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ABSTRACT In the process of daily product development and design, optimizing the shape and external
dimensions of the vehicle chassis truss structurewhile considering bothweight and reliability indicators often
involves interdisciplinary collaboration and inefficient communication, leading to repetitive mechanical
labor and low efficiency. This is widely regarded as a difficult and challenging task. In order to improve
the design quality of the chassis truss structure and enhance work efficiency, this paper proposes a
novel lightweight multi-objective optimization design system for vehicle chassis trusses based on the
ANFIS-SHAMODE-IWOA model. Firstly, an adaptive spiral search strategy is introduced based on the
multi-objective hybrid metaheuristic algorithm (SHAMODE) which is based on successful history. Then,
a new SHAMODE-IWOA algorithm is proposed. In order to estimate the reliability level of the chassis
truss structure under different design parameter combinations, a new ANFIS-SHAMODE-IWOA model is
constructed by using the proposed SHAMODE-IWOA algorithm to learn the ANFIS model. Finally, in order
to obtain the optimal design parameter combination, multi-objective optimization based on minimum design
quality and optimal reliability measurement functions is studied using the SHAMODE-IWOA algorithm.
Experimental results show that SHAMODE-IWOA has leading global optimization capability on CEC2017
test set benchmark functions. Compared with other intelligent models, the ANFIS-SHAMODE-IWOA
model has better performance in reliability coefficient estimation. At the same time, the SHAMODE-IWOA
algorithm obtains a more optimal design parameter combination for the chassis truss, with improvements
of 9.5%, 12.5%, and 15% in Mass, Bending, and Torsion indicators, respectively. Ultimately, the proposed
ANFIS-SHAMODE-IWOAmulti-objective optimization design system, as a novel intelligent model, can be
used to evaluate the reliability of chassis truss structures, improve development and design efficiency, and
obtain the best design parameter combination, which is beneficial to improving the level of green intelligent
manufacturing design.

INDEX TERMS Chassis truss, multi-objective optimization, ANFIS model, SHAMODE algorithm,
lightweight, machine learning.

I. INTRODUCTION
The vehicle chassis is an important component that ensures
the power output and smooth and reliable operation of

The associate editor coordinating the review of this manuscript and
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the vehicle. The optimization design of the chassis is a
key issue in vehicle lightweight optimization. During the
process of lightweight optimization design, it is a challenging
task for designers to consider both mass and reliability
indicators while optimizing the shape and size of the chassis
structure [1]. This often requires extensive finite element
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simulation calculations and interdisciplinary collaboration
to achieve satisfactory results. Currently, intelligent design
and efficient high-quality design have become new trends in
the manufacturing industry. Concurrently, the goal of design
departments has become to create systems that enhance work
efficiency and reduce interdepartmental coordination during
interdisciplinary research. In the chassis design process,
maintaining the reliable and durable performance of the
chassis structure while reducing mass is a crucial factor in
improving the design quality of the chassis structure, reduc-
ing vehicle energy consumption, and enhancing subsequent
processing efficiency. Therefore, it is crucial to establish
a lightweight auxiliary optimization design system that is
computationally accurate, reliable in design, and efficient in
computation.

Optimization algorithms are widely used in structural
optimization work because of their ease of implementation,
interpretability, and advantages in terms of robustness,
adaptability, and code programming. In the early stages,
genetic algorithm (GA) [2], [3] and simulated annealing(SA)
[4] were the most commonly used optimization algorithms.
Then, it entered the era of particle swarm optimization(PSO)
[5] and differential evolution (DE) [6], where a large number
of algorithms were subsequently developed and utilized.
These include: grey wolf optimization algorithm [6], Sym-
biotic Organism Search Algorithm [7], cuckoo optimization
algorithm [8], bat algorithm [9], hungry games search (HGS)
algorithm [10], moth-flame optimization algorithm (MFO)
[11], chaotic Levy flight distribution (CLFD) algorithm [12],
cheetah optimization (CO) algorithm [13], and Henry
gas solubility optimization algorithm (HGSO) [14] and
so on.

In addition, optimization algorithms generally enable
simultaneous search of multiple Pareto fronts in a single
solving process, facilitating the resolution of multi-objective
problems. However, their efficiency is lower and prone to
local optima in handling high-dimensional problems or non-
differentiable constraints [15], [16]. Therefore, in recent
years, numerous novel and effective studies on multi-
objective optimization problems of truss structures have
been proposed. Aslan Busra and Yildiz Ali Riza applied
lattice structure optimizationmethod to optimize the structure
of automobile suspension arms produced using additive
manufacturing processes. The method was shown to obtain
topologically optimized structures with higher reliability
compared to other methods, although it has limitations
when applied to non-additive manufacturing parts [17].
Kumar Sumit et al. proposed a decomposition-based multi-
objective heat transfer search algorithm (MOHTS/D) to
solve real-world structural problems. This algorithm can
find optimal solutions with lower computational complexity
and demonstrate better convergence, coverage, and diversity
on the Pareto front. However, further investigation is
needed to validate its performance in higher-dimensional
and complex engineering design problems [18]. Mehta
Pranav et al. proposed the use of the Hunger Games

