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ABSTRACT Smart contracts are becoming increasingly popular for managing transactions or activities in
fog computing environments. However, the use of smart contracts for registration and resource access grant-
ing is vulnerable to various types of attacks that can compromise their security. Detecting these attacks can be
challenging, as attackers can use sophisticated techniques to evade detection. This research uses a machine
learning-based approach for detecting different attacks on smart contracts used for registration and resource
access granting in fog computing. Data is collected from online Ethereum’s official site ‘‘etherscan.io’’.
Different feature extraction methods and machine learning models are tested. Using accuracy, precision,
recall, F1 score, cross-validation, and computational time, the performance of models is evaluated. Results
indicate that extreme gradient boosting (XGB) and random forest (RF) provide the highest accuracy of
80% using the term frequency-inverse document frequency (TF-IDF) approach. The light gradient boost
classifier provides the highest accuracy of 81% with the Bag of Word (BoW) approach. Similarly, the extra
tree provides the highest accuracy of 83% using the N-gram technique. Furthermore, performance using
TF-IDF is slightly poorer than BoW and N-gram, however, it has less computational complexity.

INDEX TERMS Smart contracts fog computing, machine learning, cyber security, cyber attacks.

I. INTRODUCTION
Cloud computing is a computing paradigm where users
can access computing resources such as servers, storage,
software, databases, and applications over the internet rather
than relying on the local computing infrastructure. In cloud
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approving it for publication was Nitin Gupta .

computing, users typically pay for the resources that they
use on a pay-as-you-go basis, allowing them to scale up
or down as needed. A large amount of cloud computing
resources are accessed by the Internet of Things (IoT)
devices, but the amount of IoT devices is increasing day by
day [1]. Undoubtedly, the growth of IoT devices brought
many opportunities for cloud computing, but it has also
created new challenges and issues, such as cost, data volume
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FIGURE 1. Architecture of fog computing.

and management, security and privacy, bandwidth, network
congestion, and latency issues. To resolve different issues of
cloud computing in 2018, Cisco introduced fog computing
between cloud computing and edge computing [2].

Fog computing is a distributed computing paradigm that
extends the cloud computing paradigm to the edge of
the network, as shown in Figure 1. It is designed to
provide computing, storage, and networking services closer
to end-users and IoT devices [3]. It is creating a layer between
the cloud and the edge layer. The fog layer provides a set
of computing and networking resources to the edge devices
because it is near compared to the cloud computing layer.

Fog computing is the extension of cloud computing [4]
designed to resolve different issues of cloud comput-
ing [5]. To secure fog computing, security services such
as authorization, authentication, control of access, privacy,
reliability, accessibility, and non-repudiation are required.
Access control is a security service that provides proper
access to resources among individuals or users, devices,
applications, and services. Access control is critical when it
comes to implementing security for an IoT application [6].
Blockchain is used to solve the security and privacy issues

of the fog layer [3]. Blockchain is used for data sharing,
when fog nodes, IoT devices, and cloud providers are sharing
data to maintain data privacy and safety from data tempering.
The fog layer also used its consensus mechanism for all
fog nodes to agree on the same state of the system. Fog
computing involves multiple users and devices, and each
has its own identity and access rights. Blockchain provides
a decentralized and secure way for managing the identities
and access rights without involving a third party. In the
authentication process of the user, blockchain is used in the
form of a smart contract. Authentication is a process that is
used to ensure that users are, who they claim to be. Malicious
nodes and unregistered entities are the main targets of the
authentication process [7]. The fog layer is connected to
multiple devices such as IoT devices, cloud providers, and
fog nodes, which creates a complex environment for their
authentication.

Blockhain-based security frameworks have been presented
for fog computing. For example, a security service archi-
tecture is provided in [8] which is implemented on the fog

computing layer. This model provides an efficient privacy and
authentication process compared to the existing systems. Dif-
ferent authentication approaches are used in fog computing
such as identity and access management, biometric authen-
tication, and blockchain-based authentication [9]. Identity
and access management systems are used to manage both
user and device identities and access rights in fog computing
through usernames and passwords, digital certification, and
signatures. Biometric authentication can be used in the
form of fingerprints, iris scans, and facial recognition to
authenticate users. Blockchain-based authentication is used
for managing the user and device identities in a decentralized
way in fog computing, by using the public and private
key pairs and smart contracts to authenticate users and
grant access to fog computing resources. The choice of
authentication method or technique depends on the security
and privacy level of the systems. It is important to carefully
evaluate the strengths and weaknesses of each authentication
method and select the best one suitable for the specific fog
computing system.

