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ABSTRACT The versatility and diverse applications of IoT-based Heterogeneous WSN (HWSN)
technologies make them valuable tools for achieving sustainability goals in Sustainable Smart Cities (SSCs).
Proper management of underlying heterogeneous architecture is crucial for the successful operation of smart
applications. To prolong the WSN’s lifespan and avoid failures, effective energy management is essential.
Although researchers are continually exploring heterogeneity in WSN, it gets more and more important to
create cost-effective paradigms that cover multiple facets of SSCwhile ensuring their stability and reliability.
The concept of Dominating Sets (DS) in a graph can be leveraged to minimize resource utilization in
WSNs by arranging nodes into disjoint DS, with only one set executing duties at any given time. In this
work, we propose a novel technique for IoT-based HWSNs-enabled SSC, called EADDSA, utilizing the DS
concept to plan the sleep-and-awake scheme for heterogeneous nodes, based on their resource capabilities.
We propose a new algorithm, called the Energy Attentive Algorithm (EAA), to find disjoint DSs that are
energy-aware. EAA algorithm attentively tries to form the set that maximizes lifespan while adhering to DS
conditions in each iteration. EADDSA further incorporates an effective DS scheduling strategy to enhance
the HWSN lifetime by establishing operational guidelines for each round, taking into account the estimated
lifetimes and the designated number of working rounds for each DS. This enables efficient allocation of data
sensing and gathering tasks across the network minimizes resource usage, and extends network lifetime.

INDEX TERMS Dominating set, heterogeneous wireless sensor networks, network lifetime, sustainable
urbanization, urban problems, energy consumption, sustainable smart city, modern cities.

I. INTRODUCTION
In the face of accelerating urbanization globally, the concept
of a Sustainable Smart City (SSC) has emerged as a crucial
solution to address the challenges brought about by rapid
urban development. With over 50 percent of the world’s
population projected to reside in cities by 2050, SSCs play
a pivotal role in providing essential amenities and services
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to meet the growing demands of urban living. To ensure
the sustainable operation of different SSC components,
such as Smart Governance, Smart Water and Waste Man-
agement, and Smart Connectivity, innovative strategies are
imperative. One key technological enabler for achieving
sustainability goals in SSCs is the Internet of Things (IoT)-
based Wireless Sensor Networks (WSNs). These networks,
consisting of heterogeneous nodes with varying capabilities,
are responsible for acquiring and transferring data for smart
applications. Utilizing a multi-hop scheme, these nodes
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establish connections to facilitate the transfer of accumulated
data towards a designated sink node. Unlike the original
data collection nodes in WSN, sink nodes are equipped with
abundant energy, robust computing capabilities, extended
communication ranges, and adequate memory [3], [5], [23],
[24]. Despite the rapid expansion of real-world applications
that include monitoring in agricultural areas, homes, health-
care, and animal and industrial contexts [8], WSNs face
challenges related to limited battery capacity, propagation
range, storage constraints, and computing resources [6],
[7]. The cost associated with augmenting the energy of
individual nodes is considerably lower than deploying
additional nodes with homogeneous energy levels. This
highlights the influence of energy heterogeneity in WSNs.
Simultaneously, managing battery power and lifespan, as well
as sustaining diverse quality of service parameters, pose
significant challenges in Heterogeneous WSNs (HWSNs).
The constraints on node energy contribute to survivability
issues and potential failures. A key concern in WSNs is
the refinement of energy efficiency, a factor that profoundly
impacts the stability and lifespan of the network. Managing
battery power and addressing survivability issues are funda-
mental considerations in enhancing the efficiency of WSNs.
As SSCs continue to evolve, the interconnectedness between
sustainable urban development and the versatile applications
of WSN technologies remains a crucial aspect in shaping the
future of smart cities. Furthermore, the network’s capacity
to withstand various challenges and failures, ensuring the
accomplishment of designated tasks, remains a fundamental
consideration in WSNs [8], [9].

Numerous strategies have been proposed in the existing
body of literature to address the goal of conserving energy
and prolonging the lifetime of networks. Sensing and com-
munication operations stand out as the primary contributors
to energy consumption, making effective energymanagement
and scheduling crucial for extending the service life ofWSNs.
A common approach to energy preservation in networks
involves transitioning nodes between sleep and awake states,
as discussed in [25]. Given the typically dense deployment
of WSN nodes, temporarily suspending the sensing and radio
communication capabilities of nodes in the sleep state proves
to be an efficient solution for energy conservation. In this
approach, only nodes within the active set are tasked with
data sensing and collection from the target area, while the
remaining nodes remain in a low-power sleep state. The
state transition mechanism plays a pivotal role in delivering
prolonged service while minimizing power consumption.

