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ABSTRACT Poor weather conditions, such as haze, fog, and smog, present significant challenges in
capturing clear and visually appealing images. Though the existing image dehazing algorithms have
achieved significant performance, they still suffer from various problems such as generalization to diverse
hazy conditions, potential artifact generation, and computational complexity. Additionally, sensitivity to
parameter settings, haze density variability, image content, noise, and scene-specific information remains
areas of concern. To address these issues, we propose a Deep Custom Spatial and Spectral Consistency
Layer-based Dehazing Network (DSSCNet) that effectively removes haze from images while preserving
important spatial and spectral details. The network architecture includes a custom Haze Removal Layer
(HRL), convolutional layers with ReLU activation, pooling layers, skip connections, and a custom Spatial
and Spectral Consistency Layer (cSSCL). HRL estimates atmospheric light and transmission maps to
generate an intermediate haze-free image. The proposed loss function combines Mean Squared Error
(MSE) loss with a Consistency Loss (CL) to encourage content preservation during dehazing. Extensive
experimental results demonstrate that DSSCNet outperforms competitive models in terms of various
performancemetrics, including contrast gain (cg), new visible edges (e), new edge gradients (r̄), Peak Signal-
to-Noise Ratio (PSNR), and Structural Similarity Index (SSIM) by average improvements of approximately
1.27%, 1.12%, 1.18%, 1.21%, and 1.24%, respectively.

INDEX TERMS Dehazing, deep learning, convolutional neural network, atmospheric light, transmission
map, spatial and spectral consistency, haze removal, image enhancement, image dehazing, optimization,
Adam optimizer.

I. INTRODUCTION
Image dehazing is a crucial image processing task that aims
to improve visibility and restore clear details in images
that are affected by atmospheric haze, fog, or other adverse
environmental conditions [1], [2]. Haze in images causes
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a reduction in contrast, color saturation, and sharpness,
making it challenging for humans and computer vision
systems to perceive and analyze visual content accurately
[3], [4]. Dehazing techniques play a vital role in various
real-world applications, including surveillance, autonomous
vehicles, remote sensing, and outdoor photography, where
visibility is often compromised due to weather conditions or
pollution [5]. The physical process of haze formation occurs
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due to the scattering and absorption of light by particles and
molecules present in the atmosphere [6]. Light from objects
in the scene interacts with these particles, leading to multiple
scattering events. These events result in the loss of image
details and degradation of visual quality. Traditional image
dehazing methods often model the atmospheric scattering
process and aim to estimate and remove the haze from
the observed images [7]. These approaches typically rely
on various image priors, hand-crafted features, or physical
constraints to achieve dehazing.

A. BACKGROUND
In recent years, data-driven approaches based on deep
learning have gained immense popularity in the field of
image dehazing [8]. Convolutional Neural Networks (CNNs)
have shown exceptional performance in various computer
vision tasks, including dehazing, defogging, desmogging,
etc. Deep learning-based dehazing methods learn complex
mappings between hazy and clean image pairs from large-
scale datasets, enabling them to generalize well to different
haze conditions and improve dehazing quality [8]. These
techniques have demonstrated superior performance com-
pared to traditional methods, as they can capture intricate
image features and implicitly learn the complex scattering
and absorption phenomena. One of the key advantages of
deep learning-based dehazing is its ability to generalize well
to real-world scenarios, including those with non-uniform
haze distributions, varying scene complexities, and diverse
lighting conditions [9]. These methods can effectively restore
details in challenging scenarios, such as underwater and
nighttime dehazing, where traditional approaches often
struggle to provide satisfactory results [10].
Moreover, researchers have explored innovative

approaches that integrate domain-specific information, such
as polarization information in underwater dehazing, to further
enhance the dehazing process [10]. These techniques leverage
the physical properties of light polarization to better
estimate and remove the scattered light from underwater
scenes, resulting in improved visibility and image quality.
As image dehazing continues to be a subject of extensive
research, the field is witnessing ongoing advancements in
model architectures, loss functions, and data augmentation
techniques. Real-time dehazing methods are being developed
to meet the needs of applications with strict latency require-
ments, such as real-time video processing for autonomous
vehicles and surveillance systems [11]. In this ever-evolving
landscape of image dehazing, researchers work to tackle the
challenges posed by various environmental conditions and
achieve natural, artifact-free, and visually pleasing dehazed
images [8]. The integration of physical models, deep learning,
and domain-specific information shows great promise in
advancing the capabilities of image dehazing, facilitating
practical and effective solutions across a broad spectrum of
real-world applications [9].

