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ABSTRACT Retinal layer segmentation in optical coherence tomography (OCT) is essential for the
diagnosis and follow-up of several diseases. Despite the success of deep learning approaches for this task,
their clinical applicability is limited, since they neither account for pathologies other than those present
in the training set nor for the specialists’ subjectivity. Thus, we propose an interactive layer segmentation
approach that allows to obtain an initial segmentation and, more importantly, to interactively correct
those segmentations. Our deep learning-based approach predicts the translation required to correct layer
boundary segmentations by regressing pixel-wise translation maps that account for the user input. The
method is designed to allow for segmentation correction by interactions with point-clicks or line-scribbles.
Additionally, the system outputs a coordinate-wise confidence, allowing to automatically identify regions
of possible segmentation failure that may require user attention. We extensively validate our approach on
multiple private and public datasets with different pathomorphological complexities, achieving state-of-the-
art performance, while allowing for a simple and efficient user interaction.

INDEX TERMS Image segmentation, interactive annotation, deep learning, human-in-the-loop, optical
coherence tomography, retina.

I. INTRODUCTION
In recent years, the intersection of computer vision and
medical imaging has significantly advanced diagnostic and
therapeutic practices in healthcare. Indeed, medical image
analysis now plays a pivotal role in interpreting and extracting
clinically relevant information from various medical imaging
modalities [1]. Within this interdisciplinary domain, retinal
imaging emerges as a crucial subset, focusing on the
acquisition, processing, and analysis of images captured
from the retina. The acquisition and analysis of retinal
images allows the non-invasive diagnosis of a myriad of
pathologies, including not only ocular diseases but also
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systemic conditions such as cardiovascular problems and
dementia [2].

Retinal optical coherence tomography (OCT) is a 3D
non-invasive imaging technique that allows to evaluate and
monitor the status of the retina and its layers. Quantifying
changes in these layers is essential for the diagnosis and
follow-up of eye diseases such as age-related macular degen-
eration (AMD) and diabetic macular edema (DME), as well
as conditions such as multiple sclerosis [3], [4], [5]. However,
the manual annotation of these dense volumetric images
is time-consuming, and thus automated segmentation tools
are being standardly offered by OCT device manufacturers.
Retinal layer boundary segmentation methods predict a set
of coordinates of the most probable location of the interface
between two retinal layers. These approaches usually rely
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FIGURE 1. Our approach corrects OCT retinal layer boundaries
segmentations using user clicks and the previous segmentation.

on finding an initial boundary proposal, which can then be
refined with graph- or level set-based approaches [6], [7], [8],
[9], [10], [11].

Fully-convolutional networks have become the state-of-
the-art approach for retinal boundary segmentation, obtaining
high quality results by either segmenting the retinal layers and
identifying their interfaces [12], [13] or by directly inferring
their boundaries [10], [14]. Recently, [15] proposed a deep
model that relies on both layer and boundary segmentations
while imposing anatomical constraints, achieving low error
without additional post-processing.

Despite the high quality of existing methods, local
segmentation failures still occur, in particular for cases with
pathologies other than those in the training set. Also, retinal
layer segmentation, similarly to other medical segmentation
tasks, has an associated subjectivity, with specialists often
preferring different but valid solutions in severe pathological
regions. Because of this, obtaining a precise and personalized
layer boundary still requires physicians to actively correct
different regions on multiple layers [16]. Yet, to the best
of our knowledge, end-to-end deep learning approaches that
allow for interactive retinal layer boundary segmentation on
OCT images have yet to be explored. To further reduce the
workload of the specialists, these systems should focus on
user experience, (i) allowing to perform corrections near
the interaction region without degrading the segmentation
quality elsewhere, (ii) being capable of correcting multiple
boundaries at once while interacting with only one of
them.

With this in mind, we developed a novel approach (Fig. 1)
that proposes an initial segmentation of the retinal layer
boundaries, which can then be interactively correctedwith the
assistance of the system, reducing the workload of the user.

A. RELATED WORK
Interactive segmentation, i.e. adjusting a previous segmen-
tation result according to the input of an annotator, is an
actively researched topic in both computer vision and
medical image analysis fields, with both non-deep and
deep learning approaches being used in a complementary
fashion. In retinal OCT, fully graph-based interactive layer
segmentation methods [17], [18] such as LOGISMOS-JEI
[19] use intensity and gradient information to construct cost
maps, which can be adjusted by the users’ interactions,
to compute the segmentations. Despite the success of
these algorithms, graph-based approaches tend to present

a trade-off between segmentation quality and processing
time, since they are computationally demanding and reliant
on the design and tuning of task-specific constraints.
Deep learning approaches, although more data demanding,
usually achieve higher quality results within a similar time
frame.

As a hybrid approach, in [20] the authors rely on deep
learning to obtain an initial estimation, which can then be
corrected using different image processing techniques. There,
a deep learning system predicts a pixel-wise segmentation of
two retinal layers and potential pathological manifestations
in OCT B-scans. The inferred pixel-wise probabilities are
used for automatically inferring regions of high uncertainty.
These can then be semi-automatically corrected by the users.
Notably, the proposed method allows to also automatically
correct neighboring B-scans, decreasing the overall interac-
tion time. To correct the segmentations, the authors provide
a set of tools such as constrained shortest path prediction,
B-spline-based corrections and polynomial smoothing.While
correcting, users have to identify an appropriate tool and
perform the corresponding hyperparameter tuning whenever
necessary. In contrast, deep interactive approaches, such as
ours, are much simpler from the user standpoint: as shown in
Fig. 1, the user is only required to select the region where
the boundary is expected, and the system will handle the
correction automatically.

