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ABSTRACT Arrhythmia detection in electrocardiogram (ECG) signals is a vital aspect of cardiovascular
health monitoring. Current automated methods for arrhythmia classification often struggle to attain
satisfactory performance in the detection of various heart conditions, particularly when dealing with
imbalanced datasets. This study introduces a novel deep learning approach for the detection and classification
of ECG arrhythmia plot images. Our methodology features a Lightweight Custom Convolutional Neural
Network model(LC-CNN), comprising just three convolutional layers and a transfer learning model with
MobileNet-V2 architecture that leverages pre-trained features to enhance arrhythmia classification. Data
preprocessing of the ECG signals involving noise reduction with a Butterworth filter and precise beat
segmentation via R-peak detection, ensure high-quality input for our model. Furthermore, a notable
contribution for ECG data augmentation, adopting the implementation of an Auxiliary Classifier Generative
Adversarial Network (ACGAN), specifically addressing class imbalance in the benchmark MIT-BIH dataset
to classify four types of ECG heartbeats. This approach enriches the dataset, enhancing the models’ ability
to detect underrepresented arrhythmia classes. The proposed system demonstrates an impressive average
classification accuracy achieving 99.22% using the LC-CNN model, closely followed by the fine-tuned
MobileNet-V2model with 98.69% accuracy, outperforming othermethods and underscoring its effectiveness
when faced with diverse irregular heartbeats and arrhythmia.

INDEX TERMS ECG, arrhythmia classification, deep learning, convolution neural network (CNN), transfer
learning, MobileNet-V2, data augmentation, auxiliary classifier GAN, computer vision.

I. INTRODUCTION
Cardiovascular disease (CVD) represents a disorder affecting
the heart and blood vessels, causing clots that lead to stroke
and heart attacks. As per data provided by the AmericanHeart
Association in 2019, CVDs have emerged as a predominant
global contributor tomortality. In 2016, theywere responsible
for more than 17.6 million deaths, and projections indicate
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that this alarming figure is expected to escalate to 23.6million
by the year 2030 [1]. Arrhythmia ranks as the most prevalent
type among all CVDs, and it is defined as irregularities in
heart rhythm, stemming from abnormal electrical impulses
and conduction within the heart. Arrhythmias can manifest
as irregular heartbeats (heart tremors), tachycardia (a resting
heart rate exceeding 100 beats per minute), or bradycardia
(a resting heart rate below 60 beats per minute) [2]. The
most commonly employed method for detecting arrhythmias
consists of recording an electrocardiogram (ECG), which
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FIGURE 1. The normal ECG Beat.

provides a visual representation of the heart’s electrical
activity over time through skin-placed electrodes. These
ECG leads, capturing the heart’s electrical potential from
various angles and positions, serve as indicators of disease
states by identifying anomalies in waveforms and rhythms.
The ECG essentially serves as a comprehensive record of
the electrical attributes of the heartbeat [3]. In an ECG
signal, each individual heartbeat manifests with a specific
waveform. As depicted in Figure 1, we observe an ECG
heartbeat featuring its key identifying points(P, Q, R, S,
and T), along with the segments and the duration intervals
(PR interval, PR segment, QT interval, ST segment). Each
of these forms corresponds to a specific phase within the
cardiac cycle. Of particular significance, the QRS complex
represents the paramount cardiac activity, namely, the
ventricular depolarization process. This pivotal occurrence
is reflected in the ECG waveform by the most pronounced
potential disparities, collectively forming the R-peak. The
precise localization of the R-peak holds notable importance,
as it functions as a reference point for determining the
temporal alignment of a heartbeat [4]. CVDs through the
continuous monitoring and analysis of ECG signals has
been illuminated. Especially, due to the advent of intelligent
enabling technologies, ECG monitoring systems have been
developed and have gained extensive utilization within the
healthcare domain over the recent decades. These systems
harness a diverse array of technologies, encompassing IoT,
edge computing, and mobile computing. Furthermore, their
functionality has expanded beyond disease diagnosis and
management, engaging areas such as monitoring daily
activities, enhancing athletic performance, and fulfilling
specific mode-related needs [5]. Hence, a large amount of
literature research has emerged, presenting various methods
and approaches for classifying cardiac arrhythmias utilizing
machine learning and deep learning techniques. In particular,
Deep learning, as a computer-aided approach known for

its robust feature extraction capabilities, has demonstrated
remarkable accuracy in the classification of ECG signals.
This is achieved through the construction of hierarchical
artificial neural networks, wherein the non-linear components
in each layer empower deep learning to efficiently process
complex non-linear signals like ECG signals. As information
traverses through each layer, it becomes progressively
more abstract and high-level, which greatly contributes to
achieving high classification accuracy. Consequently, when
compared to traditional machine learning methods, deep
learning excels in its capacity for learning intricate patterns
from extensive datasets [1]. Attained that inference, publicly
accessible ECG databases encounter challenges related to
both data availability and data imbalance [6]. A remarkable
difference exists in the prevalence of arrhythmias signals
compared to the normal ones in patient records of these
datasets [9]. In particular, the MIT-BIH dataset, widely
recognized ECG signals database, accessible on the physio-
net platform [7] and employed in this study, exhibits a
significant class imbalance problem when examining its
arrhythmia diagnostic categories. Therefore, achieving high
performance in identifying the minority cardiac abnormality
classes such as the Supraventricular(S) and the Ventricular
(V) beats can principally be challenging. On that account,
the major contributions of this study can be summarized as
follows:

1) We propose two deep learning models based on
Convolutional Neural Networks, a lightweight cus-
tom CNN model(LC-CNN) with only three con-
volutional layers and the pre-trained MobileNet-V2
model, fine-tuned to detect and to classify ECG
arrhythmias.