In blockchain-based authentication, a smart contract is
used for user registration, resource registration, authentica-
tion request, challenge-response protocol, verification, and
resource access. User registration is used to register the
identity of the user [10] in the blockchain-based system,
which generates the public and private key pair for the user,
and the public key is added to the blockchain. Resource
registration is used to register the resources of the fog node
and also the list of authorized users who can access the
resources. The authentication request is sent to the fog node
when the user wants to access the fog computing resources.
Resource access grants the user access to the resource of the
fog node, after that the user can access and use the resources.
During verification, the smart contract verifies the user by
using the public key. If the public key is valid, then the
user is authenticated. The smart contract checks the user’s
public key against the list of authorized users, which is stored
on the blockchain. If the user is authorized to access the
resource, the smart contract grants access to the resource.
If any vulnerability or attack affects the security of the smart
contract, then multiple problems or challenges occur that
affect the security or privacy of the user’s data [11].

Smart contracts are rules or policy agreements that are
not enforced by the outside network. Any attacks on the
smart contract can put the entire network of the blockchain
in danger including miners, as well as, the organizations [4].
Different attacks necessitate efficient intrusion detection
systems. Phishing attacks, decentralized autonomous orga-
nization (DAO) attacks, parity wallet attacks, gambling
attacks, spam tokens, and Ponzi attacks, are among the
few attacks that exploit vulnerabilities in the security
of the smart contract. This study makes the following
contributions

• Integration of machine learning with smart contracts to
enhance security in fog computing environments during
registration and resource access granting process.
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• Investigation of various machine learning models
with three feature engineering approaches, term
frequency-inverse document frequency (TF-IDF), bag
of words (BoW), and N-gram for attack detection in fog
computing.

• Conducting experiments with self-collected datasets to
evaluate the efficacy of different models and feature
engineering techniques.

• Comparison of performance metrics across different
models and feature engineeringmethods to identify opti-
mal combinations for attack detection in fog computing.

• Analysis of execution time differences between feature
engineering approaches, providing insights into compu-
tational efficiency considerations.

II. BACKGROUND
A. SMART CONTRACT
A smart contract is a self-executing contract with the terms
and conditions of the seller and buyer, client, and host, which
is executed transparently and securely. Blockchain is also
used in the authentication of the users before the resource
allocation or access control [4].

On the blockchain, a smart contract is self-executing code.
In basic terms, it is a digital agreement or contract which is
represented by a computer code, that runs on the distributed
ledger. They are to conduct predetermined processes when
particular requirements are fulfilled, making them perfect for
creating completely automated systems.

B. SIGNIFICANCE OF SECURING SMART CONTRACTS IN
FOG COMPUTING
Smart contracts offer significant benefits and security pre-
cautions and are essential to fog computing, especially in
the phases of resource access granting and user registration.
Smart contracts automate and optimize processes in fog
computing environments, reducing the need for human
involvement and improving efficiency in operation. They
run autonomously to carry out predetermined rules and con-
ditions, eliminating the need for middlemen and providing
truthful transactions.

In fog computing, security is important, and essential for
improving security protocols. Smart contracts ensure the
authenticity and privacy of transactions and reduce the possi-
bility of manipulation and unwanted access. Decentralization
is also improving security because it removes the single
points of failure and decreases the dependence on centralized
authorities [12]. Furthermore, smart contracts can mitigate
insider risks and unlawful access to resources by executing
access control techniques based on preset constraints and
privileges. Smart contracts ensure the continued security of
fog computing environments by detecting and responding
to security threats through mechanisms for enforcement and
continual monitoring.

In fog computing, failures in security can result in financial
losses, harm to reputation, compromised integrity, hacking

of data, and unavailability of service. To effectively manage
these risks, machine learning-based solutions provide auto-
mated processes, the identification of anomalies, flexibility,
the ability to adapt, and improved accuracy.Machine learning
improves the overall safety condition of fog computing
environments by utilizing these skills, which allow for
adaptive mitigation of risks and reduce the possible effect of
security breaches [13].

C. MACHINE LEARNING AND SMART CONTRACT
Blockchain technology has been popular over the past several
years. This technology enables individuals to interact directly
with one another through an extremely secure and distributed
system, without the need for a third party [14], [15]. Machine
learning, in addition to its strengths, can assist in dealing with
many of the restrictions that blockchain-based systems face.
The combined use of both of these technologies, machine
learning, and blockchain technology, has the potential to
produce very effective and helpful solutions [16].

Numerous real-world fields are already starting to employ
and do considerable research on machine learning [17].
Thousands of records per day can be used to train machine
learning models, which can then be used to tackle a variety
of economic and social problems. The field of machine
learning has also begun to influence blockchain technology.
No doubt blockchain technology has many advantages, but
it also has some unavoidable drawbacks. Machine learning
has enhanced the way it is perceived while also aiming to
address the shortcomings of blockchain technology [18] and
provide reliable and effective solutions, especially in the field
of security and privacy. The machine learning approach can
be used with the smart contract in the blockchain platform to
improve its security. Recently, machine learning has been a
prominent or effective approach for attack detection in smart
contracts [19].
Machine learning is used for attack detection during

registration and resource access processes in fog computing.
Machine learning algorithms enable real-time detection and
response to threats without requiring human intervention.
These algorithms are flexible and improve over time. They
are capable of detecting abnormal patterns in huge amounts
of data, stopping possible attacks before they do a great deal
of damage, and ensuring the reliability of smart contracts.

