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ABSTRACT Markov Chain Monte Carlo (MCMC) is a robust statistical approach for estimating posterior
distributions. However, the significant computational cost associated with MCMC presents a considerable
challenge, complicating the selection of an appropriate algorithm tailored to the specific problem at
hand. This study introduces a novel and comprehensive framework for evaluating the performance of
MCMC algorithms, drawing inspiration from diagnostics used for multi-objective evolutionary algorithms.
We employ visualizations to evaluate key algorithmic characteristics: Effectiveness (the ability to accurately
find representative posterior modes, quantified by the Kullback-Leibler Divergence (KLD) and Wasserstein
Distance (WD)), Efficiency (the speed of posterior characterization), Reliability (consistency across different
random seeds), and Controllability (insensitivity to hyperparameter variation). Evaluating three prominent
MCMC algorithms—Metropolis-Hastings (MH), Adaptive Metropolis (AM), and Differential Evolution
Adaptive Metropolis (DREAM)—on high-dimensional and bimodal test problems, our analysis uncovers
several insights. First, across algorithms, the number of function evaluations most controls performance
on the high-dimensional problem, while the number of chains most controls performance on the bimodal
problem. While this suggests similar controllability across algorithms, differences emerge on the other
algorithmic characteristics. For high numbers of functions evaluations, AM performs best on the high-
dimensional problem, while for low (<5) and high (>15) chain counts, MH and AM perform best on
the bimodal problem, as measured by KLD. However, outside these specific cases, DREAM consistently
demonstrates superior efficiency and reliability, making it a robust choice for both high-dimensional
and multimodal problems. These findings can inform MCMC algorithm selection for Bayesian inference
applications, as well as hyperparameterization of the chosen algorithm. More importantly, the diagnostics
represent a generalizable contribution to research on MCMC diagnostics that can be used to evaluate and
inform the design of new algorithms.

INDEX TERMS Bayesian estimation, Markov chain Monte Carlo, high dimensionality, multi-modality,
model diagnostics.

I. INTRODUCTION
Bayesian inference can be used to estimate the parameters,
θ , of a model and their associated uncertainty, given the
available data. This is useful for informing robust engineering
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designs that can tolerate this uncertainty; see example
applications in [1], [2], [3], [4], [5], [6], and [7]. The
approach relies on Bayes’ theorem in which the modeler
uses their knowledge of the system’s physical behavior
and mathematical constraints to develop a prior probability
distribution for the parameters, p(θ ), that is updated by the
likelihood of observing the data x, p(x|θ ). This allows the
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estimation of the posterior probability of that parameter set
given the observed data, p(θ |x):

p(θ |x) =
p(x|θ )p(θ )∫
p(x|θ )p(θ )dθ

. (1)

The posterior distribution represents the uncertainty of the
model parameters to which we would like engineering
designs to be robust.

Markov Chain Monte Carlo (MCMC) is a powerful
statistical method used to estimate posterior distributions.
MCMC uses a Monte Carlo simulation to sample from
a Markov Chain whose transition probabilities from the
current point in the chain to the next proposed point
in the parameter space are determined by the relative
posterior density of the current and proposed locations.
In the long run, the distribution sampled by the Markov
chain will become stationary and represent the true posterior
distribution. However, using posterior estimates fromMCMC
prematurely before the algorithm has converged to its
stationary distribution could result in a poor characterization
of uncertainty, and consequently over- or under-designed
systems. As such, a vast body of literature has focused on
developing diagnostics to assess the convergence of MCMC
search processes (see reviews of MCMC diagnostics by [8],
[9]). Specifically, these diagnostics focus on determining
1) how many initial iterations should be discarded as ‘‘burn-
in’’ because they are far from the posterior mode and not
representative of the stationary distribution; and 2) howmany
iterations are sufficient to stop the algorithm, as the chain has
converged to its stationary distribution [10].
In some cases, one can calculate these numbers theo-