Search (HGS) algorithm for lightweight optimization of
automobile suspension arms. This algorithm outperformed
other algorithms in terms of performance. Nevertheless, its
applicability and adaptability to other types of complex
automotive components still need further investigation [19].
Kumar S. et al. aimed to improve the randomness and
limitations of traditional metaheuristic algorithms in solving
truss problems. They introduced the concept of dual archive
(MOMVO2arc) based on the traditional multi-objective
multi-verse optimizer (MOMVO). Comparative experiments
showed that MOMVO2arc has higher efficiency in solving
large-scale structural optimization problems. Yet, there
is still room for further improvement and enhancement
in this research [20]. Zhao Kaiwen et al. proposed an
Adaptive Two-population EvolutionaryAlgorithm (ATEA) to
address the difficulties in solving constrained multi-objective
optimization problems. Extensive comparative experiments
demonstrated the superiority of this algorithm. However, its
adequacy in more complex real industrial scenarios lacks
sufficient validation [21]. Pranav Mehta et al. proposed
a novel gradient-based optimization algorithm (GBO) for
structural optimization problems of heat exchangers and cool-
ing towers. However, the research scope of this study needs
to be further expanded [22]. Apiwat Nonut et al. introduced
an L-SHADE algorithm for system identification of small
fixed-wing UAVs. The algorithm exhibited good robustness
and superior performance, but there is still room for further
improvement in terms of solution performance [23].Natee
Panagant et al. compared 18 different algorithms, including
Successful History-based Adaptive Multi-objective Differ-
ential Evolution (SHAMODE), Successful History-based
Adaptive Multi-objective Differential Evolution Without
Archive (SHAMODE-WO), and Multi-Objective Iterative
Parameter Distribution Estimation (MM-IPDE), in truss
multi-objective optimization problems [24].
Based on the foundations, limitations, and inspira-

tions from the mentioned studies, this paper presents
a multi-objective optimization design system based on
ANFIS-SHAMODE-IWOA. The system consists of three
components:

Firstly, in response to the inadequate performance of the
original algorithm, we have introduced an adaptive mech-
anism based on the SHAMODE-WO algorithm [24], and
proposed the SHAMODE-IWOA algorithm. The improve-
ment and effectiveness of this algorithm have been verified
through benchmark function experiments.

Secondly, in order to estimate the reliability level of the
chassis truss structure under different combinations of design
parameters, the proposed SHAMODE-IWOA algorithm is
used to learn the ANFIS.

Lastly, the SHAMODE-IWOA algorithm is applied to
perform multi-objective optimization on the chassis truss in
order to obtain the lowest quality and optimal reliability per-
formance under different combinations of design parameters.

In summary, this study provides technical experience and
theoretical basis for the lightweight and reliable design of
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chassis truss structures. The design system has superior
performance and can estimate reliability performance based
on different combinations of design parameters. It can also
obtain the optimal design parameter combination based on
the lowest design quality and the best reliability performance.
In addition, this system can reduce repeated finite element
analysis and large-scale mechanical calculations in design
activities, promote multi-disciplinary cooperation efficiency,
enhance work efficiency while carrying out interdisciplinary
cooperation, and reduce cross-department coordination pro-
cesses, greatly improving design and production efficiency.

II. A NOVEL SHAMODE-IWOA ALGORITHM
The SHAMODE algorithm is an adaptive multi-objective
differential evolution algorithm based on successful history.
Its core idea is to utilize the historical information of
individuals with superior objective function values to guide
the mutation strategy of the differential evolution operator,
thereby improving the algorithm’s search capability [25].
The SHAMODE algorithm is derived from the SHADE
algorithm and further solves multi-objective problems by
updating the external Pareto archive [26]. The main steps of
the SHAMODE algorithm include algorithm initialization,
selection, mutation, crossover, and update.

To enhance the algorithm’s search diversity and stimulate
computational efficiency, this paper introduces an improved
whale optimization algorithm (IWOA) with an adaptive
spiral strategy into the original SHAMODE algorithm, and
proposes a SHAMODE-IWOA algorithm. The specific steps
of this algorithm are described as follows:

A. PARAMETER INITIALIZATION
NP initial solution sets are randomly generated, as shown in
formula (1):

xi,G = [x1,G, x2,G, x3,G, . . . , xNP,G] (1)

In formula (1), i is the index, NP is the index limit, equal to
the number of design variables, andG is the iteration number.
Non-dominated solutions are populated in the initial Pareto

archive Pareto1. At the same time, an empty external archive
(A1) is created for the regeneration process. In this process,
the initial values of all adaptive parameters are set. For more
detailed information on adaptive parameters, please refer to
sections II-E and II-F.