Ethereum is the first platform that supports smart contracts.
The smart contracts are managed or working on the
blockchain platform. Smart contracts are present in the
manner of contract accounts in Ethereum [20], as shown in
Figure 2. For example, a smart contract is used tomaintain the
network activities through agreement, and machine learning
can be used with smart contracts for user validation, and
identity verification, also identify cyberattacks and stop them
in real-time. It makes it difficult for attackers to steal or hack
confidential data from the network. It can analyze the patterns
or behavior of smart contracts and highlight the security
drawbacks or flaws that exist in the smart contract because
security or privacy must always be maintained.
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FIGURE 2. Registration phase of user.

FIGURE 3. Resource access granting phase.

1) REGISTRATION PHASE
i) User Registration: When a user wants to access

the resources of the fog node, they first need to
register using the smart contract [21]. Users fill in
the information and this information is stored in the
blockchain. In the blockchain, a smart contract is
used to register and verify the user’s information.
If the user’s information fulfills the requirements for
registration, the user account is created [21].

ii) Send Key’s pair: After storing the information,
Blockchain generates the pair of the public and private
keys and sends it to the user.

2) RESOURCE ACCESS GRANTING PHASE
Figure 3 shows the resource access granting process which
comprises the following phases

i) Store Lease Contract: In this step, the fog node sub-
mits its self-executing lease contract on the Ethereum
blockchain if it is ready to share its resources. The
leasing contract specifies how the agreement is to be
carried out and is written as a section of executable
code [22]. According to this contract, corresponding

events are triggered when the customer delivers a
predetermined amount of digital coins to the provider,
indicating that the requirements of the agreement are
completed.

ii) Request Access Resources: A user can check the
contract from the blockchain if he attempts to use
a fog node’s resources. The user sends the request
to the blockchain network for the fog node resource.
Smart contract checks their public key with the
registered public keys, if exist, and are matched with
the user public key [22]. The smart contract checks its
requirements and required resources.

iii) Contract Execution and Send ‘‘Access key’’: In this
step, the smart contract executes the contract and sends
the access key of the fog node to the user [22] if the
user is already registered in the network, then the secret
key of fog node is provided to the user for accessing
the resources. The user can transfer the payment for
the resources as coins or ethers, or a smart contract can
reserve the payment amount from the user’s account.

iv) Access resource via ‘‘Access Key’’: After getting
the access key of the fog node, the user accesses its
resources.
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v) User’s Verification: The fog node verifies the
user’s identity from the blockchain that accesses the
resources.

vi) Grants Access to Resources: After the verification
step, the fog node is granted access to the user to its
resources. After completion of the process, payment is
transferred to the fog node.

D. OBJECTIVES OF RESEARCH
The objective of this research is to use a machine
learning-based approach for detecting attacks in smart
contracts which are used in resource management in fog
computing. The objectives are

i) Identify and categorize attacks on smart contracts used
in fog computing during registration and resource
access granting because if smart contracts are tempered
by the attacker, he can make the unauthorized access of
resources and loss of registered data during registration.

ii) Determine the most effective machine learning tech-
niques for detecting and preventing these attacks.

iii) Evaluate the performance of the chosen machine
learning approach in terms of accuracy, precision,
recall, and F1 score.

iv) Use different opcode-based feature extraction methods
to enhance attack detection in smart contracts.

E. RESEARCH QUESTION
To meet the above-defined objectives, we have defined the
following research questions

i) How can machine learning be applied to identify
attacks on smart contracts that are utilized in the
environment of fog computing to provide resource
access and registration of the users?

ii) In a fog computing environment, how can be secured a
smart contract against an intruder or attacker?

iii) How can opcode analysis be applied as a feature extrac-
tion method that is fast and reliable for identifying
attacks on smart contracts?

iv) Which techniques and models are most effective in
predicting attacks on smart contracts used in fog
computing environments to give resource access and
registration to the users?

This paper is structured as follows. Section III provides lit-
erature relevant to research problems such as fog computing
and attack or vulnerability detection from the smart contract.
In Section IV, the methodology of our research has been
explained in detail. This section also discusses howwe collect
data, make a dataset, explore data analysis on the dataset, and
feature extraction techniques. In Section V, the results of this
research have been presented, as well as, the discussion of
which feature extraction technique and model provides the
best results. In Section VI, the conclusion of this research and
future directions are discussed.

