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ABSTRACT Aiming at the problems of tiny targets, large target scale changes, and background information
interference in target detection of UAV(Unmanned Aerial Vehicle) aerial images, a revised UAV target
detection algorithm MCA-YOLOv7 based on YOLOv7 is proposed, and the algorithm advances from the
following points: optimizing the FPN(Feature Pyramid Networks) structure to increase the small-target
detection layer, and boosting the network’s detection ability for small targets. To enhance the multi-scale
feature extraction capability, the Efficient Multi-Scale Attention(EMA) is added. In order to reduce the
complexity of the model and reduce the confusion of background information, the context aggregation
block (CABlock) was introduced and improved, and an effective context aggregation block (ECABlock) was
proposed. The loss function CIoU is enhanced and a new loss function FCIoU is proposed, which accelerates
the convergence speed of the model, and obtains more accurate regression results. The experimental results
demonstrate that the MCA-YOLOv7 model reduces the number of model parameters by 4.7 M and increases
the average accuracy (mAP@0.5) by 2.9% when compared to YOLOv7 on the VisDrone2019 dataset. The
new algorithm is more capable of handling situations involving UAV aerial photography.

INDEX TERMS UAV, object detection, YOLO, attention mechanism, context aggregation, loss function.

I. INTRODUCTION
With the rapid development of target detection and UAV
technology, the application of UAV target detection has been
extensively researched [1]. UAVs arewidely used in scenarios
such as oil pipeline inspection, electric power inspection, crop
analysis, and disaster rescue due to their unique high-altitude
perspective and efficient data acquisition capabilities [2].
Deep learning applications have developed very rapidly in

recent years, such as steel surface defects detection [3], print
surface defects detection [4], and pedestrian re-identification
[5]. Deep learning-based target detection techniques have
also achieved many significant results in UAV applications,
but most of these algorithms are convolutional neural
networks designed for natural scene images [6], and the
optimization of the detection algorithms is still full of
challenges for the UAV viewpoint images with a large

The associate editor coordinating the review of this manuscript and

approving it for publication was Halil Ersin Soken .

percentage of small targets, large changes in the scale of the
targets, dense targets, complex backgrounds, etc. [7]. These
problems are visualized in Fig. 1, for example, cars have a
huge change in scale due to different shooting distances, and
pedestrians, motorcycles, etc. will appear to be very small
targets when photographed from the air.

When it comes to the target detection task, single-stage
target detectors have faster detection speeds but slightly lower
accuracy compared to two-stage target detectors, which are
not suited for real-time UAV identification due to their slower
detection speeds. YOLO(You Only Look Once) series is
the representative of single-stage detectors. In this paper,
we propose an improved model MCA(Multi-Scale Context
Aggregation)-YOLOv7 based on YOLOv7 [8] to address the
issue of drone target detection. Firstly, the researchers added
a small object detection layer to enhance the network’s ability
to detect small objects. Secondly, the EMA (Efficient Multi-
Scale Attention) attention mechanism [9] is introduced into
the backbone network to enhance the backbone’s ability to
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FIGURE 1. Characteristics of aerial images. Problems such as small
targets and changes in scale can be seen in the figure.

extract multi-scale features. Afterward, in order to reduce
background information interference and enhance feature
fusion ability, we have improved based on CABlock(Context
Aggregation Block) [10] and proposed an effective Context
Aggregation Module (ECABlock). Then we replaced the
RepConv module in YOLOv7 with it. Finally, the researchers
utilized the idea of FocalL1 Loss [11] to optimize CIoU and
proposed a new loss function FCIoU (Focal CIoU), which
can optimize the convergence speed of the model and obtain
more accurate regression results. Compared with YOLOv7,
the improved MCA-YOLOv7 can better handle UAV-
captured images. The main contributions of this paper are as
follows:

(1) Added a detection layer to improve the model’s
detection accuracy for small targets.