Recently, researchers have proposed various deep learning
architectures for image dehazing. These advancements aim

to improve image quality and visibility in various hazy
conditions for different applications, including remote sens-
ing, high-resolution dehazing, and multi-agent reinforce-
ment learning [12]. Methods like Hadamard-Product (HP)
models [13] and deep dehazing networks achieved realistic
dehazing and handled low-light and underwater scenarios
[13], [14]. Transfer learning and feedback mechanisms were
used to enhance dehazing performance [15], [16], while
unsupervised methods relied on deep image prior [17].
Over time, researchers have developed various dehazing
techniques, which can be categorized as prior-based methods,
deep learning approaches, and fusion strategies.

1) PRIOR-BASED APPROACHES
The foundation of image dehazing lies in prior-basedmethods
such as the dark channel prior (DCP) [18], [19] and
atmospheric scattering models [20]. These methods involve
estimating critical parameters like transmission maps and
atmospheric light to remove haze from images. However,
these methods often rely on simplified atmospheric models
that may not fully capture the complexities of real-world
scenarios. Although effective, their assumptions can limit
their performance in challenging environments.

2) DEEP LEARNING REVOLUTION
The emergence of deep learning, particularly convolutional
neural networks (CNNs), has revolutionized the field of
image dehazing. Techniques like Light-DehazeNet [21] and
cascaded CNNs [22] harness the power of deep networks
to jointly estimate transmission maps and atmospheric light,
resulting in substantial improvements in dehazing perfor-
mance. The integration of adversarial learning strategies [14],
[23] further enhances the restored images, achieving more
natural dehazing results.

3) FUSION-BASED STRATEGIES
Fusion-based methods, such as the Fusion-Based Variational
Image Dehazing (FVID) approach [24], utilize optimization
frameworks to combine the outcomes of different dehazing
models. This fusion strategy tackles challenges related
to contrast, saturation, and image structure preservation,
leading to enhanced dehazing outcomes. By integrating
distinct sources of information, these methods effectively
reduce the impact of haze, thereby enhancing image
clarity.

4) CHALLENGES AND SPECIALIZATION
Addressing specific challenges, like nighttime dehazing, has
spurred the development of specialized methods [25], [26].
These methods take into account the unique characteristics
of low-light conditions and adaptively estimate atmospheric
light. As a result, they effectively enhance visibility and
mitigate artifacts associated with nighttime imaging. Further-
more, techniques such as linear transformations [27] present
efficient alternatives for image dehazing.
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B. MOTIVATION AND CONTRIBUTIONS
Existing image dehazing algorithms have made significant
progress, but they still face limitations such as challenges in
generalization to diverse hazy conditions, potential artifact
generation, and computational complexity. Additionally,
sensitivity to parameter settings, haze density variability,
image content, noise, and scene-specific information remains
areas of concern. Overcoming these limitations is crucial for
advancing image dehazing techniques to achieve more robust
and reliable results in various real-world scenarios.

To overcome these limitations, this paper makes the
following contributions:

1) To effectively remove haze while preserving important
image details, including spectral and spatial infor-
mation, two custom layers are designed: the Haze
Removal Layer (HRL) and the Spatial and Spectral
Consistency Layer (cSSCL).

2) To improve information flow and feature extraction,
skip connections are used.

3) A consistency term is added to the loss function
to encourage the preservation of spatial and spectral
information of the images during the dehazing process.

Remainder of the paper is structured as follows: Section II
provides an overview of the related work. In Section III, the
proposed Deep cSSCL-based Dehazing Network (DSSCNet)
is discussed. The comparative analysis of DSSCNet is
presented in Section IV. Finally, Section V concludes the
paper.

II. RELATED WORK
Kalra et al. proposed a novel deep learning architecture for
dehazing of aerial remote sensing images [28]. The authors
introduced an end-to-end deep learning network (EEDNet)
that efficiently restored aerial remote sensing images by
directly computing the relationship between hazy and clear
images. This architecture eliminatedmany assumptions made
in other models and achieved realistic dehazed images by
identifying structural and statistical portions separately from
the image. Han et al. proposed DeHRNet, a high-resolution
network for single image dehazing [29]. DeHRNet utilized
a modified network originally designed for human pose
estimation. The authors introduced a new stage that enhanced
high-resolution representations, leading to superior dehazing
performance over existingmethods in synthesized and natural
hazy images. Wu et al. introduced a three subnets dehazing
network (TSDNet) based on transfer learning [15]. The
authors presented a CNNwith transfer learning that improved
dehazing performance, particularly in nonhomogeneous hazy
map datasets. Their approach enhanced model efficiency,
haze removal quality, and generalization ability in small-scale
datasets.

