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ABSTRACT In the ever-expanding domain of Internet of Things (IoT) networks, Distributed Denial of
Service (DDoS) attacks represent a significant challenge, compromising the reliability of these systems.
Traditional centralized detection methods struggle to cope effectively in the widespread and diverse
environment of IoT, leading to the exploration of decentralized approaches. This study introduces a Federated
Learning-based approach, named Federated Learning for Decentralized DDoS Attack Detection (FL-DAD),
which utilizes Convolutional Neural Networks (CNN) to efficiently identify DDoS attacks at the source.
Our approach prioritizes data privacy by processing data locally, thereby avoiding the need for central data
collection, while enhancing detection efficiency. Evaluated using the comprehensive CICIDS2017 dataset
and compared with conventional centralized detection methods, FL-DAD achieves superior performance,
illustrating the potential of federated learning to enhance intrusion detection systems in large-scale IoT
networks by balancing data security with analytical effectiveness.

INDEX TERMS Federated learning, DDoS attack detection, IoT networks, convolutional neural networks,
decentralized intrusion detection.

I. INTRODUCTION
The Internet of Things (IoT) epitomizes the transformation
of the digital landscape, moving beyond traditional devices
like computers and smartphones to create an interconnected
web of everyday objects [1]. These objects, embedded
with sensors, software, and other technologies, seamlessly
communicate and exchange data with other devices and
systems over the Internet. IoT has emerged as a cornerstone
of the 21st-century digital revolution. From smart thermostats
and wearable health monitors to intelligent traffic systems
and advanced manufacturing tools, the integration of IoT
has seen an upsurge across various sectors [2]. According to
Gartner, by 2025, the number of connected things worldwide
is expected to surpass 30 billion [3]. This burgeoning network
promises unparalleled opportunities for personal, industrial,
and societal applications. Enhanced data collection, real-time
communication, and a vastly improved user experience are
just some of the many advantages IoT brings.
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However, the proliferation of IoT devices also introduces
an array of vulnerabilities. The very attributes that make IoT
devices versatile, their connectivity, ease of access, and ubiq-
uity, also render them susceptible to threats. Of these threats,
Distributed Denial of Service (DDoS) attacks are particularly
ominous [4]. These attacks involve overwhelming a targeted
system, such as a website or an IoT device, with a flood of
Internet traffic, rendering it inoperative. Given the decentral-
ized nature of IoT networks, a successful DDoS attack can
have catastrophic ramifications, disrupting service delivery,
compromising user experience, and potentially causing sig-
nificant economic losses [5], [6]. The inherent characteristics
of IoT devices further exacerbate their vulnerability. These
devices, often manufactured with cost-effectiveness in mind,
may lack sophisticated security features [7]. Moreover, their
widespread deployment across various environments, each
with its unique security posture, makes establishing a unified
protective framework challenging.

Traditional security measures, especially centralized intru-
sion detection systems, are ill-equipped to handle the
intricacies of IoT. These centralized systems often suffer
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FIGURE 1. Comparison between threats in traditional and federated learning approaches.

from scalability issues, struggling to monitor the massive
data flows generated by the plethora of IoT devices.
Moreover, centralized systems also introduce a single point
of failure, making them attractive targets for adversaries [8].
Furthermore, the transmission of data to a central location for
analysis compromises user privacy, as sensitive information
may be exposed during transit or storage. To address these
shortcomings, there’s a growing interest in decentralized
learning methodologies, specifically Federated Learning [9].
In federated frameworks, devices, or nodes, are trained
locally on their data. Only the model updates, not the raw
data, are shared with a central server for aggregation. This
approach has the dual advantage of mitigating data privacy
concerns and reducing the data transmission overhead. Given
the decentralized nature of IoT networks, federated learning
seems to be an ideal fit [10], [11]. By processing data
locally on IoT devices, federated learning can offer real-time
insights, vital for timely detection and mitigation of threats
like DDoS attacks [12].

To this end, in this study, we introduce the Federated Learn-
ing for Decentralized DDoS Attack Detection (FL-DAD)
approach in IoT Networks. In the proposed approach, we uti-
lize Convolutional Neural Networks (CNNs), leveraging their
adeptness in feature extraction and pattern recognition. This
makes them particularly effective for identifying complex
patterns in network traffic, which is crucial for detecting
DDoS attacks in IoT environments. By training the model
at the edge, close to where the data originates, our approach
aims to adeptly detect DDoS attacks while upholding the
principles of data privacy and operational efficiency. Using
the CICIDS2017 dataset, a comprehensive benchmark for
intrusion detection, we present the performance of the
FL-DAD approach against traditional centralized methods,
showcasing the merits of our decentralized approach. The
major contributions of the paper are as follows:
• We propose a novel federated learning-based approach
tailored for decentralized DDoS attack detection within
IoT networks, harnessing the power of CNN.

• We present a rigorous evaluation of the FL-DAD
method using the CICIDS2017 dataset, providing a

comparative analysis with traditional centralized detec-
tion methods, thus demonstrating its effectiveness and
efficiency.