In general, interactive deep learning segmentation
approaches can be divided into region-focused, where the
goal is to change the segmentation at a pixel level, or contour-
focused, where the goal is to solely correct the object
boundary. In both approaches, the user input is commonly
encoded as an attention map, which can then be used as a
feature map and/or a weighting term for the training loss [21],
[22], [23], [24].

1) REGION-FOCUSED METHODS
Suchmethods aim at utilizing the user input to include/exclude
pixels from the current segmentation. A common approach
is to adjust the model’s weights case-wise according to the
user interaction [21], [25], [26], [27]. For instance, in [21]
they proposed to fine-tune a pre-trained model during the
inference stage to a set of manual correction scribbles.
These scribbles are encoded as a weight map for the loss
function, encouraging the network to include (or exclude)
the highlighted pixels. However, requiring test time training
is time-consuming, which hinders real-world applications,
where a near-instant feedback is expected. This is particularly
relevant for retinal OCT images, where the time burden is
further increased by the large number of boundaries and the
3-dimensionality of the data.

An alternative is to use networks that account for possible
user inputs without the need for additional weight refinement
[23], [28], [29], [30], [31], [32]. For example, [23] encodes
users’ clicks and scribbles as binary maps (in case of clicks)
or as binarized distance transformmaps (for scribbles), which
are used as additional input channels of the image to segment.
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The resulting segmentation can be changed by changing these
extra input maps. However, previous interaction results are
not considered, which may lead to incoherence between the
steps.

Indeed, interactive approaches often do not retain memory
of their previous state, i.e. there is no guarantee that the
network will consider previous outputs and user inputs to
produce the new result [25], [27], [28], [33], [34]. Previously
corrected regions can become partially or totally lost,
increasing the overall time required to achieve a satisfactory
result [35], [36]. Because of this, in [35] they proposed an
interactive segmentation framework that accounts for both the
previous model’s inference and the user input. In particular,
user interactions are encoded using geodesic image trans-
forms, and then used together with the previous segmentation
as extra input channels to a second segmentation model.
This model contains a trainable Conditional Random Field
to promote a more spatially consistent result and allows
using the input scribbles as hard segmentation constraints.
To address this lack of memory, in [28] they proposed a two-
stream network: one receives as input the image to segment
and an encoding of the user clicks, and the other this same
encoding together with the previous segmentation prediction.
The resulting features are then combined and decoded to
produce a new output, allowing to improve the quality of
the segmentation without affecting the previously corrected
details. Other notable examples are the Segment Anything
Model (SAM) and its derivatives [37]. These models use
transformer-based architectures trained with a very large
number of images from different acquisition settings (either
natural or medical images) in order to learn highly general
representations that allow to segment objects of interest
identified by (usually) clicks and bounding boxes. However,
despite being promising approaches, their performance is
still subpar when compared to domain-specific models,
especially those that account for specific anatomical prior
knowledge [38].

Overall, despite the merits of Region-focused approaches,
their applicability in retinal OCT boundary segmentation is
still limited. First, scribbles for pixel-wise correction are not
intuitive for users, as it is not trivial to decide which of the two
contiguous structures is under- or over-segmented or where
the location of the interaction should be. Instead, it is more
intuitive to simply indicate where the segmentation boundary
should move to. In addition, usually the segmentation is
not a direct correction of the previous result, but instead
a novel prediction generated in a black-box fashion with
no guarantee of the stability of the result between the
interactions. Consequently, it has become of interest to
address retinal OCT layer segmentation as a contour-focused
problem.

2) CONTOUR-FOCUSED METHODS
Such methods define the segmentation task as predicting
the position of a set of points that define the object of
interest [39], [40], [41]. The contour is considered as an

ordered point sequence, where each point’s position depends
on all the previous ones. In [42], they used a recurrent
neural network to assist the creation of polygons around
objects, where the network predicts the location of the next
user click by assessing all the pre-existing points. Users
interact by adjusting the position of the predicted vertices,
which are then re-assessed by the network. However, this
leads to long inference times. Because of this, [43] used a
graph convolutional neural network (GCN). At each iteration,
a feature vector is extracted from the output of a convolutional
neural network (CNN) for each contour vertex. These features
are then used in a GCN to predict the required point
movements.

Although showing great potential, these methods are not
easily translatable into retinal OCT layer segmentation. First,
retinal layers are not closed objects, and thus approaching
the task as a polygon delineation problem is not desirable.
Furthermore, the extraction of accurate biomarkers from
these images needs a segmentation as precise as possible,
thus requiring a large number of vertices and consequently
increasing the complexity of the models and the inference
time. An alternative would be to use less control points and
then approximate the final prediction. However, fitting a
curve to the detected points requires extra hyperparameter
tuning and may affect the local quality of the results,
especially on pathological regions.

B. CONTRIBUTIONS
In this work, we propose a deep learning-based framework
that provides an initial set of retinal layer boundaries in OCT
images and allows for their correction via user introduced
clicks/scribbles. The approach combines the strengths of
pixel- and contour-focused approaches by treating the layer
boundary segmentation task as a pixel-wise regression
problem where the network has to predict the amount of
movement required to properly readjust the coordinates of the
current segmentation. Our contributions to the state-of-the-art
are:

• a novel deep learning approach for retinal boundary
segmentation, that not only achieves a performance
similar or better than other state-of-the-art approaches,
but importantly, also allows for interactive correction.
In particular, we propose a new segmentation and
interaction scheme that predicts the translation required
to correct segmentations by regressing pixel-wise trans-
lationmaps that account for the user input. The approach
is specifically designed to allow for segmentation
correction by simple user interactions with point clicks
or line scribbles;

• an interactive system that outputs a coordinate-wise
confidence, allowing to automatically identify regions
of possible segmentation failure that may require user
attention;

• an extensive quantitative and qualitative validation of
the approach on private and public datasets spanning
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different retinal diseases, and of different pathomorpho-
logical complexities.