retically. For example, if it can be shown through drift
and minorization criteria [11] that the chain converges at
an exponential rate, a bound on the number of burn-in
iterations needed for the total variation distance between the
estimated and true posterior to reach some tolerance can be
calculated [12]. A similar estimation can be performed using
Wasserstein distance [13]. With respect to the total number of
iterations, if a Central Limit Theorem exists for some function
g of the samples X (such as their mean or variance), one can
estimate the sample size needed for g(X ) to converge to its
true value at some confidence level [9].
Unfortunately, for black box-type parameter estimation

problems that are common in engineering, no such theoretical
bounds can be estimated [14]. Instead, MCMC users must
rely on visual or quantitative metrics of convergence, many
of which require running multiple chains [8]. Visual MCMC
diagnostics monitor the progress of the search using graphical
tools like trace plots, histograms, and correlograms. These
visual aids cannot identify with certainty that a chain has
converged, but they can identify problems that indicate it
has not. For example, trace plots of the chain location vs.
iterations illustrate if the chains are getting stuck, moving
too slowly due to high auto-correlation, or trending and
therefore not yet stationary; histograms indicate if the
posterior estimates across chains are inconsistent with one

another; and correlograms indicate if the autocorrelation in
the chains is too high, reducing the effective sample size
(ESS) [9]. Plots of more complex chain statistics have also
been proposed [15], [16], [17], but these are problem or
algorithm-specific.

Because graphical plots can only identify problems in con-
vergence, these diagnostics are typically complemented by
numerical convergence metrics that provide more objective
stopping criteria. The most common metric, the Gelman-
Rubin (GR) diagnostic, calculates the ratio of the variance
across chains to the average within-chain variance, with a
value < 1.1 recommended as a stopping criterion [18].
In multivariate settings, i.e. when calibrating multiple param-
eters, one can enforce this across all parameters or use the
multivariate adaptation of the metric [19]. Another common
stopping criterion is a threshold of the (multivariate) Effective
Sample Size (mESS), which accounts for autocorrelation
in the chain [20], [21]. Heidelberger and Welch [22]
perform hypothesis tests for stationarity of the Markov
chain at different points in the chain to determine how
much to remove as burn-in because the null hypothesis
that the chain is stationary is rejected when that portion is
included. In a similar vein, others perform hypothesis tests
comparing kernel density estimates across pairs of chains
to determine if they have the same distribution (which is
assumed to be the stationary distribution). Metrics for such
tests include the L-1 distance [23], Hellinger distance [24]
or Kullback-Leibler Divergence (KLD) [25]. If any of
these graphical or quantitative diagnostics indicates non-
convergence, adjustments to the search process can be made,
such as ‘‘thinning’’ the chain by only retaining every k
samples to reduce auto-correlation, modifying the probability
of using different operators that are used to propose new
chain locations, adapting the algorithm’s hyperparameters
(e.g. covariance matrix) to improve exploration, or simply
extending the search duration [26].
While these metrics are useful for identifying if an indi-

vidual search process has not converged, they provide limited
insights into how to improve convergence. The conventional
approach of manually tuning algorithmic hyperparameters to
improve performance can be laborious, and recommended
default ranges may not always perform well. Ideally,
an algorithm should exhibit robustness to its hyperparameter-
ization and be primarily controlled by the number of function
evaluations (NFE) [27], [28]. However, existing diagnostics
do not measure this controllability. Furthermore, simply diag-
nosing performance of an individual search process does not
provide insights into which algorithms performwell onwhich
class of problems, and which are robust across problems.
To address these limitations, we propose new diagnostic tools
to evaluate MCMC algorithms and inform the choice of
suitable methods for specific types of inverse problems.

Drawing from diagnostics used to evaluate the per-
formance of multi-objective evolutionary algorithms [27],
[28], in this study, we present a novel and comprehensive
framework for evaluating MCMC algorithm performance.
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Our approach provides visualizations that show existing
diagnostic metrics in a new way, illustrating the following
algorithmic characteristics:

• Effectiveness: A measure of the ability of an MCMC
algorithm to find a posterior mode (or multiple modes)
that is (are) representative of the true uncertainty, and
to characterize the full posterior distribution. Existing
metrics include L-1 distance, Hellinger distance, and
KLD.

