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ABSTRACT The success rate of a neural network (NN) classifier (rectified linear unit, 10 layers, softmax
output layer activation)-based demodulator was proposed and evaluated for phase-shift keying (PSK)
and quadrature amplitude modulation (QAM) modulated signals corrupted by additive white Gaussian,
chisquared, uniform, and Rayleigh noise channels with signal-to-noise ratios (SNR) ranging from -20 dB to
+20 dB. Low SNR are common in spectrum sensing, cognitive radio networks, underwater acoustics, target
detection, remote sensing, seismic monitoring, and helicopter blade detection. This classifier-demodulator
performance was compared with that of the matched filter detector (MFD) for varying channel noise,
constellation type (PSK or QAM), constellation size (M=2, 4, 8, 16), sample size (N), and training to test the
data ratio. The classifier demodulator had a performance equal to or better thanMFD in 98% of the scenarios.
A training-to-test ratio of 70:30 or 80:20 is appropriate. The classifier performances of M-PSK andM-QAM
are comparable. The superior performance of the NN classifier is more pronounced for M values greater than
2. N=5000 or higher is sufficient for most scenarios, and N=20000 is necessary for M=16. A higher success
rate was obtained for additive chisquare and Rayleigh noise channels. The proposed demodulator performed
significantly better than the matched filter for SNR values ≤ 0 dB. 16-QAM over an additive uniform noise
channel has a better success rate for an SNR of 0 dB or less, whereas 16-QAM over an additive Rayleigh
noise channel has a better success rate for an SNR of 5 dB or higher.

INDEX TERMS 6G mobile communications, quadrature amplitude modulation, phase shift keying, neural
networks, AWGN channels, communication channels, matched filters.

I. INTRODUCTION
Communication systems were designed using rigorous math-
ematical frameworks. The mathematical framework does not
account for imperfections in the systems and environment,
and the consequent complex design of communication net-
works and systems. Deep Learning is being studied as an
alternative that is less dependent on mathematical frame-
works but more dependent on data patterns. These patterns
were captured using the training data and applied to the test
data.

The associate editor coordinating the review of this manuscript and

approving it for publication was Shadi Alawneh .

Qin et al. [1] provided an overview of deep-learning (DL)
methods for physical-layer communications. Feedforward
neural networks (FNN) and recurrent neural networks (RNN)
are considered. Farsad et al. [2] demonstrated that a deep
neural network (DNN) results in a superior bit error rate
(BER) compared to traditional methods in an environment
with a signal-to-noise ratio (SNR) of 5–25 dB.

Kim et al. [3] designed new decoders for sequential codes
(convolutional and turbo codes) that outperformed turbo
decoders on nonadditive white Gaussian noise (non-AWGN)
channels. The BER performance of their neural decoder was
comparable to that of maximum likelihood (ML) (Viterbi)
and maximum a posteriori (MAP). The training data have
various combinations of 0 dB SNR, 100 sequence block
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length, additive white Gaussian noise (AWGN) channel, and
interleaving. The test data had combinations of SNR values
in the range [−1 dB, +6 dB], 10000 sequence block lengths,
and bursty noise channels.

Shi et al. [4] proposed a deep-learning-based automatic
modulation recognition (AMR) method that distinguishes
biphase phase-shift keying modulation (BPSK), quadra-
ture phase-shift keying (QPSK), 8-phase shift keying
(8-PSK), and 16-quadrature amplitudemodulation (16-QAM)
in the presence of channel noise ranging from −10 dB
to 20 DB. The dataset comprised 20,000 samples, with
70% used for training and 30% used for testing the
model.

Liu et al. [5] reviewed the developments in deep-learning-
based physical layers. The limitations of conventional tech-
nologies include model accuracy, a lack of global optimality,
and a lack of computational scalability. Deep learning (DL)-
based signal-processing modules are model-free and are used
in modulation recognition, channel estimation, channel state
information (CSI) feedback, signal detection, and channel
decoding. Typically, the architecture includes pre-processing,
feature extraction, and classification.

Honkala et al. [6] proposed a deep fully CNN, DeepRx,
which executes the full receiver pipeline in a 5G compliant
fashion. This solution uses 3GPP-defined channel models
in the signal-to-noise ratio (SNR) range of 0–20 dB. These
findings indicate that the high performance of DeepRx can
be attributed to temporal tracking of the channel, blind uti-
lization of unknown data during the detection process, and
advanced use of the data symbol distribution. This research
demonstrates that higher performance for DeepRx is obtained
when using channel models (Rayleigh) in training, which are
different from the channel models (3GPP) used in the test
data.

Hoydis et al. [7] explored the potential of Artificial Intel-
ligence (AI) at a 6G air interface. A learned constellation at
the transmitter side that is jointly optimized with the neural
receiver with an approximately 3 dB improvement in BER
over the baseline in the 5–20 dB SNR range.

Shea and Hoydis [8] appliedML techniques to the physical
layer by viewing a communication system as an autoencoder.
The architecture includes dense and normalization layers on
the transmitter and receiver sides, and a noise layer for the
channel. A linear rectified linear unit (ReLU), and softmax
activation functions were used. MSE loss function is used.
The Autoencoder had a comparable block error rate (BLER)
performance over an SNR of 4–8 dB. The Autoencoder
performed well for Rayleigh fading with noise of 0–20 dB.
The performance of the CNN-based classification over a
−20 dB to 20 dB noise level is presented, with a higher
performance observed for 10 dB or more. The confusion
matrix indicates that the classification is not able to clearly
distinguish between 16-QAM and 64-QAM, and amplitude
modulation (AM), double sideband (DSB), and wideband
frequency modulation (WBFM).

Popoola and Olst [9] applied a neural network to sense the
primary radio signals in a cognitive radio environment. The
proposed multilayer feedforward neural network (MFFN)
architecture extracts four features from a digitally modulated
signal. This neural network has a success rate higher than
99.5% for five different modulation schemes (2ASK, 4ASK,
2FSK, BPSK, and QPSK) operating in channels with SNR
ranging from −5 dB to 20 dB.

Zhang et al. [10] proposed a spectrum sensing method
using clustering and signal features for cognitive wireless
networks. The K-means andK-medoids algorithmswere con-
sidered in this study. The detection performance is considered
for SNR of −10 dB and −12 dB. We conclude that these
three features are superior to those of energy use. However,
the performance of a given feature depends on its conditions.

Lu et al. [11] used cooperative spectrum sensing in cog-
nitive radio networks (CRN). A low-dimensional probability
vector is used instead of an N-dimensional energy vector,
which is required in a single primary user (PU) and N
secondary user (SU) systems. 500-1000 samples were con-
sidered. The SVM-linear (probability vector) has the best
performance, ‘High’ probability of detection, ‘Low’ training
duration and ‘Low’ classification delay.

Fig 1 shows a basic communication system model com-
prising a transmitter, receiver, and additive white Gaussian
noise (AWGN) channel. The transmitter includes a modu-
lation module: M-Phase Shift Keying (M-PSK) modulation
and M-Quadrature Amplitude Modulation (M-QAM) were
considered in this work. For PSK, M=2, 4, 8, and 16 was
considered, whereas for QAM, M=2, 4, 8, and 16 was con-
sidered. SNR values of −20, −10, −5, 0, 5, 10, and 20 dB
were considered. The receiver is a hard decision demodulator
(matched filter detection) forM-PSK, a hard decision demod-
ulator (matched filter detection) for M-QAM, or a neural
network-based classifier.