III. LITERATURE REVIEW
Fog computing is an extension of cloud computing that
inherits different issues from the cloud [23]. Due to the
closeness to IoT devices, many security and privacy-related
problems are faced and reported. In the literature, researchers
provided different approaches for service authorization,
access control, and authentication in fog computing for secure
transmission. For example, in [24], the author provided
a queuing theory-based cuckoo search (QTCS) model to
allocate the resources in fog computing by using the
priority-based method. This model enhances the quality of
the services, power consumption, resource allocation, and
management of resources efficiently.

The study [25] provided a deep learning-based detection
scheme for a malicious and safe class of smart contracts.
Different deep learning techniques are used for the detection
of both classes such as long short-term memory (LSTM),
gated recurrent unit (GRU), and artificial neural networks
(ANN). The authors used the BigQuery dataset with binary
classification and the highest result of these classifiers is
99.03%. In [21], the authors proposed a system for the
registration and authentication of the user in fog computing.
The authors used the smart contract for registration and stored
the information and data of the user in the secure ledger. The
proposed system consumes less cost for the registration and
authentication process as compared to the existing systems.
The study also conducted multiple user accounts for this
system and compared its cost with existing systems.

In [26], the author used 49502 real-time smart contracts
with different vulnerabilities such as call stack, integer
overflow, timestamp, TOD, reentrance, and integer overflow,
and reported a high accuracy of 99%. The author converted
the contract code into byte code and opcode, followed
by the extraction of the n-gram feature from the opcode.
Different machine learning models are applied such as
extreme gradient boosting (XGBoost), K nearest neighbor
(KNN), and support vector machine (SVM), etc. The authors
improve the speed and accuracy of vulnerability detection
using machine learning. Similarly, the study [27] provided a
mutual authentication scheme for fog computing. The scheme
is used for authentication and secure key exchange processes
in fog computing. The proposed scheme used elliptic curve
cryptography and the hash function for the authentication and
key exchange process. It provides security from cyber-attacks
such as man-in-attack and replay attacks etc.

The authors provide a framework in [28] that is used for
mining and classifying the smart contract concerning various
vulnerabilities such as extra gas consumption, compiler
version not fixed, implicit visibility level, unchecked low-
level call, frozen ether, etc. These vulnerabilities are studied
using the AutoMESC dataset and various fixes are suggested.
In [22], the authors provided the process of granting resource
access using the blockchain. The smart contract is used to
access the resources, the big advantage of the smart contract
is removing the third dependency in the network.
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The study [29] proposed a fraud detection model for
investors who are investing using smart contracts in
Ethereum. The author used the 3203 smart contracts Ponzi
and non-Ponzi attacks that were collected using web
scrapping from the Etherscan website. The machine learning
classifiers are used for detection such as J48, random forest,
and 0-day model. Models show promising results. In [30], the
author provides the algorithm for resource allocation in fog
computing. They used a modified whale-optimized resource
allocation algorithm. The author used a fog node with limited
resources and allocated its resources with effective results
using two phases. In the first phase, the task is classifiedwhile
in the second phase involves task offloading. The algorithm
provides better performance and successful completion of the
task as compared to other algorithms such as the shortest job
first.

In [31], the authors detect multi-label vulnerabilities
such as timestamp, reentrancy, TOD, integer underflow,
and overflow using the Bi-LSTM with an accuracy of
88.12%. The author collects 5450 smart contracts from the
Etherscan website and detects multiple vulnerabilities in the
smart contract such as integer underflow, integer overflow,
reentrance, timestamp, and transaction order dependency.
Similarly, in [32], the author detects the normal and abnormal
smart contracts using an ensemble model. The author collects
1904 smart contracts from the Etherscan website. The author
extracts the features from the source code of the smart
contract using TF-IDF and n-gram techniques. The proposed
ensemble model obtains an accuracy of 89.67%.

The study [33] collects the byte code of a smart contract
from Etherscan. The author converts the byte code into
images and removes the noise after removing the noise and
extracting features. CNN classifier is applied to the features
with an accuracy of 95.85%.

In [34], the author collects 5735 smart contracts and
semantic trees from the code of the smart contract. Later,
graph neural networks, and graph matching networks are
applied with a reported accuracy of 92.63%. Various vulner-
abilities are detected in the study including reentrance, block
info dependency, timestamp dependency, etc. Similarly, [35]
proposes a distributed denial of service (DDoS) attack
detection approach. The authors use the BoT-IoT dataset
for experiments. Different classifiers are utilized including
random forest (RF), decision tree (DT), and SVM for attack
detection.