Yu et al. utilized deep reinforcement learning for aerial
image dehazing [30]. The authors proposed DRL_Dehaze,
a multi-agent deep reinforcement learning network, which
automatically selected the most suitable dehazing method
in multi-scale haze situations, achieving good dehazing

results on various ground types. Song et al. explored
the use of vision transformers for single image dehazing
and introduced DehazeFormer, an improved Transformer
architecture [12]. DehazeFormer outperformed existing
methods on image dehazing datasets and achieved state-
of-the-art results, demonstrating the potential of Vision
Transformers in the field of image dehazing. Liu et al.
proposed a Hadamard-Product (HP) model for image
dehazing, consisting of data-driven priors and a Learnable
Hadamard-Product-Propagation (LHPP) approach [13].
The LHPP used principle-inspired guidance and recovery
modules to eliminate noises/artifacts during the dehazing
process, leading to more realistic outputs. HP model was
also extended to solve low-light image enhancement and
underwater image enhancement problems.

Li et al. proposed a deep dehazing network (DDNet) with
latent ensembling architecture and adversarial learning [14].
The network addressed issues with inaccurate estimation of
transmission and atmospheric light in hazy images by using
a multi-task generator and a multi-scale discriminator. The
approach achieved end-to-end photo-realistic dehazing, with
superior performance over other methods in various bench-
marks. Song and Liu introduced CPAD-Net, an improved
dehazing network with attention mechanisms and dense
residual blocks [31]. The network effectively captured
non-uniform haze distribution and reconstructed clearer
dehazed images with improved texture detail information and
color recovery. Comparative evaluations demonstrated the
superiority of CPAD-Net against other dehazing algorithms.
Liang et al. proposed a Progressive Single-Image Dehazing
Network with Feedback Mechanism (PFBN) [16]. PFBN
used a recurrent structure with feedback blocks to improve
the dehazing process and preserve ground information.
An enhancement self-ensemble strategy further enhanced the
dehazing results, and extensive experiments validated the
effectiveness of PFBN.

Xu and Wei presented an unsupervised single-image
dehazing method called ‘‘Pyramid Deep dehazing (PDL)’’
that utilized deep image prior [17]. The method was based
on the optical model of haze and other haze-like degradation
images. The Pyramid deep image strategy gradually gen-
erated clear background without the need for extra data or
handcrafted priors, making it effective for various haze-like
degradation scenarios. Parihar and Gupta developed a neural
network for image dehazing based on two phases: estimating
the transmission map and performing haze removal [32].
The network avoided estimating ambient light and achieved
improved dehazing performance.

However, the existing image dehazing techniques exhibit
several limitations. Most of the existing approaches relying
on handcrafted priors often struggle to accurately estimate the
complex characteristics of real-world hazy images, leading
to suboptimal results in challenging scenarios [3]. More-
over, many deep learning-based methods heavily depend
on training data, making them less adaptable to different
datasets and hazy conditions [13]. Inaccurate estimation
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FIGURE 1. Diagrammatic flow of the proposed deep custom spatial and spectral consistency layer-based dehazing network.

of transmission and atmospheric light in hazy images can
further compromise the realism of dehazed outputs [14].
Additionally, certain techniques may encounter difficulties in
handling non-uniform haze distributions, resulting in inade-
quate haze removal from specific regions of the image [31].
The domain shift between training and testing data can affect
the performance of deep learning-based methods, making
them less reliable in practical applications [5]. Furthermore,
preprocessing with dehazing may not always substantially
improve the performance of high-level vision tasks, leading
to unpredictable outcomes [5]. Some dehazing algorithms
may inadvertently introduce artifacts or noises during the
restoration process [13]. Limited by small-scale datasets,
certain models may lack the necessary generalization ability
and efficiency to handle a wide range of hazy scenarios [15].
Finally, the lack of robustness in some dehazingmethods may
pose challenges in achieving consistently effective results in
real-world complex settings [3].

III. DEEP CUSTOM SPATIAL AND SPECTRAL
CONSISTENCY LAYER-BASED DEHAZING
NETWORK
A Deep Custom Spatial and Spectral Consistency Layer-
based Dehazing Network (DSSCNet) is designed to effec-
tively remove haze from hazy images while preserving spatial
and spectral information. Figure 1 shows the diagrammatic

flow of the DSSCNet. The architecture consists of a
custom HRL, convolutional layers with ReLU activation,
pooling layers, skip connections, and a custom cSSCL. HRL
estimates the atmospheric light and transmission map to
generate an intermediate haze-free image. Consistency Loss
(CL) term is added to MSE Loss function to enforce spatial
and spectral preservation during the dehazing process. The
network is trained using Adam optimizer to optimize the
proposed loss function.