B. MUTATION
In the mutation process, a random strategy is adopted to
generate a mutation term, as shown in formula (2):

ui,G = xi,G + Vi,G
(
xpbest − xi,G

)
+ Vi,G

(
xr1,G − x̃r2,G

)
(2)

In formula (2), Vi,G ∈ [0,1] is a scaling factor that controls
the influence of differential change. xi,G represents a feasible
solution in generation G;xpbest is a randomly selected solution
from the external Pareto archive; xr1,G is a randomly selected

solution from the current population (xG), and x̃r2,G is a
randomly selected solution from the union of the current
population and the external archive. (xG∪AG).

C. CROSSOVER
The crossover stage is performed according to the following
formula (3):

hj,i,G =

{
uj,i,G if rand ([0, 1)) ≤ Ri,Gorj = jrand
xj,i,G otherwise

(3)

In formula (3), Ri,G represents the crossover ratio, with
Ri,G ∈ [0,1]; rand([0,1)) denotes a uniformly distributed
random number between 0 and 1;jrand denotes the index of x
randomly generated from [1,2,. . . , n], where n is the number
of design variables.

D. CHOOSE
The joint population (xG ∪ uG) consisting of the current
individual xi,G and trial individual hi,G is sorted using the non-
dominated sorting scheme of NSGA-II. The next iteration
will retain NP solution candidates with the highest non-
dominated level. If the number of solution candidates with the
highest non-dominated level exceeds NP, some of them will
be randomly removed to maintain a constant population size.
Finally, the NP survivors of the current iteration are stored in
xG+1. After the selection process, all non-dominated solution
candidates sorted from hG ∪ParetoG are saved in ParetoG+1.
If the number of non-dominated solution candidates exceeds
the maximum Pareto archive size, some will be randomly
removed from the archive.

E. PARAMETER ADAPTIVE ADJUSTMENT STRATEGY
All adaptive parameters, including the external archive (A),
the historical memory of the scaling factor (MF), and the
crossover rate (MCR), are updated at the end of each iteration.
Following the suggestion of L-SHADE [27], the maximum
number of solutions in the external archive (A) is set to
1.4× NP. At the end of each iteration, the indices of the
successfully updated offspring that survived the selection
process are stored in a vector called ‘‘sind’’. The parent
vectors that generated the successful offspring (xsind ,G) are
then stored in the external archive AG+1. If the number of
solutions stored in the external archive exceeds the specified
value, some solutions are randomly deleted to maintain a
constant archive size.

The updates for Vi,G and Ri,G are performed according to
formula (4) and (5) as shown below:

Vi,G = randci(µV , 0.1) (4)

Ri,G = randni(µR, 0.1) (5)

In formula(4) and (5), µV and µR are the means,
initially set to 0.5. randci(µV , 0.1) and randni(µR, 0.1) are
random numbers generated based on Cauchy and Gaussian
distributions, respectively, with variances (σ 2

V , σ 2
R) equal to

(0.1, 0.1).
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Furthermore, let MV and MR be the historical memory
of the scaling factor Vi,G and the crossover rate Ri,G, from
which µV and µR for each individual can be randomly
selected. At the end of each iteration, an element of the
memory (MF and MCR) is updated using the Lehmer mean
of the parameters of the successfully updated offspring,
as described in formula (6) and (7):

MV ,k,G+1 =

{
Lmean

(
Vsind,G

)
if Vsind,G /∈ φ

MV ,k,G otherwise
(6)

MR,k,G+1 =

{
Lmean

(
Rsind,G

)
if Rsind,G /∈ φ

MR,k,G otherwise
(7)

In formula (6) and (7), Lmean(Vsind,G) and Lmean(Rsind,G)
are the Lehmer means of Vi,G and Ri,G, respectively, where
sind denotes the individuals of the successful offspring.
If at least one successful offspring exists, the k-th memory
position will be updated; otherwise, such elements remain
unchanged. The index k is initially set to 1 and linearly
increases with the progression of the process. If k > H, it is
reset to 1.

F. IMPROVED ADAPTIVE SPIRAL STRATEGY OF WHALE
OPTIMIZATION ALGORITHM(IWOA)
The spiral factor in the Whale Optimization Algorithm
(WOA) has been shown in numerous studies to enhance
the search diversity of the SHAMODE algorithm, where
the WOA’s spiral motion is integrated into the SHAMODE
algorithm [6], [28]. During the mutation process, each
mutation carrier ui,G has a chance to be further updated with
the WOA’s spiral motion, which is then activated during
crossover, as described in formula (8) and (9) [29].

u2
i,G =

{
Diel cos (2π l) + xpbest2 if rand < 0.5
ui,G otherwise

(8)

Di =
∣∣xpbest2 − ui,G

∣∣ (9)

In formula (8) and (9), u2
i,G is a new mutated variable

with spiral update, and xpbest2 is another feasible solution
randomly selected from the current Pareto archive (different
from xpbest1). The variables l and rand are random numbers
in the intervals [−1, 1] and [0, 1], respectively.