The study [36], used a framework known as Contract-
Fuzzer for the detection of vulnerabilities in smart contracts.
Using this framework, different types of vulnerabilities
are detected such as gasless, freezing ether, reentrance,
block number dependency, exception disorder, and dangerous
delegate calls. The authors used 9960 smart contracts
from the Etherscan website for vulnerability detection
of the smart contract. The proposed framework provided
less false positive rate compared to existing approaches.
Similarly, [37] collected 2194 verified smart contracts

from the Ethersan website. The author used a machine
learning framework for vulnerability detection in smart
contracts. Experiments involve the detection of reentrancy,
arbitrary_memory_access, block_dependency, TOD amount,
assertion_failure, ether lock, and integer overflow/underflow.
The author used SVM and LSTM which provide 87.5% and
80.9% accuracy, respectively.

In the same vein, [26] collected 78 smart contracts
from SmartBugs for vulnerability detection using machine
learning. The collected dataset contains several classes such
as short address, access control, bad randomness, unchecked
low level, denial of services, and reentrance. The author
used two classifiers for the prediction of the results such
as KNN and stochastic gradient descent with accuracy of
84% and 82%, respectively. In [38], the authors downloaded
the dataset from the BigQuery. The author used binary and
multi-classification for the vulnerability detection of smart
contracts. The authors used multiple classifiers on multi
and binary classification data but KNN provided the highest
accuracy 99.5% on multiclass data, and RF provided the
highest 97.0% accuracy on the binary class dataset.

In [39], the authors detect the Ponzi schemes by using
the opcode context characteristics of smart contract and
contract account characteristics. The authors collect the
labeled 3590 non-Ponzi and 200 Ponzi smart contracts from
the XBlock website. After acquiring the dataset, the yellow
paper of Ethereum is used for converting the bytecode and
hexadecimal values into opcode values. The author uses the
N-gram technique for feature extraction from the opcode of
smart contracts. In addition, the adaptive synthetic sampling
(ADASYN) technique is used to deal with the unbalancing
issue of the dataset. After resolving this issue, the Adaboost
classifier is trained on the Ponzi contracts features to detect
the attacks.

In study [40], the author detects the Ponzi schemes from the
smart contract. The author uses the three datasets with binary
classification such as Ponzi and non-Ponzi. The first dataset
consists of 3588 non-Ponzi and 200 Ponzi scheme smart
contracts. In the second dataset, 167 Ponzi scheme addresses
of smart contracts extracted from other sources and 180 Ponzi
scheme smart contracts, which are extracted from XBlock.
Now, the dataset consists of 547 Ponzi scheme addresses of
smart contracts and 3588 non-Ponzi scheme smart contracts,
these are a total of 4135 addresses of smart contracts for
experiments. Then, a Control Flow Graph is used to extract
the n-gram Term Frequency and n-gram Term Frequency-
Inverse Document Frequency features. SVM_SMOTE algo-
rithm was used to resolve the issue of oversampling in
the dataset. It balanced positive and negative samples of
the dataset and utilized the SVM_SMOTE-based Random
Forest algorithm for the detection of the Ponzi scheme smart
contracts and it provide 95% accuracy.

In study [41], the author improves the fast detection
of vulnerable smart contracts because the detection of
large-scale smart contracts is very difficult and critical. The
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FIGURE 4. Workflow of the adopted methodology.

author discusses the two methods of analysis which are
code analysis and Learning method. The author reduces
the dimension of features to improve the efficiency or
speed of the detection. In this research, the author uses
the two datasets. The first dataset has 871 vulnerable
and 2129 non-vulnerable smart contracts. Second, the
author selects the 3000 smart contracts Contractward.
The open-source tool Oyente labels these addresses with
six labels such as integer Underflow, Integer Overflow,
Callstack Depth, TOD, Timestamp, and Re-entrancy for
analysis of performance. The author uses the Block-gram
technique to improve the efficiency of the detection process
and then compares the results with n-gram features to
evaluate its performance. Different classifiers are used for
the comparison of their performance. The Block-gram and
N-gram technique take 0.0002s, and 0.09s for the first dataset
using NB. The Block-gram and N-gram techniques take
0.0003s, and 0.09s for attack detection for the second dataset
using NB.

A probabilistic buckshot approach is presented in [42] for
robustness and smoothing the handover process for ad-hoc
networks. In addition, a heuristic model is also implemented
for identifying the best cluster head. For securing the data,
a lightweight encryption algorithm is also adopted. Results
indicate a 20% to 23% improvement in energy-sensitive
sensor networks.

IV. MATERIALS AND METHODS
The goal of this research is to create amachine learning-based
approach for precisely and automatically identifying numer-
ous smart contract attacks. An overview of the proposed
approach is given in Figure 4.

A. DATA COLLECTION
Due to the restricted availability of open-source solid-
ity code, researchers and developers who require access
to a large number of smart contracts for analysis and
experimentation confront difficulties [37]. The solution
proposed in this study uses an API key to extract
contracts with ‘‘Solidity, bytecode, and opcode’’ from
the Ethereum official website https://etherscan.io/ [43].
In this research, 1353 smart contracts are collected for
experiments.