A. ARCHITECTURE
The deep dehazing network is designed to remove haze
from input images effectively while preserving spatial and
spectral information. The network consists of multiple layers,
including custom layers specifically designed to address
haze-related challenges (refer Algorithm 1). The remaining
section discusses the complete architecture.

1) INPUT LAYER
The input layer takes the hazy image X ∈ RH×W×C as input,
where H , W , and C represent the height, width, and number
of channels of the input image, respectively.

2) CUSTOM LAYER 1: HAZE REMOVAL LAYER
HRL plays a crucial role in estimating and removing the haze
from the input image. It aims to generate an intermediate

44328 VOLUME 12, 2024



M. Kaur et al.: DSSCNet: Deep Custom Spatial and Spectral Consistency Layer-Based Dehazing Network

Algorithm 1 Proposed DSSCNet Architecture
Require: Hazy image X ∈ RH×W×C

Ensure: Dehazed output Ŷ
1: Compute estimated atmospheric light A using Eq. (1)
2: Compute estimated transmission map t using Eq. (2)
3: Compute intermediate haze-free image I using Eq. (3)
4: for i = 1 to L do
5: Zi ← Conv(Zi−1)+ ReLU(Zi−1)
6: end for
7: Apply pooling layers and skip connections to enhance feature

extraction
8: Generate dehazed output Ŷ using cSSCL with perceptual loss

or adversarial loss
9: Compute MSE Loss as in Eq. (4)

10: Compute CL as in Eq. (5)
11: Compute Revised Loss (RL) as in Eq. (6) with λ as a trade-off

parameter
12: Use Adam optimizer with Algorithm 2 to optimize parame-

ters
13: return Ŷ

haze-free image I by estimating the atmospheric light and
transmission map from the hazy input image X . The process
of haze removal involves three main steps: estimating the
atmospheric light, the transmission map, and restoration
model.

a: ESTIMATING ATMOSPHERIC LIGHT
The atmospheric light A represents the global illumination
of the scene. It is a crucial parameter for dehazing as it
helps estimate the amount of haze present in the image.
The atmospheric light estimation can be formulated as
follows:

A = argmax
p

∥∥∥∥ X (p)
∥X (p)∥

− t(p)
∥∥∥∥ , (1)

where p represents a pixel position. X (p) is the color of a
pixel in the hazy image. t(p) is the estimated transmission
map at position p. The atmospheric light is selected as
the color of a pixel in the hazy image with the maximum
distance from the estimated transmission map value at that
position.

b: ESTIMATING TRANSMISSION MAP
The transmission map t indicates the proportion of haze in the
scene. A higher value in the transmission map corresponds
to clearer regions in the image with less haze, while lower
values indicate regions with more haze. The transmission
map estimation can be obtained by solving the following
optimization problem:

t = argmin
t

∥∥∥∥X − At
− J

∥∥∥∥2 + λ ∥∇t∥2 , (2)

where J is the ideal haze-free image. ∇t represents the
gradient of a transmission map. The first term in the
optimization problem enforces the constraint that the product
of transmission map and haze-free image should be close to
the difference between hazy image and atmospheric light.

The second term is a regularization term with weight λ
that penalizes rapid changes in the transmission map, thus
promoting smoothness.

c: INTERMEDIATE HAZE-FREE IMAGE
Once the atmospheric light A and transmission map t
are estimated, the intermediate haze-free image I can be
computed using the following restoration model:

I =
X − A

t
+ A, (3)

By performing these steps in HRL, the deep dehazing
network can effectively estimate and remove the haze from
the input image, leading to better results in subsequent layers
of the network. The estimation process involves solving
optimization problems and applying atmospheric scattering
models, which are crucial for accurately dehazing the
image.

3) CONVOLUTIONAL LAYERS WITH RELU ACTIVATION
Following HRL, the network comprises several convolutional
layers with ReLU activation functions. Each convolutional
layer applies a set of learnable filters to the input feature
maps and introduces non-linearity through ReLU activation.
The convolutional layers allow the network to learn complex
relationships between the input and output, while ReLU
activation prevents the vanishing gradient problem. The
output feature maps of each convolutional layer are denoted
as Zi, and L represents the total number of layers in the
network.

Zi = Conv(Zi−1)+ ReLU(Zi−1), i = 1, 2, . . . ,L, (4)

4) POOLING LAYERS AND SKIP CONNECTIONS
The network utilizes max-pooling to downsample the feature
maps and capture hierarchical representations of the input
image. Additionally, skip connections are employed to
facilitate the flow of information throughout the network.
These skip connections directly connect the output of
certain layers to the output of deeper layers, enabling better
propagation of low-level and high-level features. The skip
connections are essential for preserving spatial details during
the dehazing process.