2) We perform signal denoising using butterworth Filter
and we fulfill the beats segmentation of the ECG
signals via R-peak values using the slide window
technique.

3) Following that, each segmented beat is plotted and
saved as an image in a PNG format.

4) Furthermore, we propose an ACGAN model to tackle
the problem of data imbalance and generate synthetic
ECG images.

5) We perform intensive experimentation using the
MIT-BIH for arrhythmia detection and calculate var-
ious performance metrics. The obtained results are
also compared with several recently proposed models
and approaches for arrhythmia detection for ECG
images.

The remaining parts of the paper are organized as follows:
In section two, we review the recent related works to our
study. In section three, we provide a detailed explanation
of the proposed approach, the dataset characteristics, the
preprocessing steps, and a detailed explanation of the
proposed ACGANmodel for data augmentation. Section four
presents the experimental results while section five provides
a comparison with the related approaches followed by the
discussion of these results in section six. Finally, section
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seven presents the conclusions and suggests possible future
works.

II. LITERATURE REVIEW
In this section, we present a comprehensive review of
recent related literature to the detection and classification
of ECG arrhythmia, exploring their utilization of deep
learning models and various data augmentation techniques
employed to tackle the data imbalance problem in ECG
signals datasets. In the first study, [2]the authors introduced
a novel approach based on Deep Convolutional Generative
Adversarial Networks (ECG-DCGAN) to address the balanc-
ing of the ECG signals. This method involved the utilization
of a 16-layer CNN model for ECG signal classification. The
experimental outcomes revealed an accuracy of 98.7%. In [8],
the researchers employed multiple models and classifiers
for arrhythmia detection. They utilized the GAN model to
address class imbalance and among the evaluated models,
the proposed GAN-LSTM ensemble model emerged as the
top performer, achieving the highest level of accuracy and F1
score at 0.992. Furthermore, for data imbalance, the authors
in [9], proposed a novel approach using the Transformer
and Convolution-Based Generative Adversarial Network
(TCGAN) model, that demonstrated a robust capacity to
generate synthetic ECG heartbeats. Additionally, they imple-
mented a CNN-BI-LSTMmodel for the classification of ECG
beats. The results showcased an overall accuracy of 94.69%.
The authors in [10], introduced a novel data augmentation
algorithm for the ECG signals. These signals, represented as
Numpy arrays, were first divided into segments of identical
length based on the input, then, rearranged to create new
signals. The resulting signals were converted into a.JPEG
image format, then used as input for a four-layer CNN for the
classification of ECG signals achieving a validation accuracy
of 89.87%. Moreover, in [11], a novel approach was intro-
duced, involving a fusion of a 5-layer CNN and a single-block
Transformer encoder, aimed at mitigating the imbalance issue
associated with the minority classes within ECG signals. This
combined model achieved an average accuracy of 97.66%
when evaluated on the MIT-BIH dataset. The performance
was enhanced as the CNN block was substituted with a
pre-trained DAE network, leveraging an additional ECG
dataset with distinct attributes, this modification resulted in a
higher performance, yielding an average accuracy of 97.93%.
in [12]various standard methods and operations were applied
to augment the ECG images. Thus, their introduced system
fine-tuned the weights of the pre-trained model, Dense-Net
to classify 29 types of heartbeats achieving a classification
accuracy of 98.92%. In [13], a novel approach called
‘Fuzz-Clust-Net’ was proposed for arrhythmia detection of
ECG signals, The process followed different standard data
augmentation techniques to mitigate class imbalance. After
that, the CNN model was used to extract the features that
next were subjected to a fuzzy clustering algorithm for
the classification. The experimental results demonstrated an

