mance of the presented approach. The Mean Average Recall
(MAR) of the presented approach is 96%, which is better
than the other approaches for ambient temperature predic-
tions. The lowest MAR of the liner model shows deficient
performance for prediction. After the presented method, the
RandomForest has aMARof 92%,which is higher than other
methods except the proposed. The F1 measure comparison of
the presented model and other state of the art approaches is
illustrated by Fig. 8. The proposed approach has outstanding
outcomes compared to the other algorithms. The results of the
F1measure for the proposed technique (NB, LM, DT, RF, and
SVM) are shown in Table 5.

For ten iterations, the presented model showed higher
results than the other models, which showed higher perfor-
mance for ambient temperature prediction during the cold
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FIGURE 7. Recall comparison of proposed and other techniques.

TABLE 3. Precision comparison of proposed technique (PT) with NAÏVE
BAYS (NB), Linear model (LM), decision tree (DT), random forest (RF) and
support vector machine (SVM).

SC. The accuracy and classification error of the proposed
model are depicted in Fig. 9 and given in Table 4. The 99.83%
accuracy verifies the outstanding performance of the pro-
posed model for temperature prediction, rather than the NB
96.73%, LM 97.43%, DT 94.65%, RF 98.71%, and SVM
98.89%. The presented model had higher accuracy and the
lowest classification error as compared to the NB, LM, DT,
RF, and SVM models, as given in Table 6 and visualized in
Fig. 9. The LM got the lowest accuracy and the highest clas-
sification error during the prediction of ambient temperature.
The overall results elaborate on the outstanding performance
of the proposed model for temperature prediction.

TABLE 4. Recall comparison of proposed technique (PT) with NAÏVE BAYS
(NB), Linear model (LM), decision tree (DT), random forest (RF) and
support vector machine (SVM).

The accuracy and classification error of WOA-ELM and
Mineblast- ELM is shown in Table 7 and 8.The twelve
WOA-ELM models with remarkable results are selected and
presented in Table 7. The presented approach shows outstand-
ing results with 100 hidden units for ELM and 110 population
size of WOA. The second remarkable results are obtained
from model with 40 hidden units and 50 population size. The
Mine Blast (MB) based ELM results are presented in Table 8.
The results of WOA-ELM are better than MB-ELM which
shows the poor selection of optimal parameters of ELM for
temperature prediction. The MB-ELM model with 100 hid-
den units and 120 population size showed remarkable results
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TABLE 5. F1 measure comparison of proposed technique (PT) with NAÏVE
BAYS (NB), Linear model (LM), decision tree (DT), random forest (RF) and
support vector machine (SVM).

FIGURE 8. F1 measure comparison of proposed and other techniques.

as compared to other MB-ELM models but the WOA-ELM
showed higher accuracy.

VI. DISCUSSION
The temperature is themain factor with a higher impact on the
quality of fresh food, as reported in [45]. Extensive previous
research discussed temperature monitoring during cold chain
logistics, but the risk of temperature variation during logistics
and cold storage is not addressed.

To address the research gap, this study introduces a
WOA-ELM-based model for enhancing temperature predic-
tion in the cold SC process while improving temperature
control. The performance of the proposed model is higher
than that of the NB, LM, DT, RF, and SVM, as shown in
Tables 3, 4, and 6. TheWOA-ELM shown higher accuracy as
compared to MB-ELM. The initial theoretical contribution of

TABLE 6. Accuracy and classification error comparison.

TABLE 7. Proposed WOA-ELM results for 12 models.

TABLE 8. Proposed Mb-ELM results for 12 models.

this research study lies in utilizing parameters like tomato box
temperature, humidity, and the temperature and humidity of
the refrigerated truck for predicting temperature.

The previous research [42] did not consider all the main
factors for temperature prediction during the cold SC pro-
cess and obtained limited accuracy. The second theoretical
contribution of this study is the implementation of WOA
for temperature prediction during the cold SC. In preceding
research works, WOA [35] has been applied for various
purposes such as predicting wind speed [57], evaluating
aging degree [52], tool wear prediction [58] and predicting
superconductor temperature [59]. According to the best of
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FIGURE 9. Accuracy and classification error.

our knowledge, the presented research study is first for the
prediction of temperature during cold SC of tomatoes.