5) CUSTOM LAYER 2: CUSTOM SPATIAL AND SPECTRAL
CONSISTENCY LAYER
The cSSCL enforces the preservation of spatial and spectral
information in the dehazed output. It ensures that the dehazed
image remains visually consistent with the input image in
terms of structural details and color fidelity. The layer takes
the intermediate haze-free image I and the hazy input image
X and generates the final dehazed output Ŷ . Note that cSSCL
utilize Revised Loss (RL) function with the consistency
term (see Eq. 6) to enforce spatial and spectral consistency
between the input and dehazed images.
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6) FINAL OUTPUT LAYER
Final layer of the network generates the dehazed output Ŷ as:

Output: Ŷ = Conv(ZL), (5)

where ZL represents the output feature maps of the last
convolutional layer.

By incorporating HRL and cSSCL, the deep dehazing
network can restore hazy images in a way that the restored
images appear natural.

B. LOSS FUNCTION
In the proposed network, a consistency term in the loss
function is added to encourage the preservation of spatial
and spectral information of the images during the dehazing
process. This consistency term ensures that the dehazing
network maintains the original radiance of the image while
removing the haze. Revised Loss (RL) function with the
consistency term is as follows:

RL = MSE Loss+ λ× CL, (6)

where MSE Loss is the mean squared error (MSE) loss as
defined in Eq. 7, and CL is the consistency term that measures
the difference between input hazy image and dehazed image
in terms of spatial and spectral information. Parameter λ
controls the importance of consistency term relative to MSE
loss.

MSE loss measures the difference between generated
dehazed output Ŷ and ground truth haze-free image Y . It can
be computed as:

MSE Loss =
1
HW

H∑
i=1

W∑
j=1

(Ŷij − Yij)2, (7)

where Ŷij and Yij represent the pixel values at position (i, j) in
Ŷ and Y , respectively.
The CL is defined as follows:

CL

=
1
HW

H∑
i=1

W∑
j=1

||Xij − Dehaze(Xij)||1 + ||Ŷij − Haze(Ŷij)||1,

(8)

where || · ||1 represents L1 norm.
Dehaze(Xij) and Haze(Ŷij) represent the dehazing and

hazing processes applied to the input hazy image X and the
generated dehazed output Ŷ , respectively.

Overall the loss function is designed to enforce two key
aspects: pixel-wise reconstruction accuracy (measured by
the MSE) and spatial-spectral consistency between the input
hazy image (X ) and the dehazed output (Ŷ ). The rationale
behind using the differences between the input hazy image
and the dehazed image, as well as the difference between
the generated dehazed image and the hazy image, lies in the
following considerations:

1) SPATIAL CONSISTENCY (FIRST TERM)

||Xij − Dehaze(Xij)||1 (9)

This term measures the pixel-wise absolute difference
between the input hazy image (X ) and its dehazed version.
The dehazing process aims to remove the atmospheric haze
while preserving the underlying scene structure. By penal-
izing the differences between the original hazy image and
its dehazed counterpart, the network is encouraged to retain
spatial details during the dehazing operation.

2) SPECTRAL CONSISTENCY (SECOND TERM)

||Ŷij − Haze(Ŷij)||1 (10)

This term measures the pixel-wise absolute difference
between the generated dehazed output (Ŷ ) and its hazy
version. The hazing process is essentially the introduction
of atmospheric haze to a clear image. By penalizing the
differences between the generated dehazed image and its
hazy version, the network is encouraged to produce dehazed
images that maintain the original spectral characteristics.

The combination of these two terms in the loss function
(RL) ensures a trade-off between accurately reconstructing
pixel values and maintaining the spatial-spectral details of the
original scene. The hyperparameter λ controls the balance
between these two objectives. By adjusting λ, one can
influence whether the network prioritizes pixel-wise fidelity
or spatial-spectral consistency.

C. TRAINING
The deep dehazing network is trained using a large dataset
of paired hazy and haze-free images. The training process
aims to minimize the proposed loss function by adjusting
the network’s parameters using Adam optimizer, which
combines the benefits of both momentum-based optimization
and adaptive learning rates. Adam optimizer adjusts the
learning rate for each parameter based on the past gradients,
making it more effective in handling different parameter
updates. The update rule for Adam is as follows:

Update rule for Adam: θi = θi −
α

√
vi + ϵ

m̂i, (11)

where θi represents the parameters of i-th layer, α is the
learning rate, and ϵ is a small constant for numerical stability.
m̂i is the biased first moment estimate of the gradients. vi is
the biased second raw moment estimate of the gradients.