However, the setting of the l value determines that the
spiral search phase can only follow a fixed spiral line, which
leads to a too narrow optimization approach and increases the
risk of premature convergence, weakening the global search
capability of the algorithm. To address this issue, this paper
introduces a variable that sets the spiral shape parameter
l as a dynamic value that changes with the number of
iterations, allowing whale individuals to dynamically adjust
the spiral shape during the spiral search phase, enhancing
the global search capability of the algorithm to improve its
convergence accuracy. The improved strategy is shown in
formula (10)(11)(12).

u2
i,G =

{
Diebl cos (2π l) + xpbest2 if rand < 0.5
ui,G otherwise

(10)

b = −γ sin(
1
2
π

√
Gmax − G
Gmax

) (11)

Di =
∣∣xpbest2 − ui,G

∣∣ (12)

In formula (10)(11)(12), γ is the spiral shape adjustment
factor, Gmax is the maximum number of iterations, and G is
the current iteration number.

Thus, the pseudocode for the SHAMODE-iWOA
algorithm is shown in Algorithm 1.

Algorithm 1 SHAMODE-IWOA
//Initialisation
Set population and maximum Pareto archive size to NP
Randomly generate initial population xi,G =[
x1,G, x2,G, x3,G, . . . , xNP,G

]
Select non-dominated solution from x1 to be intial Pareto front(P),
Set maximum Pareto archive size to NP.
External Archive A = φ, Set maximum external archive size to
1.4xNP
Set memory index k to 1, and memory size H to 5
Set all initial values in MF,MCR to 0.5
//Main loop
For G = 1 to Gmax do

// mutation operator
Vi,G = randci (µV , 0.1)
ui,G = xi,G + Vi,G

(
xpbest − xi,G

)
+ Vi,G

(
xr1,G − x̃r2,G

)
u2
i,G =

{
Diebl cos(2π l) + xpbest2 if rand < 0.5

ui,G otherwise

b = −γ sin
(

1
2π

√
MaxG−G
MaxG

)
Ri,G = randni (µR, 0.1)

hj,i,G =

{
uj,i,G ifrand ([0, 1)) ≤ Ri,G or j = jrand

xj,i,G otherwise
xG+1 = best NP solution with highest non-dominated levels form
xG ∪ uG
Sind = set of indices of uG that survived and are included in xG
Pareto G+1 = non-dominated solution from Pareto GG ∪ uG
//Adaptive strategies
AG + 1 = AG ∪ xsind,G

MV ,k,G+1 =

{
Lmean

(
Vsind,G

)
if Vsind,G /∈ φ

MV ,k,Gotherwise

MR,k,G+1 =

{
Lmean

(
Rsind,G

)
if Rsind,G /∈ φ

MR,k,Gotherwise

k =

{
k + 1if k + 1 ≤ H

1otherwise
maintain the maximum size of ParetoG+1 and AG+1 by randomly
removing excess solutions
End for

III. A NOVEL ANFIS-SHAMODE-IWOA MODEL
The Adaptive Neuro-Fuzzy Inference System (ANFIS) is a
complete system that combines neural networks and fuzzy
systems, integrating the advantages of both fuzzy inference
systems and neural networks. It is suitable for modeling and
analysis of various highly complex nonlinear problems [30].
Its typical structure is shown in Figure 1 below, which is
usually a five-layer neural network. The adaptive nodes in the
square boxes are adjustable parameter sets within the nodes,
while the fixed nodes in the circular boxes are fixed parameter
sets.
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FIGURE 1. Schematic representation of the ANFIS infrastructure.

This paper is based on the SHAMODE-IWOA algorithm
to learn the ANFIS model, with the aim of improving the
efficiency and accuracy of the model. The specific steps for
constructing the model are as follows:

Layer 1: This adaptive node is the membership function
layer of the input variable, which converts the input into a
fuzzy set, and the output function is:

Q1,i = µAi (x1) i = 1, 2 (13)

Q1,i = µBi−2 (x2) i = 1, 2 (14)

In function (13) and (14), x1 and x2 are inputs; Ai and Bi−2
represent fuzzy sets, i.e., linguistic variables obtained through
calculation; µAi and µBi−2 are membership functions, and the
Gaussian function is used in this study:

µ
j
i (xi) = e

(−
(xi−cij)

2

σ2ij
)

(15)

In function (15), the parameters cij and σij are initial
parameters that need to be adjusted through the learning
algorithm.