FIGURE 1. Basic communication system that comprises of a transmitter,
additive channel noise and receiver. The transmitter is one of the
following: M-PSK modulation or M-QAM. The additive noise could be
additive white Gaussian noise (AWGN) or additive non-Gaussian
(chisquared, uniform, Rayleigh) noise. The receiver is one of the following
M-PSK or M-QAM demodulator (matched filter detector) or NN classifier.

Many prior studies have analyzed the performance of
neural network demodulator solutions for an SNR of 0 dB
or more. Typically, CRNs operate at an SNR of less than
0 dB. In this study, the performance of a neural network
classifier was studied from −20 dB to +20 dB over additive
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white Gaussian noise (AWGN) and additive non-Gaussian
(Chisquared, Uniform, and Rayleigh) channels.

The performance of a neural network-based classifier for
an M-PSK-modulated noisy signal was compared for various
constellations (M = 2, M = 4, M=8, and M = 16). Sim-
ilarly, the performance of the neural network classifier for
an M-QAM-modulated noisy signal is compared for various
constellations (M = 2, M = 4, M = 8, and M = 16).
The performance of the neural network classifier demod-

ulator for an M-PSK-modulated noisy signal was compared
with that of the demodulator for anM-QAM-modulated noisy
signal.

In this study, the performance of a neural network classifier
was investigated for sample sizes of 100, 200, 1000, 5000,
10000, and 20000. Furthermore, the training-to-test sample
size ratios of 60:40, 70:30, and 80:20 were considered.

II. RESULTS AND DISCUSSION
The following parameters were used to define the neural
network for the classifier used in this study.

TABLE 1. Parameters of neural network classifier.

Bit error rate (BER) is often used to determine commu-
nication performance. However, there is a need to compare
the performance of the NN-based demodulator with that of
traditional demodulators; in this study, the Symbol Error Rate
is usedwith a nomenclature of ‘‘Success Rate, Percentage’’ of
successful demodulation of a given symbol transmitted over
a given channel. The rate was calculated as the average of
100 repetitions for a given value of M (2, 4, 8, or 16) for a
given sample size (100, 200, 1000, 5000, 10000 or 20000),
and for a particular SNR (−20, −10, −5, 0, 5, 10, or 20).

In Fig 2, the success rate (percentage) is plotted for M=2,
M=4,M=8, andM=16, 20000 samples for SNR values rang-
ing from -20 dB to 20 dB. The plots are for the hard-decision
PSK demodulator (matched filter detection) and NN-based
demodulator following the PSK modulation and AWGN
channels. From the initial analysis, the plots were similar for
the training and test data at ratios of 60:40, 70:30, and 80:20
for a given value of M. One arrived at this conclusion by
a visual comparison of Fig 2 with Fig 3 and Fig 4, which

FIGURE 2. Success rate (percentage) is plotted for M=2, M=4, M=8,
M=16 for N=20000 for SNR values from −20 dB to 20 dB. The success
rate for the hard decision PSK demodulator (matched filter detection) and
the Neural Network based demodulator following PSK modulation and
the AWGN channel, is plotted. The graph is plotted for training and test
data in the ratio of 70:30. Each data point is based on 100 repetitions.

FIGURE 3. Success rate (percentage) is plotted for M=2, M=4, M=8,
M=16 for N=20000 for SNR values from −20 dB to 20 dB. The success
rate for hard decision PSK demodulator (matched filter detection) and a
Neural Network based demodulator following PSK modulation and the
AWGN channel, is plotted. The training and the test data are in the ratio
of 60:40. Each data point is based on 100 repetitions.

are plotted for training to test data in the ratios of 60:40 and
80:20, respectively, for the PSK demodulator and NN-based
demodulator for different values of M and N=20000. Each
data point is an average of 100 repetitions. It is further
observed that the success rate, in general, for a given value
of SNR, is highest for M=2 and lowest for M=16, until for
higher values of SNR, the success rate ceils at 100%. A more
detailed analysis is presented in Section III based on the data
presented in Table 6.
In Fig 5, the success rate (percentage) is plotted for M=2,

M=4,M=8, andM=16, 20000 samples for SNR values rang-
ing from -20 dB to 20 dB. The plots are almost identical for
the hard decision QAM demodulator (matched filter detec-
tion) and the NN-based demodulator, following the QAM and
AWGN channels, for a given value of M. From the initial
analysis, the plots appear similar for training and test data
in the ratios of 60:40, 70:30, or 80:20 for a given value of
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FIGURE 4. Success rate (percentage) is plotted for M=2, M=4, M=8,
M=16 for N=20000 for SNR values from −20 dB to 20 dB. The success
rate for hard decision PSK demodulator (matched filter detection) and a
Neural Network based demodulator following PSK modulation and the
AWGN channel, is plotted. The Training and Test data are in the ratio of
80:20. Each data point is based on 100 repetitions.

FIGURE 5. Success rate (percentage) is plotted for M=2, M=4, M=8,
M=16 for N=20000 for SNR values from −20 dB to 20 dB. The success
rate for hard decision QAM demodulator (matched filter detection) and a
Neural Network based demodulator, following QAM and the AWGN
channel, is plotted. The Training and Test data are in the ratio of 70:30.
Each data point is based on 100 repetitions.

M; one arrives at this conclusion by a visual comparison of
Fig 5 with Fig 6 and Fig 7, which are plotted for training
to test data in the ratios of 60:40 and 80:20, respectively,
for the QAM demodulator and the NN-based demodulator
for different values of M and N=20000. Each data point is
an average of 100 repetitions. It is further observed that the
success rate, in general, for a given value of SNR, is highest
for M=2 and lowest for M=16, until for higher values of
SNR, the success rate ceils at 100%. Amore detailed analysis
is presented in Section III based on the data presented in
Table 6.

FIGURE 6. Success rate (percentage) is plotted for M=2, M=4, M=8,
M=16 for N=20000 for SNR values from −20 dB to 20 dB. The success
rate for hard decision QAM demodulator (matched filter detection) and a
Neural Network based demodulator following QAM and the AWGN
channel, is plotted. The training and the test data are in the ratio of 60:40.
Each data point is based on 100 repetitions.

FIGURE 7. Success rate (percentage) is plotted for M=2, M=4, M=8,
M=16 for N=20000 for SNR values from −20 dB to 20 dB. The success
rate for the hard decision QAM demodulator (matched filter detection)
and a Neural Network based demodulator following QAM and the AWGN
channel, is plotted. The training and the test data are in the ratio of 80:20.
Each data point is based on 100 repetitions.

Based on the analysis in Section III, subsequent simula-
tions in this study used a training-to-test ratio of 70:30.

The relationship between the success rate curves for var-
ious values of M is similar for each of the following cases,
with the success rate for a given SNR being the highest for
M=2 and the lowest for M=16:

1) NN demodulator following PSK modulation, AWGN
channel

2) NN demodulator following QAM, AWGN channel
3) Hard decision PSK demodulator (matched filter detec-

tion) following PSK modulation, AWGN channel
4) Hard decision QAM demodulator (matched filter

detection) following QAM, AWGN channel

For AWGN, the generalized likelihood ratio test (matched
filter detection) is optimal [12]. The SNR is maximized
when a matched filter is used with a stationary white noise
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FIGURE 8. Success rate (percentage) is plotted for M=2, N=20000
samples and M=16, N=20000 samples for SNR values from −20 dB to
20 dB. The ratio of the training data to the test data was 70:30. The
success rate curves for NN-based demodulator following QAM and the
AWGN channel and NN-based demodulator following PSK modulation
and the AWGN channel are plotted for M=2 and M=16.

channel [14]; hence, the matched filter detector is optimal.
The simulation results confirm that the NN-based demodula-
tor is not superior to the optimal detector. However, they also
confirmed that the NN-based demodulator was as effective as
an optimal detector.