The rest of the paper is as follows: Section II surveys
traditional DDoS detection and federated learning’s evolu-
tion. Section III defines the DDoS challenge in IoT and
our objectives. Section IV delves into federated learning
principles. Section V outlines our proposed DDoS detection
methodology. Experimental design and benchmarks are
discussed in Section VI, followed by results in Section VII.
Section VIII assesses system robustness and scalability.
Section IX highlights challenges and future research avenues,
and Section X concludes our study.

II. BACKGROUND AND LITERATURE REVIEW
In the contemporary digital era, IoT networks have emerged
as a cornerstone, fostering innovation across numerous
sectors. As these networks expand, so do the complexities
of safeguarding them. A vital challenge to address is
the proliferation of DDoS attacks, which threaten the
very foundation of IoT networks. The quest for advanced
and adaptive DDoS detection methodologies forms the
crux of this section, beginning with an exploration of
traditional techniques and culminating in the potential of
federated learning in revolutionizing detection. A threat in
the traditional centralized approach and distributed approach
compared to the federated learning approach is depicted in
Figure 1.

A. TRADITIONAL DDOS ATTACK DETECTION METHODS
Distributed Denial of Service (DDoS) attacks, characterized
by overwhelming targeted systems using traffic frommultiple
sources, have persisted as one of the gravest threats in
cyberspace. Over the years, several methodologies have been
formulated to counter these threats [13].
1) Signature-based Detection: One of the earliest and most

straightforward approaches, signature-based detection,
operates on the principle of maintaining a database
of previously identified attack patterns or ‘signatures’.
As traffic flows into a system, it’s continuously scanned
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against these signatures. If a match is detected, the
system flags it as a potential attack. While this
approach offers quick detection of known threats,
it’s inherently reactive. Its efficacy diminishes against
novel attack strategies that aren’t part of the existing
database [14].

2) Anomaly-based Detection: Moving a step ahead from
the signature-based method, anomaly-based detection
doesn’t rely on prior knowledge of attacks. Instead,
it establishes a baseline representing ‘normal’ network
behavior. Continuous monitoring of network traffic
ensues, and any deviation from this baseline is deemed
suspicious. While this method offers adaptability, it’s
not without drawbacks [15]. The dynamic nature of
network behavior can sometimes lead to genuine traffic
being misclassified as an attack, leading to higher false
positives.

3) Rate-based Detection: Recognizing that many DDoS
attacks flood systems with an exceptionally high
volume of requests, rate-based detection was concep-
tualized [16]. By setting a predefined threshold for
incoming traffic, this method quickly identifies when the
inflow rate exceeds this limit. While adept at detecting
volumetric attacks, subtler, low-volume threats might
bypass its radar.

In Table 1, we provide a comprehensive summary of
the primary focus and techniques from existing literature
pertinent to our research focus.

B. EVOLUTION AND PRINCIPLES OF FEDERATED
LEARNING
In the arena of machine learning, a novel approach began
to gain traction that proposed a significant departure from
conventional centralized models of federated learning.

• Historical Context: The inception of federated learning
was influenced heavily by the growing concerns around
data privacy and the inefficiencies of transporting
large datasets to centralized servers [28]. It posited an
alternative: instead of bringing data to the model, why
not bring the model to the data?

• Operational Dynamics: In federated learning, local
devices (or ‘nodes’) are equipped with the capability to
train machine learning models on their data. These local
models are then aggregated into a global model, which
encapsulates insights from all participating nodes with-
out ever accessing their raw data [29]. This ensures data
privacy and minimizes the need for data transportation,
thereby conserving bandwidth [30].

• Advantages Over Centralized Models: Apart from
the evident benefits in data privacy and bandwidth
efficiency, federated learning offers robustness against
network failures [31], [32]. In a centralized setup,
if the central server fails, the entire system collapses.
In contrast, federated learning, with its distributed

nature, is resilient against such singular points of
failure.

C. IOT SECURITY AND MACHINE LEARNING
CONVERGENCE
The integration of IoT and machine learning is not novel, but
the perspective from which this amalgamation is approached
has seen shifts.
• Earlier Paradigms: Historical endeavors primarily uti-
lized centralized machine learning models. Though
they were successful to some extent in enhancing
IoT security, they raised concerns. Centralized models
demanded data from numerous IoT devices be sent to a
central location for processing [33]. This not only posed
data privacy issues but also scalability concerns, given
the vastness of IoT networks [34].

• Inclination Towards Decentralization: With billions of
devices contributing to the IoT ecosystem, the sheer
volume of data they generate is staggering. Processing
this centrally became increasingly untenable [35]. This
necessitated a shift towards decentralized methodolo-
gies, thus leading researchers to explore federated
learning’s potential in fortifying IoT security.

It’s imperative to consider the convergence of IoT and
machine learning not as an endpoint but as a journey.
As threats evolve, so must defenses, ensuring that IoT net-
works remain secure and resilient amidst the ever-changing
landscape of cybersecurity challenges.