The third theoretical contribution is the layered model for
an IoT based system for temperature prediction. The empiri-
cal contribution of this study is the analysis of the presented
model and other state-of-the art approaches for evaluation.
The presented model obtained outstanding performance for
temperature prediction during the SC. The presented research
is the first study for the prediction of the state of refrigeration
during the cold SC. With the increase in hidden nodes and
population size the computation time of proposed approach
increases.

VII. LIMITATIONS
The limitations of the presented study are the limited state
of the art models used. The parameters, including sunlight,
oxygen, and vibrations, are not considered in the study. The
firmness quality parameter of tomatoes is considered in this
study.

VIII. CONCLUSION
In this research, an IoT based model is proposed for tem-
perature prediction during the cold SC process for tomato
fruit to maintain firmness during logistics. The Newton’s
law of colling used for accessing the temperature variation
during the SC and whale optimization algorithm is fused
with an extreme learning machine for optimized parame-
ter selection for the temperature prediction with improved

accuracy. The temperature sensors are used to collect data
for analysis. The performance evaluation is done by using
precision, recall, and F1 measures. The experimental results
portray the best performance of the proposed techniques
as compared to Decision Tree, Linear Model, Naïve Bays,
Random Forest, Support Vector Machine and MB-ELM
models.

The higher mean average precision of 84.957% and mean
average recall of 96.9% show the outstanding performance
of the proposed model for ambient temperature predic-
tion for cold SC management to reduce tomato loss. The
99.83% accuracy of the presented model verifies the higher
performance of the proposed model as compared to other
models, and the error rate for temperature prediction is the
lowest. The results verify the optimal selection of ELM
parameters by WOA. In future studies, the presented sys-
tem will be deployed in cold SC for other products with
consideration of other respective parameters. The new bio-
logically inspired algorithms, such as the artificial rabbit’s
optimization algorithm, the chaotic coot-inspired optimiza-
tion algorithm, and the seagull optimization algorithm, can
be used in future research and compared with this study for
analysis.

ACKNOWLEDGMENT
The authors would like to thank the Artificial Intelligence &
Data Analytics Laboratory (AIDA), CCIS, Prince Sultan Uni-
versity, Riyadh, Saudi Arabia, for their support.

VOLUME 12, 2024 52755



A. Haider et al.: IoT- Enabled Firmness Grades of Tomato in Cold Supply Chain

REFERENCES
[1] S. M. Wunderlich and N. M. Martinez, ‘‘Conserving natural resources

through food loss reduction: Production and consumption stages of the
food supply chain,’’ Int. Soil Water Conservation Res., vol. 6, no. 4,
pp. 331–339, Dec. 2018.

[2] J. Eastham and A. Creedon, ‘‘Food losses, food waste, and beyond in food
supply chains: Retaining optimum nutrient density,’’Food Frontiers, vol. 4,
no. 3, pp. 971–979, Sep. 2023.

[3] P. Romero and J. K. C. Rose, ‘‘A relationship between tomato fruit soft-
ening, cuticle properties and water availability,’’ Food Chem., vol. 295,
pp. 300–310, Oct. 2019.

[4] D. Tieman, G. Zhu, M. F. R. Resende, T. Lin, C. Nguyen, D. Bies,
J. L. Rambla, K. S. O. Beltran, M. Taylor, B. Zhang, H. Ikeda, Z. Liu,
J. Fisher, I. Zemach, A. Monforte, D. Zamir, A. Granell, M. Kirst,
S. Huang, and H. Klee, ‘‘A chemical genetic roadmap to improved tomato
flavor,’’ Science, vol. 355, no. 6323, pp. 391–394, Jan. 2017.

[5] M. J. Verheul, R. Slimestad, and I. H. Tjøstheim, ‘‘From producer to
consumer: Greenhouse tomato quality as affected by variety, maturity stage
at harvest, transport conditions, and supermarket storage,’’ J. Agricult. food
Chem., vol. 63, pp. 5026–5034, May 2015.

[6] C. Zhang, W. Duan, K. Chen, and B. Zhang, ‘‘Transcriptome and methy-
lome analysis reveals effects of ripening on and off the vine on flavor
quality of tomato fruit,’’ Postharvest Biol. Technol., vol. 162, Apr. 2020,
Art. no. 111096.

