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ABSTRACT Climate change pressure on the Arctic permafrost is rising alarmingly, creating a decisive need
to produce Pan-Arctic scale permafrost landform and thaw disturbance information from remote sensing
(RS) data. Very high spatial resolution (VHSR) satellite images can be utilized to detect ice-wedge polygons
(IWPs) – the most important and widespread landform in the Arctic tundra region - across the Arctic without
compromising spatial details. Automated analysis of peta-byte scale VHSR imagery covering millions of
square kilometers is a computationally challenging task. Traditional semantic segmentation requires the use
of task specific feature extractionwith conventional classification techniques. Semantic complexity of VHSR
images coupled with landscape heterogeneity makes it difficult to use conventional classification approaches
to produce Pan-Arctic scale geospatial products. This leads to adapting deep convolutional neural network
(DLCNN) approaches that have excelled in computer vision (CV) applications. Transitioning domains
from everyday image understanding to remote sensing image analysis is challenging. This study aims to
systematically investigate two main obstacles confronted when adapting DLCNNs in large-scale RS image
analysis tasks; 1) the limited availability labeled data sets and 2) the prohibitive nature of hyperparameter
tunning when designing DLCNNs that can capture the rich characteristics embedded in remotely-sensed
images. With a case study on the production of the first pan-Arctic ice-wedge polygon map using thousands
of VHSR images, we demonstrate the use of transfer learning and the impact of hyperparameter tuning with
a 16% improvement of the Mean Average Precision (mAP50).

INDEX TERMS Remote sensing, deep learning, hyperparameter optimization, terrain mapping, convolu-
tional neural networks, climate change, environmental monitoring, Arctic tundra, mask R-CNN.

I. INTRODUCTION
Over the last two decades, there has been an upsurge of very
high spatial resolution (VHSR) satellite image acquisitions
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in the Arctic region. The arrival of commercial satellite
sensor platforms, such as Maxar and Planet, has mainly
propelled this growth. VHSR image data archives are now
at the petabyte scale and will soon be turning to exabyte
scale. A major Maxar imagery repository hosted by Polar
Geospatial Center (PGC), which is freely accessible to Arctic
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researchers funded by the U.S. National Science Foundation
(NSF), offers transformational opportunities to monitor envi-
ronmental changes happening in the Arctic region, where
field observations are sparse both spatially and tempo-
rally [1], [2].

The Arctic permafrost region is a unique landscape com-
posed of Earth material that remains below 0◦C for at least
two consecutive years and occupies approximately 24% of
the exposed landform of the northern hemisphere [3]. Ice-
wedge polygons (IWPs), the most widespread landform in
the cold continuous permafrost regions, are an atypical sur-
face feature that manifest the presence of subsurface wedge
ice [4]. VHSR remote sensing imagery opens a new win-
dow of opportunities to map IWPs from local-, regional-,
to Pan-Arctic scale [4]. It is vital to automate the process
of deploying Pan-Arctic scale mapping and classification
approaches [4]. This leads to the adaptation of deep learning
(DL) approaches that have excelled in computer vision (CV)
applications [5] for remote sensing (RS) image analysis tasks.
Despite their remarkable performances in CV applications,
DL approaches inherit their own challenges.

Thus, the transition from one domain – e.g., everyday
image understanding - to another – e.g., RS image analysis
- is not straightforward [5]. Two main obstacles in using DL
methods in RS applications are; 1) the limited availability of
training data sets and 2) the prohibitive nature of determining
the configuration parameters for the DL network. In litera-
ture, the search for optimal hyperparameters is referred to as
hyperparameter tuning and is imperative when designing DL
models that can capture high-level semantics [6].
VHSR images have complex and diverse patterns

non-linearly aggregated to multiple spatial scales that DL
algorithms can exploit. Often large learning models (LLMs)
are required to exploit such complex patterns. Due to the
computational cost associated with training these LLMs, iter-
atively determining the model configuration parameters for
RS applications is a challenging task. As such, practitioners
in most cases tend to use default model parameters. The
case of reusing default or slightly modified parameters on
a DL model could equate to asking a particular individual
to identify objects on an image using a pair of eyeglasses
prescribed for another individual. The primary objective of
this work is to demonstrate the impact of hyperparameter
tuning on the model outcome and to identify a systematic
process in a generic form that can be used to engage in
hyperparameter tuning based on the available computational
resources for DL- RS applications.

In section II, background to the problem of using computer
vision for remote sensing, the success of CNNs, and the lack
of hyperparameter optimization are presented. In section III,
the case study of mapping IWPs, experimental setup and
the approach taken to optimize hyperparameters are intro-
duced. In section IV, hyperparameter optimization results
are compared and discussed, followed by the conclusion
in section V.

FIGURE 1. Convolution operation example for the first two steps and the
last step of a convolution operation, illustrating how the resulting output
highlights the shape feature in the original input in an aggregated
compressed representation.

II. BACKGROUND
A. SUCCESS IN COMPUTER VISION
The performance of conventional machine learning (ML) in
general and CV in particular depend on the choice of data
representation [7], [8], [9], [10], [11]. In most traditional
approaches, effort is largely spent on preprocessing pipelines
and data transformation to enable better representations so
that ML can succeed [10], [11]. The use of DL on the
MNIST (Modified National Institute of Standards and Tech-
nology) optical character recognition image data set [10] to
break away from the best performing support vector machine
(SVM) based approach is a pioneering effort in CV. Higher
performance of DL over SVM shows the representational
learning limitations in using traditional machine learning for
image processing. Simple CVmodels are bound to fail as they
rely on the smoothness of the function to be learned and may
not be able to capture a sufficient quantum of the complexity
of interest. Any attempts to provide a suitable feature space
would run into the curse of dimensionality [10], [11]. DL’s
success in image understanding, beyond human capabilities
in some cases, clearly shows the ability of DL techniques to
capture and represent the inherent complexities in images.
Multiple CV applications using auxiliary data representation
techniques, such as histogram of oriented gradients (HOG)
[12], scale invariant feature transformation (SIFT) [13], and
bag of words (BoW) [14] have shown improved performance,
illustrating the limitations in conventional ML for higher
dimensional data understanding.