II. METHODS
The proposed method (Fig. 2) predicts an initial set of
retinal layer boundaries, which are then sequentially adjusted
according to the provided user input. The model infers for
each layer boundary a pixel-wise translation map (Fig. 2,
Translation map) with the estimation of the signed vertical
distance to the corresponding boundary coordinate. These
values are used to move the previously predicted boundaries
to new positions. Corrections proposed by the user are
encoded as extra input channels (Fig. 2, Inputs) and promote
changes to these translation maps and consequent update
of the boundary coordinates. Ultimately, at each prediction
iteration, the model accounts for user feedback to predict how
much a point anywhere on the image would have to move to
be in the correct location. Because the segmentation is never
predicted from scratch, but is instead moved from a previous
location, the evolution of the result is coherent between
interactions. In addition, the model outputs a pixel-wise
confidence map (Fig. 2, Confidence map) of how likely it is
that a specific boundary occurs on that location, easing the
identification of regions where the segmentation is likely to
need correction.

Specifically, at each iteration with an user input, the model
predicts a novel translation map Tl for the retinal layer l,
with the same size as the input grayscale B-scan image.
Each element of T corresponds to the estimated vertical
translation required for the current prediction to reach the
new location pointed by the user (Fig. 3). The system also
predicts a confidence map C related to the current location of
the segmentation.

Let Bi = {b0, . . . , bn} be the set of predicted layer
coordinates at the user interaction iteration i, where b are
the predicted boundary coordinates and n is the number of
layers to segment, and Ci

= {c0, . . . , cn} the corresponding
prediction confidence ∈ [0, 1]. The overall goal of the
network is to adjust the proposed solution from interaction
i − 1, Bi−1, so that the segmentation error of Bi is lower
than Bi−1 and likewise that the confidence increases, i.e.∑

Ci >
∑

Ci−1.
Our approach can use any encoder-decoder network

backbone. In this study, we opt for a deep residual U-Net [15],
[44], which has already been successfully used for retinal
OCT images. Let H × W × (1 + n) be the input’s shape.
The first channel of the input is the OCT B-scan to segment,
and the n channels encode the user interactions, one for each
layer boundary (details in Section II-C). The backbone has
residual convolutional blocks with batch normalization and
outputs a H × W × 64 feature map, where H and W are
the height and width of the input image, respectively. At the
end of the backbone, there are two branches responsible
for predicting the column-wise translation (the translation
branch) and the corresponding prediction uncertainty (the
confidence branch).

A. LAYER-WISE TRANSLATION AND COORDINATE
PREDICTION
The translation branch predicts the column-wise shift needed
to move a current boundary prediction bi−1 to a new location
according to the user input. For that, the backbone network’s
output is convolved with a (3 × 3) × 64 kernel, followed
by n distinct (3 × 3) × 1 kernels with linear activation,
resulting in the preliminary maps T ′

0, . . . ,T
′
n. To promote

anatomical coherence, each translation map Tl is computed
with reference to the layer immediately above:

Tl = Tl−1 + ReLU(T ′
l ) (1)

and for the first layer, no rectification is performed. The new
boundary is based on the previous prediction iteration:

bil = bi−1
l + Tl

(
bi−1
l

)
(2)

where Tl
(
bi−1
l

)
is evaluated by bilinear interpolation. Fig. 3

shows a schematic representation of the correction. Anatom-
ically coherent layer ordering is guaranteed as in [15]:

bl = bl−1 + ReLU
(
b′
l − bl−1

)
(3)

where b′
l is the result of Eq. 2. Because the network output

follows the expected layer ordering, i.e. bl is the boundary
that immediately follows bl−1, Eq. 3 ensures each boundary
depth is always greater (or at least the same) as its preceder,
thus guaranteeing a proper layer ordering.

Note that for the initial prediction i = 0, B0 is not defined,
as it is not a direct output of the network. To circumvent this,
the layer coordinates are initialized as:

B0
=

{
T 0
0

(
argmin

(
T 0
0

))
, . . . , T 0

n

(
argmin

(
T 0
n

))}
, (4)

i.e., as a subpixel-refined coordinates of the positive-negative
transition of the translation maps, which corresponds to the
region where the boundary is most likely to occur. Note
that B0 can also result from any boundary segmentation
algorithm.

Predicting Bi via Eqs. 1, 2 and 3 embeds anatomical
knowledge into the model, forcing an anatomically consistent
layer ordering bl ≥ bl−1. Also, at each user interaction the
network always has access to the previous segmentation state
bi−1, guaranteeing that bi is a direct modification of bi−1

instead of a new solution predicted from scratch. This leads to
a coherent progression of the segmentation without requiring
costly and slow parameter tuning via, for instance, retraining.

B. POSITION CONFIDENCE ESTIMATION
For each layer boundary coordinate, the system also infers
how confident it is that each point is now on the correct loca-
tion. The confidence prediction branch has a similar structure
to the translation branch. Specifically, the confidence results
from a bilinear interpolation of bil with a W × H map that
results from a sigmoid activation, i.e. cil = C

(
bil

)
.
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FIGURE 2. Proposed algorithm structure for interactive retinal boundary segmentation in OCT images.

FIGURE 3. Updating a previous prediction bt−1
l by vertically adjusting its

coordinates via the inferred translation map Tl .