[7] D. M. Barrett, J. C. Beaulieu, and R. Shewfelt, ‘‘Color, flavor, texture,
and nutritional quality of fresh-cut fruits and vegetables: Desirable levels,
instrumental and sensory measurement, and the effects of processing,’’
Crit. Rev. Food Sci. Nutrition, vol. 50, no. 5, pp. 369–389, May 2010.

[8] K. Tomala, M. Grzeda, D. Guzek, D. Glabska, and K. Gutkowska,
‘‘The effects of preharvest 1-methylcyclopropene (1-MCP) treatment on
the fruit quality parameters of cold-stored ‘Szampion’ cultivar apples,’’
Agriculture, vol. 10, no. 3, p. 80, Mar. 2020.

[9] S. Nida, J. A. Moses, and C. Anandharamakrishnan, ‘‘Isochoric freezing
and its emerging applications in food preservation,’’ Food Eng. Rev.,
vol. 13, no. 4, pp. 812–821, Dec. 2021.

[10] S. E. Bilek, A. Degirmenci, I. Tekin, and F. M. Yilmaz, ‘‘Combined
effect of vacuum and different freezing methods on the quality parameters
of cherry tomato (Lycopersicon esculentum var. Cerasiforme),’’ J. Food
Meas. Characterization, vol. 13, no. 3, pp. 2218–2229, Sep. 2019.

[11] L. Wanganoo and V. K. Shukla, ‘‘Real-time data monitoring in cold supply
chain through NB- IoT,’’ in Proc. 11th Int. Conf. Comput., Commun. Netw.
Technol. (ICCCNT), Jul. 2020, pp. 1–6.

[12] L. Macheka, E. J. H. Spelt, E.-J. Bakker, J. G. A. J. van der Vorst, and
P. A. Luning, ‘‘Identification of determinants of postharvest losses in
zimbabwean tomato supply chains as basis for dedicated interventions,’’
Food Control, vol. 87, pp. 135–144, May 2018.

[13] A. B. Kathole, K. N. Vhatkar, and S. D. Patil, ‘‘IoT-enabled pest iden-
tification and classification with new meta-heuristic-based deep learning
framework,’’ Cybern. Syst., vol. 55, no. 2, pp. 380–408, Feb. 2024.

[14] G. Meroni, L. Baresi, M. Montali, and P. Plebani, ‘‘Multi-party business
process compliance monitoring through IoT-enabled artifacts,’’ Inf. Syst.,
vol. 73, pp. 61–78, Mar. 2018.

[15] I. Expósito, J. A. Gay-Fernández, and I. Cuiñas, ‘‘A complete traceability
system for a wine supply chain using radio-frequency identification and
wireless sensor networks [wireless corner],’’ IEEEAntennas Propag.Mag.,
vol. 55, no. 2, pp. 255–267, Apr. 2013.

[16] D. Kandris, C. Nakas, D. Vomvas, and G. Koulouras, ‘‘Applications of
wireless sensor networks: An up-to-date survey,’’ Appl. Syst. Innov., vol. 3,
no. 1, p. 14, Feb. 2020.

[17] G. Alfian, J. Rhee, H. Ahn, J. Lee, U. Farooq, M. F. Ijaz, and
M. A. Syaekhoni, ‘‘Integration of RFID, wireless sensor networks, and
data mining in an e-pedigree food traceability system,’’ J. Food Eng.,
vol. 212, pp. 65–75, Nov. 2017.

[18] S. Mejjaouli and R. F. Babiceanu, ‘‘RFID-wireless sensor networks
integration: Decision models and optimization of logistics systems oper-
ations,’’ J. Manuf. Syst., vol. 35, pp. 234–245, Apr. 2015.

[19] S. Mujeeb, T. A. Alghamdi, S. Ullah, A. Fatima, N. Javaid, and T. Saba,
‘‘Exploiting deep learning for wind power forecasting based on big data
analytics,’’ Appl. Sci., vol. 9, no. 20, p. 4417, Oct. 2019.

[20] T. Saba, S. T. F. Bokhari, M. Sharif, M. Yasmin, and M. Raza, ‘‘Fundus
image classification methods for the detection of glaucoma: A review,’’
Microsc. Res. Technique, vol. 81, no. 10, pp. 1105–1121, Oct. 2018.