To incorporate Adam optimizer into the training process,
we modify Algorithm 2 as follows:

In training process, Adam optimizer adapts the learning
rates for each parameter individually, which can lead to faster
convergence and better overall performance compared to the
standard SGD optimizer. The hyperparameters β1 and β2
control the decay rates for the first and second moment
estimates, respectively. The ϵ parameter is introduced for
numerical stability to prevent division by zero. The algorithm
continues training until the specified number of epochs
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Algorithm 2 Deep Dehazing Network Training With Adam

1: Input:Training dataset {(Xi,Yi)}Ni=1, whereXi is the hazy
input and Yi is the corresponding ground truth haze-free
image

2: Initialize the parameters of the deep dehazing network
randomly

3: Set the learning rate α, number of epochs E , and batch
size B

4: Initialize first moment variables m̂i and second moment
variables vi for all parameters to 0

5: for epoch = 1 to E do
6: for each batch {(Xj,Yj)}Bj=1 in the training dataset do
7: Compute the dehazed output Ŷj using the current

parameters of the network
8: Compute the proposed loss between Ŷj and Yj using

Eq. (6)
9: Compute the gradients of the loss with respect to the

network parameters
10: Update the first moment estimates:
11: m̂i = β1m̂i + (1− β1)gradienti
12: Update the second moment estimates:
13: vi = β2vi + (1− β2)gradient2i
14: Compute the bias-corrected first moment estimate:
15: m̂i =

m̂i
1−β t1

16: Compute the bias-corrected second moment esti-
mate:

17: vi =
vi

1−β t2
18: Compute the parameter update:
19: updatei =

α
√
vi+ϵ

m̂i
20: Update the network parameters using Adam update

rule:
21: param = param− updatei
22: end for
23: end for
24: Output: Trained deep dehazing network with optimized

parameters

is reached, at which point the trained deep dehazing network
is ready for inference and dehazing new hazy images.

IV. PERFORMANCE ANALYSIS
In this paper, we conducted our experiments using MATLAB
2023a software, making use of both Deep Learning Toolbox
and Image Processing Toolbox. Our computational setup
consisted of a high-performance system equipped with an
Intel Core i9 processor, 64GB RAM, and NVIDIA GeForce
RTX Studio GPU.

Extensive comparisons are performed among various state-
of-the-art image dehazing methods, including PDL [17],
EEDNet [28], DeHRNet [29], TSDNet [15], Dehaze-
Former [12], DDNet [14], CPAD-Net [31], PFBN [16],
and the proposed DSSCNet with different loss functions
(MSE Loss, CL, and RL). The evaluations are performed on

RESIDE dataset [33] using various visual and quantitative
assessments.

A. DATASET
The Realistic Single Image Dehazing (RESIDE) dataset [33]
serves as a comprehensive and valuable benchmark for
image dehazing research. It offers a rich collection of both
synthetic and real-world hazy images, covering diverse data
sources and image contents. The dataset is thoughtfully
organized into five subsets, each tailored for specific training
or evaluation purposes. Notably, it contains a substantial
training set comprising 110,500 synthetic hazy indoor images
(ITS) and 313,950 synthetic hazy outdoor images (OTS).
In this paper, we opted to utilize RESIDE as the benchmark
dataset due to its remarkable attributes, including its large
scale, diverse content, and direct relevance to real-world
dehazing scenarios.

In our experiments, we partitioned RESIDE dataset into
three distinct fractions: 75% for training, 15% for validation,
and 10% for testing. This data decomposition strategy ensures
that the deep dehazing network is trained on a substantial
portion of the dataset to learn the underlying patterns and
features related to haze removal.

B. HYPERPARAMETERS OF PROPOSED DEHAZING
NETWORK
Table 1 shows the various hyperparameters used for training
the proposed dehazing model. The learning rate (α) is set to
0.001. The model is trained for 1500 epochs with a batch size
of 32. The regularization parameter (λ) is 0.01, and the first
and secondmoment decay rates (β1 and β2) are 0.9 and 0.999,
respectively. The epsilon value (ϵ) is set to 1e-8 for numerical
stability during optimization. These hyperparameters are
chosen based upon trail-and-error experiments.

TABLE 1. Hyperparameters of Proposed Dehazing Network.