This study leverages the Dominating Sets (DS) concept
to regulate and manage the sleep/awake schedule of hetero-
geneous nodes based on energy considerations in WSNs.
A graph’s DS refers to a subset of nodes, where each node
either belongs to the subset or is adjacent to at least one
node within that subset. In the context of minimizing energy
consumption, an effective strategy involves organizing nodes
into disjoint sets, ensuring that only one set performs tasks
at any given time [11]. This concept, known as sleep-awake

scheduling, can be implemented by selecting disjoint domi-
nating sets to prolong the network’s lifespan and distributing
data-gathering tasks across these sets. In this paper, we pro-
pose a DS-based approach, called EADDSA, for maximizing
the lifetime of IoT-based HWSN-enabled SSC applications.
We tackle the challenge of energy conservation in HWSN
through the introduction of an algorithm for identifying
energy-aware disjoint DSs. We also devise an effective
scheduling strategy aimed at maximizing the HWSN lifetime.
By choosing several disjoint DSs according to the energy
level of nodes, our goal is to enhance the overall lifespan
of a heterogeneous WSN with nodes possessing varying
levels of initial energy. The careful choice of disjoint DSs
can contribute significantly to extending the WSN lifespan,
defined as the sum of the lifetimes of the disjoint DSs. Our
primary focus is on incorporating energy considerations as
a prominent factor in forming dominating sets, proposing
algorithms that construct and schedule sets for prolonged
lifetimes.

The main contributions of this paper are as given below:

• We tackle the challenge of energy conservation in
heterogeneous WSN through the introduction of a
novel DS-based technique, named EADDSA. With this
technique, we aim to maximize the lifetime of IoT-based
HWSN-enabled SSC applications.

• Wepropose a new algorithm, called the EnergyAttentive
Algorithm (EAA), to find disjoint DSs that are energy
aware. The EAA algorithm attentively tries to form
the set that maximizes lifespan while adhering to
DS conditions in each iteration. This is achieved by
prioritizing higher-energy nodes in the formation of each
set, ensuring efficient energy distribution.

• We devise an effective DS scheduling strategy to
enhance the HWSN lifetime by establishing operational
guidelines for each round, taking into account the
estimated lifetimes and the designated number of
working rounds for each DS.

The remainder of this paper unfolds as follows: In
Section II, a comprehensive review of related works is
provided. The details of the proposed work are expounded
in Section III. Section IV unveils the results of simulations
conducted on the proposed scheme, accompanied by a
performance comparison with existing approaches. Finally,
Section V encapsulates the concluding remarks of the paper.

II. RELATED WORK
The rapid increase of smart sensing devices within SSCs has
generated a great need for algorithmic approaches that are
both resource-efficient and adaptive to the limited resources
and heterogeneous characteristics of WSNs [1], [2], [3]. The
successful realization of technological advancements in SSCs
relies on a robust infrastructure as well as the integration of
e-governance policies for efficient resource management [4],
[8]. The integration of WSN and analogous technologies
offering a wide array of applications within SSCs holds

44070 VOLUME 12, 2024



B. Alwasel et al.: DS-Based Approach for Maximizing Lifetime of IoT-Based HWSNs

the potential to yield comprehensive strategies, fostering the
development of sustainable communities [9], [10], [11]. Data
insights provided by WSNs can be employed to make smart
cities more sustainable by empowering city planners and
decision-makers to make informed decisions that promote the
development of sustainable urban environments. Increasing
the lifetime of WSNs can reduce environmental impact,
improve data reliability, and free up resources for other sus-
tainable development initiatives, contributing to sustainable
urban development [12], [13], [14]. Consequently, there is a
growing urge to create paradigms that cover different facets of
SSCs and conserve resources. While the majority of studies
concentrate on developing energy-saving methods for WSNs
with homogeneous devices in terms of their energy reserves,
connection, and processing skills, heterogeneous networks
feature devices with varying resource capabilities [15],
[16], [17]. Conserving limited resources and managing
heterogeneity is crucial for the successful implementation
and sustainability of SSC applications. Efficient design and
resource management can lead to reduced environmental
impact, cost savings, and improved quality of life in smart
cities [20], [21], [22].