III. PROBLEM DEFINITION
A. DDOS ATTACKS IN IOT NETWORKS
DDoS attacks have evolved to target the vulnerable IoT land-
scape, leveraging the multitude of interconnected devices.
Each of these devices, often limited in computational
capabilities, becomes an easy target, enabling attackers
to create massive botnets [36]. These botnets overwhelm
target networks, rendering them inoperable. The diverse
range of devices, manufacturers, and firmware versions in
IoT exacerbates the challenge, as it creates a mosaic of
vulnerabilities [37].

B. STATEMENT OF THE PROBLEM
Traditional defenses against DDoS attacks fall short when
confronting the complexities of IoT networks. Centralized
attack detection mechanisms face scalability issues in vast
IoT ecosystems and risk introducing a single point of fail-
ure [38]. The urgent challenge lies in devising a decentralized,
adaptable, and efficient solution tailored for IoT’s unique
challenges.

C. OBJECTIVES AND CONTRIBUTIONS
This study aims to harness federated learning for a decentral-
ized DDoS detection mechanism in IoT networks. The goals
are:
• Empower individual IoT devices or clusters for indepen-
dent threat detection.
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TABLE 1. Summary of the Literature Review.

• Achieve near real-time threat response.
• Ensure the solution’s applicability across diverse IoT
scales.

• Enable the system to evolve with changing threat
dynamics.

The key contributions include a new federated learning-based
approach for DDoS detection in IoT, rigorous validation
against contemporary solutions, and insights for future
research.

IV. FEDERATED LEARNING: CONCEPTS AND PRINCIPLES
A. WORKINGS OF FEDERATED LEARNING
Federated Learning (FL) is a collaborative machine learning
technique where multiple devices (or nodes) train on local
data, and only model updates are communicated centrally,
rather than raw data [39]. This offers a paradigm shift from
traditional centralized learning.

The formal process can be described as follows:
Let N be the number of nodes participating in FL, each

node i having a dataset Di with ni samples. Each node
computes an update from its local dataset:

1wi = Train(Di,w) (1)

where w represents the global model parameters and 1wi
represents the update from node i.

The global model is then updated by aggregating local
updates:

wnew = w+ η

N∑
i=1

ni
n

1wi (2)

where η is a learning rate and n =
∑N

i=1 ni is the total number
of samples across nodes. The whole process of federated
learning is depicted in Figure 2.

B. ADVANTAGES OVER CENTRALIZED MODELS
In the context of IoT, FL brings several advantages [40]:
• Data Privacy: Raw data remains on the local device,
reducing exposure risks.

• Bandwidth Efficiency: Transmitting only model
updates rather than vast amounts of raw data optimizes
bandwidth usage.

FIGURE 2. The federated learning process in IoT networks.

• Real-time Adaptation: Local updates allow for
real-time model improvement.

Moreover, the global model is refined with diverse data,
enhancing its generalization capabilities:

Generalization error≤Average local error+Divergence term

(3)

C. CHALLENGES IN IMPLEMENTING FEDERATED
LEARNING
Despite its benefits, implementing FL, especially in the
complex IoT landscape, is not devoid of challenges [41]:

• Heterogeneity: Devices might have non-IID (Inde-
pendent and Identically Distributed) data, leading to
a skewed learning process. This skewness can be
quantified as:

Skewness =

∑N
i=1(µi − µ)2

N
(4)

where µi is the local mean and µ is the global mean.
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• Communication Overheads: Frequent model updates
can strain limited IoT communication capabilities.

• Security Concerns: External threats might try to
compromise the model’s integrity through malicious
updates.

V. PROPOSAL OF FL-DAD
A. DESIGN OF THE FEDERATED LEARNING-BASED DDOS
DETECTION SYSTEM
Our overarching design incorporates a federated learning
architecture that allows multiple IoT nodes to train localized
models without centralizing data. This not only ensures data
privacy but also leverages local data peculiarities to enhance
detection performance.

L(w) =
n∑
i=1

Fi(w) =
n∑
i=1

1
ni

ni∑
j=1

fi(w; xij, yij) (5)

where L(w) is the global loss, Fi(w) is the local loss at node
i, and fi(w; xij, yij) is the training example at node i.

B. DATA COLLECTION, PREPROCESSING, AND
DISTRIBUTION
Data plays a pivotal role in training robust models. In a
federated environment, data remains local to each node. For
our IoT-based DDoS detection:

• Data Collection: Data generated from network traffic at
each IoT node is collected locally.

• Preprocessing: Data is normalized, outliers are identi-
fied and removed, and relevant features are selected to
feed into the model.

• Distribution:While data remains at each node, themodel
updates will be communicated across the network.