Layer 2: The function of this layer is to release the strength
of the rules, and the node function is multiplied by the input
to express the fuzzy rule:

Q2,i = wi = µAi (x1) · µBi−2 (x2) (16)

Layer 3: The number of nodes is the same as that in
the second layer, and the results of the previous step are
normalized:

Q3,i = w̄ =
wi

w1 + w2
(17)

Layer 4: This layer is the consequent network, which
obtains the fuzzy if-then rules and calculates the output of
the fuzzy rules:

Q4,i = w̄i·fi = w̄i (pix1 + qix2 + ri) i= 1, 2 (18)

Layer 5: Output layer, calculating the total output of the
input signal:

Q5,i =

∑
i
w̄i·fi (19)

After the ANFIS model structure is established, the
SHAMODE-IWOA algorithm is used to train the ANFIS

TABLE 1. Table of benchmark functions.
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FIGURE 2. The overall work flow chart of the system.

model. The root mean square error (RMSE) is used as the
fitness function to train the ANFIS, as follows:

RMSE =

√∑n
r=1 (dr − pr )2

n
(20)

In function (20), n is the number of training data in the
training set; r is the r-th data, dr is the actual value of the r-th
training set data, and pr is the r-th predicted value.
In this study, in order to obtain the best reliability and

lowest quality design parameter combination, an ANFIS
model was constructed with inputs such as Torsion, Mass,
Bending, Design Parameter, and Reliability Coefficient, and
the output is the reliability prediction result. In addition,
the ANFIS model results were used as one of the objec-
tive functions to construct a multi-objective optimization
model, ultimately obtaining the optimal design parame-
ters. The overall work and model structure are shown
in Figure 2.

IV. EXPERIMENTS AND RESULTS
A. TEST RESULTS OF SHAMODE-IWOA ALGORITHM
To verify the performance of SHAMODE-IWOA, this paper
selects benchmark test functions from the CEC2017 test
function set for testing. The function list is shown in Table 1,
and the formulas in Table 1 are taken from reference [31].
Functions f1-f3 are unimodal test functions, f4-f10 are
multimodal test functions, f11-f20 are hybrid functions, and
f21-f30 are composition functions. The dimensionality (D) of
the functions is set to 20. Different forms of test functions
can be used to evaluate the optimization effectiveness and
improvement of the algorithm. The results of the algorithm
iterations are shown in Figure 3.

Based on the computational results obtained from Figure 3,
the proposed SHAMODE-IWOA algorithm is compared with
other optimization algorithms, including SHAMODE-WO
[24], [28], Particle Swarm Optimization (PSO), Grey Wolf
Optimization (GWO) [6], Whale Optimization Algorithm
(WOA) [32], [33], African Vulture Optimization Algorithm
(AVOA) [34], Gorilla Troop Optimization Algorithm (GTO)
[35], Beetle Optimization Algorithm (DBO) [36], and Snake
Optimization Algorithm (SO) [37]. The test results of
the algorithms are presented in Table 2, where the first
column represents the average values and the second column
represents the standard deviations. The number of iterations
is set to 500 [38].

Overall, the SHAMODE-IWOA algorithm achieves state-
of-the-art solutions on 21 out of the total 30 test functions.
This indicates that the improvement of SHAMODE-IWOA is
effective within the CEC2017 test set, enabling the algorithm
to obtain better solutions.

Specifically, for unimodal functions f1-f3, the SHAMODE-
IWOA algorithm obtains the optimal solution among the
compared algorithms for f1 and f2, while it is slightly
outperformed by theGTO algorithm for f3. This demonstrates
that the SHAMODE-IWOA algorithm has certain advantages
in terms of search capability for unimodal functions.

B. RELIABILITY ESTIMATION SYSTEM BASED ON
ANFIS-SHAMODE-IWOA MODEL
Accurately predicting the structural fatigue life during
the design and development stage is crucial. In order to
enhance the flexibility of adding and removing design
parameters in the lightweight design process, this section
elaborates on the reliability estimation system of the ANFIS-
SHAMODE-IWOA model.
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FIGURE 3. Comparison of the iterative calculation results of the algorithm.

1) ESTABLISHMENT OF THE DATABASE
As shown in the overall workflow diagram in Figure 2,
it is necessary to construct the database required for

the chassis truss structure research. The flowchart
of the database construction process is illustrated
in Figure 4.
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FIGURE 3. (Continued.) Comparison of the iterative calculation results of the algorithm.

First, the SFE model of the chassis truss structure
is constructed as shown in Figure 5. The basic design
parameters of the truss structure are shown in Table 3.

Then, after solving, the principal component
analysis (PCA) method [39] is used to extract the
design variables in the SFE model according to their
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TABLE 2. Comparison table of function calculation results.
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TABLE 2. (Continued.) Comparison table of function calculation results.

VOLUME 12, 2024 42223



Z. Minqing et al.: Novel Lightweight Multi-Objective Optimization Design System for Vehicle Chassis Frames

TABLE 2. (Continued.) Comparison table of function calculation results.