(2) Integration of the EMA attentionmodule into themodel
backbone helps the model to focus on target features at
different scales.

(3) An effective context aggregation module, ECABlock,
is proposed, responsible for aggregating spatial contexts
by using a soft reweighting strategy to fuse local and
global features while reducing the obfuscation of contextual
information.

(4) Using the FocalL1 Loss idea to optimize the CIoU, the
FCIoU is proposed to optimize the convergence speed of the
model and improve the robustness of the model.

II. RELATED WORK
A. TARGET DETECTION
Deep learning based target detection methods can be
classified into two types: the first is a two-stage detection
algorithm, which first generates a series of candidate
frames by convolutional neural network, and then com-
pletes localization and classification. As early as 2013,
Girshick et al. [12] proposed R-CNN. R-CNN was a pioneer
in the field of target detection after which Faster RCNN
[13], Cascade RCNN [14], and so on emerged. Two-
stage detection algorithms are usually more accurate but

have slower detection speed, and can not meet the real-
time requirements; the second is a single-stage detection
algorithm, the use of regression ideas will be sent to the
input image into the convolutional neural network, after the
detection of the direct output to get the results. Representative
algorithms are YOLO proposed by Redmon et al. [15] in
2015, RetinaNet proposed by Lin et al. [16] in 2017. After that
YOLO series, DETR [17] series of algorithms have alsomade
breakthroughs in camera. The single-stage algorithms lag
behind the two-stage in terms of accuracy, but the detection
speed is significantly improved.

At present, the application scenarios based on deep learn-
ing target detection are very wide. In 2022, Jiao et al. [18] pro-
posed a wheel weld detection method based on the YOLOv4
algorithm, which improved the detection accuracy by opti-
mizing the loss function and anchor frame. Liang et al. [19]
proposed a traffic sign detection method for automatic
driving scenes in 2022. This method combines ResNeSt and
CoordAttention to improve sparse R-CNN and improve the
extraction ability of important features. The target detection
method for UAV also needs to enhance the ability of feature
extraction. The difference is that this research also needs to
solve the problem of small target and target scale change.
Research on target detection algorithms based on UAV
has also made some progress. In 2021 Zhu et al. [20]
proposed the TPH-YOLOv5 algorithm, which effectively
improves the network’s detection performance for small
targets by using a transformer prediction head and integrating
a CBAM attention module. In 2021 Han et al. [21]
proposed the ReDet, which improves remote sensing target
detection by rotating the prediction frame and rotating the
detector.

B. ATTENTION MECHANISM
The attention mechanism in deep learning is an approach that
mimics human attention and is applied to neural networks to
enable the model to selectively focus on the more important
information in the input. Hu et al. [22] 2017 proposed SENet,
which extracts informative features within the local receptive
field by fusing spatial and channel-level information to
improve the network’s representativeness. Zhang and Yang
[23] 2021 year proposed the SA attention mechanism, which
utilizes feature grouping with channel substitution to improve
network performance. Later CA (CoordAttention) [24] fused
spatial and channel attention to achieve better results.
Zhu et al. [25] proposed BRA (Bi-Level RoutingAttention) in
2023, which can filter out the most irrelevant key-value pairs
and remove redundant information. To increase the extraction
capability of the backbone network for multi-scale features,
this paper introduces the EMA attention mechanism in the
backbone network part.

C. CONTEXTUAL AGGREGATION
The context aggregation module aims to improve the
performance of dense prediction architectures by aggregating
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FIGURE 2. Overall structure of MCA-YOLOv7.

multi-scale contextual information. It reduces the confusion
of contextual information by fusing local and global features.
Yu and Koltun [26] proposed a convolutional network
module based on dilated convolution in 2016, which avoids
the loss of resolution by aggregating multiscale contextual
information. Wang et al. [27] proposed a nonlocal neural
network (NLNet) in 2018, which pioneered the aggregates
of global spatial contexts by computing pixel-level pairwise
correlations to achieve the effect of fusing global informa-
tion but still suffers from high computational cost. These
methods only consider the concept of context as remote
spatial correlation, ignoring the global dependencies in the
feature and instance domains. The ECABlock proposed
in this paper can aggregate pixel-level spatial context in
each block, which can improve the feature aggregation
capability while reducing the number of parameters and
computation.