B. REMOTE SENSING WITH DEEP LEARNING
DL addresses the data representation issues in traditional
machine learning based image processing approaches [10],
[11]. InDL, feature extraction is automated by eliminating the
requirement to tweak the data representation based on domain
knowledge [11]. DL models use a multi-layered approach
to extract higher level discriminative features. Initial layers
capture the low-level features and the final layers capture high
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FIGURE 2. Basic CNN Architecture [11] The output of the convolution
layer is passed through the rectified linear unit (ReLu), where the
non-linearity of the image features extracted by the convolution layer is
further enhanced.

FIGURE 3. Performance of DL with training data size [11] represented by
a hypothetical graph indicating the relationship between the training
data size and the final performance of a ML model.

level features which enable classification [11]. The convolu-
tional neural network (CNN) in DL enables discriminative
image features to be captured efficiently, aided by a collec-
tion of kernel-based convolutional filters. The N-dimensional
matrix of the input image is convolved with kernel-based
filters to extract discriminative features. A kernel is a grid of
trainable weight values which are randomly assigned initially
and adjusted in training. The kernel window slides over while
computing the dot product with the input at each step cap-
turing the features in the input image in an aggregated form.
Figure 1 is an example of feature extraction.
Figure 2 shows a basic CNN architecture. The pooling

layer in a CNN enables the subsampling of the feature
maps generated by the convolution layers. This reduces the
dimensionality of large feature maps but retains the dominant
features. Activation layers control information flow enabling
the capture of image features. The final layer of a CNN is the
fully connected layer that outputs the decision based on the
captured features from the previous layers. During training
with multiple images, the weights and biases in the model are
adjusted based on the loss, which is computed by comparing
the expected output against the actual output at each iteration
until the loss reaches an acceptable level.

C. CHALLENGES IN DEEP LEARNING
A downside of DL is that large collections (14 million images
in the case of ImageNet [15], 200,000 for MaskR-CNN [16])
of training samples are required for a model to learn sufficient
information to execute inferencing with high quality [11],
[17]. Figure 3 compares training dataset size for traditional
ML with DL. A large training set is used by DL models to
capture all possible discriminating characteristics [17], [11].

In DL-based RS, it is a difficult task to manually annotate
the data to create a large training data set. Transfer learning
overcomes this challenge [17], [11] by starting with a well-
trained model, where the weights are already trained for a
similar task, and concludes by only training the last few layers
of the DL model with the task specific training data. The
initial layers, which are responsible for feature extraction in
such pre-trained models, are typically frozen during training
in order to leverage the weights already learned.

Another challenge in DL is hyperparameter tuning. Due
to the complexity and configuration variability of large DL
models, wemust use the best-performing configuration based
on hyperparameter tuning to obtain the optimal inference
results from the model [6], [18]. In some cases, the hyperpa-
rameter space can be prohibitively large, and the requirement
to iterate over possible training configurations to arrive at the
optimum using large RS images can be a serious computa-
tional challenge.

D. HYPERPARAMETER TUNING
From the initial introduction of neural networks, one of the
critical drawbacks was hyperparameter tuning. In an initial
publication done in 1967 [19], the issue is described as
the problem of ‘‘learning the learning rule.’’ This is com-
pounded further by the fact that NNs were black boxes that
produced results with very minimal model explainability to
draw intuitions on how well it is performing. NN based
DL performance depends heavily on the correct settings of
many internal parameters [20], [21], [22], [23]. The best
performing models most often turn out to be larger networks
with multiple parameters that need to be set. This makes it
desirable for both the researchers and practitioners to set these
hyperparameters automatically or semi-automatically [22],
[24]. Some of the widely adapted hyperparameter tuning
approaches include, Grid Search, Random Search, Bayesian
optimization, and Hyperband optimization. In Grid Search,
all possible combinations of different hyperparameters are
evaluated, and in the case of DL-based RS it is prohibitively
expensive. Random search attempts to reduce the cost of grid
search by limiting the search to a set of randomly selected
hyperparameters from the exhaustive list, hoping that one of
them will lead to some form of optimal solution without any
guarantees. Bayesian optimization uses a probabilistic model
to select the next set of hyperparameters to evaluate based
on the outcome of executing the training. Hyperband uses a
multi-armed bandit strategy for hyperparameter optimization
that takes advantage of reducing the allocated resources for a
trial in the search, based on considering the estimated return
on (resource) investment (RoI) for the trials.

E. HYPERPARAMETER TUNING IN DL BASED RSI
ANALYSIS
Anywork that uses DL (specifically for RS) must explore and
discuss hyperparameter optimization, unless the practitioners
are using a model previously used for a similar task that has
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TABLE 1. Summary of hyperparameter tuning on deep learning based
remote sensing literature 2015 to 2022.

significantly explored the respective hyperparameter space.
Automated hyperparameter tuning is particularly important
in DL RS applications as it benefits in multiple ways, such
as: the ability to obtain strong anytime performance, the
availability and effective use of parallel resources for training,
the reduction of the dependence on ML expertise, and the
avoidance of trial and error approaches to obtain the best
performingmodel [22]. In DLRS, data preprocessing, feature
engineering, model selection, and model parameter selection
are some of the key design decisions that need to be made
to deploy a DL-based RS product. With the advances in the
field, the availability of multiple options for each step in the
pipeline creates a vital and crucial need for hyperparameter
optimization.

We conducted a meta-search of 24 recent works in
DL-based RS to explore the use or non-use of hyperparam-
eters (Table 1, See Appendix for further discussion) Most
of the work concludes model training as soon as the model
performance reaches results that are better than the reported
results and the choice of model parameters are accepted
without exploring any further. This could be due to the high
computational cost inherent in tuning. However, with the
availability of parallel computing environments makes hyper-
parameter tuning feasible and should not be only considered
as future work by researchers.