Based on several aspects impacting power utilization,
experts have suggested many solutions to address energy
restrictions in WSNs. A sleep/awake scheme, according to
several research studies [8], [9], [10], is an effective way of
conserving energy in nodes. The phenomenon of sensing and
transmission are the two main energy-intensive processes.
Previous research has used the DS approach, in which
the nodes are grouped into disjoint DSs with a single set
executing duties at any given point, to reduce the utilization
of energy [16], [17]. However, the problem of determining
the minimum DS required to represent a WSN is regarded
as NP-Hard [12]. The authors of [16] and [17] presented
centralized approximation techniques, with approximation
factors O(logn) and O(n logn2), respectively. The DS
technique employing dual greedy approaches to control the
sleep/awake scheme in WSN was first presented in [16].
It was further enhanced by [17] employing the concept of
maximum disjoint DSs expressed as Domatic Partition (DP)
associated with Unit Disk Graphs (UDGs), to address the
partitioning problem for homogeneous networks. To over-
come the limitations of centralized schemes in large-scale
networks, [18] and [21] made use of distributed algorithm
properties to create DSs. In [20], DSs are generated using a
distributed algorithm by employing theMaximal Independent
Set (MIS) principle indirectly. By employing the three-stage
approach and leveraging the concept of Pseudo DSs, the algo-
rithm in [19] created smaller Connected DSs (CDS) while
achieving improved network connectivity and coverage.
By utilizing a non-trivial potential function, [9] improved the
CDS connectivity. The suggested greedy algorithm generates
three-connected components from Tutte’s decomposition of
a two-connected graph.

To enhance network performance, [13] proposed a clus-
tering approach (EBDSC) that relies on DS. A novel

decentralized technique for choosing theWSNnodes that will
make up a DS was proposed by [14]. A Wait Before Start
(WBS) method was created to enable any dominant node to
announce itself according to the number of adjacent nodes.
This helps the DS to be determined automatically. Every
value is also time-weighted, allowing it to begin executing its
software after an established period depending on the value it
holds. To overcome the problem of DP, [22] presented a cell
layout. To accomplish this, a clique was built for every cluster
in WSN. They implemented a distributed nucleus algorithm
(DNA) and demonstrated that it executes in definite iterations
under the congested message-passing model.

All of the aforementioned algorithms solved the problem
of identifying the minimum DS. While allowing various
levels of starting energy for nodes, [11] created CDS using
different kinds of local search strategies. However, the
primary drawback is the level of complexity of their methods.
One of the most significant constraints in WSNs is a scarcity
of resources. As a result of having small, low-power capacity
batteries, sensor nodes are prone to failure. The failure hurts
the reliability and effectiveness of WSN-based services. This
constraint poses several challenges and potential issues for
QoS performance and reliability, especially in the context of
smart cities that rely on IoT-based heterogeneous WSNs to
support different applications with varying requirements like
data rate, delay, and expended power.

Motivated by this, we use the concept of DS to regulate
and establish an effective sleep-and-awake scheme for
heterogeneous WSNs, where we design a new solution to
create the disjoint DSs based on multiple criteria. Compared
with existing algorithms, obtaining the maximum network
lifetime is a significant achievement in the context of
IoT-based heterogeneousWSNs-enabled SSC applications to
ensure sustainable and prolonged operation while meeting
application requirements. By proposing solutions that can
enhance network lifetime, we will be able to enhance the
overall efficiency, reliability, and service quality of the
underlying application.

III. PROPOSED EADDSA TECHNIQUE
This section introduces the EADDSA technique, a novel
approach developed in this study. The EADDSA technique
incorporates the Energy Attentive Algorithm (EAA), which
is designed to form the sets in each iteration that maximize
the HWSN lifetime while adhering to DS conditions. This
is achieved by prioritizing nodes with higher energy levels.
Furthermore, the presented work incorporates a scheduling
technique designed for the DSs generated by the EAA.
Figure 1 illustrates the overall flow of the EADDSA
technique.

We begin with a description of the system model and the
formulation of the problem. Subsequently, we offer a detailed
description of the proposed EADDSA technique.

A. SYSTEM MODEL AND PROBLEM FORMULATION
In our proposed framework, we represent theWSN as a graph,
denoted as G = (V,E), where V and E represent the set
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FIGURE 1. The overall flow of the proposed EADDSA technique.

of nodes and the communication links between them. If we
take nodes i and j ∈ V , an edge between them exists upon
i being within the communication range of j. A fundamental
assumption in our model is the symmetry of communication
links between nodes within the WSN, meaning that all nodes
in the network share an identical communication range.
Despite this symmetry, the battery-powered nodes exhibit
heterogeneity in their initial energy levels. Additionally,
we consider a constant energy usage rate across all nodes in
the network.

A subset D ⊂ V is identified as a DS if ∀v ∈ V \D there
exists a neighbor in D. In the DS concept, nodes designated
to execute tasks on behalf of their neighboring nodes form the
DS, offering a means to enhance the network lifespan. A DS
with a smaller size tends to exhibit superior energy efficiency,
allowing more nodes to enter sleep mode. However, a notable
drawback of this approach lies in the uneven distribution of
energy among nodes. To address this imbalance, a strategy
involves substituting an existing DS with another disjoint DS
within the WSN and transitioning the nodes in the previous
set to sleep mode. This entails employing as many disjoint
DSs’ as possible, utilizing each for a specific duration, and
subsequently replacing it with another set, and so forth.