III. METHODS
A. MCA-YOLOV7
The YOLOv7 target detection algorithm model is mainly
divided into three parts: the Backbone, the Neck, and the
Head [28]. The backbone part mainly adopts the ELAN
module to control the shortest and longest gradient paths
so that the network can learn more features to improve the
model’s robustness. The Neck section refers to the PAFPN
structure to fuse feature maps of different scales separately.
TheHead section first adjusts the number of channels through

RepConv and then uses 1 × 1 convolution to predict the
results.

The overall structure of the improved MAC-YOLOv7
algorithm model in this paper is shown in Fig. 2. To address
the problem that aerial targets contain many tiny targets,
this paper adds a detection head that is introduced from the
high-resolution feature maps at the lower level that contain
more information about small objects, which improves the
model’s ability to detect small targets. Although the addition
of the extra detection head increases the number of model
parameters, the detection performance for small targets is
also substantially improved. The four detection heads also
work well when dealing with drastic changes in target
scale. Attention mechanisms are added after the partial
convolution and ELAN modules of the backbone to enhance
multi-scale feature extraction. In this paper, RepConv is
replaced by the proposed ECABlock, which improves the
model performance by aggregating pixel-level contextual
information while reducing the number of parameters and
computation of the model. Finally, the loss function is
optimized to accelerate convergence and improve model
accuracy.

B. IMPROVED BACKBONE BASED ON EFFICIENT
MULTI-SCALE ATTENTION
There are always a lot of background factors interfering
with the images captured by UAVs. The height variation
of drones can cause significant changes in the scale of the
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target. Using the EMA attention mechanism can help the
neural network to pay more attention to useful information
at different scales and resist confusing information. The
structure of EMA attention is shown in Fig. 3. The feature
map X(X= [X0,Xi, . . . ,XG−1] ,Xi ∈ RC//G×H×W ) will first
be grouped into feature groups after being passed into the
EMA module. The EMA will classify the X across the
channel dimensionality direction into G sub-features, which
will be used to learn different semantics. Next the feature
subgraphs are passed into two parallel subnets, which use
1×1 kernel and 3×3 kernel respectively to be able to
better capture multi-scale spatial structure information and
enhancemulti-scale feature extraction capability. The parallel
placement of the two branches can avoid the sequential
processing leading to the excessive depth of the model
and realize the fast response of the module. Two lines are
included in the 1×1 branch for 1D global average pooling
along two spatial directions respectively, after which they are
spliced together along the height direction, and the output
is decomposed into vectors of two using a shared 1×1
convolution. The output is fitted to a 2D binomial distribution
using a nonlinear Sigmoid function, after which the channel
weights of each parallel branch are recalibrated. Another
3×3 branch captures local cross-channel interactions via 3×3
convolution to expand the feature space. This allows the
EMA to adjust the importance of different channels while
preserving spatial structure information. EMA also employs
a cross-space learning approach that uses matrix dot product
operations to fuse the output feature maps of two parallel
subgrids, thus capturing pixel-level pairwise relationships
and highlighting the global context of all pixels. Equation.1
is the formula for global average pooling in cross-space
learning. zc is the average value of the cth channel in the
image, and xc is the value of the cth channel denoting the
(i, j) pixel location in the image.

zc =
1

H ×W

H∑
j

W∑
j

xc (i, j) (1)