1) DATASET LABELING
The collected smart contracts are labeled using the
‘‘Label Word Cloud’’ feature in the Etherscan.io website
https://etherscan.io/labelcloud. Using this feature, smart
contracts are labeled with four labels including DAO, parity
bug, gambling, and spam token.

But still, unlabeled addresses remain in the file which are
not found on this website. The other addresses heist, phish-
hack, and the exploit are labeled using forta [44] which
provides the different scanning nodes for the blockchain
component and provides the labeled addresses [45] for
data analysis and machine learning. Ponzi label using
https://github.com/BuptHxz/DetectionOfPonziContract which
addresses are used in [46]. After labeling the addresses, the
solidity code, bytecode, and opcode of the smart contract are
collected from the Etherscan using the API key.

2) CLASSES
In this research, different malicious classes of smart contracts
are collected. These classes are briefly discussed below

i) Ponzi: A Ponzi scheme is a type of investment scam
in which cash from new investors is used to pay
out claim profits to current investors. Ponzi scheme
managers frequently entice new investors by offering
to put money in possibilities that claim to provide great
returns with no risk [46].

ii) Phish-hack: Phishing attacks are used on the smart
contract to deceive people into exposing private
keys, usernames, passwords, or other authentication
information to access their accounts or money [5].

iii) Gambling: Gambling attacks are used to gain unautho-
rized access to the resources of the blockchain using an
unauthorized way or method.

iv) Parity Bug: The adversaries sent two transactions to
carry out the assault, intending to take control of
multisign so that all the money could be taken out. The
parity multisign wallet library contract was launched
after the assault was over. It did, however, have a flaw
that allowed anybody to run initWallet. Because the
attack was carried out twice, it is known as parity
wallet hacks 1 and 2. By starting a call to initWallet,
the attacker in the initial attack was able to change
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FIGURE 5. Number of samples in each class.

the wallet’s state. As a result, the attacker gained the
owner’s trust and was able to steal the money without
being stopped [47].

v) Exploit: Exploit tokens are tokens that have been
produced and spread as a result of taking advantage of
flaws in the blockchain and smart contract infrastruc-
ture. These tokens are frequently linked to malicious
behavior or attacks that abuse flaws in the system [48].

vi) Heist: Unauthorized persons or attackers steal money
from a user and move it to their accounts. As a result,
its participants suffer huge financial losses [49].

vii) DAO: The DAO contract has serious weaknesses that
let attackers take money. A flaw allowed an attacker
to repeatedly request money from the smart contract
before the balance was updated. The flaw was caused
by errors in the code, where the developer of the smart
contract neglected to account for the possibility of
a recursive call. As a result, it made it possible for
attackers to steal millions of dollars worth of ether in
the first few hours [50].

viii) Spam Token: Spam tokens are tokens that are involved
in scams or spam. The name or symbols of the token
have the same attributes such as script or code, and
URL [51].

B. DATA PREPARATION
The collected opcode of each smart contract has some
hexadecimal values that start with ‘‘0x’’. For example ‘‘0 ×

00’’ value and its mnemonics value is STOP. The values that
have the value of the mnemonic in Ethereum yellow paper are
replaced [31], [52].

C. DUPLICATION REMOVAL
In this step, duplicate values and null records are checked and
removed from the dataset. Figure 5 shows the distribution of
the number of records for each class of the collected dataset.

D. LABEL ENCODING
Label encoding is the process of converting the categorical
variables to numeric values that can be used with machine
learning models. The collected dataset has eight classes
including Ponzi, phish-hack, DAO, gambling, parity wallet,
exploit, heist, and spam token. Using label encoding, these
are replaced with numeric numbers 0 to 7.

E. FEATURE EXTRACTION
In this step, features are extracted using the feature extrac-
tion techniques from the opcode of the smart contract.
The opcode of a smart contract is similar to a natural
language that is readable or understandable by humans.
In the literature, different feature extraction techniques are
used for feature extraction from the opcode. This study
adopts N-gram, TF-IDF, and BoW for their wide use
and better results. These techniques are briefly explained
below.

1) N-GRAM TECHNIQUE
N-grams are contiguous collections of objects from a
repository of text. The number n in n-grams indicates the
size of items or words that are to be taken into consideration;
for example, n is equal to 1 is used for unigram, n equal
to 2 is used for bigram, n equal to 3 is used for trigram,
and so on [53]. To identify unusual schemes, we extract the
n-gram characteristics from the contract opcode sequences.
In natural language processing (NLP), n-grams are frequently
used. In addition, malware detection tasks also use it
frequently [32].