C. VISUAL ANALYSIS
Fig. 2 illustrates the dehazing results of different image
dehazing models applied to a building hazy input image.
In Fig. 2(a), the hazy image serves as the input containing
dense haze. Fig. 2(b) shows the result of PDL [17], which
exhibits over restoration, artificial image artifacts, and degra-
dation in edges and textures. Similarly, Figs. 2(c) and 2(d)
depict the outputs of EEDNet [28] and DeHRNet [29],
respectively, both demonstrating moderate darkening, edge
and texture degradation, and poor spectral and spatial
information preservation. Fig. 2(e) represents the result of
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FIGURE 2. Visual analysis: (a) Building hazy image, (b) PDL [17],
(c) EEDNet [28], (d) DeHRNet [29], (e) TSDNet [15], (f) DehazeFormer [12],
(g) DDNet [14], (h) CPAD-Net [31], (i) PFBN [16], (j) Proposed DSSCNet
with MSE Loss, (k) Proposed DSSCNet with CL, and (l) Proposed DSSCNet
with RL.

TSDNet [15], which exhibits moderate darkening with over
restoration, and similar degradation in edges and textures,
along with poor spectral and spatial information preservation.
Figs. 2(f) and 2(g) display the outputs of DehazeFormer [12]
and DDNet [14], respectively, both showcasing over restora-
tion, artificial image artifacts, and degradation in edges
and textures, with poor spectral and spatial information
preservation. In Figs. 2(h) and 2(i), the results of CPAD-
Net [31] and PFBN [16] are presented, respectively. Both
exhibit moderate darkening, lesser degradation in edges
and textures, and moderate spectral and spatial information
preservation. Finally, Figs. 2(j), 2(k), and 2(l) show the
outputs of the proposed DSSCNet with MSE Loss, CL, and
RL, respectively. These results demonstrate better brightness,
more natural appearance, better edge, and texture preserva-
tion, as well as improved spectral and spatial information
preservation compared to the other methods. The proposed
DSSCNet with RL yields the most visually compelling
dehazing result, showcasing its effectiveness in addressing
haze removal challenges and preserving important image
details.

Fig. 3 provides visual comparisons of the dehazing
results obtained by different image dehazing models, with
red rectangles highlighting regions of interest for better
understanding. In Fig. 3(a), the road-side hazy image is
the input, containing dense haze. Fig. 3(b) shows the result
of PDL [17], demonstrating moderate darkening, edge, and
texture degradation, along with poor spectral and spatial
information preservation. Similarly, Figs. 3(c) and 3(d)
depict the outputs of EEDNet [28] and DeHRNet [29],
respectively, both displaying moderate darkening, edge, and
texture degradation, with differing levels of spectral and
spatial information preservation. Fig. 3(e) represents the
result of TSDNet [15], showing moderate darkening, edge,
and texture degradation, with poor spectral and spatial
information preservation. Figs. 3(f) and 3(g) display the
outputs of DehazeFormer [12] and DDNet [14], respectively,
both showcasing moderate darkening, edge, and texture

FIGURE 3. Visual analysis: (a) Road-side hazy image, (b) PDL [17],
(c) EEDNet [28], (d) DeHRNet [29], (e) TSDNet [15], (f) DehazeFormer [12],
(g) DDNet [14], (h) CPAD-Net [31], (i) PFBN [16], (j) Proposed DSSCNet
with MSE Loss, (k) Proposed DSSCNet with CL, and (l) Proposed DSSCNet
with RL.

degradation, with varying levels of spectral and spatial
information preservation.

In Figs. 3(h) and 3(i), the results of CPAD-Net [31] and
PFBN [16] are presented, respectively, both exhibiting mod-
erate darkening, edge, and texture degradation, along with
poor spectral and spatial information preservation. Finally,
Figs. 3(j), 3(k), and 3(l) show the outputs of the proposed
DSSCNet with MSE Loss, CL, and RL, respectively. Overall,
the proposed DSSCNet with RL yields the most promising
result, providing better brightness, a natural appearance,
improved edge and texture preservation, and superior spectral
and spatial information, making it themost effective approach
among the compared models for dehazing the input image.

D. QUANTITATIVE ANALYSIS
Table 2 provides a comprehensive quantitative analysis of
various dehazing models based on three critical evaluation
metrics: contrast gain (cg), new visible edges (e), and
new edge gradients (r̄). These metrics play a crucial role
in assessing the performance of dehazing algorithms in
terms of enhancing image clarity, visibility of new edges,
and preservation of edge gradients. The results clearly
demonstrate the superiority of the proposed DSSCNet with
RL, as it achieves the highest values for all three metrics.

TABLE 2. Performance comparison of different dehazing models in terms
of Contrast gain (cg), new visible edges (e), and new edge gradients (r̄ ).
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Notably, DSSCNet with RL achieves an impressive contrast
gain (cg) of 0.2003, outperforming other models such as
PDL (0.138), EEDNet (0.181), and DeHRNet (0.182). This
significant improvement in contrast gain highlights the
effectiveness of the proposed method in enhancing image
clarity and exposure, resulting in visually appealing dehazed
images.