Although it is not exhaustive, our short literature survey
reflected that most of the work done in RS using DL does not
discuss the importance of hyperparameter tuning. Since the
cost of hyperparameter tuning is high due to the complexity
of the DL model and the size of training data, it is essential to
discuss the cost of tuning and also methods and means, such
as parallel computing, that can be utilized for hyperparameter
tuning. For example, the learning rate is one of the key
elements of a DL setup that affect the outcome of the models.
It is obvious that most of the work published in DL-based
RSI analysis would execute a few random trials with mul-
tiple learning rates and use the best value. A systematic
approach to learning rate optimization should be conducted
and reported as a bare minimum.

III. METHODS
A. CASE STUDY
To demonstrate the quality and cost impact of hyperparam-
eter tuning on DL-based RSI analysis in a computational
cost-constrained environment, we select an Arctic permafrost

science use case, that utilizes VHSR satellite image scenes
acquired by the Maxar sensors (e.g., Quickbird, Worldview-
02) at a spatial resolution of 0.5 m with a typical footprint
size of 20 km × 20 km (∼160 million pixels per image
scene) [48].

Our aim is to train a DL model that can semantically seg-
ment IWPs over a large spatial domain using VHSR data. It is
estimated that two-thirds or more of the Arctic is occupied by
polygonized ground, but the exact extent and the prevailing
IWP types (i.e., whether the ice-wedges experienced thaw or
not) are largely unknown [49], [50]. Degradation of IWPs
is known to occur over a short period of time compared to
aggradation due to the accumulation of organic and mineral
soil above the ice-wedges [51]. Analyzing the spatiotemporal
dynamics behind the ice-wedge polygonal tundra demands
the production of geospatial maps documenting prevailing
IWPs with type classifications. The Arctic science commu-
nity has a limited grasp of the Pan-Arctic scale spatiotemporal
dynamics of IWPs despite the alarming signals of changing
climate. These IWPs have multiple size configurations and
spectral characteristics, making them heterogeneous data sets
with numerous inference challenges. Another challenge for
this data set is in creating a training data set through manual
annotation by going through a selected set of tiles sampled
from the satellite images and marking the IWPs. All these
are typical challenges faced in DL-based RSI analysis.

B. MASK-RCNN MODEL TRAINING
Since the goal is to segment and classify into multiple
instances of IWPs (i.e. low and high), we utilized Mask
RCNN, which is a semantic object instance segmentation
model [16]. Figure 4 illustrates the Mask RCNN [16] archi-
tecture. Mask RCNN is used in RS DL due to its success
in the field of CV [4], [52]. The requirement to configure
multiple components in the Mask RCNN architecture makes
hyperparameter tuning vital to have highly accurate outputs.

Operational model inferencing spans over a very large
spatial domain (>5 million km2) of tundra comprising het-
erogenous landscape characteristics. Thus it is vital to make
sure that the model used is able to capture most of the land-
scape variability in the training data to accurately map IWPs
across the Arctic. Figure 5 shows the process flow for training
the model. As indicated in Figure 5, the hyperparameter tuner
will iteratively suggest new model configurations based on
the model performance. This process will continue until the
process reaches a given stopping condition and produces the
final tunedmodel to be assessed against the test dataset for the
final model performance reporting. It should be noted that the
training of the weights and biases in the DL model is sepa-
rated from the tuning of the parameters of the model. Though
the terms ‘‘train’’ and ‘‘tune’’ are used for these two concerns,
essentially, both are doing similar tasks in yielding the best
configuration for the model. It is important to separate the
two, rather than do both at the same time, since there is a
direct impact and conflict between the two. For example, the
number of layers on a network is a hyperparameter, and if we
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FIGURE 4. Mask RCNN model architecture [16] that involves multiple CNNs with other fully connected networks that are combined for semantic
instance segmentation. The architecture contains multiple components to be configured appropriately.

FIGURE 5. Hyperparameter tuning process will suggest model configurations based on the performance of the model.

attempt to tune it while training the network weights, there
may be multiple different numbers of weights in the network
at different epochs in a training session, which confuses the
learning process.

C. TRAINING DATA SIZE LIMITATIONS
For this science use case, the training data set was sampled
from a few representative satellite image scenes. Table 2
shows the distribution of the training samples across the train,
validation, and test set that includes almost 25,000 IWPs on
670 image tiles. In each image tile, we manually digitized
the outline of IWPs and gave the class label of ‘‘high’’ or
‘‘low’’ based on their morphometry, [48]. This training data
will enable a model to segment boundary, and classify as low-
or high-centered IWPs.

In this case study, transfer learning strategy is used to
address the limited training data issue. Transfer learning is
adopted with the use of ResNet101, a pre-trained model
already trained using an extensive collection of images as a
component of the Mask R-CNN. Model weights are initial-
ized using a set of weights to detect the Balloon data set [53],
and the layers trained are limited to layer heads.

TABLE 2. Training data set distribution.