FIGURE 4. Schematic of the database construction.

FIGURE 5. SFE model of chassis truss structure.

contribution levels, and the extraction results are shown
in Figure 6.

TABLE 3. Table of SFE model parameters.

The design variables with higher contribution levels are
selected as design parameters. The list of design parameters
and constraint ranges is shown in Table 4.

After generating the DOE matrix for the design variables
in Table 4, the solutions for Bending, Torion, and Mass are
calculated by a finite element solver, and the reliability index
calculation method will be elaborated in Section VI. After
excluding the abnormal data, the dataset shown in Table 5 is
obtained.
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FIGURE 6. Principal component analysis was used to design variable
contributions.

Based on the calculation dataset established by Table 5
of the SFE model, the experimental dataset obtained after
solving the model is divided into two parts: training dataset
and testing dataset. The training dataset is used to train the
ANFIS-SHAMODE-IWOA model, and the testing dataset
is used to test the performance of the ANFIS-SHAMODE-
IWOA model. In order to eliminate the influence of sample
selection on model training, a random sampling method is
adopted to extract 70% of the dataset as the training dataset
and 30% as the testing dataset. In addition, from Table 5,
it can be observed that under different combinations of design
parameters, the torque, torsion, total mass, and reliability
index all undergo significant changes [40].

2) RELIABILITY ESTIMATION FOR ANFIS-SHAMODE-IWOA
MODELS
In order to achieve accurate reliability estimation, optimize
model performance, and effectively avoid ‘‘dimension swal-
lowing’’, it is necessary to normalize all training and testing

TABLE 4. Table of SFE model parameters.

datasets to the range of (0, 1) before establishing the ANFIS
model learned by the SHAMODE-IWOA algorithm using
the training dataset. The normalization formula is shown as
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TABLE 5. Table of SFE model parameters.

follows (21):

x̆i (k) =
xi − ximin

ximax − ximin
(21)

In formula (21), xi, ximin and ximax are the original
values, minimum values, and maximum values of the dataset,
respectively; x̆i (k) represents the k-th normalized value of the
dataset.

After establishing the ANFIS-SHAMODE-IWOA model,
the performance of the model is validated using the
testing dataset. To quantify the performance of the ANFIS-
SHAMODE-IWOAmodel, the R2 value, estimation accuracy
(θ ), and mean square error (MSE) are compared. The
calculation methods are as follows:

R2 = 1−
(Mt − Pt )2∑n
t=1 (Mt − M̄t )

2 (22)

θ =

[
1 −

(
1
n

∑n

t=1

∣∣∣∣Pt −Mt

Mt

∣∣∣∣)] ∗100% (23)

MSE =
1
n

∑n

t=1
(M̄t − Pt )

2 (24)

In formula (22)(23)(24), Mt and Pt are the calculated
reliability indexes and model estimates at the t-th iteration,
n is the data quantity, and M̄t is the average value of the
calculated data.

The estimated results obtained from the ANFIS-
SHAMODE-IWOA model using the testing dataset are
shown in Figure 7 and Figure 8. In Figure 7, the reliability
results calculated by the model are close to the estimated
results. The maximum error between the calculated values
and the estimated values is 9.6%, which is better than
the accuracy results reported in related literature [41],
[42]. The quantified test results show that the estimation
accuracy θ , R2, and MSE are 88.84%, 0.88172, and 0.0087,
respectively. The scatter plot shown in Figure 8 indicates
that the measured values and estimated values are evenly
distributed on both sides of the line and exhibit the same
trend. The results indicate that the model has good predictive
estimation performance and can accurately estimate the
structural reliability based on structural dimensions and shape
parameters [43].

FIGURE 7. ANFIS-SHAMODE-IWOA model measurements and estimates.

FIGURE 8. Scatter plot between the estimated and calculated reliability
indices.

3) COMPARISON WITH OTHER MODELS
To clarify the superiority of ANFIS-SHAMODE-IWOA
model, The ANFIS model based on particle swarm Opti-
mization (PSO) learning (ANFIS-PSO) [44], ANFIS model
based on genetic algorithm (ANFIS-GA) learning (47],
ANFIS [30], Support Vector Machine (SVR) and Artificial
Neural Network (ANN) model are compared respectively.
The comparison results are shown in Table 6 below.

During the experiment, the trial-and-error method was
used to determine the hyper parameters of the aforementioned
model. Table 7 presents the comparative results of MAPE,
MSE, and R2 in this study. The results show that the
ANFIS-SHAMODE-IWOA model has the best estimation
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TABLE 6. The model statistics calculate the comparison results.

performance for truss reliability, with an R2 of 0.88172, MSE
of 0.0087, and θ of 88.84%. Compared with the ANFIS-PSO,
ANFIS-GA, and ANFIS models, the estimation performance
of the ANFIS-SHAMODE-IWOA model has significantly
improved.