• Efficiency The speed with which the posterior is able to
be characterized. Existing metrics include the ESS and
mESS.

• Reliability: How consistently the algorithm is able to
characterize the posterior across different random seeds.
This is typically quantified by the GR diagnostic.

• Controllability: The insensitivity of an algorithm’s
efficiency to its hyperparameterization, a desirable
property so that the user does not have to fine-tune
hyperparameters to achieve good performance. This is
not typically quantified in MCMC diagnostics.

Diagnosing these features collectively across algorithmic
hyperparameters and random seeds fills an important gap in
the literature that only diagnoses convergence of a single
search process, ignoring algorithmic controllability across
hyperparameterizations. The visualizations we produce of
these characteristics can inform the choice of a robustMCMC
algorithm and corresponding hyperparameterization, whose
convergence can then be assessed using existing diagnostics.
As such, our new MCMC diagnostics play a complementary
role to existing MCMC diagnostics.

Our paper is organized as follows. Our methods are
described in Sections II-V. Section II briefly describes the
MCMC algorithms we compare, Section III outlines the
experimental design used for this comparison, Section IV
lists the metrics used to quantify performance, and Section V
introduces the test problems on which the algorithms are
evaluated. We illustrate the results of this computational
experiment and our new diagnostics in Section VI. Finally,
we close with our conclusions about MCMC algorithm per-
formance illustrated by our new diagnostics in Section VIII.

II. ALGORITHMS
In this section, we describe the three Bayesian estimation
algorithms examined in our study: Metropolis-Hastings
(MH), AdaptiveMetropolis (AM), and Differential Evolution
Adaptive Metropolis with a snooker update and sampling
from an archive of past states (DREAM(ZS)). These algo-
rithms serve as powerful tools for exploring and sampling
from complex parameter spaces in Bayesian analysis. While
there are other algorithms for Bayesian estimation, we limit
our exploration to these three for illustrative purposes of our
new diagnostics. However, our diagnostics can be extended
to other algorithms.

All algorithms were implemented using the BayesianTools
package in R [29], which provides general-purpose MCMC
samplers for Bayesian statistics. The BayesianTools package

offers a wide range of functionalities for efficient imple-
mentation and analysis of Bayesian models, making it an
accessible tool for conducting advanced Bayesian inference
tasks, such as comparing alternative algorithms.

A. METROPOLIS HASTINGS (MH)
TheMH algorithm [30], [31] is a widely usedMCMCmethod
that enables sampling from complex posterior distributions.
First, an initial parameter set θ0 is sampled from the
prior distribution and then new parameters θ ′ are generated
(proposed) from a proposal distribution that is centered
about the current location. MH proposes new parameter
sets by using a symmetric proposal distribution, typically a
multivariate normal distribution (MVN), as is implemented
in BayesianTools. This is referred to as Gaussian mutation.
A proposed move is accepted with probability α, determined
by equation 2:

α = min
(
1,
p(θ ′

|x)g(θt |θ ′)
p(θt |x)g(θ ′|θt )

)
(2)

where g(θ ′
|θt ) is the probability of proposing parameters θ ′

given the current parameters are θt , and g(θt |θ ′) is the reverse.
Note that, g(θ ′

|θt ) = g(θt |θ ′) if the proposal distribution
is symmetric. This is referred to as the Metropolis step,
or accept-reject step.

In BayesianTools, the initial samples of the chain can be
optimized at an estimate of the maximum of the posterior
distribution, with the goal of reducing the amount of burn-in
by starting in a high posterior density region. This is
controlled by a binary hyperparameter Optimize = True or
False. If true, BayesianTools utilizes the Brent algorithm [32]
for single-parameter estimation problems, and the Nelder-
Mead algorithm [33] for multi-dimensional problems, both
of which are derivative-free. Nelder-Mead algorithm may
converge to a non-stationary point [34], and it is a local
optimizer, therefore it may not do well on multi-modal
problems. The other hyperparameters of MH algorithm are
the total number of function evaluations, the number of
chains, and percent of function evaluations to remove as burn-
in (see Table 1 for a list of the hyperparameters in each
algorithm).