C. MODEL ARCHITECTURE AND TRAINING STRATEGIES
We propose using a CNN model due to its proficiency in
identifying patterns, which is essential for DDoS detection.

z[l] = W [l]a[l−1] + b[l] (6)

a[l] = g[l](z[l]) (7)

where a[l] is the activation at layer l, W [l] and b[l] are the
weights and biases, and g[l] is the activation function.
The training process in the federated environment is given in
Algorithm 1:

D. MODEL AGGREGATION MECHANISMS
Post-training, model aggregation is vital to consolidate
knowledge from all nodes. We use weighted averaging based
on the number of samples at each node.

wglobal =

∑n
i=1 niwi∑n
i=1 ni

(8)

where ni is the number of samples at node i and wi is the local
model weight.

Algorithm 1 Federated Learning Training Procedure
Require: Initial global model weights w0
Ensure: Updated global model weights w
1: Input: Initial global model weights w0
2: Output: Updated global model weights w
3: Initialize global model weights w← w0
4: for each training round t = 1, 2, . . . ,T do
5: for each node i in parallel do
6: Compute model update 1wi using local data Di
7: end for
8: Aggregate updates: w← w+ η

∑
i 1wi

9: end for

E. COMMUNICATION PROTOCOLS FOR MODEL UPDATES
Ensuring efficient and fault-tolerant communication is
paramount. Model updates are packaged and transmitted to
a central server which then broadcasts the global model to all
nodes [42]. During this, nodes utilize a protocol ensuring that
if updates aren’t received within a specified window, they’ll
request them again.

Algorithm 2 Model Update Communication Protocol
Require: Local model updates 1wi from each node i
Ensure: Successful transmission of updates to central server
1: Input: Model updates 1wi for each node i
2: Output: Acknowledgement of successful update trans-

mission
3: for each node n do
4: Transmit model updates 1wn to the central server
5: if Acknowledgement not received within timeout

then
6: Re-transmit model updates 1wn
7: end if
8: end for

F. EXECUTION OF FL-DAD
The intricate FL-DAD execution process is meticulously
designed to integrate seamlessly with existing IoT infrastruc-
tures, thus bolstering their resilience against DDoS assaults
whilst ensuring the sanctity of data privacy. The sequential
stages of this methodical approach encompass:
1) Initialization: Let Mglobal be the global model.

We initialize:

M (0)
global ← InitModel() (9)

where InitModel() represents the initialization function.
2) Local Model Training: For each node i, using its local

dataset Di, the node updates its local model Mi. The
model is trained by optimizing a loss function L:

M (t)
i ← Train(M (t−1)

i ,Di) (10)

where t is the current iteration. This step enables
each node to independently detect potential DDoS
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threats based on its local data, prior to participating in
the global model aggregation. However, during this
phase, privacy risks emerge from the potential for
sensitive information inference from model updates,
necessitating the implementation of techniques such
as differential privacy or homomorphic encryption
to safeguard data.

3) Model Update Communication: The model update
from node i can be computed as:

1M (t)
i = M (t)

i −M
(t−1)
i (11)

Nodes transmit 1M (t)
i to the centralized server. The

pseudocode of the model update communication
process is mentioned in Algorithm 2.

4) Global Model Aggregation: Aggregation at the central
server is performed using the weighted sum of local
model updates:

M (t)
global ← M (t−1)

global +
∑
i

wi1M
(t)
i (12)

where wi is the weight assigned to node i, reflecting
its reliability or the size of its local dataset. During
aggregation, privacy risks are accentuated as aggre-
gated data might inadvertently reveal information
about individual nodes’ data. To mitigate this, secure
multi-party computation (SMPC) or federated aver-
aging with secure aggregation protocols can be
employed to ensure that the aggregated model does
not expose any node’s data.

5) Global Model Broadcast: Post-aggregation, M (t)
global is

broadcasted to all nodes:

M (t)
i ← M (t)

global (13)

for all nodes i.
6) Evaluation: Every node i evaluates M (t)

global against
potential DDoS patterns using the evaluation metric E:

Scorei = E(M (t)
global,Ditest ) (14)

where Ditest is the testing dataset at node i.
7) Iteration: Based on the evaluations, the process is

iteratively continued:

t ← t + 1 (15)

until a stopping criterion, such as a predetermined
number of rounds or a desired accuracy level, is reached.

The Algorithm 3 elegantly encapsulates the FL-DAD exe-
cution process. By meticulously adhering to its procedures,
IoT networks can not only fortify their defenses against DDoS
threats but also ensure an unwavering commitment to data
privacy.

VI. IMPLEMENTATION AND EXPERIMENTATION
A. EXPERIMENTAL SETUP
1) ENVIRONMENT AND TOOLS
Our experimental apparatus is firmly grounded in the Tensor-
Flow Federated (TFF) framework, a state-of-the-art library

Algorithm 3 Execution Procedure of FL-DAD
Require: Local data Di for each node i, Initialization

function InitModel()
Ensure: Global model Mglobal trained on distributed data
1: Input: Local datasets Di for each node i
2: Output: Trained global model Mglobal

3: Initialize global model: M (0)
global ← InitModel()

4: for each training round t = 1, 2, . . . ,T do
5: for each node i in parallel do
6: Independently train local model M (t)

i on Di
7: Perform local threat detection
8: Compute and send updates 1M (t)

i to central
server

9: end for
10: Central server aggregates updates to update M (t)

global

11: Broadcast M (t)
global to all nodes

12: for each node i do
13: Evaluate detection efficacy ofM (t)

global on test data
Ditest

14: end for
15: end for

tailored for federated learning endeavors. Complementary to
TFF, TensorFlow, and Keras simplify model design, training,
and evaluative tasks [43].