The primary goal is to improve the lifespan of HWSN
by carefully selecting disjoint DSs. The lifespan of a DS is
dependent upon the node with the lowest energy, factoring in
its energy consumption rate. The cumulative network lifetime
is calculated as the sum of the lifetimes of all disjoint DSs.

In defining the constraints, the following considerations
are taken into account:

1) Energy Constraint: The total expended energy of all
nodes in a DS should not exceed the complete available
energy of the WSN, denoted as Etotal:

∑j
k=1 sik.E ≤

Etotal, where sik.E represents the energy of node i in
DS Dk ⊆ V , and j is the disjoint DSs count.

2) Disjointness Constraint: Each pair of DSs should
have no common nodes: Di ∩ Dj = ∅ for all Di,
Dj ⊆ V , ensuring that no nodes are shared between
different DSs.

3) Connectivity Constraint: Every node outside of a DS
should have at least one neighbor in some DS: For each
v ∈ V \D, there should exist a DS D so that D ⊂ V
and v has at least one neighboring node in D.

4) Positive Energy Constraint: The energy of each node in
a DS should be greater than zero, considering a positive
constant δ: sik.E > 0 for all sik ∈ Dk ⊆ V , with the
energy consumption rate δ > 0.

To achieve the objective of maximizing the network’s
lifespan, we formulate the objective function F as below:

F = max

(
j∑

k=1

Emin

δ

)
,

Emin = min(s1k.E, s2k.E, . . . , sik.E) (1)

Within the objective function, the term sik.E denotes
the energy of node i within the DS Dk ⊆ V . The
variable j signifies the count of disjoint dominating sets,
and δ represents the energy consumption rate. The objective
function is designed to maximize the sum of the minimum
energy levels among nodes within each DS, with this sum
then divided by the energy consumption rate δ. By expressing
the constraints and the objective function in this manner, the
aim is to optimize the configuration of energy-aware disjoint
DSs, ultimately maximizing the lifespan of the WSN.

1) EXAMPLE
To illustrate, let’s consider a HWSN with seven nodes, each
having varying energy levels, as depicted in Figure 2. In this,
we can identify two disjoint DSs: D1 = [1, 2, 5] and D2 =
[3, 4, 6]. In D1, node 5 holds the minimum energy, while
node 4 in D2 possesses the lowest energy. Assuming a
constant rate of energy utilization, given by 0.05, the lifetime
of D1 is calculated as 0.03 / 0.05 = 0.6, and the lifetime
of D2 is 0.18 / 0.05 = 3.6. Consequently, the total WSN
is 4.2. Optimizing and enhancing the total WSN lifetime is
achievable by selecting alternative DSs, such asD1 = [2, 4, 5]
and D2 = [1, 3, 6]. In this scenario, the overall WSN lifetime
becomes (0.03 / 0.05) + (0.76 / 0.05) = 0.6 + 15.2 = 15.8. This
demonstrates that careful consideration and optimization of
DSs can significantly improve the total WSN lifespan.

FIGURE 2. Heterogeneous WSN example.
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B. EAA: ENERGY ATTENTIVE ALGORITHM
We discuss the proposed Energy Attentive Algorithm (EAA)
for Energy-Aware Disjoint DSs construction. EAA operates
in iterations, in an iteration r( r > 1), we determine a DS
Sj , where Sj

⋂
Sk = ϕ, for j ̸= k, j, k ≥ 1, and Sj ,

Sk ⊆ V .
In iteration 1, „S1 = V , where „S1 is a temporary set and

gradually will be shrunk as nodes are eliminated from it while
the algorithm execution proceeds. The nodes in „S1 are sorted
in ascending manner according to their energies. Select node
v ∈ „S1 with minimum energy then check if „S1 \v will violate
DSs constraints. If not, eliminate v from the setS1 and insert it
into „V1 ( „V1 is the set of candidate nodes for the next iteration).
Then, update the neighbors of v by eliminating it from its
neighbors. Otherwise, v is kept as a dominated node in „S1.
We repeat this process until the entire nodes in the set „V1 are
visited in ascending manner. Assign S1 = „S1 and color each
node in S1. At this stage, we formed the first DS S1 and we
have the candidate nodes in set „V1 for the next iteration that
may form a new DS. The algorithm stops when we cannot
find a new disjoint DS.