overall accuracy of 98.66%. The study in [14], introduced
a predictive system, employing a GAN model to identify
arrhythmia in young martial arts athletes. Notably, the
experimental outcomes showed that the proposed model
achieved the highest accuracy, reaching an impressive 97%.
Moreover, [15], a novel system for ECG classification was
introduced, consisting of a two-part methodology. Initially,
a deep autoencoder was utilized to extract high-level features.
Subsequently, multiple neural networks were employed,
following both one-against-all (OAA) and one-against-one
(OAO) strategies for multi-class classification. To tackle
data imbalance, additional oversampling using SMOTE was
incorporated. Notably, the model employing the OAA-MLP
approach demonstrated the most promising performance,
achieving an accuracy rate of 99.32%. In the research
conducted at [16], two deep learning models, CNN and
CNN-LSTM, were presented alongside ensemble techniques
for the classification of two categories of ECGbeats. Remark-
ably, these models achieved an overall accuracy of 99.9%
when tested on different ECG beat datasets. To mitigate
class imbalance, the study employed SMOTE and Tomek
link resampling techniques, to further enhance the robustness
of the classification results. In [17], an innovative data
augmentation method utilizing a GANmodel was introduced
to enhance ECG classification. The research presented two
deep learning methodologies: an end-to-end and a two-stage
hierarchical approach, both based CNN, highlighting the
feature learning capacity of deep CNNs without the need
for feature engineering. The outcomes demonstrated that
using the GAN-based augmentation substantially improved
the performance of the method, resulting in an accuracy
rate exceeding 98%. In [18], two deep learning models
were proposed for arrhythmia classification, a CNN-LSTM
model, which captures local features and temporal dynamics,
and the RRHOS-LSTM model, integrating RR intervals
and higher-order statistics to highlight abnormal heartbeats.
A bagging model was trained on sub-sampled data to address
class imbalance, utilizing weighted loss functions. Addition-
ally, a meta-classifier combining these models was validated
with the CNN-LSTM model, achieving 95.81% of accuracy.
In [19], they introduced a novel CNN model, inspired
by the Shuffle-Net architecture. This model was tailored
for efficient deployment on resource-constrained wearable
mobile devices. The implementation of a variable stride
sliding window was used to address the under-represented
classes within the dataset. Notably, the utilization of the Focal
loss as a loss function contributed to enhanced performance,
surpassing traditional CNN models while maintaining sig-
nificantly fewer parameters, ultimately resulting in a 97%
improvement in the F1 score. Last but not least, in [20], they
proposed an optimized neural network model design based
on Autoencoder and LSTM models, which enhances the
accuracy of diagnosing heart diseases through ECG signals
while simplifying the preprocessing process and addressing
gradient vanishing issues, ultimately, acheiving an accuracy
of 98.57%
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FIGURE 2. The proposed approach.
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III. MATERIALS AND METHODS
A. PROPOSED APPROACH
In this section, we present our proposed approach based
on deep learning for the detection and the classification
of arrhythmia in ECG signals. Figure 2 shows an overall
view of the proposed system. In the initial phase of our
methodology, using the MIT-BIH dataset, the ECG signals
undergo a series of essential preprocessing steps. First,
a Butterworth filter is applied to the signals for the purpose
of noise reduction and signal enhancement. Subsequently,
the detection of the R peaks within the ECG signals is
performed, which serves as the foundation for segmenting the
signals into beats. Once the ECG beats are fully segmented,
we chose to plot and save each ECG beat into a structured
format as an image, each with its appropriate labeling. Next,
To address class imbalance, particularly in the minority
arrhythmia classes within the ECG image dataset, we employ
an ACGAN (Auxiliary Classifier GAN) model that generates
synthetic ECG images, focusing on the underrepresented
arrhythmia classes. This augmentation step enriches our
dataset and improves the model’s ability to handle the
classification of the minority classes effectively. Last but not
least, after performing the data augmentation, the augmented
dataset is fed into the two proposed CNN architectures,
presenting the Lightweight Custom CNN model with only
three convolutional layers along with a transfer learning
pre-trained MobileNet-V2 model. These two models are
designed for the classification task, categorizing ECG signals
into four distinct beat classes: Normal (N), Supraventricular
(S), Ventricular (V), and Fusion (F). The evaluation of the
proposed approach’s performance is assessed by several
performance metrics such as the accuracy, the F1-score,
precision, and recall.

B. THE DATASET
As previously indicated in our paper, our study involved
conducting the experiments utilizing the MIT-BIH Arrhyth-
mia Database. Comprising of 48 half-hour two-lead ECG
recordings sampled at 360 Hz from 47 patients, this dataset
offers a diverse set of subjects, with accompanying annotation
files detailing beat-by-beat labels, including normal beats and
various arrhythmias like premature ventricular contractions
(V), supraventricular premature beat (S), among others. In the
standardWFDB format, the dataset facilitates reproducibility
and collaboration in the field. Table 1 provides an overview
of the heartbeat categories defined by the Association for
Advancement of Medical Instrumentation (AAMI), which
classifies arrhythmia heartbeats into five distinct classes:
1) normal beat (N); 2) supraventricular ectopic beat (S);
3) ventricular ectopic beat (V); 4) fusion beat (F); and
5) unclassifiable beat (Q). In this work, we only focus on
identifing the four classes of lead MLII from the MIT-BIH
dataset, the N, S, V and F classes.

C. PREPROCESSING
One of the initial and commonly employed steps within
the processing of the ECG signals is noise reduction. Noise

TABLE 1. Major types of heartbeats present in the MIT-BIH Arrhythmia
Dataset.

in ECG signals can be categorized into two main types:
low-frequency noise, which arises from baseline oscillations
caused by body movements and respiration, and high-
frequency noise, stemming from power line interference and
the digitization of analog electrical potentials [4]. In our
work, we are using the Butterworth Band Pass Filter,
with a low-cut frequency of 0.5 Hz, a high-cut frequency
of 50 Hz, a sampling frequency of 250 Hz, and a filter
order of 4. This filter applies the bandpass filter both
forward and backward within the signal. This dual-pass
approach achieves a zero-phase filtered signal, ensuring that
the temporal alignment of cardiac data remains intact while
effectively eliminating noise and isolating relevant frequency
components within the range of 0.5 Hz to 50 Hz.

Next, the beat segmentation process, the detection of
peaks plays a pivotal role as key landmarks for segmenting
the ECG signal into distinct beats. First, we implement
a systematic approach that leverages peak detection and
annotation filtering. We employ a ‘find-peaks‘ function
to identify significant peaks within the ECG signal while
maintaining a reasonable spacing between them. Then, the
segmentation step involves creating fixed windows around
each peak, with an input size set at 256 samples, equivalent to
128 samples before and after the identified peak.Within these
segments, we extract the annotations from the associated
annotation file. Importantly, we apply class criteria to include
only those segments that contain a single desired annotation,
meeting our classification and analysis objectives. Following
the segmentation of the ECG beats, the subsequent step
entails generating grayscale representations of these indi-
vidual beats, which are then saved as image files in PNG
format. Each image is uniquely named based on its respective
position in the signal. The decision to represent ECG beats
as images serves the purpose of exploring and developing
innovativemethodologies in arrhythmia analysis. By harness-
ing the capabilities of computer vision, there is potential to
enhance the accuracy and effectiveness of diagnostic pro-
cesses. Figure 3 presents the outcomes of the preprocessing
procedures.
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FIGURE 3. The preprocessing steps result.