2) DATASET: CICIDS2017
The CICIDS2017 dataset, crafted by the Canadian Institute
for Cybersecurity, stands as the foundation for our experi-
mentation [44]. Recognized as an industry benchmark for
intrusion detection evaluations, the dataset offers a granular
view into network traffic patterns by capturing an entire
week’s worth of activity. Some defining attributes of the
dataset include:

• A comprehensive collection of over 2.8 million entries,
with each entry signifying a distinct network flow.

• A set of 79 features, furnishing an exhaustive portrayal
of flow statistics and header data.

• While the dataset covers a broad spectrum of attacks,
for the purpose of our study, we primarily focus on
classes relevant to DDoS attacks. These classes within
CICIDS2017 include:

– BENIGN: This class embodies regular, non-
malicious network traffic, serving as a point of
contrast against malicious flows.

– DDoS: A quintessential representation of Dis-
tributed Denial of Service attacks. These attacks
orchestrate a barrage of traffic from multiple
sources, aiming to overwhelm and incapacitate
targeted systems.

– DoS Hulk: A Denial of Service attack variant that
exploits discrepancies in web servers, swamping
them with a deluge of GET requests.
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– DoS GoldenEye: Another DoS strain, which inun-
dates target systems with a mix of GET and POST
requests, exhausting their resources.

– DoS slowloris & Slowhttptest: These are stealthy
attacks that hold onto server connections for
prolonged periods, ultimately leading to service
denial without consuming extensive bandwidth.

– Heartbleed: While not a DDoS attack in the
traditional sense, this OpenSSL vulnerability can
be exploited to retrieve sensitive data, and its
exploitation can mirror DDoS attack patterns.

3) DATA PREPROCESSING
In order to refine the dataset for optimal performance,
we executed the following preprocessing steps:
1) Rectified any missing or inconsistent values.
2) Employed the Min-Max scaler to normalize numerical

attributes.
3) One-hot encoded categorical attributes, thereby convert-

ing them into a binary matrix representation.
4) Reorganized the dataset to mimic a federated structure,

representing multiple nodes.

B. TRAINING PROCESS
1) TENSORFLOW FEDERATED SETUP
TFF was fine-tuned to employ a simulation-centric runtime.
This configuration empowers us to conduct federated com-
putations locally, simulating real-world distributed learning
without necessitating actual distributed infrastructure.

2) FL ALGORITHM AND TRAINING STRATEGY
The core of our FL approach is built upon the Federated
Averaging (FedAvg) algorithm. This algorithm allows local
models to be trained independently on nodes (devices) with
their own data samples and computes the global model by
averaging the updates. This process iteratively improves the
global model while preserving data privacy and reducing
communication overhead.

3) MODEL ARCHITECTURE
With the CICIDS2017 dataset offering a rich and intricate
feature set, a robust deep learning approach was deemed
essential. Given the non-sequential nature of the features (i.e.,
the characteristics of network packets do not necessarily have
temporal dependencies as in a time series), a Convolutional
Neural Network (CNN) was chosen. CNNs, generally
praised for their performance in image processing, have
shown significant promise in processing structured data by
automatically and adaptively learning spatial hierarchies of
features. A complete architecture of CNN is given in Table 2.

4) FEDERATED INTEGRATION AND TRAINING
Our federated training process involves several key steps.
Initially, the global model is sent to each node. Each node then
trains the model on its local data and calculates the model

updates. These updates are sent back to the server, where
they are aggregated to update the global model. This cycle
is repeated for multiple rounds until the model converges or
meets predefined performance criteria.

5) COMMUNICATION PROTOCOLS
Communication between the nodes and the central server is
managed using TFF’s secure aggregation protocols. These
protocols are designed to ensure that the aggregated data
cannot be used to infer information about individual updates,
thereby maintaining data privacy. Additionally, to optimize
network resources and reduce latency, we employ strategies
like model compression and update pruning, which minimize
the size of the data that needs to be transmitted.

6) FEDERATED INTEGRATION AND TRAINING
After finalizing the CNN architecture, it was integrated into
the federated framework using TFF’s tff.learning.
from_keras_model method. The subsequent decen-
tralized training leveraged tff.learning.build_
federated_averaging_process, allowing the model
to be trained across our distributed, simulated nodes.

C. EVALUATION
1) METRICS
To quantify and qualify the performance of our model,
we employed:
• Accuracy: Proportion of correct predictions.
• Precision: Accuracy of positive predictions.
• Recall (Sensitivity): True positive rate.
• F1-Score: Balance between precision and recall.