In Fig 8, the success rates are plotted against the SNR (dB)
for M=2 and M=16 for N=20000 samples. The training-to-
test data ratio is 70:30. The values of the SNR range from
−20 dB to +20 dB. The performance of the NN-based mod-
ulator following PSK modulation and the AWGN channel
is identical to that of the NN-based demodulator following
QAM and AWGN channels for M=2. For M=16, the per-
formance of the NN-based demodulator following the QAM
and AWGN channels was significantly higher than that of
the NN-based demodulator following PSK modulation and
the AWGN channel for 0 dB or less. This suggests that the
NN-based demodulator depends on the constellation used in
the modulation type. Similar performance divergence was
observed for M=4 and M=8.

In Figs. 9 and 10, the success rate is plotted for various
sample sizes (N = 200, 1000, 5000, 10000 and 20000). The
success rate of the NN-based demodulator following the PSK
and AWGN channels is plotted in Fig 9 for SNR values of -
20 B and 0 dB, and M=2, 16. In Fig 10, the success rates are
plotted for the NN-based demodulator following QAM and
AWGN channels. The ratio of the training to test data was
70:30. Although the success rates vary with sample size, there
seems to be no visible trend of constant increase in the success
rate based on the sample size. A more detailed analysis is
presented in Section III based on the data presented in Table 5.
A matched filter detector is not optimal for non-Gaussian

noise channels [15], [16]. Hence, a comparative study on the
performance of NN-based demodulators was conducted for
additive non-Gaussian (chisquared, uniform, and Rayleigh)
channels. Additive non-Gaussian noise was generated for an
appropriate SNR, similar to the generation of AWGN [13].

FIGURE 9. Success rate (percentage) is plotted for M=2 and M=16
against number of sample sizes of N=100, 200, 1000, 5000, 10000 and
20000 for SNR values of −20 dB and 0 dB for AWGN. The ratio of the
training data to the test data was 70:30. The success rate curves are for
the NN-based demodulator following PSK modulation and the AWGN
channel. Each data point is an average of 100 repetitions.

FIGURE 10. Success rate (percentage) is plotted for M=2 and M=16
against number of sample sizes of N=100, 200, 1000, 5000, 10000 and
20000 for SNR values of −20 dB and 0 dB. The ratio of the training data to
the test data is 70:30. The success rate curves are for NN-based
demodulator following QAM and the AWGN channel. Each data point is
an average of 100 repetitions.

A. ADDITIVE CHISQUARED NOISE CHANNEL
In Fig 11, the success rate (percentage) is plotted for M=2,
4, 8, and 16 against SNR values of -20 dB to 20 dB for
N=20000. The ratio of the training data to test data was
70:30. The success rate curves are for the hard-decision
PSK demodulator (matched filter detection) and NN-based
demodulator, following the PSK modulation and an additive
chisquared noise channel. Each data point is an average
of 100 repetitions. The relationship between the success
rate curves for various values of M is very similar for the
same demodulator when used with the AWGN channel,
with the success rate for a given SNR being highest for
M=2 and lowest for M=16 (compared with Fig 2). As with
the matched filter demodulator, the NN-based demodulator
has a significant dependence on parameter M used in the
M-PSK modulation. Furthermore, the performance of the
NN-based demodulator was superior to that of the matched
filter-detection demodulator for a given value of M for lower
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FIGURE 11. Success rate (percentage) is plotted for M=2, 4, 8, 16 against
SNR values of −20 dB to 20 dB for N=20000. The ratio of the training data
to the test data was 70:30. The success rate curves are for the hard
decision PSK demodulator (matched filter detection) and NN-based
demodulator, following PSK and the additive Chisquared noise channel.
Each data point is an average of 100 repetitions.

FIGURE 12. Success rate (percentage) is plotted for M=2, 4, 8, 16 against
SNR values of −20 dB to 20 dB for N=20000. The ratio of the training data
to the test data is 70:30. The success rate curves are for hard decision
QAM demodulator (matched filter detection) and NN-based demodulator,
following QAM and the additive Chisquared noise channel. Each data
point is an average of 100 repetitions.

SNR values. The NN demodulator performed well for all the
SNR values.

In Fig. 12, the success rate (percentage) is plotted for
M=2, 4, 8, and 16 against SNR values of -20 dB to 20 dB
for N=20000. The ratio of the training data to test data
was 70:30. The success rate curves are for the hard-decision
QAM demodulator (matched filter detection) and NN-based
demodulator, following the QAM and an additive-chisquared
noise channel. Each data point is an average of 100 repeti-
tions. The relationship between the success rate curves for
various values of M is very similar for the same demodulator

FIGURE 13. Success rate (percentage) is plotted for M=2 against SNR
values of -20 dB to 20 dB for N=20000. The ratio of the training data to
the test data was 70:30. The success rate curves are for hard decision PSK
demodulator (matched filter detection) and NN-based demodulator
following PSK modulation and the additive chisquared noise channel. The
success rates are also plotted for the AWGN channel. Each data point is
an average of 100 repetitions.

when used with the AWGN channel, with the success rate
for a given SNR being the highest for M=2 and the lowest
for M=16 (compared with Fig 5). As with the matched filter
demodulator, the NN-based demodulator has a significant
dependence on parameter M used in the M-PSK modulation.
Furthermore, the performance of the NN-based demodulator
was superior to that of the matched filter-detection demodu-
lator for a given value of M for lower SNR values. The NN
demodulator performed well for all the SNR values.

In Fig 13, the success rate (percentage) is plotted for M=2
against SNR values of -20 dB to 20 dB for N=20000. The
ratio of the training data to test data was 70:30. The suc-
cess rate curves are for the hard-decision PSK demodulator
(matched filter detection), NN-based demodulator following
PSK modulation, and the additive chisquared noise chan-
nel. The success rate curves for the AWGN channel are
identical for the PSK demodulator and the NN-based demod-
ulator. Each data point is an average of 100 repetitions.
Clearly, the success rate curves for the additive non-Gaussian
(chisquared) channel differ from those for the AWGN chan-
nel. It was also observed that the NN-based demodulator
consistently outperformed thematched-filter-detection-based
demodulator for lower SNR values in this non-Gaussian
channel. TheNN demodulator performedwell for all the SNR
values. This observation extends to the same demodulator and
modulation characteristics when M=16 (Fig 14). Similarly,
the performance of the NN-based modulator was superior
to that of the matched filter detection-based demodulator
following the QAM and additive chisquared noise channel
for both M = 2 (Fig 15) and M = 16 (Fig 16) for lower
SNR values. The NN demodulator performed well for all the
SNR values. Furthermore, both the matched filter detector
and NN-based classifier demodulator performance for the
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FIGURE 14. Success rate (percentage) is plotted for M=16 against SNR
values of −20 dB to 20 dB for N=20000. The ratio of the training data to
the test data was 70:30. The success rate curves are for hard decision PSK
demodulator (matched filter detection) and NN-based demodulator
following PSK modulation and the additive Chisquared noise channel.
The success rates are also plotted for the AWGN channel. Each data point
is an average of 100 repetitions.