Now, we describe how a DS Sr is created at iteration
r > 2 in general. First „Sr = „Vr ( „Sr denotes a temporary set
at iteration r). As before, nodes in „Sr are sorted in ascending
manner according to their energies. Then iteratively check
if the elimination of each node v violates the dominating
set condition or not. The nodes with minimum energy are
eliminated only if they do not cause a violation of the DS
condition. The removed nodes are then moved to „Vr+1. The
set Sr is formed from the set „Sr which contains nodes with
maximum energy at this iteration and does not violate the DS
condition. This process is continued until one of the following
conditions is satisfied:

• The remaining nodes violate the condition of dominat-
ing sets and cannot form new sets.

• There are no remaining nodes, i.e., all nodes have
formed the disjoint dominating sets.

The details of the EAA algorithm are given in Algorithm 1.
DS scheduling technique then operates on the set of DSs to
schedule them.

1) CLARIFICATION EXAMPLE
For clarification, consider the example given in Figure 2.
The energy of each node is shown below its ID. In the
first iteration, „S1 contains all sorted nodes according to their
energies in ascending order „S1 = {5, 4, 7, 2, 3, 6, 1}. Since „S1

is a valid dominating set after eliminating node 5 (minimum
energy node), „S1 will be updated to „S1 \ 5 and node 5 will
be inserted into the next candidate set V1. The same process
will be repeated till we have the first valid dominating set
S1 = {1, 3, 6}. In the second iteration the 2nd temporary
set contains „S2 = {5, 4, 7, 2} (this set is initialized as V1).
Again eliminate node 5 (node with minimum energy) and
check if the „S2 is still a valid dominating set or not. Node
5 is kept since we can not eliminate it. The same thing for

nodes 4 and 2, we cannot eliminate them. As in previous
iteration, we have V2 = {7} and „S2 = {4, 2, 5}. Therefore,
this iteration ends with S2 = {2, 4, 5} and 3rd iteration
starts with „S3 = {7}. The algorithm stops with S1, S2.
Since S3 violates the dominating set conditions, it cannot be
considered for output. The result will be the dominating sets
{1, 3, 6} and {2, 4, 5} with lifetime 15.80.

Algorithm 1 Energy Attentive Algorithm (EAA)
1: V : set of nodes.
2: r: iteration number (initially equals 1).
3: S: set of disjoint dominating sets and initially equals ϕ.
4: Sr: DS at iteration r.
5:

„Sr: temporary dominating set at iteration r.
6: Vr: set of candidate nodes at iteration i initially equals ϕ.
7: while r > 0 do
8: Sr = V
9: Sort Sr ascending according to energy

10: for each node s ∈ Sr do
11:

„Sr = Sr \ s
12: if „Sr do not violate the dominating set conditions then
13: update s neighbors by eliminating s from their list
14: Sr = „Sr

15: Vr = Vr ∪ s
16: end if
17: end for
18: if Sr do not violate the dominating set conditions and Sr ̸= ϕ

then
19: S = S

⋃
Sr

20: V = Vr

21: Increment r by 1
22: else
23: break
24: end if
25: end while

The description of the Algorithm 1 is as follows:
Lines (1 to 6) are initialization steps. Initialize the set of
nodes, V , which represents all the nodes in the network
(line 1). Set the iteration number, r, to 1 and Initialize the
set of disjoint dominating sets, S, as an empty set (lines 2, 3).
Define Sr as the dominating set at iteration r and Define „Sr

as the temporary dominating set at iteration r (lines 4, 5).
Define Vr as the set of candidate nodes at iteration r, initially
empty (line 6). Enter the while loop with the condition r > 0
(line 7). Set Sr to the set of all nodes (V ) (line 8). Sort the
nodes in Sr in ascending order according to their energy
levels (line 9). Iterate through each node s inSr (lines 10 -17).
Create a temporary dominating set, „Sr, by removing node
s from Sr(line 11). Check if „Sr satisfies the conditions of
being a DS (line 12). In Line 13, if „Sr satisfies the DS
conditions then execute lines 13-15. Update the neighbor lists
of node s (line 13), set Sr to „Sr (line 14), and add node s to
Vr (line 15). Line 18 checks if Sr satisfies the dominating
set conditions and is not an empty set. If Sr satisfies the
conditions, add Sr to S, update V to Vr, and increment r
by 1 (lines 19-21); else exit the while loop (lines 22-25).
The algorithm terminates when no valid DSs are found or r
becomes 0. The output is the set of DSs, S, found during the
iterations.
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C. DS SCHEDULING ALGORITHM
Upon identifying all DSs, we focus on devising an effective
scheduling strategy aimed at maximizing the HWSN lifetime.
A commonly employed method for scheduling the final set of
disjoint DSs is the Round-Robin scheduling approach, due to
its simplicity and low complexity. This technique entails each
DS in the set taking turns to perform tasks in a circular order
until all DSs have completed their assignments. The number
of rounds directly impacts the network lifetime, constrained
by the count of disjoint DSs. However, this method poses
an issue by potentially causing premature energy depletion
of the first node. This arises due to the evaluation of
each DS being based on the minimum energy level within
it. To further enhance the network lifetime, an alternative
heuristic scheduling mechanism can be employed. This
mechanism ensures optimal DS scheduling for each round by
assessing the lowest node energy within each DS during the
present time slot, effectively serving as an indicator of the
DS’s remaining lifetime.