[21] M. A. Khan, M. I. Sharif, M. Raza, A. Anjum, T. Saba, and S. A. Shad,
‘‘Skin lesion segmentation and classification: A unified framework of deep
neural network features fusion and selection,’’ Exp. Syst., vol. 39, no. 7,
p. e12497, Aug. 2022.

[22] N. Hussain, M. A. Khan, M. Sharif, S. A. Khan, A. A. Albesher, T. Saba,
and A. Armaghan, ‘‘A deep neural network and classical features based
scheme for objects recognition: An application for machine inspection,’’
Multimedia Tools Appl., vol. 83, no. 5, pp. 14935–14957, Apr. 2020.

[23] T. Saba, ‘‘Automated lung nodule detection and classification based on
multiple classifiers voting,’’ Microsc. Res. Technique, vol. 82, no. 9,
pp. 1601–1609, Sep. 2019.

[24] S. Larabi-Marie-Sainte, L. Aburahmah, R. Almohaini, and T. Saba, ‘‘Cur-
rent techniques for diabetes prediction: Review and case study,’’ Appl. Sci.,
vol. 9, no. 21, p. 4604, Oct. 2019.

[25] J. G. A. J. van der Vorst, S.-O. Tromp, and D.-J.-V. D. Zee, ‘‘Simulation
modelling for food supply chain redesign; integrated decision making on
product quality, sustainability and logistics,’’ Int. J. Prod. Res., vol. 47,
no. 23, pp. 6611–6631, Dec. 2009.

[26] A. Musa, A. Gunasekaran, and Y. Yusuf, ‘‘Supply chain product visi-
bility: Methods, systems and impacts,’’ Exp. Syst. Appl., vol. 41, no. 1,
pp. 176–194, Jan. 2014.

[27] S. Mercier and I. Uysal, ‘‘Neural network models for predicting perishable
food temperatures along the supply chain,’’ Biosystems Eng., vol. 171,
pp. 91–100, Jul. 2018.

[28] O. Laguerre, A. Denis, N. Bouledjeraf, S. Duret, E. D. Bertheau, J.Moureh,
C. Aubert, and D. Flick, ‘‘Heat transfer and aroma modeling of fresh fruit
and vegetable in cold chain: Case study on tomatoes,’’ Int. J. Refrigeration,
vol. 133, pp. 133–144, Jan. 2022.

[29] K. Cherono, T. Workneh, and S. Melesse, ‘‘Application of logistic statis-
tical modelling in the evaluation of suitable conditions for the supply of
fresh tomatoes in selected South African supply chains,’’ Int. Food Res. J.,
vol. 26, pp. 979–989, Jun. 2019.

[30] T. L. de Micheaux, M. Ducoulombier, J. Moureh, V. Sartre, and J. Bonjour,
‘‘Experimental and numerical investigation of the infiltration heat load
during the opening of a refrigerated truck body,’’ Int. J. Refrig., vol. 54,
pp. 170–189, Jun. 2015.

[31] L. Wu, H. Zhou, X. Ma, J. Fan, and F. Zhang, ‘‘Daily reference evapotran-
spiration prediction based on hybridized extreme learning machine model
with bio-inspired optimization algorithms: Application in contrasting cli-
mates of China,’’ J. Hydrol., vol. 577, Oct. 2019, Art. no. 123960.

[32] W. A. Khan, H.-L. Ma, X. Ouyang, and D. Y. Mo, ‘‘Prediction of aircraft
trajectory and the associated fuel consumption using covariance bidirec-
tional extreme learning machines,’’ Transp. Res. E, Logistics Transp. Rev.,
vol. 145, Jan. 2021, Art. no. 102189.

[33] A. Naz, M. Javed, N. Javaid, T. Saba, M. Alhussein, and K. Aurangzeb,
‘‘Short-term electric load and price forecasting using enhanced extreme
learning machine optimization in smart grids,’’ Energies, vol. 12, no. 5,
p. 866, Mar. 2019.

[34] Z.-F. Liu, L.-L. Li, M.-L. Tseng, and M. K. Lim, ‘‘Prediction short-term
photovoltaic power using improved chicken swarm optimizer—Extreme
learning machine model,’’ J. Cleaner Prod., vol. 248, Mar. 2020,
Art. no. 119272.