C. EFFECTIVE CONTEXT AGGREGATION BLOCK
CABlock is a context aggregation block with residual con-
nections, which can be integrated into the network to reduce
the number of parameters and computation, but the accuracy
improvement is very limited. This article refers to the idea
of parallel branching in EMA, which can avoid increasing
the number of model layers and achieve fast response. The
researchers placed a parallel branch of 1 × 1 convolution
in CABlock. Although the sense field of 1×1 convolution
is very small, it can introduce nonlinear features through
the underlying nonlinear activation function to enhance the
model representation, and only increase the number of
parameters by a very small amount. This branch uses residual
concatenation to stitch the input feature maps directly to
the output after a single 1×1 convolution to retain more
image information while mitigating network degradation that

FIGURE 3. EMA Structure of Attention Mechanisms.

occurs as the network layers deepen.We refer to the improved
module as ECABlock, and its structural diagram is shown in
Fig.4.

FIGURE 4. ECABlock Context Aggregation Module Architecture Diagram.

The ECABlock is responsible for aggregating spatial
contexts by using soft-weighting strategies to fuse local and
global features. ECABlock tends to aggregate objects from
the same category or even global spatial contexts from similar
or semantically related categories. This helps to cope with the
challenge of scale variation in aerial images while reducing
information confusion. The comparison experiments in
Table 1 validate the effectiveness of ECABlock in this
paper. Although the improved CABlock can significantly
reduce the amount of computation and the number of
parameters, the average accuracy improvement is only 0.1%.
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The ECABlock proposed in this paper, on the other hand,
achieves an accuracy improvement of 0.7%,while the number
of parameters is reduced by 5.2M and the computational
effort is reduced by 9.78%.

TABLE 1. Context Aggregation Module Before and After Improvement.

D. LOSS FUNCTION
The IOU loss function is commonly used in object detection,
which represents the intersection union ratio of boxes A and
B. The calculation formula for IoU is shown in Eq. 2. The
localization loss calculation originally used in YOLOv7 is the
CIoU loss function. The CIoU takes into account the three
most important factors in the box-regression task: overlap
area, aspect ratio, and centroid distance. The convergence
of CIoU compared to the previous loss function speed and
detection accuracy are significantly improved. Assuming that
the predicted frame b and the real frame bgt are given
then the CIoU is computed as shown in Eqs. 3, 4 and 5.
Where ρ represents the calculated distance, and c represents
the diagonal length covering the overlapping part of two
boxes, w and h are the width and height of the predicted
box,wgt and hgt are the width and height of the realistic box,
and α and ν are the two coefficients measuring the aspect
ratio.

LIoU = 1 −

∣∣A⋂
B
∣∣∣∣A⋃
B
∣∣ (2)

LCIoU = 1 − IoU +
ρ2

(
b, bgt

)
c2

+ αν (3)

ν =
4
π2

(
arctan

wgt

hgt
− arctan

w
h

)2

(4)

α =
ν

(1 − IoU) + ν
(5)

The VisDrone2019 dataset used in this paper has the
problem of uneven training data, the data distribution is
shown in Fig. 5, and this dataset is mostly small targets, which
have very small true and predicted boxes. As long as the
prediction box is slightly offset, the IoU value will undergo
significant changes. This results in low-quality regression
boxes, and the number of samples with smaller errors is
much smaller than those with larger errors. The Focal L1
Loss proposed in Focal-EIoU sets a gradient value, and the
value of the gradient should also be small where the error
rate is small, and vice versa where the error rate is large, the
gradient should be large, so that the low-quality samples can
be suppressed very well. The gradient calculation and Focal
L1 Loss calculation are shown in Eqs. 6 and 7, respectively.
α, and β are the parameters that control the gradient

value.

g (x)

=
∂Lf
∂x

=

{
−αx ln (βx) , 0 < x ≤ 1; 1/e ≤ β ≤ 1,

−α ln (β) , x > 1; 1/e ≤ β ≤ 1.

(6)

Lf (x)

=

 −
αx2 (2 ln (βx) − 1)

4
, 0 < x ≤ 1; 1/e ≤ β ≤ 1,

−α ln (β) x + C, x > 1; 1/e ≤ β ≤ 1.