FIGURE 4. The ACGAN architecture.

D. DATA AUGMENTATION
To tackle the issue of data imbalance, we apply data
augmentation on the arrhythmias’ images representing the
minority classes of the MIT-BIH dataset, the S, V and
F classes. To do so, we implement an advanced variant
of the Generative Adversarial Network (GAN) known as
the Auxiliary Classifier GAN, introduced by [21]. The
ACGAN model mainly consists of two neural networks, the
generator and the discriminator, which are trained together in
a competitive manner; the generator’s primary role involves
creating synthetic ECG heartbeat images from random noise
vectors conditioned for specific beat types. In contrast, the
discriminator network plays a dual role as it determines
whether the input heartbeats are genuine or synthetic and
must predict the class label of those synthetic beats. The
figure 4 shows the overall architecture of the ACGANmodel.
In terms of its structural composition, the ACGAN model

doesn’t deviate significantly from previous established mod-
els. Nevertheless, it yields exceptional outcomes and demon-
strates a notable capacity for stabilizing the training process
[21]. The discriminator model is specifically designed for
binary real or fake image classification, processing images

with dimensions (128, 128, 1). The architecture includes
convolutional blocks, starting with a Conv2D layer with
16 filters, a 3 × 3 kernel, and 2 × 2 strides. Subsequent
blocks involve Conv2D layers with increasing filter sizes
(32, 64, 128, 256, and 512), Leaky ReLU activation (α =

0.2), batch normalization, and dropout (p = 0.5) for
regularization. These blocks progressively downsample the
input image, generating feature maps with reduced spatial
dimensions. The flattened output connects to two Dense
layers for prediction. The first Dense layer, with a single
neuron and sigmoid activation, outputs the probability of the
image being real or fake (σ ). The second Dense layer, with
neurons corresponding to specified classes (S, V, and F) and
softmax activation (softmax), provides class probabilities.
The model is compiled using the Adam optimizer with
a learning rate of 0.0002 and a β1 value of 0.5. The
loss function is a combination of binary cross-entropy and
sparse categorical cross-entropy, reflecting the dual objective
of the discriminator to classify images into classes and
determine their authenticity. Dropout layers contribute to
regularization, and batch normalization enhances stability.
Conversely, the generator model is designed for conditional
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image synthesis, taking a latent vector of dimension 100 (z)
and a categorical class label (c) as inputs. The label under-
goes embedding (Embedding) and linear transformation
(Dense), resulting in a (32, 32, 1) tensor. Simultaneously,
the latent vector undergoes processing through a Dense
layer with ReLU activation, forming the foundation for a
32 × 32 image. The two streams merge and are upsampled
through Conv2DTranspose layers with decreasing filter
sizes and increasing strides, ultimately generating an image
with dimensions (128, 128, 1). Each Conv2DTranspose
layer is followed by BatchNormalization and ReLU
activation, and the output layer utilizes tanh activation
to ensure pixel values fall within the range [−1, 1].
Table 2 and 3 breakdown the structure of the discriminator
and the generator models.

Algorithm 1 Training Process of the ACGAN Model
1: Input:

• Real samples Xreal
• Noise samples Zgen from prior Pg(Z )
• Data distribution Pdata(X )
• Number of epochs, nepochs
• Number of steps per epoch, esteps
• Batch size, nbatch
• Latent dimension, latent_dim

2: Output: Trained ACGAN
3: procedure TrainACGAN
4: Initialize discriminator D and generator G parame-

ters.
5: for e in 1 to nepochs do
6: for s in 1 to esteps do
7: SampleM noise samples Zk from Pg(Z ).
8: SampleM examples Xk from Pdata(X ).
9: Update discriminator D by ascending its

stochastic gradient.
10: end for
11: for s in 1 to esteps do
12: SampleM noise samples Zk from Pg(Z ).
13: Update generator G by descending its

stochastic gradient.
14: end for
15: end for
16: end procedure
17: Return: Trained ACGAN

Algorithm 1 shows the training process of the ACGAN
model, involving alternating steps for updating the dis-
criminator and the generator. The mathematical expressions
for updating the discriminator and generator involve binary
cross-entropy loss, providing a rigorous framework for
the dual objectives of realism and class conditioning in
image synthesis. In each training iteration, real samples
Xreal and noise samples Zgen are selected. The discriminator
D is then updated by ascending its stochastic gradient,
calculated as a combination of the binary cross-entropy loss

TABLE 2. Structure of discriminator in acgan.

TABLE 3. Structure of generator in acgan.

for real samples and the generated samples. Subsequently,
the generator G is updated by descending its stochastic
gradient, aiming to minimize the binary cross-entropy loss
by fooling the discriminator. This process iterates through
multiple epochs and steps, adjusting the model parameters
to enhance the generator’s ability to produce realistic images
while the discriminator learns to distinguish between real and
generated samples. The update of the discriminator involves
two main loss components: Lreal, measuring the dissimilarity
between the predicted probabilities and the true labels for
real samples, and Lfake, quantifying the discriminator’s
ability to distinguish between real and generated samples.
The discriminator loss LD is given by the sum of these
components:

LD = Lreal + Lfake, (1)

where

Lreal = −
1
2

Ex,c[logD(x|c)], (2)

Lfake = −
1
2

Ez,c[log(1 − D(G(z|c)))]. (3)
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TABLE 4. Dataset summary.