[35] S. Mirjalili and A. Lewis, ‘‘The whale optimization algorithm,’’ Adv. Eng.
Softw., vol. 95, pp. 51–67, May 2016.

[36] L. Sun, Y. Zhao, W. Sun, and Z. Liu, ‘‘Study on supply chain strategy
based on cost income model and multi-access edge computing under the
background of the Internet of Things,’’ Neural Comput. Appl., vol. 32,
no. 19, pp. 15357–15368, Oct. 2020.

[37] Y. P. Tsang, K. L. Choy, C. H. Wu, G. T. S. Ho, C. H. Y. Lam, and
P. S. Koo, ‘‘An Internet of Things (IoT)-based risk monitoring system for
managing cold supply chain risks,’’ Ind. Manage. Data Syst., vol. 118,
no. 7, pp. 1432–1462, Sep. 2018.

[38] H. Luo, M. Zhu, S. Ye, H. Hou, Y. Chen, and L. Bulysheva, ‘‘An intelligent
tracking system based on Internet of Things for the cold chain,’’ Internet
Res., vol. 26, no. 2, pp. 435–445, 2016.

[39] K. Haseeb, N. Islam, T. Saba, A. Rehman, and Z. Mehmood, ‘‘LSDAR:
A light-weight structure based data aggregation routing protocol with
secure Internet of Things integrated next-generation sensor networks,’’
Sustain. Cities Soc., vol. 54, Mar. 2020, Art. no. 101995.

[40] C.-W. Shih and C.-H. Wang, ‘‘Integrating wireless sensor networks with
statistical quality control to develop a cold chain system in food indus-
tries,’’ Comput. Standards Interfaces, vol. 45, pp. 62–78, Mar. 2016.

52756 VOLUME 12, 2024



A. Haider et al.: IoT- Enabled Firmness Grades of Tomato in Cold Supply Chain

[41] C. N. Verdouw, R. M. Robbemond, T. Verwaart, J. Wolfert, and
A. J. M. Beulens, ‘‘A reference architecture for IoT-based logistic infor-
mation systems in agri-food supply chains,’’ Enterprise Inf. Syst., vol. 12,
no. 7, pp. 755–779, Aug. 2018.

[42] I. Konovalenko, A. Ludwig, and H. Leopold, ‘‘Real-time temperature
prediction in a cold supply chain based on Newton’s law of cooling,’’
Decis. Support Syst., vol. 141, Feb. 2021, Art. no. 113451.

[43] A. Mohsin and S. S. Yellampalli, ‘‘IoT based cold chain logistics mon-
itoring,’’ in Proc. IEEE Int. Conf. Power, Control, Signals Instrum. Eng.
(ICPCSI), Sep. 2017, pp. 1971–1974.

[44] Y. Tsang, K. Choy, C. Wu, G. Ho, H. Lam, and P. Koo, ‘‘An IoT-based
cargo monitoring system for enhancing operational effectiveness under
a cold chain environment,’’ Int. J. Eng. Bus. Manag., vol. 9, Jan. 2017,
Art. no. 184797901774906.

[45] J. Tang, Y. Zou, R. Xie, B. Tu, and G. Liu, ‘‘Compact supervisory
system for cold chain logistics,’’ Food Control, vol. 126, Aug. 2021,
Art. no. 108025.

[46] W. Wu, F. Zhao, C. Ma, and George. Q. Huang, ‘‘Experimental inves-
tigation of a real-time monitoring system for cold chain logistics,’’
in Proc. IEEE 16th Int. Conf. Autom. Sci. Eng. (CASE), Aug. 2020,
pp. 1201–1206.

[47] G. Kaur, S. H. Gupta, and H. Kaur, ‘‘Performance evaluation and opti-
mization of long range IoT network using whale optimization algorithm,’’
Cluster Comput., vol. 26, no. 6, pp. 3737–3751, Dec. 2023.

[48] P. R. Sahu, K. Simhadri, B. Mohanty, P. K. Hota, A. Y. Abdelaziz,
F. Albalawi, S. S. M. Ghoneim, and M. Elsisi, ‘‘Effective load frequency
control of power system with two-degree freedom tilt-integral-derivative
based on whale optimization algorithm,’’ Sustainability, vol. 15, no. 2,
p. 1515, Jan. 2023.