For clarification, let’s consider a network with two DSs,
ds1 and ds2, where ds2 has the highest estimated lifetime
and ds1 has the lowest lifetime. If ds1 and ds2 operate as
active DSs for an equal number of rounds, ds1 will experience
premature depletion, leading to a shorter network lifetime
compared to ds2. This disparity significantly influences the
overall lifespan of the network.

The DS scheduling algorithm is presented in Algorithm 2,
which determines the working policy for the next round.

Algorithm 2 DS Scheduling Algorithm
1: m: DSs count within the network.
2: r: the round.
3: C: set of working DSs in the following round, initialized as C = ϕ.
4: Determine each DS’s lifetime (τ1, τ2, . . . , τm).
5: for each DS dsi do
6: Calculate NWRi = ⌈τi⌉.
7: end for
8: Sort DSs based on NWRi in descending order.
9: for each DS dsi, i . . . m− 1 do

10: Add dsi to C for NWRi-1 rounds {schedule dsi to work in round r}.
11: end for
12: Add dsm to C for NWRm rounds {schedule dsm to work in round r}.
13: Add dsi, i . . . m− 1 to C for one round{schedule dsi to work in round r}.

The BS formulates the working policy for the rounds
through the following steps:

1) The BS initiates the process by estimating the lifetime
of each DS, denoted as τ1, τ2, . . . , τm, where m
represents the total DSs count in the network, and τi

signifies the lifetime of DS i.
2) Subsequently, the BS calculates the number of working

rounds (NWR) for each DSi using the formula
NWRi = ⌈τi⌉.

3) The DSs are then organized in descending order based
on their respective NWR values.

4) The BS proceeds to schedule the DSs according to the
following criteria:

• Assign DS1 to operate for NWR1 − 1 rounds.
• Assign DS2 to operate for NWR2 − 1 rounds.

• Assign DSi, where i ranges from 3 to m − 1,
to operate for NWRi − 1 rounds.

• Assign DSm, characterized by the least lifetime,
to operate for NWRm rounds.

• Finally, for each DSi, where i ranges from 1 to
m− 1, assign it to operate for 1 round.

Based on this, the BS establishes the operational guidelines
for the upcoming round, taking into account the estimated
lifetimes and the designated number of working rounds for
each DS.

1) EXAMPLE
To clarify, consider a network with three DSs: ds1, ds2, and
ds3. Let’s assume the lifetimes of ds1, ds2, and ds3 are τ1 =
10, τ2 = 7, and τ3 = 3, respectively.

1) The BS estimates the lifetime of each DS:

τ1 = 10

τ2 = 7

τ3 = 3

2) The BS then estimates the number of working rounds
(NWR) for each DSi:

NWR1 = ⌈τ1⌉ = ⌈10⌉ = 10

NWR2 = ⌈τ2⌉ = ⌈7⌉ = 7

NWR3 = ⌈τ3⌉ = ⌈3⌉ = 3

3) Sorting the DSs in descending order based on their
NWR values:
• DS1: NWR1 = 10 rounds
• DS2: NWR2 = 7 rounds
• DS3: NWR3 = 3 rounds

4) The BS schedules the DSs as follows:
• Assign DS1 to work for NWR1 − 1 = 10 − 1 =

9 rounds.
• Assign DS2 to work for NWR2 − 1 = 7 − 1 =

6 rounds.
• Assign DS3 to work for NWR3 = 3 rounds.
• Assign DS1 to work for 1 round.
• Assign DS2 to work for 1 round.

As each DS is assessed based on the minimum node energy
within it, considering the aforementioned values reveals that
the initial node’s depletion happens after 18 rounds of the
node with the minimal energy in ds3. In contrast, utilizing the
Round-Robin scheduling method results in the initial node’s
exhaustion occurring after 9 rounds. Figure 3 illustrates the
depiction of our scheduling approach compared to Round-
Robin scheduling.