D. COMPUTE ENVIRONMENT
The computing infrastructure used for this case study is from
the U.S. NSF-funded Texas Advanced Computing Center
(TACC) Peta-scale HPC Frontera [54]. Frontera has 90 GPU
nodes with 4 NVIDIA Quadro RTX 5000 GPUs per node
that can be utilized for training and inferencing DL based RS.
This enables a DL-based RS practitioner to execute multiple
training iterations in a distributed mode in order to exploit the
hyperparameter space. Although not described in this work,
TACC resources were also utilized to map 5 million km2

of land area into IWPs [2]. In this work, we demonstrate
the utilization of TACC infrastructure and the supporting
computing environment to execute hyperparameter tuning for
our case study in DL RS.
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E. HYPERPARAMETER SEARCH SPACE
For the case study, we used the Mask RCNNwith ResNet101
backbone [16]. The publicly-available Mask RCNN model
codebase has about 50 configurable parameters that the user
can change. Considering five steps per parameter, a rough
estimation of the search space can be made after removing
the binary parameters and some parameters that are selected
based on the nature and configuration of the data set. Size
of the search space, after selecting 20 parameters to train,
would be 520. Considering executing 200 epochs per trial,
utilizing 4 GPUs per node on Frontera HPC system on TACC
with a batch size of 16, costing approximately 45s per epoch,
a single experiment would require approximately 2.6 × 520

compute hours. Though using all 80 nodes is not feasible on
TACCFrontera, considering the shared nature of the resource,
using all 80 nodes would still require a significant amount
of time. Some of the parameters can be left at the default
or widely used values for similar applications based on pub-
lished literature. An example of a set of selected parameters
and possible range is given in Table 3. Note that the objective
of the case study is to show the selected hyperparameters’
impact on the model’s final outcome and to motivate the
applicability of hyperparameter tuning to build better DL
models. The restricted grid search for 7 parameters would still
require 200,000 hours of computing time. On TACCFrontera,
this would cost 600,000 Service units (SU), as the GPU nodes
cost three times the cost of a single node due to the added
benefit of being able to use the GPU’s in parallel. And in this
case, with the use of Mask RCNN, we make maximum use
of the GPUs by processing multiple image tiles at the same
time during training.

In addition to these configuration parameters, there are
other parameters that are not easily configurable through the
configuration file with the publicly available Mask RCNN
codebase, but can be configured by tweaking the code since
most of the libraries used in the code make it possible to
change these configurations and the respective parameters.
For example, the learning rate can be scheduled instead
of having a fixed value. Rather than using the standard
Stochastic Gradient Descent (SGD) for learning, a slightly
sophisticated Adam optimizer can be used with its’ own
parameters. Such parameter options make the problem of
hyperparameter optimization even more challenging. Still,
they should not be an excuse for not exploring the parameters
as is done in most of the studies. A very promising DL-based
RS product may be dropped due to non-exploration of the
hyperparameter space.

F. PROPOSED SEARCH ALGORITHM
In this work, we propose Algorithm 1 given below, which can
be categorized as a greedy algorithm as a possible approach
to explore the hyperparameters with an available computing
budget to arrive at a suboptimal solution.

In our algorithm, the selected parameters are explored one
at a time over a selected range at a given step size. Space

TABLE 3. Hyperparameter space for case study.

Algorithm 1 Search for Best Config
input:
RnkPrmLst,RnkPrmLstRngmin,RnkPrmLstRngmax,stps
output: cfg∗

1: cfg∗← {all params set to mid point of param range}
2: bestVal←MaxLoss
3: for prm ∈ RnkPrmLst do
4: prmRngmin←RnkPrmLstRng[prm]min
5: prmRngmax←RnkPrmLstRng[prm]max
6: for prmVal ∈ {x|PrmRngmin ≤ x ≤ PrmRngmax,

in stps} do
7: newCfg← {cfg∗ ∩ (prm,prmVal)}
8: ValLoss← TRAIN(newCfg)
9: if BestVal > ValLoss
10: cfg∗ ← newCfg
11: bestVal← valLoss

Algorithm 1 Hyperparameter Optimization Algorithm
in Pseudocode:RnkPrmLst is the selected list of
ranked parameters to be optimized, RnkPrmLstRng
indicates the min and max values for the respective
Parameter, stps are the number of steps to be checked,
and cfg is the hyperparameter configuration.

complexity is constant and the time complexity is linear time
as indicated in expression (1) where TC: Time Complexity,
SBC: (Proposed)Search Best Configuration Algorithm, BF:
Brute Force Algorithm. Compared to the computational cost
of a brute force search (2) the proposed algorithm has a
major reduction in cost due to the assumption of having no
interdependency among parameters, which may not hold true
in most cases. This loss of accuracy due to the interdepen-
dency of parameters can be mitigated marginally by using a
greedy approach by ranking the selected parameters based on
a general understanding of DL, and any other reported similar
work as suggested in this work.

TC (SBC) = O (SelectedParams× range_steps) (1)

TC (BF) = O
(
SelectedParamsrange_steps

)
(2)

For example, based on general understanding of DL, learning
rate can be considered as one of the topmost parameters

VOLUME 12, 2024 43067



A. S. Perera et al.: Hyperparameter Optimization for Large-Scale RS Image Analysis Tasks

that affect the outcome [55] and can be ranked higher for
tuning. In CV tasks, loss function is also another aspect that
impacts the outcome [56]. The loss function plays a critical
role in providing feedback for the learning process. With
an understanding of the DL model used and the domain
where it is applied, the loss function can also be given high
priority in tuning. In the case of the Mask RCNN model,
used in this work the final loss function is an aggregation
of multiple loss functions based on the performance of the
final mask, bounding box, class, and the region proposal
network class and bounding box loss. The model uses a
weighted aggregate, and the weights can be tuned. Within
the collection of weights, a higher priority can be given
to the region proposal network loss weights based on an
understanding of the Mask RCNN model as it feeds into the
final layer of training heads. In this work, the parameters
were ranked for the search algorithm as follows; learn-
ing_rate, rpn_class_loss, rpn_bbox_loss, mrcnn_class_loss,
mrcnn_bbox_loss, mrcnn_mask_loss, rpn_nms_threshold,
detection_min_confidence.