C. ENCODING THE USER INTERACTION
The model interprets users’ clicks and scribbles to adapt the
translation maps T so that the boundaries move to the desired
new location. This interaction is encoded with maps that
are provided to the network together with the input image.
We use binary matrices (one per retinal boundary) with value
1 on the coordinates clicked by the user. Although a common
approach is to process these inputs with 2D Gaussian kernels
of different spreads [27], preliminary experiments showed
no meaningful gain on using mappings other than the binary
matrix.

D. TRAINING SCHEME
During training, we simulate user inputs by selecting for each
layer boundary the reference standard coordinate that has the
highest absolute distance from the respective prediction. Each
batch is interacted several times in the same training step
[28] to better mimic the behavior at test time. This scheme
also promotes a segmentation error reduction on the location
pointed by the user without degrading the result elsewhere.

Let L′ be an adapted Huber loss [45]:

L′
(
y, ŷ,w, c, δ

)
=


1
2

((
y− ŷ

)
w

)2 c for |y− ŷ| ≤ δ

δ

(
|y− ŷ|w c−

1
2
δ

)
otherwise

(5)

where δ = 7 defines where L′ is quadratic or linear, y and ŷ
are the reference standard and predictions, respectively, w is
a weighting factor and c is the prediction confidence.
The network is trained to minimize, for each boundary, the

translation and coordinate predictions as well as to maximize

the confidence estimation on the correct regions:

Ll = L′

(
Tl, T̂l,wT ,l, 1, δ

)
+ L′

(
bl, b̂l,wl, cl, δ

)
+ L′ (1, cl,wl, 1, 1) (6)

with the terms focusing on the error reduction of the
translation map, the error of the boundary and on ensuring
that the network does not learn the trivial solution of
predicting zero confidence everywhere, respectively; T̂ , b̂ and
c are the predicted translation maps, boundary coordinates
and confidence, respectively, and T and b the corresponding
reference standard; wT = 1 −

T
max(abs(T )) is a pixel-wise

factor that prioritizes correct translation values near the
true boundary; w is a weighting factor that prioritizes the
correctness of the segmentation near the user clicks. We set
wl = 10 for the 51 A-scans around the user click and
wl = 1 elsewhere. Hyperparameters were selected based on
the performance on the validation sets. Initial experiments
also showed that very high values of wl near the correction
regions lead the network to overly focus on those locations,
degrading the segmentation performance elsewhere.

III. EXPERIMENTS
In our experiments, user input is simulated similarly to the
training scheme (Section II-D), i.e., for each layer the A-scan
with the highest absolute error from the previous prediction
is selected. Unless stated otherwise, each iteration has one
simulated click per boundary before inferring a new result.

A. DATASETS
The proposed system is evaluated on two public datasets,
HC/MS [46] and DME [6] and on an internal dataset
consisting of scans of eyes with neovascular AMD (nAMD)
(Fig. 4).

1) PUBLIC HC/MS DATASET
Contains scans from 14 healthy controls (HC) and 21 patients
with multiple sclerosis (MS), acquired with a Spectralis
(Heidelberg Engineering, Germany) scanner1 [46]. Nine sur-
faces were manually delineated for all B-scans. MS subjects
show mild thinning of retinal layers and possible microcystic

1https://iacl.ece.jhu.edu/index.php?title=Resources
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FIGURE 4. Retinal boundary nomenclature for the used datasets.

macular edema (MME), but the retinal layer structure of all
the images is intact. Each OCT has 49 B-scans (496 ×1024
pixels) with an axial resolution of 3.87µm. Following [15],
the last 6 HCs and 9 MS are used for training (735 B-scans)
and the other 20 subjects are used for testing (979 B-scans,
with one B-scan removed due to low contrast between the
background and the retina). Within the 15 training subjects,
the first HC and first two MS are used for validation.
To ease comparison with other methods, we used the B-scans
flattened by the Bruch’s membrane (BM), with a size of
128 × 1024 pixels.

2) PUBLIC DME DATASET
Contains scans of 10 diabetic macular edema (DME) patients
acquired with a Spectralis scanner, with 11 B-scans per
patient annotated2 [6]. The axial resolution is 3.87µm, and
the B-scan size is 496×768 pixels. Reference segmentations
by two annotators are available for eight retinal surfaces,
as well as intraretinal cystoid fluid regions in the central
portion of the images. Similarly to other studies, the last
55 B-scans are used for training the model, and the other
55 scans of highly pathological cases are used for testing.
We only consider the annotations of the first reader. Due to the
highly pathological nature of some of the examples, there are
segments for which the manual annotations of some retinal
layer boundaries do not exist, as the layers got disrupted by
the fluid compartments. These segments were ignored both
during model training and evaluation. To ease comparison
with other methods, all B-scans were flattened by BM and
have a size of 224 × 512 pixels.

3) INTERNAL nAMD DATASET
Contains 68 scans from 68 eyes of as many patients with
nAMD, undergoing treatment at the eye clinic of Medical
University of Vienna, Austria. The analysis adhered to the
tenets of the Declaration of Helsinki, and was approved
by the Ethics Committee of the Medical University of
Vienna (EK Nr: 1246/2016). The scans were acquired with
a Spectralis scanner covering a 6 × 6 × 2mm3 volume,
with an axial resolution of 3.87µm; the B-scan size is

2https://people.duke.edu/ sf59/Chiu_BOE_2014_dataset.htm

496 × 768 − 1024 pixels. Seven B-scans uniformly spaced
across the volume had 12 layer boundaries manually anno-
tated by experts (476 annotated B-scans). The 68 volumes
were randomly split into training, validation and test sets
with 282, 71 and 77 B-scans, respectively. All B-scans were
flattened by BM and have a size of 256 × 512 pixels. Axial
resolution was kept by cropping to the smallest possible
power of 2 height, and width was subsampled by 2 due to
memory constraints.