(7)

This article reweights the CIoU loss function using IoU
values to obtain the FCIoU loss function, which is calculated
using formula LFCIoU = IoUγ LCIoU . Where γ is a
parameter controlling the degree of outlier suppression. The
convergence speed and detection accuracy of the FCIoU
exceeds that of the original CIoU, and the FCIoU has a very
good relevance for the case of sample imbalance difficult
samples are many.

FIGURE 5. The figure shows the data distribution of the VisDrone2019
data set. The data volume for cars and pedestrians is far higher than that
of other samples, and the data distribution is clearly highly imbalanced.

IV. EXPERIMENTS
A. DATASETS AND EVALUATION INDICATORS
The dataset used in this paper is VisDrone2019 [29], which
was collected by the AISKYEYE team of the Machine
Learning and Data Mining Laboratory of Tianjin University.
It contains 10,209 images, and the training set, validation
set, and test set contain 6,471, 548, and 1,610 images,
respectively. All of them are images collected using drones
in different cities, different weather, and different periods.
There are many small targets in the dataset, and most of
the targets are densely distributed with large-scale variations.
The dataset contains 10 categories: pedestrian, people,
bicycle, car, van, truck, tricycle, awning-tricycle, bus, and
motor. The comparison experiments in this paper are all
conducted on the VisDrone2019 test set, and the ablation
experiments conducted on the VisDrone2019 validation set
were performed.

The evaluation metrics used in this paper are mean average
precision mAP (mean Average Precision), parameter number
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(Parameter), and computational volume (FLOPs). mAP is a
comprehensive calculation of different categories of accuracy
more comprehensive, parameter number, and computational
volume that is mainly responsible for evaluating the model
complexity. The details are described below.

(1)Average Accuracy Mean Value mAP: The mAP@0.5
used in this article refers to the mean average precision
at an IoU threshold of 0.5, where average precision (AP)
reflects the accuracy of object detection for a single class.
The calculation formula for AP is shown in Eq. 8. Where P
is Precision and R is Recall, their calculation methods are
shown in Eqs. 9 and 10, respectively. Where TP denotes
positive cases of correct prediction, FP denotes positive cases
of incorrect prediction. FN is a negative case of incorrect
prediction.

AP =

∫ 1

0
P (R) d (R) (8)

P =
TP

(TP+ FP)
(9)

R =
TP

(TP+ FN )
(10)

The mAP is the average of the mean accuracies of all the
categories, the higher the mAP value the better the model
detection. mAP is calculated as shown in Eq. 11, where n is
the number of categories.

mAP =

n∑
i=1

APi

n
(11)

(2)Parameters: the number of Parameters is usually used to
evaluate the algorithmic model space complexity, the larger
the number of Parameters represents that the model can learn
more knowledge, and at the same time requires more storage
space and arithmetic power, and the opposite is true for the
smaller number of Parameters.

(3)FLOPs(Floating Point Operations Per Second): FLOPs
are the number of floating-point operations and are used to
measure the time complexity of an algorithm.

B. EXPERIMENTAL ENVIRONMENT
The experimental environment of this paper is shown in
Table 2. The hyperparameters of all experiments are kept
unchanged using the default values of YOLOv7. The FPS
values in the comparative experiment were obtained using
GeForce RTX 3080 Laptop testing. The number of training
rounds for the ablation experiments is 300 epochs, while
the convergence speed of MCA-YOLOv7 becomes slower
relative to YOLOv7 so it is set to 400 epochs.

C. COMPARISON EXPERIMENT
1) COMPARISON OF DIFFERENT ALGORITHMS
To verify the effectiveness of the algorithm proposed in this
paper, this paper is compared with some mainstream target
detection models and newer detection algorithms in recent

TABLE 2. Experimental environment configuration.

years on the VisDrone2019 test set, and the results of the
comparison experiments are shown in Table 3.