[49] S. Syama, J. Ramprabhakar, R. Anand, and J. M. Guerrero, ‘‘A hybrid
extreme learning machine model with Lévy flight chaotic whale opti-
mization algorithm for wind speed forecasting,’’ Results Eng., vol. 19,
Sep. 2023, Art. no. 101274.

[50] M. W. Hasan, ‘‘Building an IoT temperature and humidity forecasting
model based on long short-term memory (LSTM) with improved whale
optimization algorithm,’’Memories-Mater., Devices, Circuits Syst., vol. 6,
Dec. 2023, Art. no. 100086.

[51] A. H. Sadeghi, E. A. Bani, A. Fallahi, and R. Handfield, ‘‘Grey wolf
optimizer and whale optimization algorithm for stochastic inventory man-
agement of reusable products in a two-level supply chain,’’ IEEE Access,
vol. 11, pp. 40278–40297, 2023.

[52] L.-L. Li, J. Sun, M.-L. Tseng, and Z.-G. Li, ‘‘Extreme learning machine
optimized by whale optimization algorithm using insulated gate bipolar
transistor module aging degree evaluation,’’ Exp. Syst. Appl., vol. 127,
pp. 58–67, 2019.

[53] M. K. Lim, Y. Li, C. Wang, and M.-L. Tseng, ‘‘Prediction of cold
chain logistics temperature using a novel hybrid model based on the
mayfly algorithm and extreme learning machine,’’ Ind. Manag. Data Syst.,
vol. 122, no. 3, pp. 819–840, 2022.

[54] K. Mohammadi, S. Shamshirband, S. Motamedi, D. Petković, R. Hashim,
and M. Gocic, ‘‘Extreme learning machine based prediction of daily dew
point temperature,’’ Comput. Electron. Agricult., vol. 117, pp. 214–225,
Sep. 2015.

[55] S. Zhu, S. Heddam, S. Wu, J. Dai, and B. Jia, ‘‘Extreme learning machine-
based prediction of daily water temperature for rivers,’’Environ. Earth Sci.,
vol. 78, pp. 1–17, Mar. 2019.

[56] M. A. Salam, H. M. Zawbaa, E. Emary, K. K. A. Ghany, and B. Parv,
‘‘A hybrid dragonfly algorithm with extreme learning machine for predic-
tion,’’ in Proc. Int. Symp. Innov. Intell. Syst. Appl. (INISTA), Aug. 2016,
pp. 1–6.

[57] S. Samadianfard, S. Hashemi, K. Kargar, M. Izadyar, A. Mostafaeipour,
A. Mosavi, N. Nabipour, and S. Shamshirband, ‘‘Wind speed prediction
using a hybrid model of the multi-layer perceptron and whale optimization
algorithm,’’ Energy Rep., vol. 6, pp. 1147–1159, Nov. 2020.

[58] Y. Cheng, X. Gai, Y. Jin, R. Guan, M. Lu, and Y. Ding, ‘‘A new method
based on a WOA-optimized support vector machine to predict the tool
wear,’’ Int. J. Adv. Manuf. Technol., vol. 121, nos. 9–10, pp. 6439–6452,
Aug. 2022.

[59] P. J. García-Nieto, E. García-Gonzalo, and J. P. Paredes-Sánchez,
‘‘Prediction of the critical temperature of a superconductor by using
the WOA/MARS, ridge, lasso and elastic-net machine learning tech-
niques,’’ Neural Comput. Appl., vol. 33, no. 24, pp. 17131–17145,
Dec. 2021.

[60] R. Winterton, ‘‘Newton’s law of cooling,’’ Contemp. Phys., vol. 40,
pp. 205–212, Jan. 1999.

[61] I. Lienhard and H. John, AHeat Transfer Textbook. Phlogiston Press, 2005.

ALI HAIDER received the M.S.C.S. degree from
Bahauddin Zakariya University, Multan. He is
currently a Ph.D. Scholar with the Faculty of
Computing, The Islamia University of Bahawalpur
Pakistan, Punjab, Pakistan. He is also working on
IoT-based smart system for agriculture and cold
supply chain. His research interests include soft-
ware engineering, the Internet of Things, machine
learning, and nature inspired optimization algo-
rithms for optimization of neural networks.