B. COMPARISON TO NON-INTERACTIVE
STATE-OF-THE-ART SEGMENTATION METHODS
We compare the initial segmentation of our approach (i.e.
prior to user interaction) to other state-of-the-art methods
to confirm that it is competitive even as a standalone
application. We particularly aim at verifying that the initial
segmentation error of our approach is in a similar range
of other methods (not necessarily lower), thus showing
that it can perform similarly to existing solutions while in
addition advantageously allowing for subsequent segmenta-
tion correction. We focus on state-of-the-art deep learning
segmentation networks proved to work on medical images.
(i) ReLayNet [12], a U-Net-based model that performs retinal
layer segmentation; (ii) MGU-Net [47], a graph convolu-
tional neural network specifically designed for retinal layer
segmentation; (iii) UNeXt [48], a Convolutional multilayer
perceptron (MLP) based network dedicated to medical image
segmentation and (iv) the method from He et al. [15], which
uses a deep residual U-Net to predict anatomical coherent
layer boundaries. Except for [15], for which the results are
directly retrieved from the publication, all methods were
trained having as base the available source code.

C. COMPARISON TO INTERACTIVE SEGMENTATION
BASELINE
We compare our method with a fully region-based approach
to assess whether our translation-based interaction scheme
is harder to optimize than a pure region-level interaction in
which both layer delineation and corrections are based on
a pixel-wise segmentation. We are particularly interested in
understating the influence of our proposed translation-based
approach on the interactive segmentation performance. In an
ablation fashion, we opt for comparing it to an end-to-end
fully deep learning approach that uses the same backbone
and overall interaction scheme and training pipeline as the
proposed method. There, the user interacts with the network
by selecting over- or under-segmented regions on an inferred
pixel-wise segmentation of the same size as the input B-scan.
We refer to this approach as our baseline model.
The baseline model uses the same backbone as ours. The

output is a H × W × (n + 1) matrix with the same size as
the input, and each channel represents the probability of a
pixel belonging to one of the retinal layers or the background.
We adapt our training scheme (Section II-D) with changes to
the loss function and the user interaction encoding. Namely,

47014 VOLUME 12, 2024
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as loss, we use a multiclass intersection over union loss:

LIoU =

n+1∑
l

∑ (
sl × ŝl

)∑ (
sl + ŝl

) (7)

where s is the reference segmentation, ŝ is the pixel-wise
prediction and l is each of the layers (and background) to
segment. To promote focus on more complex regions of the
image, all correct pixels scored above 0.7 are ignored [49].

Interaction is simulated by, for each of the n + 1 labels,
clicking the maximum of the distance transform of the largest
under- or over-segmented region. This strategy ensures that
the click stays inside the region of interest, independently
of its shape. Clicks on over- and under-segmented regions
are encoded with −1 and 1, respectively. We also provide
as input channels the interaction maps smoothed with
Gaussian kernels of spread 8 and 12. For evaluation, the final
segmentation is the pixel-wise argmax of the predictions,
and, for each layer, the boundaries are composed of the
corresponding segmented pixels with the lowest depth per
A-scan, following the definition shown in Fig. 4. The layer
boundary coordinates for columns with no segmentations are
linearly interpolated from the nearest existing neighbors.

D. INTERACTIVE SEGMENTATION EVALUATION
1) SEGMENTATION BEHAVIOR WITH INTERACTION
The behavior of the segmentation with user interaction
is assessed with both simulated and manual annotations.
Namely, we compare the evolution of the segmentation error
for simulated interactions with and without the assistance of
our system.

2) MANUAL ANNOTATIONS
Complementarily, we evaluate on 5 randomly selected cases
from the DME dataset with real user interactions to verify that
the system does not require perfectly positioned user-clicks.
To assess the consistency of the results with different clicks
and users, two different volunteers performed the experiment.
This was performed on a custom graphical user interface that
showed the user the B-scan, the system’s prediction as full
lines and the reference standard as dashed lines. The interface
allows to correct, for each model prediction, any subset of
boundaries with an arbitrary number of interaction points per
layer. Interaction was performed by selecting the layer of
interest with a right mouse click on the current prediction,
providing the correct locations with left clicks, repeating the
procedure for the desired layers and finally requesting a new
set of locations by pressing Enter. For a fair comparison with
the simulated interaction, the user was requested to provide
for each boundary a point on a region where there was a need
for a correction (not necessarily the highest error), predict a
new result and repeat the process for 10 times.

3) EXTERNAL INITIALIZATION
Our method doesn’t directly output a boundary, but instead
translates it to new positions. Thus, it is expected that the

system can also be used to correct segmentations from an
external method. To test this hypothesis, we evaluate the
performance of the model on the HC/MS test set using as
initial segmentations the predictions from [15] instead of the
argmin of the translation maps.

4) QUALITATIVE ASSESSMENT
We conduct qualitative experiments with manual interactions
to explore the behavior of the segmentation in different
scenarios.

5) CORRECTION LENGTH
In practice, corrections are commonly performed with both
strokes and single clicks. Therefore, we simulate interactions
with different stroke lengths to determine the length from
which manual corrections are better than having the assis-
tance of the system. For that, we assess the performance
ratio between the non- and the system-assisted corrections,
erroruser/errorsystem. At each interaction, the A-scan with the
highest segmentation error is selected, and used as the center
of the correction stroke.

6) SEGMENTATION CONFIDENCE
The prediction confidence of the location of the boundary for
each layer potentially allows to automatically identify cases
of possible failure, which can then be revisited by the retinal
specialist. With this in mind, we study the behavior of the
segmentation error as a function of the predicted confidence
and the number of clicks. In particular, for each simulated
user interaction, we bin the predicted confidence in intervals
of 0.25 and measure the segmentation error on the locations
corresponding to each bin.