In our approach, each parameter in the ranked list is taken
one at a time and tested within the preselected range. The
range step that gives the best validation performance is locked
into the best configuration before testing the next parameter
in the ranked list. Initially, the configuration is set to the mid
values of all the parameters. In this algorithm, the step size
is a constant for all parameters in order to make it easier to
present, but the algorithm can be easily modified to take a
respective step size for each parameter. As can be seen, it is
a straightforward algorithm that can be easily deployed using
any scripting language, provided theDL codebase used has an
interface to modify the parameters. It can also be done manu-
ally by running each training algorithm by setting the values
in the configuration file of the DL model. This algorithm can
be categorized as an embarrassingly parallel algorithm, as the
inner loop of this algorithm can be executed in parallel on
multiple nodes on an HPC as the individual training steps
do not have any dependency on each other. In the case of
parallelization, the results of each of the sessions need to be
reported to identify the best configuration value to proceed
to the next iteration on the outer loop. With parallelization,
the time required for tuning can be reduced by a factor of
the number of range steps, provided the inter-node commu-
nication to initiate and return the final result is negligible
compared to a single training run.

Using the suggested algorithm for 10 range steps on
10 parameters will require 200 compute hours on TACC
Frontera, costing only 600 SU’s. Distributing it over the
10 nodes will only require 20h of wait time to obtain the
results. Also, the reported loss values of the search space
executed can be analyzed tomake sure that the values selected
are appropriate. In the next few subsections, we discuss some
of the hyperparameters explored to arrive at the best possible
solution within the available compute budget for the selected
case example. The objective of the discussion is to highlight
the impact of each parameter.

FIGURE 6. High-dimensional trial plot of loss weight values indicating
multiple combinations giving similar results.

FIGURE 7. Detection Confidence Threshold: the change in validation loss
for different detection confidence thresholds.

G. HYPERPARAMETER TUNING.
1) LOSS FUNCTION WEIGHT VALUES
The following section presents the hyperparameter tuning
executed and the outcomes. One of the crucial aspects of
training a ML model is to use the most suitable objective
function for the application. The objective function guides
the training process by providing the correct feedback to the
learning algorithm in order to adjust the weights and biases in
the neural network. In general, the objective function’s form
and parameter values can be adjusted to suit the application
and the data set. In the case of the Mask RCNNmodel used in
the case study, the proposing of possible regions for objects,
the selection of the bounding boxes, classification and mask
generation contribute to the final outcome. The loss function
is computed using the individual loss values from all these
components. Rather than using the default equal flat value,
the weights of the individual components can be adjusted to
observe the impact of the weight values on the final outcome.
Figure 6 shows a high dimensional trial plot for the loss
weight values. The loss weight values were configured to be
between 0.6 and 1.6, and the sum of all weights to be 5 so
that the validation loss does not get affected by the respective
weight value at a given experiment. It can be clearly observed
that the best possible loss value and similar loss values can
be achieved with multiple combinations of weight values.
Although the graph may look like an exhaustive grid search,
an exhaustive grid search was not carried out. As indicated
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FIGURE 8. Validation loss (size of circle) variations for Min Detection
threshold and RPN NMS Threshold.

previously, a simple sequential search in a nested loop is done
on the 7 parameters, where a single parameter is checked and
locked before the next parameter is tested. Unfortunately, the
inter-parameter co-relations would bemissed in this approach
leading it to a suboptimal solution, but this approach is taken
due to the prohibitive nature of the computing cost, and the
purpose of this work is to show the impact of hyperparameters
on the final outcome.

2) DETECTION MINIMUM CONFIDENCE AND RPN NMS
THRESHOLD
After exploring the loss weights and selecting the best values
for the loss weights the Minimum Detection Confidence
threshold is explored to observe the impact on the model
training as shown in Figure 7. The value 0.3 is clearly giv-
ing us a better validation loss compared to the other values
evaluated. To further illustrate the impact, Figure 10 shows
the impact of the Minimum Detection Confidence on the
outcome on three different examples from the test set. When
the Minimum Detection Confidence value is low, the model
tends to pick up more ground truth polygons as indicated
on the three images on the right side, that has more brown
polygons compared to the few green IWPs that have not been
identifiedwhen the detection confidence is set at 0.7 indicated
on the left side of the figure. It can also be noted when the
minimum confidence is set at a lower value the systems tend
to pick a few extra false positive IWPs as indicated with the
red colored polygons. It is vital to pick an optimum threshold
for the given task and the three examples further confirm
the impact of this particular hyperparameter on the final RS
outcome.

TheRegion Proposal NetworkNonMaximumSuppression
(RPN NMS) threshold directs the algorithm to filter out over-
lapping region proposals during the training process. In the
NMS process, it will take all the proposed region proposals
(RPs) and take the topmost proposal based on the probability
of it being a RP and compare it with all the other RPs IoUs.
If an IoU is above the given threshold, we remove it from the
list because we obviously have a better RP to represent that
particular RP. So, if we have a smaller threshold, we will be
removing less RPs and checking more RPs. Checking more

FIGURE 9. Learning rate schedule with multiple peaks that decay.

RPs can improve the accuracy since it can avoid missing out
on possible ground truths RPs, but there is a cost tradeoff with
respect to the NMS threshold. Having more region proposals
can improve the accuracy, but would come with an additional
computational cost of having to go through all the additional
proposals. Figure 8 shows the variation of the validation loss
for different values of the Minimum Detection Confidence
and the RPN NMS threshold. In this case, it is clear that we
are able to reduce the validation loss by decreasing the thresh-
old from 0.8 to 0.7 and testing more region proposals, but a
further decrease to 0.6 is not making a significant difference
to the validation loss. So, for this case example we can set
the RPN NMS to a value of 0.7. Figure 7 and Figure 8 shows
the variation of the loss function for the selected set of range
steps for each of the parameters selected. The number of
range steps to be exploredwas selected based on the resources
available for tuning and did not allow for exploration of the
parameters at a finer granularity. The results of the 9 data
points on Figure 8 shows a very small portion of the search
space that requires exploring to arrive at the most suitable
parameters for the model.