2) TF-IDF TECHNIQUE
TF-IDF is another widely used approach for NLP tasks.
It comprises TF and IDF which are calculated separately.
TF counts the number of occurrences of unique words while
IDF counts the documents across which unique words are
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TABLE 1. Results using TF-IDF technique.

found. TF-IDF assigns higher weights for those terms which
appear less frequently thereby giving higher importance to
rare words. So, TF-IDF is used to calculate the importance of
the word in the document or text [54].

3) BAG OF WORDS TECHNIQUE
By measuring the number of times every word appears, the
BoW model converts any text into fixed-length vectors. Vec-
torization is a common term used to describe this procedure.
Its simplicity makes it cost-effective to compute, and where
placement or contextual information is irrelevant, simpler is
sometimes
better.

F. CLASSIFIERS
Different classifiers are used in this research such as logistic
regression (LR), DT, RF, XGB, extra tree classifier (ETC),
gradient boost (GB), KNN, NB, bagging classifier (BC), and
light boost classifier (LGBM).

Cross-validation is to divide the data set into groups and
treat each group as a validation dataset to evaluate the
model [55]. In this approach, 10-fold cross-validation is used
for every model.

G. MODEL EVALUATION METRICS
In this research, accuracy, precision, recall, F1 score, cross-
validation, and time cost are used for the evaluation of the
models.

Accuracy, precision, recall, and F1 score are calculated
using the following equations, respectively

Accuracy =
TP+ TN

TP+ FP+ TN + FN
(1)

Precision =
TP

TP+ FP
(2)

Recall =
TP

TP+ FN
(3)

F1 score = 2 ×
Precision× Recall
Precision+ Recall

(4)

In addition to these metrics, computational time is also
considered for performance comparison. The time cost means
the time that is used by the model for training and testing of
the results.

FIGURE 6. Accuracy vs cross-validation accuracy using TF-IDF features.

V. RESULTS AND DISCUSSION
Several machine learning models are used for experiments in
this study along with various feature extraction approaches
like TF-IDF, BoW, and n-gram. For experiments, the dataset
is split into 80% to 20% subsets. 80% of the data is used for
training and 20% is used for testing.

A. EXPERIMENTAL RESULTS USING TF-IDF TECHNIQUE
Different classifiers are applied to the extracted features using
the TF-IDF technique. Experimental results of all models are
given in Table 1. Results also contain computational time and
cross-validation accuracy. Results demonstrate that the NB
classifier is the best when execution time is considered, as it
takes only 0.31 seconds. The best accuracy score of 0.80 is
provided by the RF and XGB which take approximately
9 seconds and 52 seconds, respectively.

Validation results are illustrated in Figure 6 which provides
a comparative evaluation of accuracy and cross-validation
accuracy. Results show that all the models have pretty much
similar trends where cross-validation accuracy is marginally
increased, except for DT and NB where the cross-validation
is slightly reduced.

Figure 7 shows a visual presentation of the accuracy,
precision, recall, and F1 score of all models. RF and
XGB show superior results compared to other models,
0.80 accuracy score. Moreover, RF and XGB show similar
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TABLE 2. Results using bag-of-words technique.

FIGURE 7. Experimental results of models using TF-IDF features.

results concerning precision, recall, and F1 score indicating
robust performance of these models.

ETC shows superior results compared to other models,
followed by XGBwith a 0.82 accuracy score. Moreover, ETC
and XGB show similar results concerning precision, recall,
and F1 score indicating robust performance of these models.

B. EXPERIMENTAL RESULTS USING BAG OF WORDS
TECHNIQUE
In addition to TF-IDF, the BoW approach is also employed
in this study for performance comparison. Table 2 presents
the results of all models using the BoW technique. Results
demonstrate that the performance of models is improved
when used with BoW features, compared to the TF-IDF
approach. The XGB model provides the best results with
105 sec of execution time.

Figure 8 provides the cross-validation results of all models
using the BoW technique. XGB shows the best performance
followed by ETC and LGBMmodels. The performance of LR
is robust with similar accuracy and cross-validation accuracy
while NB is the most affected model when cross-validation is
used.

Results regarding precision, recall, and F1 score are
presented in Figure 9. LGBM shows the best results regarding
accuracy, precision, recall, and F1 score with a 0.81 score for

FIGURE 8. Accuracy vs cross-validation accuracy using BoW features.

FIGURE 9. Experimental results using BoW technique.

each. It is followed by the ETC, XGB with a marginally low
accuracy score of 0.80. Other models also perform better with
BoW features.

C. N-GRAM TECHNIQUE
Besides TF-IDF and BoW, the performance of machine
learning models is also evaluated using the n-gram approach.
Results given in Table 3 indicate that using n-gram features,
the best results are obtained by the ETC with a 0.83 accuracy
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TABLE 3. Results using n-gram technique.