D. ANALYSIS
Lemma 1: EAA algorithm guarantees that it can always

generate the DS S.
Proof: The proof will be by contradiction. A set S is a

DS if and only if there exists no node s in the graph G that
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FIGURE 3. Depiction of ds1, ds2 and ds3 scheduling.

is not connected to a node in S (or covered by a node in S).
Consider S as a DS and suppose that at least one node s in
G is not connected to S. This implies that node s or some
of its neighboring nodes are not connected to a node in S,
which means S is not a DS. This leads to a contradiction if
we assume that all nodes are connected in G and S is not
a DS. Given that all nodes are interconnected, each node is
influenced or dominated by some nodes in the set S. This
contradicts the initial assumption that S is not a DS.
The EAA starts with set S1, which covers all nodes in

graph G. To form a valid DS, set S1 is updated attentively
by eliminating nodes that have minimum energy and do not
violate the dominating set conditions. The eliminated nodes
form a new set of candidate nodes for the next iteration. The
process is repeated considering the new candidate node set
to generate a new valid DS. This means that the algorithm’s
operation is performed to keep the DS valid.
Lemma 2: Given a WSN modeled as a connected graph

G(V, E), EAA will create the set of DSs in polynomial time.
Proof:Assuming that the overall amount of nodes within

the network is n (|V | = n) and the average count of nodes of
a candidate DS is k, the time analysis of executing EAA will
be as follows:
The while loop will be executed r iterations in the worst case.
In each iteration,

• In step 9 (sorting a set): if the nodes count in S is k <
|V |, then the time for this step will beO(k∗ log k) using
the sorting algorithm.

• In steps 10-17, EAA updates neighbor info. this update
is performed in O(k) time.

• In steps 18-24, EAA checks the conditions of DS in
O(n− k).

Therefore, the overall time complexity of EAA is O(r ∗ k2 ∗
(n− k) ∗ logk).

IV. RESULTS AND DISCUSSION
This section initially presents the simulation settings, fol-
lowed by the simulation results and comparative analysis with
the other baseline algorithms that include minimum domi-
nating set algorithm (MDP) [17], max energy first minimum
dominating set algorithm (MFMDP), local search (LSearch),
variable depth (VDepth) and fixed depth (FDepth) [11].
MFMDP follows MDP algorithm with some modifications
in which the highest energy node in the network is selected
first.

A. SIMULATION SETTINGS
MATLAB R2015a is employed for the performance eval-
uation of the proposed EEA. MAX-DPA technique [15] is
adopted for random deployment of WSNs. We considered
different deployment scenarios during simulation, where
50, 100, 150, and 200 nodes are considered with varied
network densities. For each node deployment, sparse and
dense network graphs are considered, and the starting energy
of each node is allotted a random value r ∈ (0, 1].
Moreover, as in [11], the rate of energy depletion is set
to 0.05. The results are captured by averaging 50 different
randomly generated WSNs using MAX-DPA algorithm [15].
An example of the generated dense and sparse network graphs
is depicted in Figure 4.

B. EVALUATION RESULTS
In this test, we have 4 scenarios, each scenario undergoes
50 executions, and the obtained results are averaged for
analysis.

Figures 5-9 show varying network densities and the
corresponding network lifetime for 50, 100, 150, and
200 nodes. In the 50-node scenario (as in Figure 5), the MDP
consistently has values ranging from 16.24 to 28.94 across the
network densities. The MFMDP also consistently has values
ranging from 9.24 to 13.34 across the network densities.
It exhibits relatively stable performance but generally has
lower values compared to MDP. LSearch has values ranging
from 27.21 to 56.7 across the network densities. It shows a
wider range of values and generally performs better than both
MDP and MFMDP. VDepth has values ranging from 33.1 to
66.24 across the network densities, demonstrating higher
values compared to the previous algorithms, which suggests
better performance. FDepth has values ranging from 32.68 to
57.5 across the network densities, similar to VDepth in terms
of performance, and it consistently performs better thanMDP
and MFMDP. The proposed EADDSA has values ranging
from 30.1137 to 77.887 across the network densities which
exhibits the highest values among all the above algorithms.

In the 100-node scenario (as in Figure 6), In terms of
network lifetime, MDP has values ranging from 18.7 to
28.81, and MFMDP has values ranging from 12.42 to 18.1,
which are lower than those of MDP, suggesting a shorter
network lifetime ad it is clear that MFMDP performs worse
than MDP. LSearch performs better than MFMDP but worse
than MDP in terms of network lifetime. The VDepth shows
better performance compared to LSearch. FDepth performs
similarly to VDepth but slightly worse than LSearch. The
proposed EADDSA has values ranging from 35.4694 to
141.5906, which is higher than all the above algorithms,
i.e., EADDSA shows the best performance among the above
algorithms in terms of network lifetime.