E. EVALUATION METRICS
The performance of the system is evaluated using the seg-
mentation metrics mean absolute distance (MAD) and root-
mean-square error (RMSE) to allow for the comparison with
other state-of-the-art methods:

MAD =
1
W

∑
|y− ŷ| (8)

RMSE =

√
1
W

∑ (
y− ŷ

)2 (9)

where y and ŷ are the reference and predicted coordinates
of the boundaries, respectively. Experiments on the HC/MS
dataset are reported using both MAD and RMSE and those
on the DME dataset consider only MAD, following the
performance metrics reported previously in the literature
for those two datasets. For experiments with simulated
interaction, we assess RMSE as a function of the number
of clicks per layer. Each click is simulated by selecting the
reference position of theA-scanwith the highest current error.

F. TRAINING DETAILS
Training was performed with an Adam optimizer with
learning rate 10−4 and a batch size of 4. Training data

VOLUME 12, 2024 47015



G. Aresta et al.: Interactive Deep Learning-Based Retinal OCT Layer Segmentation Refinement

TABLE 1. Mean absolute distance / root mean square error (standard deviation) in µm for the HC/MS dataset.

was artificially augmented by performing, with 50% prob-
ability, random horizontal flips, vertical scaling (up to
the point where ILM may occur on the upper region
of the image), and vertical and horizontal translations
of up to 10% of the image’s height and width, respec-
tively. On the HC/MS dataset and nAMD datasets, train-
ing was performed until there was no improvement on
the validation loss for 100 epochs. For DME dataset,
which has no validation set, training was stopped when
there was no improvement on the non-augmented training
set.

To incentivize the network to use the user input encoded in
the prior maps, training started by, at each user interaction,
simulating adjacent clicks (i.e. strokes) that cover 20% of
the image width. This percentage exponentially decayed over
the epochs so that after 50 epochs 1 pixel was selected per
iteration. No post-processing of the predicted boundaries was
applied. Experiments were performed using Python 3.8 and
Keras 2.5.0, on a workstation with an Intel(R) Core(TM)
i7-10700K CPU and NVIDIA RTX3080 GPU.

IV. RESULTS
Performance evaluation considered the central 98% portion
of the scans, as for some cases our network does not properly
handle the lack of information on the image boundaries. For
the DME dataset, evaluation is performed on the same regions
as [15], i.e. we ignore regions without reference standard and
those where [6] does not report results.

A. COMPARISON TO STATE-OF-THE-ART SEGMENTATION
METHODS
The performance of the method without user interaction
(i.e. considering the initial segmentation, see Section II-A)
on the public datasets is shown in Tables 1 and 2. Larger
segmentation errors usually occurred on pathological regions
of the images, in particular if the pathologies affect the
definition of the layer boundaries, as well as regions where
the signal/noise ratio is low, as depicted in Figs. 6b and 7b.
From the tables, we can observe that our method achieved
a performance similar or better than other state-of-the-
art approaches on both datasets. For the HC/MS dataset,
specifically, we had the best score on 4 out of the 9 boundaries
(RMSE metric). The system is a viable alternative for

TABLE 2. Mean absolute distance (standard deviation) in µm for the DME
dataset. Bold indicates the best performance. Comparison with ReLayNet
[12], UNeXt [48], MGU-Net [47] and He et al. [15]. Standard deviation
for [15] is not reported in the original work.

existing segmentation methods, while additionally providing
a framework that enables user interaction and real time
segmentation correction.

B. COMPARISON TO INTERACTIVE BASELINE
A comparison of our solution with the interactive baseline as
a function of the number of user clicks is shown in Fig. 5(a-
c). The behavior of the baseline indicates that the model has
learned to account for the spatial location of the user clicks
to improve the segmentation. However, the average error is
still much larger than that of the proposed solution. Indeed,
pixel-wise segmentation approaches tend to under-perform
on retinal boundary segmentation in OCT images as they
do not properly encode anatomical priors such as layer
ordering, allowing segmented layer to occur at unreasonable
locations [15]. Furthermore, as shown in Figs. 5 a, b and c,
the error reduction with interactions tends to be less stable.
We hypothesize that this is due to the extra correction effort,
since several clicks may be needed to fill/delete the same
incorrectly segmented regions. Instead, our contour-focused
approach allows to operate on the final predictions’ coor-
dinates in an end-to-end fashion, easing the addition of
anatomical constraints that improve the local segmentation
behavior. In a practical use-case, interaction with this type
of approach is simpler for the user, as it only requires to
click on the desired location without needing to additionally
indicate if that region is under- or over-segmented. Note
also that the proposed interactive interaction model does
not introduce significant computational overhead, increasing
the number of parameters of the baseline backbone from
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FIGURE 5. Average segmentation error (and 95% confidence interval) as function of the number of clicks per layer. (a, b and c): DME, HC/MS and internal
(nAMD) datasets, respectively; (d) with initial segmentation from [15] for the HC/MS dataset; (e) performance on 5 random cases from the DME dataset
for simulated and real user interactions using the proposed method.

FIGURE 6. Behavior of the proposed interactive segmentation model on a case from the DME dataset without user interaction and after 1, . . . , 4 clicks per
boundary. The displayed values are the root-mean-square error (µm) between the reference segmentation (dotted line) and prediction (full line). Colored
circles are the clicks for the respective boundaries. Best viewed in color using the digital version of the manuscript.

45 166 208 to 45 215 830, i.e. a mere 0.1% parameter
increase.