FIGURE 15. Success rate (percentage) is plotted for M=2 against SNR
values of −20 dB to 20 dB for N=20000. The ratio of the training data to
the test data was 70:30. The success rate curves are for the hard decision
QAM demodulator (matched filter detection) and NN-based demodulator
following QAM and the additive chisquared noise channel. The success
rates are also plotted for the AWGN channel. Each data point is an
average of 100 repetitions.

additive chisquare channel exceeded the performance of these
detectors for the AWGN channel for many SNR values,
except 16-QAM (Figs 13-16).

In Figs. 17 and 18, the success rate is plotted for various
numbers of samples (N = 200, 1000, 5000, 10000, and
20000). The success rate of the NN-based demodulator fol-
lowing PSK modulation and the additive chisquared channel
is plotted in Fig 17 for SNR values of -20 B and 0 dB
and M=2, 16. In Fig 18, the success rates are plotted for
the NN-based demodulator following the QAM and additive
chisquare channels. The ratio of the training to test data was
70:30. Although the success rates vary with sample size, there
seems to be no visible trend of a constant increase in the
success rate with sample size. A more detailed analysis is
presented in Section III based on the data presented in Table 5.

FIGURE 16. Success rate (percentage) is plotted for M=16 against SNR
values of −20 dB to 20 dB for N=20000. The ratio of the training data to
the test data is 70:30. The success rate curves are for hard decision QAM
demodulator (matched filter detection) and NN-based demodulator
following QAM and the additive chisquared noise channel. The success
rates are also plotted for the AWGN channel. Each data point is an
average of 100 repetitions.

FIGURE 17. Success rate (percentage) is plotted for M=2 and M=16
against number of sample sizes of N=100, 200, 1000, 5000, 10000 and
20000 for SNR values of −20 dB and 0 dB for the chisquared channel. The
ratio of the training data to the test data was 70:30. The success rate
curves are for NN-based demodulator following PSK modulation and the
additive chisquared channel. Each data point is an average of
100 repetitions.

B. ADDITIVE UNIFORM NOISE CHANNEL
In Fig 19, the tted for M=2 against SNR values of -20 dB
to 20 dB for N=20000. The ratio of the training data to
test data was 70:30. The success rate curves are for the
hard-decision PSK demodulator (matched filter detection)
and NN-based demodulator following PSK modulation and
the additive uniform-noise channel. The success rate curves
for the AWGN channel are identical for the PSK demodu-
lator and the NN-based demodulator. Each data point is an
average of 100 repetitions. Clearly, the success rate curves
for the additive non-Gaussian (uniform) channel are different
from those for the AWGN channel. It was also observed that
the NN-based demodulator consistently outperformed the
matched-filter-detection-based demodulator for lower SNR
values in this non-Gaussian channel. The NN demodulator
performed well for all the SNR values. This observation
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FIGURE 18. Success rate (percentage) is plotted for M=2 and M=16
against number of sample sizes of N=100, 200, 1000, 5000, 10000 and
20000 for SNR values of −20 dB and 0 dB for chisquared channel. The
ratio of the training data to the test data was 70:30. The success rate
curves are for the NN-based demodulator following QAM and the additive
chisquared channel. Each data point is an average of 100 repetitions.

FIGURE 19. Success rate (percentage) is plotted for M=2 against SNR
values of −20 dB to 20 dB for N=20000. The ratio of the training data to
the test data was 70:30. The success rate curves are for the hard decision
PSK demodulator (matched filter detection) and the NN-based
demodulator following PSK modulation and the additive uniform noise
channel. The success rates are also plotted for the AWGN channel. Each
data point is an average of 100 repetitions.

extends to the same demodulator and modulation character-
istics for M=16 (Fig 20). Similarly, the performance of the
NN-based demodulator was superior to that of the matched-
filter-detection-based demodulator following the QAM and
the additive uniform noise channel for both M = 2 (Fig 21)
andM=16 (Fig 22) at lower SNR values. The NN demodula-
tor performed well for all the SNR values. Furthermore, both
the matched filter detector and NN-based classifier demodu-
lator performance for the additive uniform channel exceeded
the performance of these detectors for the AWGN channel for
many SNR values, except 16-QAM (Figs 19-22).

C. ADDITIVE RAYLEIGH NOISE CHANNEL
In Fig 25, the success rate (percentage) is plotted for M=2
against SNR values of -20 dB to 20 dB for N=20000. The
ratio of the training data to test data was 70:30. The suc-
cess rate curves are for the hard-decision PSK demodulator

FIGURE 20. Success rate (percentage) is plotted for M=16 against SNR
values of −20 dB to 20 dB for N=20000. The ratio of the training data to
the test data was 70:30. The success rate curves are for the hard decision
PSK demodulator (matched filter detection) and the NN-based
demodulator following PSK modulation and the additive uniform noise
channel. The success rates are also plotted for the AWGN channel. Each
data point is an average of 100 repetitions.

FIGURE 21. Success rate (percentage) is plotted for M=2 against SNR
values of −20 dB to 20 dB for N=20000. The ratio of the training data to
the test data was 70:30. The success rate curves are for the hard decision
QAM demodulator (matched filter detection) and the NN-based
demodulator following QAM and the additive uniform noise channel. The
success rates are also plotted for the AWGN channel. Each data point is
an average of 100 repetitions.

(matched filter detection) andNN-based demodulator follow-
ing PSKmodulation and the additive Rayleigh noise channel.
The success rate curves for the AWGN channel are identical
for the PSK demodulator and the NN-based demodulator.
Each data point is an average of 100 repetitions. Clearly, the
success rate curves for the additive non-Gaussian (Rayleigh)
channel differed from those for the AWGN channel. It was
also observed that the NN-based demodulator outperformed
the matched-filter-detection-based demodulator for lower
SNR values in a non-Gaussian channel. The NN demodulator
performed well for all the SNR values. This observation
extends to the same demodulator and modulation character-
istics for M=16 (Fig 26). Similarly, the performance of the
NN-based demodulator was superior to that of the matched-
filter-detection-based demodulator following the QAM and
additive Rayleigh noise channel for both M = 2 (Fig 27) and
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FIGURE 22. Success rate (percentage) is plotted for M=16 against SNR
values of −20 dB to 20 dB for N=20000. The ratio of the training data to
the test data was 70:30. The success rate curves are for the hard decision
QAM demodulator (matched filter detection) and the NN-based
demodulator following QAM and the additive uniform noise channel. The
success rates are also plotted for the AWGN channel. Each data point is
an average of 100 repetitions.

FIGURE 23. Success rate (percentage) is plotted for M=2 and M=16
against the number of sample sizes of N=100, 200, 1000, 5000,
10000 and 20000 for SNR values of −20 dB and 0 dB for uniform channel.
The ratio of the training data to the test data was 70:30. The success rate
curves are for the NN-based demodulator following PSK modulation and
the additive uniform channel. Each data point is an average of
100 repetitions.

M =16 (Fig 28) for lower SNR values. The NN demodulator
performedwell for all the SNR values. Furthermore, for many
SNR values, both the matched filter detector and NN-based
classifier demodulator performance for the AWGN channel
lie between the performances of the NN-based classifier and
matched filter detector for the Rayleigh channel, except for
16-QAM (Figs 25-28), for many SNR values.

In Figs. 29 and 30, the success rate is plotted for various
sample sizes (N = 200, 1000, 5000, 10000, and 20000,
respectively). The success rate of the NN-based demodulator
following PSK modulation and the additive uniform channel
is plotted in Fig 30 for SNR values of -20 B and 0 dB,
and M=2, 16. In Fig 31, the success rates are plotted for
the NN-based demodulator following the QAM and additive
uniform channels. The ratio of the training to test data was
70:30. Although the success rates vary with sample size, there
seems to be no visible trend of a constant increase in the

FIGURE 24. Success rate (percentage) is plotted for M=2 and M=16
against number of sample sizes of N=100, 200, 1000, 5000, 10000 and
20000 for SNR values of −20 dB and 0 dB for Uniform channel. The ratio
of the training data to the test data was 70:30. The success rate curves are
for the NN-based demodulator following QAM and the additive uniform
channel. Each data point is an average of 100 repetitions.