All evaluations were orchestrated on a dedicated federated
validation dataset.

D. PERFORMANCE BENCHMARKS
Our model’s mettle was tested against conventional central-
ized methodologies and leading-edge solutions. A compara-
tive discourse, elucidating accuracy, precision, recall, and F1
scores, shall be furnished in the ensuing sections.

E. HYPERPARAMETERS AND METRICS
To elucidate the model’s training dynamics, we table the
hyperparameters employed in Table 3:

VII. RESULTS AND DISCUSSION
Our exploration of the FL-DAD methodology primarily
revolves around the performance of federated learning for
DDoS attack detection within IoT ecosystems. Herein,
we summarize and discuss the outcomes of our experiments
in terms of detection accuracy and other salient metrics.

A. DDOS ATTACK DETECTION METRICS
The heart of our experimental endeavor is to gauge the
potency of federated learning in accurately pinpointingDDoS
attacks in IoT environments.
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TABLE 2. CNN architecture for the proposed FL-DAD methodology.

TABLE 3. Hyperparameters used for training the CNN-based FL-DAD
model.

Gleaning from Table 4, it’s evident that the FL-DAD
model boasts a uniformly high detection rate across various
classes of DDoS attacks and benign data, showcasing
both its precision and recall capabilities. Such a consistent
performance, exceeding 98% across all metrics, is a testament
to the efficacy of our approach.

B. FALSE POSITIVE AND FALSE NEGATIVE RATES
In the realm of cybersecurity, especially with respect to
intrusion detection, two metrics stand out: the False Positive
Rate (FPR) and the False Negative Rate (FNR). These
metrics provide pivotal insights into the effectiveness of the
detection system. An ideal system would have a minimal rate
for both of these metrics. Our FL-DAD methodology has
been evaluated for these metrics shown in Table 5, and the
results are outstandingly low, showcasing the robustness and
precision of our approach.

It’s worth noting that while our model boasts high
accuracy, precision, recall, and F1-Score values, maintaining
low FPR and FNR values is crucial. A high FPR could
lead to unnecessary resources being diverted to inspect
benign traffic, while a high FNR could let potential threats
go undetected. The presented rates underline the efficacy
of FL-DAD in offering a balanced, nuanced detection
mechanism, which is crucial for real-world deployments.

C. SCALABILITY ANALYSIS
To ensure the robustness and viability of the FL-DAD
model in real-world deployments, especially in extensive
IoT networks, we performed a scalability analysis. This
evaluation focuses on the model’s performance as the number
of nodes (IoT devices) increases. Scalability is vital since IoT
networks can encompass anything from a handful to millions
of devices.

Table 6 reveals that as the number of nodes increases,
the FL-DAD model still manages to maintain a high

accuracy rate while moderately increasing training time and
communication overhead. This growth in overhead and time,
though present, is linear and manageable, making FL-DAD a
promising solution for large-scale IoT deployments.

D. COMMUNICATION OVERHEAD
A significant aspect of federated learning is the commu-
nication overhead between nodes and the central server.
We gauged the communication overhead by measur-
ing the volume of exchanged data during each training
epoch.

Table 7 elucidates a downward trend in communication
overhead as training epochs progress. This is indicative of
the efficiency of the FL-DAD model: as the model starts to
converge, the updates become sparser, and thus the size of
the transmitted data shrinks. By the 100th epoch, the data
exchanged is down to 7.9 MB, showcasing a reduction in
overhead as training progresses.

The observed diminishing communication overhead is a
testament to the robust design of the FL-DAD methodology.
Not only does it ensure reduced transmission costs over
time, but it also underscores the model’s adaptability
in IoT environments. Given that IoT devices may often
be constrained by bandwidth or may incur costs based
on data transmission, this reduction is invaluable. The
scalability and efficiency of the FL-DAD model prove
advantageous for real-world deployment, allowing for effi-
cient, cost-effective, and rapid attack detection in IoT
ecosystems.

E. COMPARISON WITH CENTRALIZED APPROACHES
To ascertain the effectiveness of the proposed FL-DAD
methodology, we compared its performance against several
state-of-the-art centralized intrusion detection approaches
validated on the CICIDS2017 dataset. The comparison
includes several metrics such as accuracy, precision, recall,
F1-score, communication overhead, and latency, which are
crucial factors in the efficiency and scalability of intrusion
detection systems, especially in federated learning contexts.
The comparison offers insights into how federated learning
stacks up against traditional centralized methods in the realm
ofDDoS attack detection in IoT, not only in terms of detection
accuracy but also in reducing the communication burden
across the network. The detailed comparison results are
showcased in Table 8.
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TABLE 4. Attack detection outcome of FL-DAD methodology on 80:20 of Training set/Testing set.

TABLE 5. False positive and false negative rates of FL-DAD methodology
on the CICIDS2017 dataset.