C. INTERACTIVE SEGMENTATION
1) SEGMENTATION BEHAVIOR WITH INTERACTION
The mean of the layer-wise average error for all test
samples is depicted on Fig. 5, with Figs. 5a–c showing the

performance of the model using a segmentation initialized
with the argmin of the predicted inferred maps. Using our
approach allows a better mitigation of existing segmentation
errors in comparison to manual corrections. For instance,
for the HC/MS dataset (Fig 5a) a single click per layer
already achieves a performance better than the state-of-
the-art [15], whereas with the manual correction more
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FIGURE 7. Segmentation behavior after different types of interaction (thick stroke lines) on a test case from the DME dataset. Best viewed in color using
the digital version of the manuscript.

than 15 clicks per layer would be required. This is also
quantitatively shown in Figs. 6b and 6c, where a single
click per layer improves the segmentation in a pathological
region. In particular, the INL-POL and OPL-ONL errors are
reduced by more than 30%. In addition, the behavior of
the network is similar across datasets with different types
of retinal diseases. The low inference time per prediction
iteration of approx. 0.25s/2.5s (GPU/CPU, independent of
the number of interactions performed), further facilitates the
translation of the system to the clinic.

2) MANUAL ANNOTATIONS
Fig. 5e shows the segmentation error for 5 cases from
the DME dataset with real interactions assisted by our
system in comparison to the simulated interaction. These
results validate our findings using the simulated interactions.
In particular, we show that the error reduction with both
simulated and real interactions is very similar. Also, the
similar performance of both manual annotations suggests that
the system is robust to different types/styles of interactions.
In fact, it appears that the simulated interaction, which

follows the training scheme by always selecting the highest
error coordinate, may not even be the best interaction strategy.
Indeed, both real users were capable of achieving an overall
better performance than the simulation.We believe that this is
due to the nature of the interaction, since the real users had a
tendency to interact with a larger portion of the image where
errors occurred, regardless of whether these were indeed the
locations with the largest errors. This provides more context
to the network, thus allowing for more efficient corrections.

3) EXTERNAL INITIALIZATION
Fig. 5d shows the evolution of the segmentation error using as
starting point the boundaries predicted by [15] for the HC/MS
dataset. These results suggest that our method can be used to
correct other segmentation models, with the behavior of the
segmentation error being similar to our initialization.

4) QUALITATIVE ASSESSMENT
Fig. 6 depicts a potential use case of our method, where
a poor segmentation on a pathological region is corrected,
and Fig. 7 shows examples of different interactions and
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FIGURE 8. Behavior of the segmentation for the IPL-OPL layer for
different user interactions (DME dataset). First image is the initial
segmentation, followed by 3 different results after 3 different
interactions. Dotted lines indicate the reference standard. Best viewed in
color using the digital version of the manuscript.

the corresponding output on a highly pathological case.
As shown, interacting with a single boundary affects neigh-
boring segmentations. For example, on Fig. 7c, increasing
the IPL-INL depth leads to a collapse of both INL-OPL
and OPL-ONL while maintaining the relative distances
between the 3 boundaries. This suggests that the network
has learned not only the expected anatomical order of the
layers, but also that layer thickness is a relevant parameter
for correctly identifying the different boundaries. Likewise,
Fig. 7d and 7e show scenarios where correcting one of the
boundaries locally improved the quality of the neighboring
segmentations. This behavior is generally desirable, allowing
to reduce the workload of the specialist by reducing the total
number of interactions required to correct the result. Finally,
Fig. 7f depicts the prediction of the model after a single
poorly located click. Unlike the cases shown in Fig. 6, where
clicks made on plausible locations affect the correction of
the adjacent portions of the boundaries, in this case the click
only affects its respective column. This hints that the model
identifies this noisy interaction as an outlier and minimizes
the impact of the manual correction on the final result. Even
though it would be better to completely ignore the click, the
model was trained assuming that the user input would lead to
a correction/improvement of the segmentation. Thus, changes
on the interacted A-scan are always expected.

Fig. 8 illustrates how the system can account for user
subjectivity. For simplicity, we force the non-interacted
layers to maintain their initial position. Notice that none of
the interactions matches the reference segmentation. In a
scenario where user interaction was not properly accounted
for, one would expect the model to always guide the
boundaries to the correct location. Instead, the system is
adjusting to the user’s opinion, moving the boundary towards
the requested locations.

5) CORRECTION LENGTH
Fig 9 presents the stroke lengths for which the deep learning
assisted correction is better than the manual delineation.
If all layers are to be corrected, the assisted correction is
particularly efficient in comparison to the manual annotations

FIGURE 9. Ratio of the segmentation root-mean-square error between
the simulated manual user interaction and the deep learning assisted
interaction as function of the number of interactions and length of the
correction stroke (percentage of image width). Green indicates that the
deep learning is better than the manual user correction, and purple
the opposite.

when very small (single clicks and small strokes) are
provided. Specifically, the model stops actively contributing
to a better correction when the input strokes are larger
than approximately 2% of the images’ width (approx. 10 to
20 pixels, depending on the dataset). This behaviour is to be
expected, as the model was specifically trained to perform
corrections based on clicks and not large strokes, with the
latter being characteristic of fully manual corrections. Also,
the assisted interaction allows to obtain smooth transitions
between the corrected and neighbour regions of the boundary,
resulting in a more natural segmentation than the manual
correction, as exemplified in Fig. 7e, where the length of
the stroke is smaller than the corrected depressions of the
OS-RPE layer. Click-based interactions are of particular
interest for regions where multiple boundaries have an initial
poor estimation, as they significantly reduce the amount of
manual effort required for correction (Fig. 6). Note how larger
segmentation errors, in particular for the IPL-INL, INL-OPL
and OPL-ONL (see Fig 6b, left half), are corrected with a
few clicks (Fig. 6f). Internally, these clicks lead to updates
mainly on the same neighborhood region of the translation
map, allowing to maintain the quality of the segmentation on
the remaining portions of the image.