FIGURE 25. Success rate (percentage) is plotted for M=2 against SNR
values of −20 dB to 20 dB for N=20000. The ratio of the training data to
the test data was 70:30. The success rate curves are for hard decision PSK
demodulator (matched filter detection) and NN-based demodulator
following PSK modulation and the additive Rayleigh noise channel. The
success rates are also plotted for the AWGN channel. Each data point is
an average of 100 repetitions.

success rate with sample size. A more detailed analysis is
presented in Section III based on the data presented in Table 5.

III. COMPREHENSIVE ANALYSIS AND SUMMARY
OF FINDINGS
The signal, modulation, noise channel, and neural-network-
classifier-based demodulator parameters and specifications
are listed in Table 2.

The signal comprises N uniformly distributed pseudoran-
dom integers in the range [0, M-1] where N takes on values
in the range {100, 200, 1000, 5000, 10000, 20000). PSK and
QAM were used with M = 2, 4, 8, and 16. AWGN, addi-
tive chisquared noise, additive uniform noise, and additive
Rayleigh noise channels are considered. SNR takes on values
of−20 dB,−10 dB,−5 dB, 0 dB, 5 dB, 10 dB and 20 dB. The
first fully connected layer used a rectified linear unit (ReLU)
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FIGURE 26. Success rate (percentage) is plotted for M=16 against SNR
values of −20 dB to 20 dB for N=20000. The ratio of the training data to
the test data was 70:30. The success rate curves are for the hard decision
PSK demodulator (matched filter detection) and NN-based demodulator
following PSK modulation and the additive Rayleigh noise channel. The
success rates are also plotted for the AWGN channel. Each data point is
an average of 100 repetitions.

FIGURE 27. Success rate (percentage) is plotted for M=2 against SNR
values of −20 dB to 20 dB for N=20000. The ratio of the training data to
the test data was 70:30. The success rate curves are for the hard decision
QAM demodulator (matched filter detection) and the NN-based
demodulator following QAM and the additive Rayleigh noise channel. The
success rates are also plotted for the AWGN channel. Each data point is
an average of 100 repetitions.

activation function, which consisted of 10 layers, and the final
fully connected layer used a Softmax activation function.

The performances of the optimal detector and the neural
network classifier are compared in Table 3. The perfor-
mance of the proposed demodulator was identical to that of a
matched filter detector for a given modulator type with an
AWGN channel. The only deviation observed was for the
16-PSK at an SNR of 20 dB.

Table 2 presents the channel parameters considered in
this study, which list the additive non-Gaussian channels:
chisquared, uniform, and Rayleigh. The performance of the
neural-network classifier demodulator for different channel
types is presented in Table 4 as the difference between the
success rate of the proposed demodulator and that of the
matched filter for the same signal, modulation, and noise
channel parameters. An ad hoc value of 5% is a measure of

FIGURE 28. Success rate (percentage) is plotted for M=16 against SNR
values of −20 dB to 20 dB for N=20000. The ratio of the training data to
the test data was 70:30. The success rate curves are for the hard decision
QAM demodulator (matched filter detection) and the NN-based
demodulator following QAM and the additive Rayleigh noise channel. The
success rates are also plotted for the AWGN channel. Each data point is
an average of 100 repetitions.

FIGURE 29. Success rate (percentage) is plotted for M=2 and M=16
against number of sample sizes of N=100, 200, 1000, 5000, 10000 and
20000 for SNR values of −20 dB and 0 dB for additive Rayleigh channel.
The ratio of the training data to the test data was 70:30. The success rate
curves are for the NN-based demodulator following PSK modulation and
the additive Rayleigh channel. Each data point is an average of
100 repetitions.

the superiority of the proposed demodulator over the matched
filter, which cannot be attributed to the lack of significant
variations. The analysis of the data in the table leads to the
following conclusions.

1) The proposed demodulator is superior to the matched
filter detector for all modulators, except for a minor
and perhaps insignificant deviation for 16-QAM
(-20 dB) with an additive chisquared noise channel
and 16-QAM (20 dB) in an additive uniform channel.
The other deviation from this conclusion is for 16-PSK
(20 dB) in the additive Rayleigh noise channel, which
is interesting because the SNR of 20 dB is quite high,
and the performance of the matched filter detector is
superior. This translates to 0.02% in the scenarios listed
in Table 3.
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FIGURE 30. Success rate (percentage) is plotted for M=2 and M=16
against number of sample sizes of N=100, 200, 1000, 5000, 10000 and
20000 for SNR values of −20 dB and 0 dB for the additive Rayleigh
channel. The ratio of the training data to the test data was 70:30. The
success rate curves are for the NN-based demodulator following QAM
and the additive Rayleigh channel. Each data point is an average of
100 repetitions.

TABLE 2. Signal, modulator, channel and NN receiver parameters and
specifications.

2) In 100 out of 168 or 60% of the scenarios in Table 4,
the success rate of the neural network classifier

TABLE 3. Comparison of the matched filter detector and neural
network-classifier demodulator performance for different modulators
with AWGN channel.

FIGURE 31. The differential of success rate (success rate in percentage
for neural-network classifier demodulator - success rate in percentage for
matched filter detector) is plotted for 16-QAM for SNR values of −20 dB
to 20 dB. The additive chisquared, additive uniform, and additive Rayleigh
noise channels are considered. Sample Size, N = 20000. The ratio of
training to test data is 70:30.

demodulator exceeded that of the matched filter detec-
tor for additive non-Gaussian channels with an SNR
of 5% or more. However, in 99% of the scenarios,
the neural network classifier demodulator provided a
success rate at least equal to that of the matched filter
detector.

3) Low SNR detection is important for cognitive radio
environments [9], spectrum sensing [10], [11], under-
water acoustics [15], infrared point target detection and
tracking [17], real-time remote sensing [18], seismic
monitoring [19], target detection and tracking [20], and
helicopter blade detection [21].
For additive non-Gaussian channels, the neural net-
work classifier demodulator success rate exceeds that
of the matched filter detector by 5% or more by

a. 42% for SNR = −20 dB
b. 88% for SNR = −10 dB
c. 100% for SNR = −5 dB
d. 88% for SNR = 0 dB
e. 79% for SNR <= 0 dB
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TABLE 4. Comparison of success rate of neural network-classifier
demodulator with success rate of matched filter detector for M-PSK,
M-QAM for additive non-gaussian noise channel.

f. 63% for SNR = 5 dB
g. 38% for SNR = 10 dB
h. 0% for 20 dB

This suggests that the neural network-classifier
demodulator performed better than the matched filter
detector for SNR values ≤ 0 dB. The classifier per-
formed as well as the matched filter detector in 99% of
the scenarios. In fact, 76% of the scenarios in which the
success rate for the neural network classifier demodu-
lator exceeded the success rate for the matched filter
detector for additive non-Gaussian channels by 5% or

TABLE 5. Range (maximum – minimum) of success rates for various
values of N for SNR = −20 dB, 0 dB and M-PSK, M-QAM (M=2, 16).
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TABLE 5. (Continued.) Range (maximum – minimum) of success rates for
various values of N for SNR = −20 dB, 0 dB and M-PSK, M-QAM
(M=2, 16).