B. ADAPTIVE METROPOLIS (AM)
MH provides a foundational framework for Bayesian infer-
ence and has been successfully applied in various fields.
However, one limitation of MH is the fixed proposal distri-
bution, which may not effectively explore high-dimensional
or multi-modal parameter spaces. To address this limitation
and improve exploration efficiency, the AM algorithm [35]
incorporates adaptive strategies for updating the covariance
of the proposal distribution throughout the search. This
adaptation is determined by the points sampled during
the MCMC process. By adaptively updating the proposal
covariance, AM strikes a balance between exploration and
exploitation in the parameter space. It allows the algorithm
to explore regions of high uncertainty by increasing the
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variance when uncertainty across sampled points is high,
leading to better mixing of the Markov chains. However,
it also allows the algorithm to exploit regions of high
probability density by decreasing variance when uncertainty
across sampled points is low, thus improving convergence.
While thismay be unnecessary for low-dimensional problems
for which MH may be faster, the adaptive nature of AM
makes it more effective in high-dimensional parameter spaces
and when dealing with complex posterior distributions.
This adaptivity enhances the exploration capabilities of the
algorithm, resulting in improved efficiency and convergence
rates [36]. In BayesianTools, adaptation is controlled by two
hyperparameters: AdaptStart, which indicates the percent of
evaluations after burn-in at which adaptation begins, and
AdaptInterval, which indicates the fraction of remaining
evaluations after AdaptStart at which adaptation occurs.

We allow AM to be employed with delayed rejection, also
called Delayed Rejection AdaptiveMetropolis (DRAM) [37].
In DRAM, once a proposed point has been rejected, instead
of proceeding to the next time step and remaining in the
current state, a second-stage proposal is made that depends
on both the current state and the state that was just proposed
and rejected. The second-stage proposal is then accepted
or rejected based on a modified acceptance probability that
preserves reversibility of the Markov chain. This can be
repeated multiple times, the number of which is controlled
in our experiment by the parameter DRlevels (see Table 1).
We also allow for optimization of initial starting points in the
AM search, controlled by a binary Optimize hyperparameter,
as in MH.

C. DIFFERENTIAL EVOLUTION ADAPTIVE METROPOLIS
(DREAM)
While the ability to adapt the proposal distribution through
AM can speed up convergence with respect to MH, it is
still limited by using a single proposal operator (typically,
Gaussian mutation). The DREAM(ZS) algorithm [38] is a
population-based MCMC method that advances AM further
by adding additional proposal operators to the AM algorithm:
differential evolution (DE) and a snooker update (S).
This can further enhance exploration on high-dimensional,
multi-modal problems, but may come at the expense of
deeper exploitation of high-posterior regions. For simplicity,
we refer to this algorithm as simply ‘‘DREAM’’ throughout
the remainder of the paper.

The population of DREAM refers to the states of multiple
chains, as well as an archive of their past states. These are
used jointly to propose new chain locations using operators
beyond Gaussian mutation, including DE and a snooker
update, which are accepted according to the Metropolis rule.
DE is a vector translational operator originally developed for
use in evolutionary optimization algorithms [39]. Mathemat-
ically, DE can be described by equations 3-4 [40]:

θ ′
i = θi,t + γ (1 + e)

[ p∑
n=1

θj(n) −

p∑
m=1

θk(m)

]
+ ϵN (0, 1) (3)

γ =
2.38

√
p ∗ d

(4)

where θi,t and θ ′
i are the current and proposed states of the

i-th chain, respectively; θj(n) and θk(m) are the n-th and m-th
of p samples from the archive of current or past states of the
j-th and k-th chains, respectively; d is the problem dimension
(i.e., number of model parameters); e is a constant chosen by
the user to scale γ if desired (ter Braak and Vrugt [41] choose
the default value of γ in equation 4 to yield acceptance rates
close to 0.44 for d = 1 and 0.23 for large d , which have been
shown numerically and theoretically to be optimal acceptance
rates for random walk Metropolis [42], [43]); and ϵ is the
variance of a Gaussian mutation after DE translation, whose
value is also chosen by the user.