6) SEGMENTATION CONFIDENCE
The average segmentation error as a function of the model’s
confidence and the number of clicks per layer is presented
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FIGURE 10. Max-min normalized average error as a function of the
number of interactions and inferred confidence for the datasets in the
study. Color codes the normalized error.

in Fig. 10. Results indicate that the model has learned to
leverage the confidence as a weighting factor on the loss
function to reduce the influence of high error locations during
training. Indeed, for all datasets the upper left region of the
plot has high error, which is to be expected as it corresponds to
segmentation regions with low confidence and low number of
interactions. Likewise, increasing the number of interactions
and/or the predicted confidence results in lower errors. Note,
however, that in the DME dataset (Fig. 10(a)), there is a set
of cases for which increasing the number of clicks degrades
the quality of the segmentation (first column of plot (a),
corresponding to 0-0.25 confidence). These correspond to
highly pathological images not meaningfully represented in
the training data, leading to improper behavior during test
time. Despite this, the confidence for those cases is still low,
and thus are properly highlighted by the system as being
likely erroneous regions requiring manual correction.

V. DISCUSSION AND CONCLUSION
This paper presents a novel interactive segmentation method
for retinal boundary segmentation in OCT images. Our
approach, based on predicting translation maps, allows
obtaining an initial segmentation performance in line with
other state-of-the-art methods (Tables 1 and 2) and, more
importantly, to correct those segmentations. To the best of
our knowledge, such end-to-end deep learning approach
that allows for efficient and coherent retinal boundary
segmentationwhile respecting anatomic constraints has never
been explored in the literature before. Indeed, the system was
shown capable of correcting layer boundary segmentations in
scans covering three different retinal diseases with minimal
annotation effort (Fig. 5).

We showed that a few user provided clicks in the regions
with large error allow to substantially improve the initial
segmentation (Fig. 6). Particularly, the sparse interaction
encoding and the extra loss weight near the interaction
regions promote a local segmentation correction without
degrading the performance elsewhere. In addition, training
to account for an expected layer ordering allows correcting
multiple layers while interacting with just one, as exemplified
for example in Fig. 7e. The system also learned to rely on

the user input to produce different outputs according to the
opinion of the annotator, thus accounting for the subjectivity
inherent to the segmentation process (Fig. 8). Overall,
this type of effective interaction is essential in clinical
practice, where the time availability of retinal specialists
is severely limited and the amount of work is high, hence
fully manual correction to measure retinal layer thickness
is not feasible. Furthermore, our system has an associated
uncertainty estimation (Fig. 10), which can potentially be
used for identifying regions of failure in an automatedmanner
(e.g. via a threshold) and guide the user, further streamlining
the segmentation correction process.

Of note, a segmentation proposed by a different system
can be used as the starting point for interaction, because
the correction method is based on the translation of
existing boundaries instead of their direct prediction. This
increases the potential of clinical applicability, where often
segmentation software is distributed and locked together
with the image acquisition hardware. As long as access to
the initially predicted coordinates is possible, our approach
allows training an interactive correction method that can be
used by clinicians to refine segmentations according to their
needs.

As a limitation, there is a risk that the method does not
generalize to datasets that have a domain shift such as a
novel pathology or a different acquisition setting, similarly
to other deep learning approaches. In particular, in this study
we opted by not studying the performance of the system in
a multi-pathology setting (i.e. combining multiple datasets)
as each dataset has a different number of layers annotated
using distinct annotation/initialization schemes. This makes
their combination and management of possible domain-shits
non-trivial. Because of this, future efforts should focus on
the collection of large uniform and highly representative
datasets, as well as on the development of techniques that
increase the robustness of these types of systems to outlier
cases and domain shifts. Also, the system was trained
assuming that user interactions are always meaningful, i.e.
would always lead to a better segmentation. For extreme
outlier clicks (see Fig. 7f), the segmentation behaviour is
suboptimal. As a consequence, further efforts to increase the
model robustness to such noisy interactions should be done.
In addition, at this stage, the proposed system only predicts
layers’ positions from a single B-scan at a time, which may
be imposing a performance limit compared to predictions
from 3D volumes. With sufficient computational resources,
however, this limitation would be solved as our algorithm
should be directly extendable to 3D.

In conclusion, a novel interactive segmentation approach
for retinal boundary segmentation in OCT images is pre-
sented. We demonstrate the effectiveness of the approach by
conducting extensive quantitative and qualitative validations
in both private and public datasets. In particular, user
interaction allows the method to achieve the segmenta-
tion performance beyond the current state-of-the-art. Also,
the simplicity of the interaction required to correct the
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TABLE 3. Relevant parameters used for describing the proposed method.

TABLE 4. Summary of relevant state-of-the-art approaches reviewed in
this work. DL: deep learning; Gr: graph-based; RF: random fields; FzC:
fuzzy clustering; R: region-focused method; C: contour-focused method.
Coherent: whether the method has properly in account previous
interactions. Confidence: whether the method provides a confidence
metric associated with the output.

segmentation makes it an attractive tool for clinical practice,
and thus it is our hope that this line of work will enable
efficient and accurate retinal layer thickness measurements
from OCT images.

DATA AVAILABILITY
The Internal nAMD dataset used to train and evaluate
our method cannot be shared at the current time due to
data confidentiality agreements and privacy constraints.
The public HC/MS dataset is available athttps://iacl.
ece.jhu.edu/index.php?title=Resources. The public DME
dataset is available at https://people.duke.edu/ sf59/
Chiu_BOE_2014_dataset.htm.

APPENDIX A
See Table 3.

APPENDIX B
See Table 4.
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