In the 150-node and 200-node scenarios (as in Figures 7
and 8), the EADDSA algorithm consistently demonstrates
the highest values for network lifetime across all network
densities, it outperforms all other algorithms and shows the
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FIGURE 4. Example: randomly generated sparse and dense graphs with 100 nodes.

FIGURE 5. Comparison: varying network densities and resultant network
lifetime (scenario: 50 nodes).

best performance in terms of network lifetime. The VDepth
performs consistently well, showing better performance than
most of the other algorithms but falling behind EADDSA.
The FDepth algorithm also performs well, showing a similar
level of performance as VDepth but slightly lower. The
LSearch is performing relatively well but being outperformed
by both VDepth and FDepth. The MDP performing ade-
quately well but falling behind the previously mentioned
algorithms. The MFMDP has the lowest values for network
lifetime, and it shows the lowest performance among the
provided algorithms.

It is apparent that as the network density increases,
the network lifetime values for all algorithms generally
increase as well. Moreover, from Figure 9, it can be

FIGURE 6. Comparison: varying network densities and resultant network
lifetime (scenario: 100 nodes).

observed that MDP and MFMDP generally exhibit a positive
correlation between network lifetime and the number of
nodes, indicating higher performance with larger networks.
LSearch’s performance remains consistent, while VDepth
and FDepth show a slight decrease in performance with more
nodes. EADDSA consistently displays the highest network
lifetime across different numbers of nodes.

Furthermore, from Figures 5-9, it is evident that the
network lifetime performance ofMFMDP, andMDP schemes
are less than LSearch, VDepth, and FDepth. The reason
behind the improved performance of LSearch, VDepth, and
FDepth is that they allow swapping among the nodes of
the different DSs which leads to improved network lifetime.
It is evident from these Figures that the proposed EADDSA
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TABLE 1. Times of improvement of EADDSA over other algorithms.

FIGURE 7. Comparison: varying network densities and network lifetime
for the algorithms (scenario: 150 nodes).

offers higher network performance than other algorithms
because EADDSA not only considers the sensor node energy
while generating the CDS but also considers the lifetime of
each CDS.

Figure 9 shows that the EADDSA has the best network
lifetime over the different network densities and using

FIGURE 8. Comparison: varying network densities and resultant network
lifetime (scenario: 200 nodes).

different number of nodes. Because, in each iteration, the
EADDSA aims to group the nodes with high energy in the
same CDS and the nodes with low energy in the same CDS.
By doing this, the CDS lifetime has been increased, which
indirectly results in a longer lifetime for a network as well.
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FIGURE 9. Comparison: average network lifetime for the algorithms
across all densities.

Moreover, we can conclude from the results that the low
performances of LSearch, VDepth, and FDepth can largely
be attributed to the greedy heuristic that is employed in
generating initial solutions for the local process in these
approaches when producing their initial results. Given that
the method employed for generating initial solutions was
originally designed for the minimumDS problem, limitations
arise in LSearch, VDepth, and FDepth approaches as they
strive to enhance these initial solutions. Specifically, these
methods aim to improve their solutions by swapping nodes
belonging to different disjoint DSs. However, the number
of solutions returned by the greedy heuristic can only be
manipulated to a certain extent.

Table 1 shows the times of improvement of EADDSA
over different algorithms using different number of nodes and
different network densities.

V. CONCLUSION
This paper introduces a novel solution aimed at enhancing
the HWSN lifetime performance. The proposed EADDSA
approach incorporates the consideration of nodes with
heterogeneous energy in theWSN and introduces an attentive
method (EAA) that takes into account the energy heterogene-
ity during the construction of DSs. Moreover, the effective
DS scheduling strategy enhances the HWSN lifetime by
establishing operational guidelines for each round, taking into
account the estimated lifetimes and the designated number
of working rounds for each DS. A comparative analysis
conducted with related algorithms, including MDP, MFMDP,
LSearch, VDepth, and FDepth, reveals promising results. The
findings demonstrate that the proposed EADDSA method
outperforms these algorithms, leading to significant improve-
ments in WSN lifetime. Specifically, EADDSA achieves
superior average lifetime improvements compared to MDP,
MFMDP, LSearch, VDepth, and FDepth, as indicated by
improvement factors of 1.79, 4.15, 0.48, 0.21, and 0.30 times

with 50 nodes, 3.55, 5.82, 1.90, 1.74, and 1.82 times with
100 nodes, 2.78, 4.72, 1.55, 1.35, and 1.43 times with
150 nodes, and 4.38, 7.16, 2.45, 2.27, and 2.34 times with
200 nodes, respectively. In the future, we plan to introduce
and evaluate a novel hybrid optimization algorithm to further
improve network lifetime through the formation of disjoint
DSs that are sensitive to both energy and load balancing
considerations.
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