The experimental data in the table shows that, using the
VisDrone data set, the mAP@0.5 of the MCA-YOLOv7
algorithm suggested in this paper is 42.7%. It significantly
outperforms a few popular target identification algorithms,
including YOLOv5, CenterNet [30], Cascade R-CNN, and
Faster R-CNN. Although the average precision value of
CDNet [31] is much lower than that of the algorithm
presented in this article, it surpasses the algorithm of this
article in the two similar categories of Tricycle and Awning-
tricycle. Compared with the baseline model YOLOv7,
the mAP@0.5 of MCA-YOLOv7 has increased by 1.8%,
especially with a significant improvement in small object
categories such as Pedestrian, People, and Motor. Compared
with the latest detection algorithms of YOLOv8 and RT-
DETR [32], the average precision value of MCA-YOLOv7
has increased by 5.9% and 4.3%, respectively. This study
also compared the inference speed of some single-stage
object detection algorithms. Although MCA-YOLOv7 leads
in accuracy, the inference speed has decreased to some extent.
The reason is that adding EMA will increase inference time,
and how to improve the FPS of the model is a focus of future
research.

2) COMPARISON OF DIFFERENT ATTENTION EFFECTS
To investigate the effect of different attentions in network
models, this paper tests some of the attentional mechanisms
in recent years with the baseline model YOLOv7.

As can be seen from Table 4, the excellent extraction
ability of the EMA attention mechanism for multi-scale
features results in a 0.7% increase in accuracy relative to
the benchmark model. The accuracy of the EMA compared
to the CA, SA, and BRA attention is improved by 0.6%,
0.3%, and 0.8%, respectively. The number of parameters and
the amount of computation increase slightly relative to the
baseline model, and the difference with the other attentions is
very small.

To validate the impact of the channel grouping number
G in EMA attention on detection performance, this study
conducted comparative experiments using G=8, G=16, and
G=32, and the results were evaluated on the VisDrone
validation dataset. The experimental results are shown in
Table 5. When G=8, the performance is the worst with a
mAP@0.5 of only 41.2%. Similarly, with G set to 16, the
mAP@0.5 remains at 41.2%. However, the best results are
achieved when G is set to 32, with a mAP@0.5 of 41.6%.
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TABLE 3. Comparison of experimental results of different algorithms.

TABLE 4. Comparison of experimental results of different attention
mechanisms.

TABLE 5. Experimental results of EMA when grouped with different
characteristics.

3) COMPARISON OF THE EFFECT OF DIFFERENT LOSS
FUNCTIONS
In this paper, the loss function used in MCA-YOLOv7 is
FCIoU, to verify that the proposed FCIoU has a better effect
on model convergence and improving the average accuracy,
we conducted a comparison test of the average accuracy
on the YOLOv7 benchmark model using CIoU, SIoU [33],
MPDIoU [34], and Focal-EIoU, respectively, and the results
of the experimental are shown in Table 6. It can be seen
that the use of FCIoU gives the best results, the accuracy
improvement is 0.2% compared to CIoU and Focal-EIoU, the
use of MPDIoU resulted in a 0.1% improvement, while SIoU
decreased by 0.1%.

TABLE 6. Experimental results with different loss functions.

This paper also compares the convergence speed with
MCA-YOLOv7 which uses CIoU. From Fig. 6, it can be seen
that MCA-YOLOv7 using FCIoU converges much faster.
It takes 400 rounds to converge using CIoU, while FCIoU
converges after 360 rounds of training, reducing the training
time by 40 rounds. The detection accuracy on the VisDrone
test set is also slightly higher with FCIoU as shown in the
results in Table 7.

TABLE 7. Comparison of CIoU and FCIoU experimental results.

FIGURE 6. Convergence of different loss functions.