3) LEARNING RATE SCHEDULER
Learning Rate (LR) influences the quantitative adjustment
done at each step of the learning process. A higher LR can
miss the suboptimal solution, a lower LR may take far too
many iterations, and the DL solution may miss reaching it
due to the limits set with the maximum number of epochs.
As discussed, an unsuitable learning rate could lead to a waste
of computational resources. This is aggravated further in the
case of RS dealing with large training data sets with limited
computational budgets. There are multiple widely used LR
schedulers [55] that can be is used. At a very minimum, the
setting of the LR for the given application of DL should be
explored. Further exploration of scheduling the LR to change
based on the current epoch can be considered. The original
Mask RCNN paper [16] suggests changing the LR by a factor
of 10 at the 120th epoch without discussing the intuition or
basis behind the tuning decision. There are also adaptive LR
schedulers that adjust the LR based on the current perfor-
mance of the learning process. For example, one of the most
widely used LRs would notice no change or a very minimal
change of the loss value and adjust the LR to infusemovement
of the loss value that would indicate learning.
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FIGURE 10. IWP Detection at two different hyperparameter values (Imagery
Maxar).

In this analysis, we have deployed a learning rate that
starts at a static rate and goes on for 20 iterations and starts
to decay until it reaches a threshold and would be pushed
back up once again to a higher LR that would not be beyond
the initial set value. The pushing to a higher value is also
controlled to gradually decay to a lower level based on the

epoch. The LR scheduler used is similar to the use of a
sawtooth-like function that allows for learning rate annealing
[57], a commonly used approach in DL. In this approach, the
learning rate is scheduled to gradually decay with multiple
restarts that gradually decay over time. This would add a
few more parameters to the list of hyperparameters. In this
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FIGURE 11. Training and Validation Loss curves where _hp indicates
training with hyperparameter tuned model and the dotted lines indicate
the respective trendlines.

TABLE 4. Comparison of final test accuracy with hyperparameter tuning.

case example the simple function given in Equation 1 is
utilized with α = 10, β = 1.5, γ =20 and found to converge
faster compared to non-scheduled and stepwise scheduled
LRs with the standard SGD optimizer. In expression 3, the
LRi indicates the learning rate at the ith iteration and LR0 is
the initial learning rate.

LRi =


i < γ,LR0 LRi−1 < α−4.0,

β

i
LRi−1e−0.1

(3)

Figure 9 shows the learning rate schedule used for the
training based on the selected values (α = 10, β = 1.5,
γ =20). In this work, the LR scheduler is discussed as an
example of the increase in the hyperparameter space that may
need to be explored when using DL approaches. Multiple
trials with different learning rate schedulers would increase
the resource requirement for parameter tuning.

Adam optimizer [58] is an alternative to the use of
the widely used and default stochastic gradient descent
approach(SGD), although there are many other variants of
adaptive optimizers for learning that can be explored. In this
case study, the Adam optimizer was used with default values
and found not to be better than SGD for this application. The
Adam optimizer’s many parameters will also add a few more
hyperparameters that need to be tuned in the case of using DL
with Adam.

For the entire process of hyperparameter tuning that
included the loss weight values, minimum detection confi-
dence, non-maximum suppression threshold, Adam and SGD
optimizers with multiple parameters, and dynamic learning

TABLE 5. Confusion matrix.

rate scheduler parameters with suitable ranges can be esti-
mated to require about 600 compute hours. This would
be 1800 SU’s on TACC Frontera.

IV. RESULTS AND DISCUSSION
In this section, we show the final result obtained from the
hyperparameter tuning analysis explained in section III-G.
The comparison is done in contrast to using themodel without
any hyperparameter tuning, using the default configuration
and some basic settings that can be inferred from the data set
size and the nature of the application. Figure 11 shows the
training and validation loss across 200 epochs for the model
with hyperparameter tuning and 100 epochs for the model
without hyperparameter tuning. The model with no hyperpa-
rameter tuning is restricted to 100 epochs since the validation
loss starts to deviate around the 40th epoch and does not
improve after that. The deviation of the validation curve
indicates a possible overfitting of the model when trained
without hyperparameter tuning. From this graph, it can be
observed that the training can benefit and the validation loss
can be further improved from hyperparameter optimization
based on the selected parameters discussed in the previous
section and the respective tuning carried out for this case
example.

Table 4 compares model accuracies on the test set before
and after hyperparameter tuning. The results are given in
the widely accepted COCO metrics for computer vision,
also used in the original Mask RCNN paper [16]. With the
hyperparameter tuning discussed in the previous section, the
validation loss improved from 1.52 to 1.16, significantly
improving the test accuracies. The mAP50, mAR50, and the
mF150 all show a significant inferencing improvement for
the model. An RS product produced based on the two dif-
ferent models would have a significant difference in the
output, confirming the importance of parameter tuning in DL.
It should be noted that the test data set was not used for any
hyperparameter tuning, as is the case in standard DL practice,
to obtain a completely independent evaluation of the model
to ascertain how it would work when deployed on an entirely
new data set, such as the 5 million km2 of land area to be
covered in this application.

A. CLASSIFICATION ACCURACY
The confusionmatrix for the classification is given in Table 5.
This confusion matrix is derived by ignoring the background
as reported in most cases for instance segmentation-based RS
object detection. Table 6 shows the confusion matrix with
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TABLE 6. Confusion matrix with background.

TABLE 7. Confusion matrix with background for DL model without hyperparameter tuning.

the background as a class showing the fraction of objects
identified as a particular object, though it is actually back-
ground based on the ground truth. In the computer vision
literature related to instance segmentation-based object detec-
tion, background is indicated as a class with a value of 0,
since there is no background class in the tabulated ground
truth. From a DL point of view, the effect of the model’s
misclassifications predicting background areas as a particular
class should be considered when making adjustments and
improvements to the DL model. The mAP50, mAR50, and
mF150 values indicated in Table 4 comparing the use of
hyperparameter tuning include the impact of misclassifica-
tion due to the background. Table 7 shows the confusion
matrix for the DL model without any hyperparameter tuning.
The confusion matrix allows the practitioner to identify the
mistakes and the type of mistakes made by the classification
model. In this case, it can be clearly observed that many
background locations are misclassified as IWPs when using
a model with minimal or no hyperparameter tuning. In this
case, the resulting map product will have multiple false posi-
tives, thus reducing the thematic accuracy of the final output.
TheDL based semantic segmentationmodel used in this work
clearly shows the impact of hyperparameter tuning.