FIGURE 10. Accuracy vs cross-validation accuracy using N-gram features.

score. It is followed by LGBM, RF, and GB which obtain an
equal 0.80 accuracy score with n-gram features. Results are
comparatively better than those using the TF-IDF approach,
however, inferior to the BoW approach.

Accuracy and cross-validation results are displayed in
Figure 10, indicative of the robust performance of ETC,XGB,
and RF models. In addition, the LR model shows similar
scores for accuracy and cross-validation accuracy.

Results regarding accuracy, precision, recall, and F1 score
are illustrated in Figure 11. The performance of XGB is good
with the same scores for accuracy, precision, recall, and F1
score indicating the similar good performance of the model
for all classes. The figure also shows good results for ETC
regarding the true positive rate. Other than NB and KNN, all
models show better performance.

D. COMPARATIVE PERFORMANCE OF ALL FEATURE
EXTRACTION TECHNIQUES
Experimental results involving TF-IDF, BoW, and n-gram
are shown in Table 4. Results indicate that TF-IDF shows
slightly poor performance with a 0.80 accuracy score using
the RF and XGB model. In comparison, BoW provides
better learning capability for the models and shows better
performance. The performance of the models is significantly
improved when using BoW features, as shown in the previous
section. Similarly, other models tend to perform better when
used with n-gram features, compared to TF-IDF features.

FIGURE 11. Experimental results using N-gram technique.

However, execution time is less when TF-IDF features are
used.

The confusion matrices for the top four best-performing
machine learning models using the TF-IDF techniques are
presented in Figure 12. Results show that the extra tree
classifier shows the best results with 224 correct predictions.
It is followed by the light GBM with 220 correct predictions
while RF has the lowest number of correct predictions with
217 correct predictions while 38 predictions are wrong.

E. DISCUSSION
Fog computing presents several difficulties during the
registration and resource access phases, including scaling
management of resources, reliability problems, security
threats, and privacy and data concerns. It is difficult to
identify and classify attacks against smart contracts that are
utilized in fog computing during the processes of providing
resource access and registering users. The study highlights
that smart contracts are vulnerable to different attacks and
how necessary it is to use a secure mechanism to stop the
unauthorized access and manipulation of data.

It is critical to identify the best machine learning methods
for recognizing and avoiding these threats. The proposed
machine learning-based attack detection system aims to
address these by enhancing security, providing real-time
threat detection, adapting to evolving threats, and improving
accuracy. The results of the study demonstrate the possibili-
ties for improving security measures through the combination
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TABLE 4. Results using all feature extraction techniques.

FIGURE 12. Confusion matrices of machine learning models using TF-IDF features, (a) Random
Forest classifier, ((b) XGBoost classifier, (c) LightGBM classifier, and (d) Extra Tree classifier.

of machine learning with smart contracts. The extra tree clas-
sifier with the N-gram feature extraction technique performs
better, highlighting how useful they are for detecting and
preventing attacks. Different performance metrics are used
to evaluate the results of each classifier. There is potential
for reducing security threats and maintaining the integrity of
fog computing systems through the combination of machine
learning and creative feature engineering techniques. These
consequences provide possibilities for investigation in the
direction of improving fog computing security and building
trust in decentralized computing systems.

The use of machine learning-based threat detection in fog
computing settings has many benefits, including improved
security, flexibility in handling different datasets, real-time
processing, and scalability to handle network complexity.
However, there are challenges to overcome, such as making
sure the data is of high quality, managing limited resources,
interpreting complex models, and adjusting to changing
conditions. To successfully integrate and effectively enhance
security in fog computing environments, these aspects must
be balanced.

VI. CONCLUSION AND FUTURE WORK
Smart contracts are used in the fog computing environment
for the registration of the user and resource access granting
process. However, smart contracts are prone to several
attacks which undermine the security of fog computing.
The integration of machine learning with smart contracts
can help detect and prevent attacks on fog computing.
This study investigates the efficacy of various machine
learning models with three feature engineering approaches
TF-IDF, BoW, and n-gram in this regard. Experiments are
carried out with self-collected datasets using a variety of
models. Experimental results reveal that an accuracy score
of 0.80 can be achieved with TF-IDF using an XGB and
random forest classifiers. BoW features tend to train the
models better resulting in superior performance as proven by
a 0.81 accuracy score by the light gradient boosting model.
N-gram feature also proved to be better than TF-IDF with
the extra tree classifier showing a 0.83 accuracy score but on
average all models perform better with BoW features. Using
TF-IDF features, however, tends to decrease the execution
time substantially. For future work, several dimensions can
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be adopted including the increase in the number of records
for better training. In addition, the use of deep learning to
fully utilize the potential of large datasets is another possible
direction. Furthermore, more attacks on smart contracts can
be added in future work.
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