RAFAQAT KAZMI received the Ph.D. degree
from the University of Technology, Malaysia,
in 2017. He is currently an Associate Professor
with the Department of Software Engineering,
The Islamia University of Bahawalpur Pakistan.
He received the International Doctoral Fellowship
twice during the Ph.D. degree. He was also part
of the project ‘‘End-to-End Cohesive Approach
for Agile Software Development in a Cloud Com-
puting Environment’’ funded by Ministry Science

Malaysia. His current research interests include software testing, require-
ments engineering, agile methods, social media, machine learning, deep
learning, social engineering, and the development of intelligent and smart
systems. He contributed more than 40 peer-reviewed articles, with a focus
on theoretical computing with practical applications.

TEG ALAM is currently a Faculty Member of
the Industrial Engineering Department, College of
Engineering, Prince Sattam bin Abdulaziz Univer-
sity, Al-Kharj, Saudi Arabia. His research interests
include operations research, predictive analysis,
multi- objective decision making approach, data
science, and statistical analysis. In addition to
publishing numerous types of research in reputed
peer-reviewed journals, he has attended several
prestigious national and international conferences.

Additionally, he actively participates in community work.

RAB NAWAZ BASHIR (Senior Member, IEEE)
received the Ph.D. degree from The Islamia Uni-
versity of Bahawalpur Pakistan. He is currently a
Lecturer with the Department of Computer Sci-
ence, COMSATS University Islamabad, Vehari
Campus. His research interests include the appli-
cations of the Internet of Things (IoT) andmachine
learning in agriculture for sustainable develop-
ments in agriculture. He is the author of more than
ten articles in this domain.

VOLUME 12, 2024 52757



A. Haider et al.: IoT- Enabled Firmness Grades of Tomato in Cold Supply Chain

HAITHAM NOBANEE received the Ph.D. degree
from The University of Manchester. He is cur-
rently a Professor in finance and financial technol-
ogy (Fintech) with Abu Dhabi University, United
Arab Emirates. He was a Honorary Professor with
the University of Liverpool, U.K., and a Visit-
ing Research Professor with the University of
Oxford, U.K. His work has been published in the
International Review of Economics & Finance,
The North American Journal of Economics and

Finance, Renewable and Sustainable Energy Reviews, Journal of Big Data,
and Corporate Governance. He has also been published in professional
journals, such as Harvard Business Review. He is a fellow of the Higher
Education Academy (FHEA) and Learning and Performance Institute (LPI).
He is also serving the Academic Community as an Editor for Arab Gulf
Journal of Scientific Research (Emerald); an Associate Editor for Interna-
tional Review of Financial Analysis (Elsevier) and Heliyon (Elsevier); a
Guest Editor for International Review of Economic & Finance (Elsevier);
a member of the Editorial Board for Financial Innovation (Springer); and a
reviewer for various international refereed journals.

AMJAD REHMAN KHAN (Senior Member,
IEEE) received the Ph.D. and Postdoctoral degrees
(Hons.) from the Faculty of Computing, Uni-
versiti Teknologi Malaysia, with a specialization
in forensic documents analysis and security, in
2010 and 2011, respectively. He is currently a
Senior Researcher with the Artificial Intelligence
and Data Analytics Laboratory, College of Com-
puter and Information Sciences (CCIS), Prince
Sultan University, Riyadh, Saudi Arabia. He is the

author of more than 200 ISI journal articles and conferences. He is also a PI
in several funded projects and also completed projects funded from MOHE,
Malaysia, and Saudi Arabia. His research interests include data mining,
health informatics, and pattern recognition. He received the Rector Award
for the 2010 Best Student from Universiti Teknologi Malaysia.

AQSA received the M.S. degree in CS from The
Islamia University of Bahawalpur Pakistan. She is
currently a Visiting Scholar with the Laboratory of
Real Time and Embedded Software Engineering,
University Technology Malaysia, and a Lecturer
in computer science with COMSATS University
Islamabad, Sahiwal Campus. Specialized in the
Internet of Things, machine learning, and artificial
intelligence.

52758 VOLUME 12, 2024