The numerical results of the experiments demonstrate the
excellent global convergence capability of the SHAMODE-
IWOA algorithm, providing optimal premise and consequent
parameters for the ANFIS model and enhancing the pre-
dictive ability of the ANFIS-SHAMODE-IWOA model.
Compared with the ANFIS-PSO and ANFIS-GA models,
the θ value of the ANFIS-SHAMODE-IWOA model has
increased by 7.39% and 8.72%, respectively.

V. CHASSIS TRUSS STRUCTURE MULTI-OBJECTIVE
OPTIMIZATION
Based on the above research and analysis, aiming at the data
results in the table above and the reliability prediction model,
this section intends to construct a multi-objective equation
with the minimum quality and reliability measurement func-
tions as objectives, with the fault probability as a constraint.
The proposed SHAMODE-IWOA algorithm is then applied
to solve it, and the solution results are verified through finite
element and actual stress acquisition experiments.

A. ESTABLISHMENT OF MULTI-OBJECTIVE OPTIMIZATION
EQUATION
The truss reliability and quality multi-objective equation can
be formulated as follows [1]:{

min
x

{f1 (x,y) ;f2 (x, y)}

S.TPr ≤ 0.01
(25)

In formula (25), Pr is the fault probability, x is the design
variable vector, y is the physical vector containing yield
strength, torsional stiffness, and applied loads, f1 represents
structural quality, which is the sum of the product of
topological unit quality and density, and f2 represents the
reliability measurement function: f2 = 1/β, where β is the
reliability coefficient.

The reliability coefficient (β) refers to the shortest distance
between the limit state line and the origin of the transfor-
mation space. A larger β indicates higher reliability (greater

safety), usually represented by the following formula:

β = µM
/
σM (26)

In formula (26), µ,M characterizes the average force under
the limit failure function state, and σM characterizes the
variance of the mechanical change rate under the limit failure
function state.

The limit state failure function can be represented by the
literature [46]:

M = G (R,S) = R − S
{

> 0 safety
≤ 0 failure

(27)

In function (27), R represents the resistance failure
characterization coefficient, and S describes the impact
factor of external factors on the resistance characterization
coefficient R. Therefore,µm and σm can be described as [47]:

µM ≈ G
(
µSY ,

{
µFex,i

})
= µSY −

∑NF

i=1

kiµFex,i

NF
= µSY − Se (28)

σ 2
M ≈

(
∂G
∂SY

)2

µSY

+

∑NF

i=1

((
∂G

∂Fex,i

)
µFex,i

σFex,i

)2

= σ 2
SY +

∑NF

i=1
(
kiσFex,i
NF

)
2

(29)

ki =
Se
Fex,i

(30)

In formula (28)(29)(30), ki is the ratio of stress occurring
on each truss component to the i-th external load, Se is the
stress occurring on each component, Fex,i is the external
applied load; SY is the yield strength, NY is the type of
structural material, µSY is the average value of SY, µ Fex
is the average value of the applied load. σ 2

SY and σ 2
Fex;i are

the variances of SY and Fex,i, respectively.
In addition, Fex,i is represented by the following linear

equation: {
Fex,i

}
=
[
Kij
]
{ui} (31)

In equation (31), [Kij] is the N× N stiffness matrix, {ui} is
the N×1 node displacement vector, and N is the number of
degrees of freedom of the finite element.
Se can also be expressed by the following linear equation:

{Se} = [T ]
[
Kij
]−1 {Fex,i} (32)

Therefore, the limit state function can be expressed as:

{Me} = SY − {Se} = SY − [T ]
[
Kij
]−1 {Fex,i} (33)

Thus, for the reliability coefficient of a specific component
(e), µM ,e and σM ,e can be approximated as follows [1]:

βe =
µM ,e

σM ,e
(34)

µM ,e = µSY− [T ]
[
Kij
]−1 {

µFex,i
}

(35)

σM ,e = σSY +

∑NF

i=1
(

[T ][Kij]−1
{
µFex,i

}
µFex,i

σFex,i

NF
) (36)
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Thus, Pr can be expressed as follows:

Pr = 8(−β) (37)

B. ESTABLISHMENT OF MULTI-OBJECTIVE OPTIMIZATION
EQUATION
The SHAMODE-IWOA algorithm was used to optimize
and solve the multi-objective function constructed in
Section 3.3.2. The iterative solution results are shown in
Figure 9:

FIGURE 9. The graph of the iterative calculation result.

FIGURE 10. Design and calculate the comparison chart of optimization
index.