Similarly, the update of the generator involves two main
loss components: Ladv, focusing on generating samples that
resemble real ECG signals, and Laux, encouraging the model
to produce synthetic samples with accurate class labels. The
generator loss LG is given by the sum of these components:

LG = Ladv + Laux, (4)

where

Ladv = −
1
2

Ez,c[logD(G(z|c))], (5)

Laux = −Ez,c[log softmax(Dlabel(G(z|c)))]. (6)

The algorithm 1 converges over training epochs, optimizing
the ACGAN for conditional image generation.

Data augmentation using the ACGAN model was applied
on the training dataset. The provided table 4 summarizes
the significant impact of this augmentation process on the
dataset. Prior to augmentation, training dataset clearly looks
imblanace, containing 52291 normal beats (N), 968 supraven-
tricular ectopic beats (S), 4673 ventricular ectopic beats
(V), and 550 fusion beats (F), total of 58482 beats. After
the augmentation, augmented train dataset was expanded to
consist of 52291 beats in each of the four categories (N,
S, V, F), resulting in a substantially larger training dataset
comprising 209164 beats in total, whereas the validation and
test datasets, retained their original composition ensuring
unbiased evaluation during model testing and validation.
Last, but not least, figure 5 displays a set of samples
representing both real and their opposite synthetic heartbeats,
each belonging to the various classes sourced from the
MIT-BIH dataset. The generated synthetic beats are slightly
different but retain the essential characteristics and patterns
found in the original heartbeats as we can barely distinguish
between the original and the synthetic beats.

E. THE LC-CNN MODEL
To detect and to classify arrhythmia in the ECG plot
images, CNNs are a category of Deep Neural Networks
(DNNs) that find extensive application in tasks such as
image classification and signal analysis, including their use in
disease diagnosis [22], [23]. These networks have the ability
to automatically identify complex patterns in data through
the use of stacked trainable small filters or kernels. This
characteristic reduces the need for extensive preprocessing
when compared to manually engineered feature extraction
methods. A typical CNN architecture consists of multiple
convolutional layers, each followed by essential components
like batch normalization, nonlinear activation functions,
dropout layers, pooling layers, and a classification layer

FIGURE 5. The generated synthetic ECG beats.

(typically a fully connected layer). This arrangement enables
the network to effectively capture hierarchical features
within the data. One of the remarkable advantages of
CNNs is their capacity to deliver outstanding performance
while maintaining efficient computational processing. This
is achieved through shared-weight architectures and paral-
lelization techniques [24]. Based on that, figure 6 illustrates
our proposed lightweight custom LC-CNN model which
consists of a series of layers designed for effective feature
extraction and classification of the ECG plot images. The
architecture begins with an input layer, which receives an
ECG grayscale image with dimensions of 128 pixels in
width, 128 pixels in height, and a single channel to represent
grayscale values. This input is then processed through three
convolutional layers followed by max-pooling layers for
feature extraction. The initial convolutional layer consists
of 32 filters with a kernel size of 3 × 3 and a stride of 1,
accompanied by a Rectified Linear Unit (ReLU) activation
function. Subsequently, a max-pooling layer with a 2×2 pool
size and a stride of 2 is applied to downsample the feature
maps. This is followed by a second convolutional layer
comprising 64 filters with a kernel size of 3 × 3 and a stride
of 1, also with ReLU activation. Another max-pooling layer
with a 2 × 2 pool size and a stride of 2 is then employed for
further downsampling. The third convolutional layer consists
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FIGURE 6. The LC-CNN architecture.

TABLE 5. The CNN structure.

of 128 filters with a kernel size of 3 × 3 and a stride
of 1, again with ReLU activation. Once again, a max-pooling
layer with a 2 × 2 pool size and a stride of 2 is added
to reduce dimensionality. The flattened output from these
convolutional and pooling layers is fed into a dense layer
comprising 128 neurons with ReLU activation. Finally, the
output layer which utilizes the softmax activation function
for class probability estimation, with the output representing
the classification of the four ECG arrhythmia classes. For
training, the model uses the Adam optimizer with learning
rate set to 0.001 and the categorical crossentropy loss function
to measure the difference between predicted and actual class
probabilities. Table 5 summarizes the proposed LC-CNN
model’s structure.

F. THE FINE-TUNED MOBILENET-V2
The pre-trained deep learning model, the MobileNet-V2
has been investigated in our paper to detect and to clas-
sify ECG arrhythmia. MobileNet-V2, is a neural network
architecture designed for efficient and lightweight deep
learning on mobile and embedded devices. It aims to
strike a balance between model accuracy and computational
efficiency. MobileNet-V2 introduces a novel building block
called the ‘‘Inverted Residual with Linear Bottleneck,’’
which allows for increased representational capacity while
keeping the model compact. This architecture includes
depth-wise separable convolutions and linear bottlenecks
to reduce the number of parameters and computational
cost. MobileNet-V2 achieves state-of-the-art results on tasks
like image classification and object detection, making it
an attractive choice for real-time and resource-constrained