D. ABLATION EXPERIMENT
To verify the effectiveness of the introduced EMA attention
module, the proposed ECABlock, and the proposed FCIoU,
this article conducted an ablation experiment to compare the
mAP@0.5 average accuracy value and the changes in model
parameters and calculation amount after adding each module.
The ablation experiment results were compared. Obtained
from VisDrone validation set. The experimental results are
shown in Table 8.

TABLE 8. Results of ablation experiments.

After adding the p2 small target detection layer alone,
the accuracy of the model is significantly improved, which
is 2.2% higher than the baseline, indicating that the p2
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FIGURE 7. Comparison of YOLOv7 and MCA-YOLOv7 detection effect.The
YOLOv7 detection result is on the left, while the MCA-YOLOv7 result is on
the right. It is evident that, in comparison to the left, the right has a lower
false and missed detection rate.

layer’s detection performance for small targets has been
greatly improved. However, adding a detection layer led to an
increase in model complexity, with the number of parameters
increasing by 0.55M and the FLOPs increasing by 13.36%.
After adding EMA alone, mAP@0.5 increased by 1.5%,
which proves that introducing EMA at different positions on
the backbone enhances the model’s attention to targets of
different scales, and EMA serves as a lightweight attention
module parameters, and FLOPs is only slightly improved.
After adding the proposed ECABlock, the accuracy increased
by 0.7%, the number of parameters was reduced by 5.2M
and FLOPs were reduced by 9.78%, which improved the
detection performance while reducing the complexity of the
model. Using the improved FCIoU, the accuracy increased by
0.4%, which proves that suppressing low-quality samples can
effectively improve model detection capabilities. The fusion
of the p2 layer and EMA can improve accuracy, but the
complexity of the model has also reached its maximum. After
adding ECABlock, the progress has increased by 0.3%, and
parameters and FLOPs have significantly decreased. After
using FCIoU, there is no significant change in accuracy, but
the convergence speed of the model has increased.

E. VISUAL ANALYSIS OF EXPERIMENTAL RESULTS
To more intuitively compare the improvement of the
algorithm proposed in this article, Fig. 7 shows the

comparison of the detection effect of the original YOLOv7
and the detection effect of MCA-YOLOv7. The left side
is the YOLOv7 detection picture and the right side is
MCA-YOLOv7. It can be seen from the pictures in the first
and second rows that YOLOv7 is prone to missed detections
for very small targets, and the algorithm proposed in this
article is significantly better. The pictures in the third row
are detection comparisons taken at night. It can be seen
that the improved algorithm can better detect targets under
poor lighting conditions. It can be seen from the fourth
row of pictures that the original algorithm is prone to some
false detections and missed detections, and the algorithm
proposed in this article greatly improves this situation.
In summary, compared with YOLOv7, MCA-YOLOv7 has
improved detection capabilities when the target is small and
the environment is complex.

V. CONCLUSION
Nowadays, UAV target detection still faces many challenges,
and this paper proposes an improved detection algorithm
MCA-YOLOv7 based on YOLO-v7 to address these chal-
lenges, which improves the model’s performance on small
target detection by adding a small target detection layer;
enhances the multi-scale feature extraction capability of the
backbone network by adding the EMA attention mechanism;
enhances global feature fusion by incorporating the pro-
posed ECABlock context aggregation module The proposed
ECABlock context aggregation module is incorporated to
enhance the global feature fusion, which reduces the number
of parameters in the model while reducing the background
information mixing; the proposed FCIoU is improved based
on the ideas of CIoU and FocalL1 loss to accelerate the model
convergence speed and improve the detection progress. The
experimental results show that the average accuracy value
of the proposed MCA-YOLOv7 algorithm on VisDrone2019
dataset exceeds that of YOLO-v7 by 2.9%, and the number
of parameters is reduced by 4.7 M. However, the algorithm in
this paper is still deficient, and in future work, it will continue
to be studied to further reduce the complexity of the model
and speed up the convergence speed of the model to reduce
the training time while ensuring accuracy.
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