Examples of inferencing outputs are given in Figure 12
and shows a snapshot of the final product produced by the
inferencing model. Identification and classification of the
IWPs to ‘‘high’’ and ‘‘low’’ can be observed. These samples
are from outside the training data set and shows how it will
work across the entire area that needs to be mapped.

In RS, DL models are widely used to scale up
imagery-based mapping applications. DL with transfer learn-
ing provides an opportunity to train a model on a limited
but representative sample of training data and use the model
to infer the ground truth from large collections of high-
resolution images. One of the inherent issues with DLmodels

is the dependence of DL on multiple parameters which could
affect the final outcome of the RS product inferred from the
DL model. A very high-level meta search of the literature in
RS DL reveals that most of the work does not indicate the
use of hyperparameter tuning of the DL model. And also, the
ones that reveal some form of hyperparameter tuning report
the selected parameters but do not report the tuning process
in detail for reproducibility. Hyperparameter tuning requires
the training of the DL model multiple times, requiring a large
computing budget. In the case of RS, due to the scale of the
input data, this could lead to ignoring the hyperparameter
tuning or engaging in very minimal effort until a reasonable
solution is obtained to concentrate more on the inferencing
and producing the final RS product using the available com-
pute resources.

The primary objective of the work is to show the impor-
tance of hyperparameter tuning for DL-based RS products.
The total cost of executing a grid search for hyperparameter
tuning for this case study with some reductions would still
be prohibitively expensive. In this case study, we propose a
pseudo breadth-first search on hyperparameter tuning where
we check a selected parameter, lock the best value, and
explore the following parameter. To demonstrate the impact
of hyperparameters, a few examples of the process carried out
with results are discussed in section III-G under methods. The
improvement with hyperparameter tuning can be observed in
the comparison results with a model with no hyperparam-
eter tuning. The RoI from consuming 600 compute hours
or 1800 SU’s can be justified considering the quality improve-
ment.

B. RECOMMENDATIONS
Based on the findings of this case study, hyperparameter
tuning can be strongly recommended before deploying DL
based RS products for inferencing at operational scale. The
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FIGURE 12. Examples of inferred IWPs superimposed on the false color composite (Satellite Images 
Maxar). Top: North Slope,
Alaska located between Deadhorse and Kaktovik, approximately 25 km from the Beaufort Sea, Middle: Approximately 160 km east
of Tuktoyaktuk in Northwest Territories, Canada; Bottom: Sakha Republic, Russia, approximately 50 km from the East Siberian Sea.

approach suggested in this work is to identify the available
computing resources for hyperparameter tuning, rank and
select the parameters based on possible impact and conduct
tuning on the selected hyperparameters. Ranking parame-
ters can be done based on prior research on similar work

considering impact of parameters. The range explored for
each parameter can be decided based on the available com-
puting budget for model training considering the per-epoch
resource utilization. The nested loop algorithm suggested
in this work can be easily used to conduct hyperparameter
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tuning without having to alter the training setup. This can
be also deployed on a parallel computing environment using
scripting support provided by high performance computing
environments with minimal modification to the existing code
base. Since the suggested approach for hyperparameter tun-
ing is generic and independent of the DL approach used,
this algorithm can be used on any CNN based or other DL
algorithm for hyperparameter tuning.

C. FUTURE WORK
It is clear from the results that if DL is utilized for RS
data, hyperparameter tuning should be carried out to obtain
the benefits of DL for better map accuracy. Since a brute
force grid search is prohibitively expensive, practitioners
must investigate alternatives. A promising alternative to the
mix of approaches is the use of evolutionary computing,
where Darwinian evolution is used to search for the best
hyperparameter combination via a population search that uses
crossover and mutations to find better solutions as it evolves.
Although evolutionary computing approaches have been used
for hyperparameter tuning in traditional ML, the high com-
puting cost of training for DL-based RS products has not
enabled evolutionary computing in the literature, even with
the availability of high-performance computing environments
and applicable tools.

Tune [23], which is built on top of Ray, a distributed
framework for emerging AI applications [59] is a promis-
ing approach for hyperparameter tuning where evolutionary
computing is one of the options to search through the hyper-
parameter space. The solution also includes the ability for
early stopping to truncate the DL training process if a model
is not performing well based on the loss value at a given
training epoch without going until the last epoch. In addition,
Ray Tune provides options to specify the amount of resources
to use for tuning, the hyperparameters, which range they are
sampled from, and a scheduling or optimization algorithm.
With this approach, a single Ray Tune job is started, and
Ray deals with all scheduling and communication tasks [23].
In summary, Ray Tune can run distributed hyperparameter
tuning at scale. To use a hyperparameter tuner such as Ray,
a DL codebase with an appropriate interface that can commu-
nicate with the DL training module and a sufficient training
budget is essential. The work presented in this paper attempts
to propose a hyperparameter tuning approach that is less
dependent on the training interface and also a much lower
training budget compared to using Ray for tuning.

V. CONCLUSION
Although DL approaches are widely used for RS, hyper-
parameter tuning is an often-neglected problem dimension
due to the prohibitive computing cost. The availability
of large-scale distributed computing at high performance
computing environments and the availability of distributing
computing frameworks, provide an opportunity to explore
the impact of hyperparameter tuning and improve the final
product.