TABLE 6. Scalability analysis of FL-DAD with an increasing number of
nodes.

TABLE 7. Communication overhead during selected training epochs.

F. INSIGHTS AND IMPLICATIONS
The stellar outcomes of our FL-DAD system usher in several
pivotal takeaways:

• Decentralized Efficacy: The detection rates underscore
the potential of federated learning to cultivate accurate
models without data centralization, a revelation of
significant importance for distributed IoT networks.

• Privacy-centric Detection: Our approach not only guar-
antees exceptional detection accuracy but also sidesteps
the transmission of raw data, amplifying the data privacy
element.

• Adaptive Scalability: The results hint at the model’s
resilience and suggest its potential to maintain, if not
elevate, its efficacy with an expanding IoT network.

• Differentiated Detection: The FL-DAD methodology
discerns between different DDoS attack classes, empha-
sizing its granularity and depth of detection.

In essence, the FL-DAD methodology, tailored for DDoS
attack detection in IoT frameworks, not only ensures exem-
plary detection rates but accentuates data privacy, scalability,

and granularity. Such promising outcomes bolster the case
for a wider adoption of federated learning in securing IoT
systems against DDoS threats.

VIII. ROBUSTNESS AND SCALABILITY ANALYSIS
To ensure the practical applicability and viability of the
FL-DAD methodology in real-world IoT networks, it is
imperative to scrutinize its robustness and scalability. This
section delves into these critical attributes.

A. ROBUSTNESS
The robustness of an intrusion detection system like FL-DAD
is paramount, particularly in diverse and dynamic IoT
environments where attack patterns might constantly evolve
and vary.
Variability in Network Conditions Our evaluation sub-

jected the FL-DAD model to a plethora of network con-
ditions, including varying levels of nodes, training epochs,
and dataset classes. The model displayed commendable
resilience, retaining a high detection accuracy even in
less-than-ideal network situations. Such robustness can be
attributed to the decentralized nature of federated learning,
where individual nodes process data locally, ensuring that
transient network hiccups do not significantly degrade the
overall system’s performance.

B. SCALABILITY
The proliferation of IoT devices means that any system
devised for such an environment must inherently be scalable.

1) PERFORMANCE WITH MORE NODES
As shown in the scalability analysis in Table 6, FL-DAD’s
performance metrics remain relatively consistent as the
number of nodes increases. This consistency emphasizes
the model’s capability to scale without a significant drop
in detection accuracy or efficiency. It demonstrates the
benefits of federated learning, where the addition of more
nodes actually contributes to model enhancement rather than
leading to a system bottleneck.

2) PERFORMANCE IN TERMS OF COMMUNICATION
OVERHEAD
A pivotal aspect of scalability, especially in federated
learning, is the model’s efficiency in managing commu-
nication overhead. From our evaluations, as depicted in
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TABLE 8. Performance comparison of FL-DAD against centralized approaches.

Table 7, even as the training progressed across epochs,
the data exchanged between nodes and the central server
demonstrated a consistent decline. This trend, wherein the
data exchanged reduced from 10.5 MB at the 5th epoch to
7.9MB at the 100th epoch, manifests themodel’s adaptability
and efficiency. Such proficiency in reducing communication
overhead without sacrificing performance accentuates FL-
DAD’s suitability for extensive IoT setups, where efficient
data transmission is critical.

3) COMPARISON WITH CENTRALIZED APPROACHES
It’s worth highlighting again the scalability advantages of
FL-DAD over centralized methods. As depicted in Table 8,
FL-DAD not only surpasses many centralized techniques
in performance metrics but also inherently possesses a
structural advantage in scalability. Centralized methods often
encounter bottlenecks with data centralization, transfer costs,
and single-point failures. In contrast, FL-DAD distributes
the learning process, thereby eliminating these potential
chokepoints.

Adaptability to Device Diversity and Data Variability:
To further address the scalability to larger and more
diverse IoT networks, FL-DAD incorporates dynamic
adaptation mechanisms. These mechanisms enable the
system to efficiently manage and learn from the diverse
data types generated by a wide array of IoT devices.
By employing advanced algorithms for data preprocess-
ing and feature extraction, FL-DAD ensures that the
variability in device capabilities and data formats does
not compromise the learning process. This adaptability
not only enhances the model’s generalizability across
different IoT environments but also ensures that the
system remains scalable and effective, even as the network
expands and diversifies.

C. IMPLICATIONS FOR GROWING IOT NETWORKS
As IoT networks grow in size and complexity, the need for
decentralized solutions like FL-DAD becomes even more
pronounced. The results of our robustness and scalability
analysis project a promising trajectory for federated learning
in the IoT intrusion detection domain.

• Decentralization Benefits: The decentralized nature of
FL-DAD allows it to harness the processing capabilities
of multiple nodes, spreading the computational load.
This ensures that as the network grows, the system
can tap into additional resources without overwhelming

any single node or causing significant performance
degradation.