applications. It represents a significant advancement in
the field of mobile deep learning [25]. By leveraging the
MobileNet-V2 model trained on ImageNet, we harness the
wealth of knowledge it has acquired during its extensive
training. Through fine-tuning, we adapt MobileNet-V2 to our
ECG images classification task showcasing the effectiveness
of MobileNet-V2 as a versatile and efficient tool for transfer
learning, demonstrating its capability to significantly boost
the performance of image recognition systems across diverse
domains. Figure 5 illustrates the architecture of the proposed
fine-tuned MobileNet-V2 model. Our first crucial step was
adapting the model to the specific requirements of our
grayscale ECG images, which possess a distinct input size
of 128 × 128 pixels and a single channel. To accomplish
this, we properly modified the model’s input shape and
thoughtfully addressed the issue of channel disparity by
performing weight averaging on the initial convolutional
layer, effectively transforming it from a multi-channel (RGB)
layer into a single-channel compatible one. To retain the
valuable knowledge ingrained in MobileNet-V2, tailoring it
for our ECG classification task, we froze the majority of its
layers, excluding only the first convolutional layer and adding
our custom classification layers. The latter comprise a Global
Average Pooling layer for spatial dimension reduction,
a Dense layer for feature extraction with 128 units and
ReLU activation, and a final Dense layer with softmax
activation for multi-class classification into the four distinct
ECG arrhythmia categories. With using the Adam optimizer
with a learning rate of 0.0001 and categorical cross-entropy
as the chosen loss function, this ensemble of design
choice culminates in a tailored model primed for our ECG
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TABLE 6. The LC-CNN model evaluation performance metrics.

TABLE 7. The MobileNet-V2 model evaluation performance metrics.

TABLE 8. The LC-CNN and MobileNet-V2 average performance metrics.

arrhythmia classification, blending the knowledge of pre-
trainedMobileNet-V2 layers with the specialized capabilities
of the custom layers. Figure 7 presents the architecture used
during model training.

IV. EXPERIMENTAL RESULTS
This section describes the experimental results obtained from
using the proposed deep learning models to detect and to
classify ECG arrhythmias.

To ensure the robustness and reliability of our results,
the training process for both, LC-CNN and MobileNet-V2
models on the MITBIH dataset were rigorously repeated for
five independent runs, allowing us to capture the variability
inherent in the training process and ensure the stability
and generalization of the models. Subsequently, the models’
performances was comprehensively evaluated, and average
metrics were calculated across the multiple runs. The
use of averaged performance metrics provides a robust
and representative assessment of the models’ capabilities,
mitigating potential biases introduced by a single training
instance. Thus, saving the weights associated with the
highest validation accuracy during each repetition, serves as
an important safeguard against potential model overfitting
and ensures that we retained the most optimal models for
evaluation. Throughout these repetitions, we incorporated
data generators and callbacks’ checkpoints to efficiently
handle the augmented ECG images and capture the optimal
state of the models during training. Given the critical nature
of arrhythmia diagnosis, our focus was on achieving the
highest accuracy in ECG signal classification, choosing the
single best-performing model based on the highest accuracy

achieved on the validation set. Notably, with each repetition,
we observed that the models consistently tended to reach
their optimal accuracy and stabilize at that level. The
dataset was split into three parts: 70% for training, 10%
for validation, and 20% for testing. We implemented early
stopping callbacks based on the validation loss and accuracy
which allowed us to end the training process if there was no
improvement in validation metrics over a specified number
of epochs, preventing overfitting and ensuring optimal
model generalization. In the context of the first proposed
model, the LC-CNN, we noticed that after just ten training
epochs, the model demonstrated remarkable progress with
a training accuracy of 99,96% and a validation accuracy of
99,22%. Notably, the loss function consistently decreased
during training until it eventually stabilized. In contrast,
the second proposed model, which involved fine-tuning the
MobileNet-V2 architecture, achieved a training accuracy
of 99,8%. However, the validation accuracy exhibited a
slight decline, settling at 98,82%. This is quite different
from the LC-CNN model, where the disparities between its
training and validation accuracies remained relatively small.
Additionally, it’s noteworthy that the LC-CNNmodel reached
its peak accuracy in significantly less time compared to
the MobileNet-V2 model, which required twice the train-
ing duration achieving approximate results. Figures 8 and 9
depict the training and validation accuracy and loss curves
for the proposed LC-CNN and MobileNet-V2 models,
respectively.

In the evaluation, both LC-CNN and MobileNet-V2
models’ showed outstanding performance with high accuracy
and robust precision, recall and F1 scores across all four
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FIGURE 7. The fine-tuned MobileNet-V2.

classes (F, N, S, V). The LC-CNNmodel displays remarkable
consistency and high accuracy in classifying ECG signals into
the N, S, V, and F classes across the five repetitions of train-
ing. As shown in table 6, the accuracy is consistently high,
ranging from 99.16% to 99.26%, demonstrating exceptional
performance with an average accuracy of 99.22%. Precision,
recall, and F1 score also reveal robust capabilities in
distinguishing normal (N) from abnormal (S, V, F) heartbeats.
Notably, the model exhibits near-perfect precision and recall
for normal beats, showcasing its efficiency in this category.
Although slightly lower, precision and recall for the S and
V beats remain impressive, while F beats yielded relatively
lower scores. The model’s overall stability across runs is
evident, and its high accuracy, precision, recall, and F1 scores
underscore its efficacy in classifying ECG images. Addition-
ally, the MobileNet-V2 model also showcases strong overall
performance with an average accuracy across runs of 98.69%
as depicted in table 7. The model excels in distinguishing
N beats, with precision, recall, and F1 scores consistently
exceeding 99%. For the S and V beats, the model maintains
high precision and recall, indicating its effectiveness in
identifying abnormal heartbeats. However, like the LC-CNN
model, the MobileNet-V2 showed slightly low performance

FIGURE 8. Train and Validation accuracy and loss of LC-CNN.