TABLE 5. (Continued.) Range (maximum – minimum) of success rates for
various values of N for SNR = −20 dB, 0 dB and M-PSK, M-QAM
(M=2, 16).

TABLE 6. Pairwise differential success rate for M-PSK, M-QAM and
various values of SNR for training:test data ratios 60:40, 70:30, and 80:20
for awgn.

more corresponded to noise channels with SNR≤ 0 dB.
However, even for a higher SNR, the proposed demod-
ulator performs as well as, or better than, the matched
filter detector.
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4) The success rate of the proposed demodulator exceeded
that of the matched filter detector by 5% or more for
62% of M-PSK scenarios and 57% of M-QAM scenar-
ios. The performance of the neural network classifier
demodulator is independent of the constellation type.

5) The success rate of the neural network classifier
demodulator, which exceeded that of the matched filter
detector by 5% or higher, was observed in 50% of the
scenarios listed in Table 4, for which M=2, indepen-
dent of whether PSK or QAM was used. This measure
of superior performance occurred in 62% of the M=4
constellations, 64% of the M=8 constellations, and
62% of the M=16 constellations, respectively. Thus,
superior performance has a bias for M values greater
than two.

6) 35%, 28%, and 37% of the 100 scenarios, where the
success rate of the neural network classifier demodu-
lator exceeded the success rate of the matched filter
detector by 5% or higher for the additive chisquared
noise channel, additive uniform noise channel, and
additive Rayleigh noise channel, respectively. The per-
formance of the proposed demodulator was superior for
the additive chisquare and Rayleigh noise channels.

The performance of the NN classifier is identical to that of
the MFD for all AWGN channels and SNR levels considered
in this study (Fig 2 - Fig 7), including 0 dB and lower, and for
different constellation types, constellation sizes, or training-
to-test data ratios. A sample size of 20000 was used for the
simulations.

MFD is optimal for the AWGN channel [12], [14] and
as evidenced by the NN classifier-demodulator having the
same success rates as the MFD for various scenarios with
the AWGN channel (Table 2 ). Prior studies and simula-
tions [15], [16] have established that MFD is not optimal for
non-Gaussian noise channels, and this is confirmed in this
study for chisquared, uniform, and Rayleigh noise channels.
Overall, for the non-Gaussian noise channels, the perfor-
mance of the NN classifier is superior to the performance
of MFD in 78.5% of the scenarios and identical in 20.5%
of the scenarios. Lower performance and marginally lower
performance were observed in 1% of scenarios. The NN
classifier demonstrated superior performance over MFD in
the following specific scenarios. There is equality of perfor-
mance in a few scenarios, particularly at higher SNR levels.

1) Chisquared noise channel, PSK modulation, M = 2, 4,
8, and 16; training-to-test data ratio of 70:30; sample size
N=20000; chosen classifier parameters (Table 2 ): superior
performance in 93% of scenarios and equality in the remain-
ing scenarios (Table 4 ).

2) Chisquared noise channel, QAM, M = 2, 4, 8, and 16;
training-to-test data ratio of 70:30; sample size N=20000;
chosen classifier parameters (Table 2 ): superior performance
in 93% of scenarios and equality in 3.5% of the scenarios
(Table 4 ). Marginally lower performance was observed in
3.5% of the scenarios.

3) Uniform noise channel, PSK modulation, M = 2,
4, 8, and 16; training-to-test data ratio of 70:30; sample
size N=20000; chosen classifier parameters (Table 2 ). For
SNR = 20 dB, the success rate of the classifier is lower
than that of the MFD: superior performance in 68% of the
scenarios and equality in 28.5% of the scenarios (Table 4).
Lower performance was observed in 3.5% of the scenarios.

4) Uniform noise channel, QAM, M = 2, 4, 8, and 16;
training-to-test data ratio of 70:30; sample size N=20000;
chosen classifier parameters (Table 2 ): superior performance
in 57% of the scenarios and equality in 43% of the scenarios
(Table 4 ).
5) Rayleigh noise channel, PSK modulation, M = 2,

4, 8, and 16; training-to-test data ratio of 70:30; sample
size N=20000; chosen classifier parameters (Table 2 ). For
SNR = 20 dB, success rate of classifier is lower than MFD:
superior performance in 89% of the scenarios and equality in
11% of the scenarios (Table 4 ).

6) Rayleigh noise channel, QAM, M = 2, 4, 8, and 16;
training-to-test data ratio of 70:30; sample size N=20000;
chosen classifier parameters (Table 2 ): superior performance
in 82% of the scenarios and equality in 18% of the scenarios
(Table 4 ).
It can be inferred from Table 4 that the classifier-

demodulator was superior to MFD in 97% of the scenarios
and marginally lower in 3% of the scenarios with additive
chisquared noise channel and SNR ≤ 0dB. The perfor-
mance of the classifier-demodulator was superior to MFD
in 91% of the scenarios and equal to that of MFD in 9%
of the scenarios with additive uniform noise channel and
SNR ≤ 0dB.With a Rayleigh noise channel and SNR≤ 0dB,
the NN classifier-demodulator exhibits superior performance
in 100% of the scenarios.

The NN-classifier demodulator exhibits superior per-
formance over MFD, specifically for non-Gaussian noise
channels and particularly for SNR values of 0 dB or less.
Non-Gaussian noise channels are more likely to occur in
practical environments and settings. Further, multiple appli-
cations such as spectrum sensing, cognitive radio networks
and remote sensing require the receiver to operate in environ-
ments with SNR ≤ 0 DB.

Fig 31 is derived from Table 4 for 16-QAM. The perfor-
mance of the proposed demodulator was superior to that of
the matched filter detector in all noise channel scenarios for
16-QAM, except for the case of SNR = -20 dB for the addi-
tive chisquared noise channel. It was further observed that
the performance of the neural network classifier demodulator
exceeded that of the matched filter detector by 5% ormore for
almost all SNR values when the noise channel was additively
uniform or Rayleigh. It is significant that at SNR = 0 dB, the
success rate of the NN classifier-demodulator operating on
the uniform noise channel exceeded the success rate of MFD
by 50.7 percentage points. Similarly, for SNR = 5 dB and
10 dB, the success rate of the classifier-demodulator exceeded
the MFD success rate, by 48.7 and 45, respectively. For
0 dB or lower noise channels, the neural network classifier
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performs best in a uniform noise channel, whereas for higher
SNR values, the proposed demodulator performs best in a
Rayleigh noise channel.

In Table 5, the range of success rates is calculated for vari-
ous sample sizes. For example, the first column considers all
sample size values (‘‘All N’’) implying N ϵ {100, 200, 1000,
5000, 10000, 20000} while the third column (‘‘All N except
N = 100, 200’’) refers to N ϵ {1000, 5000, 10000, 20000}.
The set of appropriate sample sizes was the set of sample sizes
with the smallest range. The ad hoc 5% is a measure of the
variability of the range. The following inferences can bemade
from this table:

1) It was observed that when all values of N (100, 200,
1000, 5000, 10000, and 20000) were considered, the
range of success, calculated as the difference between
the maximum and minimum success rates for the par-
ticular choice of constellation type, value ofM, value of
SNR, and choice of noise channel (AWGN, chisquared,
uniform, or Rayleigh), exceeded 5% in 84% of the
scenarios.

2) When N=100 was excluded, the range of success rates
exceeded 5% in 50% of scenarios.

3) When N=100 and N=200 were excluded, the range of
success rates exceeded 5% in 16% of scenarios.