In this work we show the impact of using hyperparameter
tuning when using DL based approaches for RS with a case
example of mapping ice wedge polygons using sub-meter
resolution satellite images at Pan-Arctic scale. The mAP is
improved from 0.72 to 0.83 (16%) using a few minimal
hyperparameter tuning options in a systematic manner, based
on the availability of computing resources. In this specific
case study, it could be argued that the quality of the DL
capability to distinguish between high-ice and low-ice IWPs
would significantly impact the proceeding scientific analysis
done on the derived RS products.

Based on our RS DL earth science use case, it can be
recommended to engage in hyperparameter tuning by select-
ing a set of high-impact parameters within the confines of
the computing resources available for DL model training and
tuning.

APPENDIX
A. DEGREE OF HYPERPARAMETER TUNING IN DL BASED
RSI ANALYSIS
The following is a description of recent literature in RS using
DL. The description is broken into 4 sections based on the
degree of application of hyperparameter tuning.

1) HYPERPARAMETER TUNING: NOT MENTIONED
A comprehensive review of achievements and challenges in
DL in environmental RS [26] does not discuss the issue of
hyperparameter tuning as a challenge, indicating the lack
of emphasis given to the impact of hyperparameter tuning.
A technical review on state of the art in DL in RS [27] also
does not discuss the issue of hyperparameter tuning as a chal-
lenge. A comprehensive review of DL in RS [5] with almost
200 related references does not discuss the issue of hyperpa-
rameter tuning, further indicating the lack of emphasis given
to the impact of hyperparameter tuning. In this work [5], there
are few references to prior works that discuss fine-tuning
the DL architecture, hinting at some form of hyperparameter
tuning, but the review does not give any emphasis to hyperpa-
rameter tuning. A comprehensive meta-analysis and review
of DL in RS applications [28], and Challenges, Methods,
Benchmarks, and Opportunities in RS with DL [29] do not
mention hyperparameter tuning.

There aremultiple application papers which do not indicate
any hint of hyperparameter tuning or fine-tuning the systems
for better results: Deep LearningClassification of LandCover
and Crop Types Using Remote Sensing Data [30], Deep
Learning Approach for Remote Sensing Image Classifica-
tion [31], A Deep Learning Approach for Spatiotemporal
Prediction of Remote Sensing Data [32], Deep Learning
Based Feature Selection for Remote Sensing Scene Classifi-
cation [33], Deep Learning Meets Metric Learning: Remote
Sensing Image Scene Classification via Learning Discrimi-
native CNNs [34], Deep-learning-based information mining
from ocean remote-sensing imagery [35], and Geological
Disaster Recognition on Optical Remote Sensing Images
Using Deep Learning [36].
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2) HYPERPARAMETER TUNING: MENTIONED BUT NOT
DONE
Improving the Efficiency of Deep Learning Methods in
Remote Sensing Data Analysis: Geosystem approach [38]
describes hyperparameter tuning as an open problem and
makes hyperparameters as one of the configurable options
in the proposed framework, but no results are reported about
using hyperparameter tuning with reported results on their
application for detecting landslides from RS data.

3) HYPERPARAMETER TUNING: PARTIALLY DONE AND OR
NOT REPORTED
Multimodal DL for Remote-Sensing Imagery Classifica-
tion [40] mentions the importance of hyperparameters and
reports using a grid search for hyperparameters but does not
indicate the shape or size of the space explored, nor the
accuracy variations observed from the tuning. A Compre-
hensive survey of deep learning in remote sensing: theories,
tools, and challenges for the community [39] acknowledges
the importance of hyperparameter tuning and reports one
prior work [42] where a limited number of hyperparameters
are explored and tuned. The importance of hyperparameter
optimization is indicated in [41], and the work includes a dis-
cussion on using multiple configurations of hyperparameters
to arrive at the final solution. However, it does not report any
results on hyperparameter optimization trials.

4) HYPERPARAMETER TUNING: DONE AND REPORTED
In [43], the authors apply DL for landcover classification
and explore the various options available for hyperparameter
optimization, including grid search, random search, Bayesian
optimization, hyperband, and a hybrid approach [22] that
combines Bayesian with hyperband and also considers the
cost of hyperparameter tuning in the literature review. In [43],
the authors also introduce Ray Tune [23] as a possible plat-
form that can be utilized to do hyperparameter optimization
and exploit parallel computing if available. The work in [43]
describes a methodological approach for hyperparameter
tuning, where the authors have restricted the search to an
intuitively selected subset of parameters, while also reporting
the results, helping the readers to understand the selection
process and the impact of various parameters on the outcome.

In [45], the authors acknowledge the importance of hyper-
parameter tuning and report results obtained from a grid
search. It is important to note that the non-DL baseline
models (LR, SVM, RF) used to compare are also used after
executing hyperparameter tuning, demonstrating a deeper
understanding of the impact of hyperparameter tuning on
ML. But in [45], only the best-performing configurations are
reported for the DL hyperparameter tuning done for the net-
work layers, initial filters, L2 Regularization, and Learning
Rate. No results are reported on the impact of hyperparameter
tuning, but a discussion is included regarding some of the
parameters that are explored and the range and step size of
the values explored when tuning [45].

In [46], authors acknowledge the importance of hyperpa-
rameter tuning and report the optimum results obtained. The
selected parameters are mentioned, but the method employed
to execute the search is not indicated. Readers may have to
assume it was a grid search, considering the limited number
of parameters (network, iterations, batch size, patch size, and
learning rate) that are explored in this work.

In [47], the authors introduce changing a hyperparameter,
specifically the batch size, to improve the training time for
DL-based RS applications. In [47], the authors emphasize the
use of hyperparameter tuning in DL and also employ Ray
Tune [23] with a restricted set of parameters to explore the
hyperparameter space.

In [44], a comparison is done on a single family of
CNN-based DL models for RS data with the hyperparam-
eters locked, as the authors are not interested in finding
the best solution but in comparing models. The work [44]
acknowledges the importance of hyperparameter tuning and
comparing a single parameter (model) while keeping the
rest of the parameters locked to gain an insight on how the
respective parameter impacts the outcome.
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