FIGURE 9. Train and validation accuracy and loss of MobileNet-V2.

classifying the F beats, reflected in lower precision, recall,
and F1 scores. The model’s overall demonstrated a high level
of stability, with small variations in metrics between different
runs. Overall, the MobileNet-V2 model demonstrates strong
potential for ECG signal classification. Table 8 resumes
the average performance metrics, encompassing accuracy,
precision, F1 score, and recall, for each proposed model.

Furthermore, Figures 10 and 11 illustrate the confusion
matrices of the best evaluation of the second run model,
offering insights into the prediction outcomes of proposed
models. The consistently high precision, recall, and F1 scores
observed across most classes indicate that the models prove
to be highly dependable and accurate in their classifica-
tion capabilities, making them valuable choices for our
arrhythmia ECG beats classification approach.

To conclude these experiments, a paired t-test with a
significance level of 0.05 was conducted to compare the
performance of the two deep learning models, LC-CNN and
MobileNet-V2, using the accuracy values obtained from the
multiple runs. The purpose of this statistical analysis was
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FIGURE 10. Confusion matrix of LC-CNN.

FIGURE 11. Confusion matrix of MobileNet-V2.

to assess whether there is a significant difference in the
mean accuracies of the two models. The null hypothesis
(H0) proposed that there is no significant difference in the
mean accuracies between MobileNet-V2 and CNN, while
the alternative hypothesis (H1) suggested the presence of a
significant difference. The computed results of the paired
t-test were a t-statistic of -12.71867547673 and a p-value of
0.000220137589. The t-statistic represents the strength of the
evidence against the null hypothesis, and the p-value indicates
the probability of observing such results if the null hypothesis
were true. In our case, the remarkably low p-value (less than
the common significance level of 0.05) led to the rejection
of the null hypothesis. Further exploration of the variation in
accuracy was identified, revealing a variance of 0.00713 for
MobileNetV2 and 0.00183 for CNN since the mean accuracy
for MobileNet-V2 was determined to be 98.674%, while
CNN exhibited a slightly higher mean accuracy of 99.224%.
These statistics clarifies not only the central tendency of

the models’ performances but also the degree of variability.
The conclusion is that there is a significant difference
in the performance of the MobileNet-V2 and LC-CNN
models as already observed based on the accuracy metrics.
The negative t-statistic suggests that on average, the CNN
model outperformed MobileNet-V2 for our MiT-BiH ECG
image dataset.

V. PERFORMANCE COMPARISON
We present a comprehensive performance comparison
between our proposed approach using the LC-CNN and
MobileNet-V2 models, along with several existing deep
learning studies aimed at detecting and classifying ECG sig-
nals. As demonstrated in Table V, our research prominently
distinguishes itself by achieving the highest accuracy rate
of 99.22% through the utilization of the LC-CNN model.
Notably, Works [8] and [17] incorporated GAN models
for data augmentation, while the study of [14] employed
the GAN for ECG signal classification. Conversely, the
remaining studies relied on conventional techniques such as
cropping, resizing, shifting, flipping, and resampling to bal-
ance the dataset. However, none of these methods managed
to surpass the accuracy achieved in our paper. Therefore, the
adoption of ACGAN model for data augmentation totally
emerges as a pivotal innovation, substantially enhancing our
models’ proficiency in accurately classifying ECG beats.
This underscores the effectiveness of our selected data
augmentation strategy in elevating the performance of deep
learningmodels for ECG beat classification. Additionally, the
MobileNet-V2 model, with its average accuracy of 98.69%,
surpasses four out of the eight compared works. It’s essential
to highlight that these studies have employed diverse deep
learning methodologies for ECG arrhythmia classification,
encompassing various CNN model architectures and com-
binations with other deep learning models. This reaffirms
the exceptional effectiveness of our approach, establishing its
ability to outperform a multitude of methods documented in
the existing literature.

VI. ABLATION STUDY
In this section, we conduct an ablation study to analyze the
impact of using the different components within our proposed
approach on the achieved results. We examine the effects
of denoising and augmentation on our proposed approach
for both proposed models. We assessed three different
outcomes for the following configurations: without denoising
and augmentation, without augmentation, without denoising,
compared to the proposed full approach. The provided
table 10 outlines the performance metrics of the various mod-
els and configurations. Notably, the LC-CNNwithout denoise
demonstrates impressive accuracy of 99.15% and balanced
precision, recall, and F1 score, emphasizing its robustness
even without denoising. The slight drop in accuracy for
LC-CNN without augmentation suggests the importance of
data augmentation for improved generalization. In contrast,
MobileNet-V2 without denoise and augmentation exhibits
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TABLE 9. Comparison of our work with other results.

TABLE 10. Ablation study for our proposed approach to study the effect
of denoising and augmentation.

lower performance, highlighting the impact of architectural
differences and the necessity of denoising and augmentation.
The proposed LC-CNN model stands out with the highest
accuracy, precision, recall, and F1 score, indicating the
success of the proposed components, especially exhibited
superior F1 scores for S and V beats. The proposed
MobileNet-V2, while slightly falling behind the LC-CNN,
still outperforms individual configurations, emphasizing its
effectiveness. This ablation study underlines the critical role
of denoising and augmentation, with models lacking these
components experiencing significant performance drops. The
proposed models, incorporating all the components, show-
case the potential for further improvements, demonstrating
the positive impact of a comprehensive approach in achieving
superior classification results.