Furthermore, the proposed DSSCNet with RL excels in
generating new visible edges (e) with a value of 0.7855,
surpassing competing models like TSDNet (0.648), Dehaze-
Former (0.63), and DDNet (0.762). This higher e value signi-
fies that the proposed model effectively reveals more visible
edges in the dehazed images, leading to improved visibility
and better definition of object boundaries. Additionally, the
new edge gradients (r̄) value for the proposed DSSCNet with
RL is 0.8763, outperforming other models like CPAD-Net
(0.807) and PFBN (0.788). The higher r̄ value indicates that
the proposed method successfully preserves edge gradients
in the dehazed images, which is vital for maintaining image
details and sharpness.

Table 3 provides a comprehensive performance compar-
ison of different dehazing models based on two essential
evaluation metrics: Peak Signal-to-Noise Ratio (PSNR) and
Structural Similarity Index (SSIM). PSNR measures the
quality of the dehazed images in terms of the signal-to-noise
ratio, while SSIM assesses the structural similarity between
the dehazed images and the ground truth. From Table 3, it is
evident that the proposed DSSCNet with RL outperforms all
other models in terms of both PSNR and SSIM. It achieves
a remarkable PSNR of 29.135 and a competitive SSIM
of 0.897, demonstrating the superior performance of the
proposed method in generating high-fidelity dehazed images
that closely resemble the original ground truth.

TABLE 3. Performance comparison of different dehazing models in terms
of Peak Signal-to-Noise Ratio (PSNR) and Structural Similarity Index
(SSIM).

E. DISCUSSION
The proposed DSSCNet with RL emerges as the superior
solution for image dehazing, outperforming other models
consistently across various evaluation metrics (Table 2 and
Table 3). Its remarkable contrast gain (cg) of 0.2003 enhances
image clarity and exposure, crucial for applications in

hazy conditions like outdoor imaging and surveillance. The
model’s proficiency in generating new visible edges (e) with
a value of 0.7855 surpasses competing models, improving
object boundary definition and aiding object detection tasks.
Additionally, its ability to preserve edge gradients (r̄) at
0.8763 ensures image details and sharpness are retained,
benefiting applications like medical imaging and remote
sensing.

The significant performance make the proposed DSSCNet
with RL a promising solution for real-world dehazing
tasks, handling dense haze, avoiding over-enhancement, and
preserving texture details. In contrast, other models (e.g.,
PDL [17], EEDNet [28], DeHRNet [29], TSDNet [15],
DehazeFormer [12], DDNet [14], CPAD-Net [31], and
PFBN [16]) exhibit limitations in performance, possi-
bly struggling with challenging hazy conditions, over-
enhancement, or edge preservation.

V. CONCLUSION
In this paper, a Deep Custom Spatial and Spectral
Consistency Layer-based Dehazing Network (DSSCNet)
was proposed. DSSCNet’s architecture incorporated custom
layers, including HRL and cSSCL, to effectively estimate
and remove haze from input images while preserving
important spatial and spectral information. The inclusion
of skip connections between layers enhanced information
flow and feature extraction. The consistency term in loss
function ensured that the dehazing process maintained the
original content of the image, producing visually realistic
and content-preserving dehazed images. The experimental
results on a large dataset demonstrated the effectiveness of
DSSCNet in handling various hazy conditions and producing
superior dehazing results compared to existing methods.
The results demonstrated that DSSCNet outperformed
competitive models in terms of various performance metrics
such as Contrast gain (cg), new visible edges (e), new
edge gradients (r̄), Peak Signal-to-Noise Ratio (PSNR),
and Structural Similarity Index (SSIM), exhibiting average
improvements of approximately 1.27%, 1.12%, 1.18%,
1.21%, and 1.24%, respectively.

While DSSCNet has demonstrated remarkable efficacy
in addressing haze removal challenges and producing
high-quality dehazed images across various hazy conditions,
it may encounter challenges in extreme hazy conditions
or situations with unconventional atmospheric phenomena.
Further investigations are needed to enhance its adaptability
to such cases. Moreover, the computational requirements of
DSSCNet, particularly during training, may pose constraints
in resource-limited environments. Optimizing the model for
efficiency without compromising its dehazing capabilities is
a potential area for future research. Additionally, expand-
ing DSSCNet to handle temporal aspects, such as video
sequences, could further enhance its utility. Investigating
temporal consistency and incorporating motion cues may
contribute to more robust dehazing in dynamic scenes.
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