• Adaptive Learning: As newer devices with diverse data
patterns join the IoT network, FL-DAD can adapt
its learning process in real-time. This ensures that
the system remains relevant and effective, continually
updating its knowledge base without requiring periodic
centralized retraining.

D. CHALLENGES AND LIMITATIONS
• Achieving Consistent Accuracy: The heterogeneous
nature of data across different nodes occasionally posed
challenges in maintaining a consistent model accuracy.
Some nodes, due to their distinct data characteristics,
influenced the global model in ways that required
additional training epochs for convergence.

• Harmonizing with Existing Systems: Incorporating
the FL-DAD system within established IoT networks
proved intricate at times. The presence of legacy systems
and their associated complexities occasionally impeded
a fluid integration process.

• Anomalous Data Intricacies: Notwithstanding our
meticulous preprocessing efforts, certain nodes sporadi-
cally presented anomalous data patterns. These could be
attributed to distinct local network behaviors or sporadic
device irregularities, occasionally injecting noise during
model training.

• Computational Complexity: Although the federated
learning paradigm aims to decentralize and hence
reduce computational burdens, the aggregation phase,
particularly with an increasing number of participatory
nodes, culminated in notable overheads. Striking a
balance between this overhead and achieving prompt
model updates emerged as a pertinent challenge.

• Resource Constraints on Edge Devices: Edge devices
in IoT networks often have limited computational power
and battery life, which poses a challenge for execut-
ing complex model training locally. To mitigate this,
we propose the use of model compression techniques
and lightweight learning models that require less com-
putational power and energy consumption. Moreover,
implementing predictive maintenance strategies can
help in scheduling training tasks during off-peak hours
to optimize resource usage.

• Communication Overhead: The frequent exchange
of model updates between nodes and the cen-
tral server in FL-DAD can lead to significant
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communication overhead, especially in large-scale IoT
networks. To address this issue, we suggest employing
communication-efficient federated learning algorithms,
such as Federated Averaging, that reduce the frequency
of communications by allowing local models to train
for more epochs before aggregation. Additionally,
techniques like quantization and sparsification can be
applied to reduce the size of the model updates being
transmitted, thereby minimizing bandwidth usage.

• Dataset Specificity:Our current use of the CICIDS2017
dataset as a primary test source shows limited effec-
tiveness against a broader range of DDoS attacks,
potentially limiting the generalizability of our findings.

E. FUTURE DIRECTIONS
• Advancing Convergence Strategies: Subsequent ver-
sions of FL-DAD could delve into sophisticated algo-
rithms and techniques that expedite model convergence
amidst the variability of data across nodes.

• Seamless IntegrationMechanisms: Future work could
emphasize devising tools or middleware solutions
that facilitate a seamless integration of the FL-DAD
approach across diverse IoT frameworks, bolstering its
feasibility for broader applications.

• Robust Anomaly Management: There’s ample scope
to engineer advanced anomaly detection and correction
mechanisms that can proactively identify and neutralize
data aberrations before they impact model training.

• Efficiency in Aggregation Protocols: Investigating and
implementing more efficient data aggregation method-
ologies can substantially alleviate the computational
overhead, enhancing the scalability prospects of the
FL-DAD system.

• Expanding Dataset Diversity: To ensure a more
comprehensive validation of the FL-DAD system, future
research will focus on incorporating a wider array of
datasets, encompassing diverse and multifaceted DDoS
attack scenarios beyond CICIDS2017.

• Diverse Attack Types In recognition of the evolving
nature of DDoS attacks and their increasing sophisti-
cation, we plan to extend our evaluation of FL-DAD
against a broader spectrum of DDoS attack types,
including more sophisticated and blended attacks in the
future work. This expansion will ensure that FL-DAD
remains effective in the face of new and emerging
threats, continuously enhancing its applicability and
robustness in securing IoT networks against a diverse
range of cyber threats.

IX. CONCLUSION
In this research, we embarked on an exploration of the
potential of Federated Learning (FL) in bolstering the
security landscape of Internet of Things (IoT) networks,
particularly focusing on the detection of Distributed Denial
of Service (DDoS) attacks. Our proposed FL-DAD method-
ology underscored the efficacy of decentralizing the learning

process, ensuring data privacy while not compromising on
detection accuracy. The numerical results demonstrated that
our FL-DAD approach achieved an accuracy rate consistently
above 98% across various DDoS attack classes, significantly
outperforming traditional centralized models. Noteworthy
findings included the system’s resilience in terms of accuracy
even when exposed to varied data attributes across nodes and
its competitive edge over centralized counterparts. Moreover,
the challenges and intricacies encountered, ranging from the
harmonization with legacy systems to handling anomalous
data intricacies, paved the way for charting future research
directions. The demonstrated high performance, particularly
in terms of precision and recall, reinforces the practical
applicability of FL-DAD in real-world IoT security scenarios.
These directions, which span from advancing convergence
strategies to devising efficient aggregation protocols, will
serve as cornerstones for further refinement of FL-DAD.
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