VII. DISCUSSION
in this study, we propose contributions to the domain of
arrhythmia detection using ECG signals and deep learning
models. One innovative aspect of our work involves the
conversion of ECG signals into PNG images through plotting.
This process aims to explore novel approaches in arrhythmia

analysis, employing computer vision to potentially enhance
diagnostic accuracy. Two Convolutional Neural Network
models trained and evaluated on the MIT-BIH dataset were
proposed. These models consist of the lightweight custom
CNN (LC-CCN) model and the pre-trained MobileNet-V2.
Opting for the LC-CNN model with only three convolutional
layers highlights the effectiveness of simplicity in deep
learning architectures. By doing so, we demonstrate that
high accuracy can be achieved without the need for exces-
sive model complexity. Furthermore, incorporating transfer
learning, especially with MobileNet-V2, involves leveraging
pre-trained features and transfer learning knowledge to
improve the accuracy of arrhythmia detection. MobileNet-V2
is known for its lightweight design which makes it suitable
and effective to be investigated along with the proposed
LC-CNN to significantly boost the performance of ECG
images classification. Additionally, the preprocessing steps
played a crucial role in improving classification accuracy by
ensuring high-quality, well-segmented signals. Furthermore,
one of our main contributions lies in addressing the challenge
of data imbalance, a common issue in the MIT-BIH dataset.
We introduce an ACGAN model to generate synthetic ECG
signals, with a specific focus on the underrepresented arrhyth-
mia classes. This innovative data augmentation technique
significantly bolsters our dataset, thereby improving the
proposed models’ capability to handle the minority classes
effectively. The rationale behind opting for the ACGAN
model was that in essence, we employed a conditional
Generative Adversarial Network (CGAN) [26], to address
the issue of data imbalance. Our objective was to utilize the
conditional feature within the GAN model to mitigate class
imbalance issues specifically within the minority classes.
However, despite its architectural framework similarity with
the ACGAN, the performance of the CGAN remained
unsatisfactory even after a prolonged training period of
approximately 14,000 epochs. The CGAN was capable of
generating synthetic data, but it failed to effectively eliminate
the inherent noise in the generated data, also, it was unable
to handle the considerable diversity present within the ECG
beats belonging to a single class. Whereas, the ACGAN
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displayed superior performance, producing high-quality
synthetic ECG images with relative ease. remarkably, the
ACGAN exhibited promising results within the initial epochs
of training. This improved performance can be attributed to
its capacity for additional class label prediction, making it
a more favorable choice for the generation of ECG images
in our particular application. To evaluate the impact of
denoising and augmentation, we performed an ablation study.
Results indicate that the proposed approach’s performance
significantly benefits from these enhancements. Furthermore,
we conducted a comprehensive analysis of average perfor-
mance metrics to assess the overall effectiveness of our
proposed models. Metrics such as accuracy, precision, recall,
and F1 score were computed. The inclusion of denois-
ing and augmentation consistently elevated these metrics,
underscoring the positive impact of these techniques on the
models’ overall performance. Hence, to rigorously validate
our findings, we performed statistical tests comparing the
LC-CNN and MobileNet-V2 models. The results of the tests
confirm that the LC-CNN model outperforms MobileNet-V2
in terms of arrhythmia detection accuracy. This supports
that simplicity, coupled with effective design choices, can
lead to superior model performance. Eventually, while
the proposed approach has shown promising results, there
are certain limitations that require attention and further
investigation. To begin with, in our study, we opted to
transform ECG signals into structured plots as images
PNG format, representing sequences of ECG data points.
Nevertheless, it’s noteworthy to acknowledge that ECG
signals inherently belong to the category of time series data,
given their continuous recording over time. Future research
efforts would benefit from generating ECG images that
encapsulate both temporal and frequency/scale information,
employing techniques like spectrogram generation or wavelet
transforms. Moreover, our approach was implemented using
relatively simple deep learning models for the detection and
classification of ECG signals. After yielding excellent results,
we believe that employing more intricate and deeper deep
learning architectures has the potential to further enhance the
classification performance of ECG signals.

VIII. CONCLUSION
In this paper, we presented a novel deep learning approach
for the diagnosis and classification of cardiac arrhythmias
using ECG signals plot images. Our approach incorporated
the design of a Lightweight Custom Convolutional Neu-
ral Networks (LC-CNN) and fine-tuning the pre-trained
MobileNet-V2 model. Both models, when trained with
our proposed architectures, exhibited remarkable perfor-
mance, achieving average accuracy rates of 99.22% and
98.69%, respectively. We emphasize the significance of
data preprocessing, encompassing noise reduction and beat
segmentation in ensuring high-quality input for our model.
Not to mention one of the highlights of this work is our
novel approach to class imbalance through the utilization of
an ACGAN model for data augmentation. This addresses

a common challenge in medical datasets and enhances the
model’s capability to detect underrepresented arrhythmia
classes. Our comprehensive evaluation, including precision,
recall, and F1-score demonstrates the robustness of our
approach beyond just high accuracy. After achieving excel-
lent results, in the future studies, our focus will extend
to conduct comprehensive generalization testing on diverse
ECG datasets. Furthermore, more complex deep learning
models would be considered to enhance the classification
performance of the ECG signals as images using techniques
like spectrogram generation or wavelet transforms. Lastly,
we would delve into the implementation of real-time ECG
arrhythmia monitoring applications based on wearable IoT
technologies.
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