Based on the iterative solution results mentioned above,
the optimized values of design indicators were obtained
using the ‘‘compromise method’’ as shown in Table 7. The
calculated performance of the model after optimization is
shown in Figure 10. According to the results shown in
Figure 10, compared to the performance of the model before
optimization, the optimized model shows a 15% decrease in
the Torsion indicator, a 12.5% improvement in the Bending
indicator, and a 9.5% improvement in the Mass indicator.

TABLE 7. The comparison results design value after optimization solution.

Further simulation calculations were performed on the
finite element model constructed in Figure 5. Seven working
conditions, including Back Acc, Back Brake1.0g, Brake1.2g,
Bump3.5g, Cornering1.2g, Cornering Brake 0.74g, and Frot
Acc, were selected for comparative analysis using finite
element simulation. The optimized simulation results are
shown in Figure 11, and the comparison between the
optimized and original simulation results is shown in Table 8.

TABLE 8. Comparison table of FEM simulation calculation structures
before and after optimization.

The optimized chassis frame had improved performance in
all indicators while maintaining a certain degree of reduction
in weight, with the Back Brake1.0g condition showing the
largest improvement and an increase of 5.9%.
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FIGURE 11. Results of truss finite element calculation after optimization.

To further verify the optimization results, strain tests were
conducted on 25 key locations of the optimized chassis frame
using electrical measurement. Local photos of the test are
shown in Figure 12.

FIGURE 12. Stress test photo.

The vehicle equippedwith the optimized chassis framewas
subjected to 10 groups of 20 cycles of driving on typical
harsh road surfaces, and data from the four groups with
the highest stress values in the test cycles are presented
in Figure 13 [48], [49].

The stress data were separated according to the rain-flow
counting method, and the corresponding damage coupling
values were calculated for each stress level at the four
positions as listed in Table 9. Based on the Weibull distribu-
tion model for lifetime probability [50], the comprehensive

FIGURE 13. Map of stress acquisition test results.

TABLE 9. Results of damage coupling value calculation.

reliability index was calculated to be 0.9317, which meets
the requirements for structural reliability and is close to the
optimized calculation value.

In summary, this section used the proposed SHAMODE-
IWOA algorithm to optimize the chassis frame structure of
a certain brand of dump truck. After adjusting the relevant
design parameters based on the optimized calculation results,
the chassis frame was manufactured and tested through
mathematical model calculation, finite element simulation,
and stress actual testing. The test results showed that the
optimized chassis frame structure had improved performance
in torsion, bending, andmechanical properties while reducing
the total weight and improving reliability, demonstrating
good engineering application value for the algorithm.

VI. CONCLUSION
The design of self-dumping truck chassis frame structure with
consideration of both quality and reliability indicators is a
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challenging and difficult task for designers. To unleash the
potential performance of the chassis and improve the effi-
ciency of design work, this paper proposes a multi-objective
optimization design system for the reliability estimation and
design parameter optimization of the chassis frame structure
based on the SHAMODE-IWOA algorithm and ANFIS-
SHAMODE-IWOA model. The specific conclusions are as
follows:

(1) In response to the low solving efficiency and
insufficient search capability of the SHAMODE algorithm,
this paper introduces an adaptive spiral search strategy
based on the SHAMODE-WO algorithm and proposes
a new algorithm called SHAMODE-IWOA. Benchmark
function experiments demonstrate that the SHAMODE-
IWOA algorithm outperforms other similar products in 21 out
of 30 benchmark functions, indicating better search and
convergence performance.

(2) To accurately estimate the reliable durability per-
formance of chassis truss structures, this paper opti-
mizes the model parameters using the SHAMODE-IWOA
algorithm based on the traditional ANFIS model. Exper-
imental results show that the ANFIS-SHAMODE-IWOA
model can accurately estimate the reliability of the chas-
sis truss structure, with performance indicators MAPE,
R2, and MSE reaching 6.5%, 0.954, and 0.006 respec-
tively. Compared to the ANFIS-PSO, ANFIS-H, ANFIS-
GA, ANN, and SVR models on the same dataset, the
ANFIS-SHAMODE-IWOA model exhibits better estimation
performance.

(3) To obtain the minimum mass and optimal reliable
durability of chassis truss structures, it is necessary to find
the optimal combination of design parameters. This paper
uses the SHAMODE-IWOA algorithm to perform multi-
objective optimization on the design parameters of truss
structures. After optimization, the performance of the solved
model is compared to the performance before optimization,
showing a 15% decrease in the Torsion index, a 12.5%
improvement in the Bending index, and a 9.5% improve-
ment in the Mass index. Furthermore, subsequent finite
element simulation and stress testing experiments validate its
effectiveness.

However, the experimental results also indicate that there
is still room for improvement in the convergence efficiency
and solution quality of the SHAMODE-IWOA algorithm.
Additionally, when dealing with higher-dimensional and
complex engineering design problems such as composite
parts, elastic components, rubber products, and complex
structural components, further research and exploration
are needed to study its global optimization behavior and
predictive capabilities in more depth.
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