4) When only N=5000, N=10000, and N=20000 were
included, the range of success rates exceeded 5% in 6%
of scenarios.

5) When only N=10000 and N=20000 were included, the
range of success rates exceeded 5% in 6% of scenarios.

6) With the PSK constellation, the range of success rates
exceeded 5% in 50% of scenarios.

7) With the QAM constellation, the range of success rates
exceeded 5% in 50% of scenarios.

8) With SNR = − 20 dB across constellation types, the
range of success rates exceeded 5% in 46% of scenar-
ios.

9) With SNR = 0 dB across constellation types, the range
of success rates exceeded 5% in 54% of scenarios.

10) With M=2 across constellation types, the range of
success rates exceeded 5% in 37% of scenarios.

11) With M=16 across constellation types, the range of
success rates exceeded 5% in 63% of scenarios.

The sample size N is a key parameter that influences the
success rate and reliability of the classifier demodulator. The
sample size was not significantly influenced by constella-
tion type (PSK or QAM). The range of success rate values
decreased for a given SNR value (−20 dB, 0 dB), noise
channel type (additive chisquare, uniform, and Rayleigh), and
constellation (2-PSK, 16-PSK, 2-QAM, and 16-QAM). For
example (Table 5 ), the range reduced from 5.83 when the
complete set of sample sizes were considered for 2-PSK,
-20 dB, and additive chisquare noise channel, to 0.37 dif-
ferential success rate when only N = 10000, 20000 were
considered. Similarly, the range reduced from 21.13 when the
complete set of sample sizes was considered for 16-QAM,

0 dB, and additive Rayleigh noise channel to 0.10 differ-
ential success rate when only N = 10000 and 20000 were
considered. The sample size was selected using the thumb
rule of 5% significance in the range of values for any given
constellation and noise channel. For M = 16, a sample size
of 20000 is appropriate because the range is 6.06 for 16-PSK,
0 dB, and an additive uniform channel for the sample size set
of {10000 and 20000}. Similarly, for 16-QAM, 0 dB, and
additive chisquare noise, the range is 7.01 for the sample
size set of {10000, 20000}. For all other scenarios, sample
sizes of 5000, 10000, and 20000 can be selected because for
this sample size set under all other constellation types and
sizes, SNR levels, and noise channel types, the range was less
than 5%.

The ratio of the standard deviation to the mean (coefficient
of dispersion) of the success rate can also be used to measure
dispersion to study the impact of the sample size on the
performance of the NN classifier. This ratio is more reliable
and robust than the range. The ratios presented here are the
average success rates for two sets of sample sizes: {N= 5000,
10000, 20000} and {N = 10000, 20000}. In most cases, this
ratio is higher for the −20 dB SNR than for 0 dB SNR; the
exception is 16-QAM,where the ratio is higher for 0 dB SNR.
The ratio is found to be less than 0.1 for 2-PSK and 2-QAM,
while for 16-PSK it is approximately 0.9 for -20 dB SNR
and around 0.51 for 0 dB SNR. Surprisingly, it is less than
0.17 for the 16-QAM and −20 dB SNR noise channels, and
close to 0.3 for the same constellation and 0 dB SNR noise
channel. For the AWGN channel and -20 dB SNR level, the
ratio is approximately 0.43, whereas for the same channel
type and 0 dB SNR level, the ratio is less than 0.07. For the
non-Gaussian channels, the ratio ranges from about 0.7 to
around 0.75 for -20 dB SNR level and the ratio ranges from
0.33 to 0.48 for 0 dB SNR level. Clearly, there is greater
variability for the non-Gaussian channels and 16-PSK. The
difference in the corresponding ratios (coefficients of disper-
sion) for the two sample sets did not exceed 10%. However,
it should be noted that the variance and mean were cal-
culated over 8 to 12 samples, which is rather small, with
limited reliability of the calculated coefficient of dispersion
value.

In conclusion, a sample size of N = 20000 is necessary for
M = 16, where all other scenarios N = 5000 or higher, are
appropriate. This sample size choice was independent of the
selected constellation type and SNR value.

The performance of the proposed demodulator for M-PSK
modulation and M-QAM over different Training:Test data
ratios is presented in Table 6. The performance of an AWGN
channel with a sample size of N = 20000 and various SNR
values were compared. The difference in success rate was
computed pairwise for three ratios: 60:40, 70:30, and 80:20.
The largest difference in the success rate for M-PSK, exclud-
ing 16-PSK, for an SNR of 20 dB was 1.84%. The largest
difference in the success rate of the M-QAM was 1.19%. For
16-PSK and 20 dB, the difference in the success rate between
the 70:30 and 80:20 ratios was 0.686%, whereas the other
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two differences exceeded 15%. A training-to-test data ratio
of 70:30 or 80:20 is appropriate.

IV. CONCLUSION
The success rate of a neural network classifier (rectified
linear unit rectification unit, 10 layers, softmax output
layer activation)-based demodulator was proposed and eval-
uated for phase-shift keying (PSK) and quadrature amplitude
modulation (QAM)-modulated signals corrupted by additive
white Gaussian noise with an SNR ranging from -20 dB to
+20 dB. Themessage signal consists of uniformly distributed
pseudo-random integers. The matched filter detector was
optimal for the AWGN noise channel. However, it is clear
that the NN-based classifier demodulator performs as well as
the optimal detector does in the AWGN channel.

The methodology for determining the feasibility of the
classifier demodulator used in this study is outlined as fol-
lows. The performance of the NN classifier was studied for
AWGN, chisquared, uniform, and Rayleigh noise channels
for SNR levels of −20, −10, −5, 0, 5, 10, and 20 dB.
The performance of the NN classifier was established for
two modulation types (PSK and QAM) and for constellation
sizes M = 2, 4, 8, and 16. First the performance mea-
sure appropriate for the proposed demodulator was selected.
In the secondstep, the sample size was determined through
independent simulations for sample sizes N=100, 200, 1000,
5000, 10000, and 20000 for SNR = -20 dB and 0 dB for
all noise channel types to determine a suitable sample size.
A more rigorous analysis of the variations in success rates led
to the conclusion that a sample size of 20000 is suitable for
M=16, while sample sizes of 5000, 10000, and 20000 were
suitable for all other combinations of constellation type (PSK,
QAM), value of M (2 and 16), SNR level (−20 dB and
0 dB), and channel types (AWGN and non-Gaussian). Third,
the training-to-test data ratio selection was determined based
on the success rates for the AWGN channel for M-PSK and
M-QAM and M=2, 4, 8, and 16. A ratio of 70:30 or 80:20
is recommended. The sample size, N, was set to 20000 to
selecting the ratio.

The success rate is calculated as the number of symbols
successfully demodulated by the classifier, and is presented
as a percentage of the total number of symbols transmitted.
The success rate defined in this study is similar to the Symbol
Error Rate rather than the bit error rate when measuring the
performance of the NN-based classifier solution. The success
rate is a more macro-level measure of the performance of a
demodulator than the bit error rate and is better suited for
the classifier demodulator, where information is transmitted
and received in the form of symbols. A macro-level mea-
sure of performance is better correlated with system-level
requirements. Variations at the micro level may have a limited
impact on macro-level performance measures. A 5%measure
of significance was used to analyze the differences in success
rates.

It is observed that, independent of the constellation
type (PSK, QAM), the performance of the NN classifier

demodulator recognizes features in the data and performs as
well as MFD for the AWGN channel. It is observed that for
both PSK and QAM, the performance, in terms of success
rate, is the highest for M = 2, slightly lower for M = 4,
and least for M = 16, for a given combination of signal,
modulation, channel, and classifier parameters. This pattern
is observed across noise channel types (AWGN, chisquared,
uniform, and Rayleigh) and SNR levels from -20 dB to 20 dB
considered in this study, with the exception of the equality of
success rates in some noise level scenarios. In some scenarios,
the success rate of the classifier demodulator was lower than
the MFD success rate.

The performance of the neural network classifier was
also compared to that of non-Gaussian channels: addi-
tive chisquared, additive uniform, and additive Rayleigh
channels, because the matched filter is not optimal for
non-Gaussian distributions. This classifier-demodulator per-
formance was compared with the corresponding performance
of the M-PSK and M-QAM demodulators (matched filter
detection).

The classifier performance was evaluated with respect to
channel noise, modulation type (PSK or QAM), constellation
type, constellation size (M=2, 4, 8, 16), sample size, and
training-to-test data ratio. A key parameter that influences
the success rate and reliability of the classifier demodulator
is the training-to-test ratio. A ratio of 70:30 or 80:20 is
recommended for the parameters considered in this study.
With this selection, the range of the absolute differential
success rate was less than 2% for all scenarios. This rec-
ommendation is independent of the constellation type, size,
or SNR value. The neural network classifier performance
has a similar dependence on the constellation type (M-PSK
or M-QAM) to that of the matched filter detector. The
superior performance of the NN classifier demodulator is
more pronounced for M = 4, M = 8, and M = 16. For
M = 16, a sample size of 20000 is appropriate, whereas
for all scenarios, sample sizes of 5000, 10000 or 20000 can
be selected. For every type of additive non-Gaussian chan-
nel, the neural network-based demodulator outperformed the
matched filter detector in many scenarios. The superior per-
formance of the proposed classifier demodulator occurred
more frequently for the additive chisquare and Rayleigh noise
channels.

The classifier demodulator had a performance equal to
or better than MFD in 99% of the scenarios. The classi-
fier performances of M-PSK and M-QAM are comparable.
The superior performance of the NN classifier is more pro-
nounced for M ≥ 2. A higher success rate was obtained
for additive chisquare and Rayleigh noise channels. The
proposed demodulator performed significantly better than
the matched filter detector for SNR values of ≤ 0 dB. The
classifier demodulator performed better than MFD by 5% or
higher success rate in 100% of scenarios with SNR = −5 dB
and 88% of scenarios for SNR = −10 dB and 0 dB. Overall,
the proposed demodulator performed better thanMFD by 5%
or higher in 79% of scenarios for SNR≤ 0 dB. 16-QAM over
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an additive uniform noise channel has a better success rate for
an SNR of 0 dB or less, whereas 16-QAM over an additive
Rayleigh noise channel has a better success rate for an SNR
of 5 dB or higher.

Both the matched filter detector and NN-based classifier
demodulator performance for the additive chisquared channel
and additive uniform channel exceeded the performance of
the detectors for the AWGN channel, except for 16-QAM,
for many SNR values. It is further observed that both the
matched filter detector and NN-based classifier demodula-
tor performance for the AWGN channel lie between those
of the NN-based classifier and matched filter detector for
the Rayleigh channel, except for 16-QAM, for many SNR
values.

For 16-QAM with an SNR ≤ 0 dB, the highest success
rates were observed when an additive uniform channel was
used, whereas for an SNR ≥ 5 dB, the highest success
rates were observed when an additive Rayleigh channel was
used. The pattern and relationships of the plots observed for
16-QAM for the differential success rate against SNR for
additive chisquared, uniform, and Rayleigh noise channels
were observed for all M-PSK and M-QAM (M = 2, 4, 8,
and 16) with differences only in amplitude. Further, it is
also observed when comparing the data for success rates
for 2-PSK, 4-PSK, 8-PSk, 16-PSK, 2-QAM, 4-QAM, and
8-QAM for AWGN, additive chisquare, additive uniform, and
additive Rayleigh noise channels for SNR levels from -20 dB
to +20 dB, the performance of the classifier demodulator for
each of the non-Gaussian noise channel scenarios is approx-
imately superior to the AWGN channel scenarios. The only
exception is 16-QAM, for which the AWGN scenario per-
formance is superior to each non-Gaussian channel scenario.
These observations suggest a correlation between the noise
distribution and the signal symbol generation distribution,
along with the distance measures implicitly used in the neural
network classifier.

Although there are differences in the performance of the
classifier-demodulator over different non-Gaussian channels,
the proposed demodulator is superior to the performance of
theMFD.Most real-world noise channels do not haveAWGN
characteristics, but tend to have some measure of non-
Gaussian characteristics. Underwater acoustic noise [15] and
snapping shrimp-dominated ambient noise [16], discussed
earlier, are two such examples. A demodulation method that
is blind to the nature of noise channel distribution character-
istics, or at least capable of implicitly detecting the features
of the noise channel as part of the method, is certainly useful.
The classifier demodulator has demonstrated potential in this
study to have this ability to perform well without explicit
knowledge of the noise distribution function. In other words,
no explicit design is required in the receiver for different
noise channel distributions or varying noise channels for then,
in principle, a different receiver would be required for each
such noise channel distribution.

Broadly speaking, the NN classifier performance is supe-
rior to that of the MFD for all non-Gaussian noise channels.

The proposed demodulator performs exceptionally well at
SNR ≤ 0 dB. The NN classifier has the marks of a robust
demodulator in channels with varying noise channel distribu-
tions and SNR levels, especially SNR ≤ 0 dB. This makes
it a strong candidate for spectrum sensing, cognitive radio
networks, remote sensing, and non-Gaussian channel noise,
which are appropriate for underwater acoustics and snapping
shrimp-dominated environments.

The classifier performance for different modulation
schemes (PSK and QAM) indicates the potential that can
be further explored for modulation schemes built upon or
built around PSK and QAM. There is a measure of the
independence of the classifier on the constellation type, but
exceptions and variability across sample sizes require fur-
ther investigation. The fact that the classifier-demodulator
is independent of the modulation type is a reflection of the
fact that the classifier implicitly detects the features of the
modulation scheme as part of themethod. Because 4G and 5G
use Orthogonal Frequency Division Multiplexing (OFDM),
which builds on variations of QAM and PSK, the classi-
fier demodulator could perform well in 4G and 5G system
environments but needs further study. This could lead to the
development of an NN-based demodulator in 6G.

For AWGN channels or channels that are close to AWGN,
the NN-based demodulator provides a demodulator solution
that requires a far less complex or mathematical design than
an MFD-based demodulator. A simpler receiver solution
is thus possible for M-PSK and M-QAM modulation with
M = 2, 4, 8, and 16 or OFDM, which builds on variations
of M-PSK or M-QAM. This can result in a less expen-
sive receiver solution. Therefore, a more thorough feasibility
study is needed.

The classifier modulator performs as well as the MFD for
AWGN channels, independent of the modulation type (PSK
or QAM). The SNR levels can fluctuate because the noise
distributions can vary owing to the changing environmental
and climatic conditions. The enhanced success rate observed
for the proposed NN demodulator for SNR levels ≤ 0 dB
and non-Gaussian noise channel types is interesting. Can this
demodulator adapt to dynamically varying noise distributions
with distributions varying between AWGN, slightly non-
Gaussian, and heavily non-Gaussian distributions? In other
words, this single demodulator can adapt to varying noise
levels and perhaps varying noise distributions. It would be
useful to explore whether a single NN demodulator can work
well across a range of SNR levels without redesigning the
demodulator. Such a demodulator is adaptive, robust, and
cost-effective.
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