TheDE translation in equation 3 is typically only applied to
some of the dimensions. These are referred to as ‘‘crossover
points’’ and the number of crossover points is determined
by the nCr parameter. The value of this parameter can be
updated throughout the search with frequency determined by
the parameter UpdateInterval. Similarly, the archive of past
states, Z, is updated with frequency zUpdateFrequency.

A snooker update is another vector translational operator
originally proposed by Gilks et al. [44] to adapt sampling
in the direction of the highest density. DREAM(ZS) uses an
updated snooker proposal operator developed by ter Braak &
Vrugt [41], described mathematically by equation 5:

θ ′
i = θi,t + γs(θPj,t − θPk,t ) (5)

where γs is another constant hyperparameter of the algorithm,
while θPj,t and θPk,t are orthogonal projections of θj,t and θk,t
onto the line θi,t−θn,t , where θn,t is the current state of another
chain, n.

The additional operators of DREAM, as well as its
use of an archive and interaction across chains, serve
several beneficial purposes. The archive, which maintains
a history of accepted samples from all chains, enables
a more efficient exploration of the parameter space and
improved mixing of the chains. By sampling from the past
archive, the algorithm gains access to valuable information
about the posterior distribution, enhancing its ability to
explore diverse regions and locate multiple modes. The
incorporation of DE and snooker moves within DREAM(ZS)
further enhances exploration by introducing a stochastic
perturbation mechanism. This mechanism helps to overcome
local optima and encourages the chains to traverse the
posterior distributionmore effectively. Finally, the interaction
across chains allows for greater exploration and facilitates
convergence to the same posterior across chains [38], [45].

III. COMPUTATIONAL EXPERIMENT
In order to evaluate the performance of the MCMC algo-
rithms used in this study, a comprehensive experimental setup
was devised, representing the key contribution of this paper.
The experimental design, which is inspired by [27] and [28],
aims to assess the effectiveness, efficiency, reliability, and
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FIGURE 1. Experimental design of this study. For each algorithm and test problem, calibration is performed across a Latin hypercube sample of algorithm
hyperparameters for multiple seeds. Performance metrics are computed based on the proximity of the estimated posterior to the true posterior. The
reliability of the algorithm is illustrated by CDFs of the probability of attaining certain performance levels on the metrics, while the effectiveness,
efficiency and controllability are illustrated in control maps of the average performance metric as a function of the number of function evaluations (NFE)
and chains. This figure is adapted from Reed et al. [28].

controllability of the MCMC algorithms in converging to the
true posterior distribution.

Figure 1 illustrates the experimental design that enables
this assessment. The first step is to generate a Latin hypercube
(LH) sample of algorithmic hyperparameters. Here we use
a sample of 1000. Two of the hyperparameters are the
number of function evaluations (NFE) and number of chains.
For each of the LH samples, MCMC is performed with
the corresponding hyperparameters and the posteriors are
estimated empirically. The final posteriors consist of the
elements from all chains, excluding the initial burn-in period.
For instance, with 1000 iterations, 5 chains, and a 100-
iteration burn-in, the resulting posterior consists of (1000 -
100) * 5 = 4500 chain locations. Since the Monte Carlo
aspect of MCMC is random, this process is repeated for
multiple random seeds, here 25.

Next, several metrics of the algorithm’s effectiveness are
computed (described in Section IV) for each random seed of
each LH sample. The reliability in achieving these metrics
is visualized by a Cumulative Distribution Function (CDF)
across random seeds, also called an ‘‘attainment map’’ as it
illustrates the probability of attaining different metric values.
The efficiency is visualized by a contour map of the average
metric across random seeds of each LH sample, shown on a
2D projection of the LH samples’ NFE and number of chains.
The sooner effective values are reached vs. NFE, the more
efficient the algorithm. This plot, also called a ‘‘controlmap’’,

illustrates how controllable the algorithm is; the noisier the
contour map the less its performance is controlled by the NFE
and number of chains and more by its other hyperparameters.

We also measure controllability quantitatively by perform-
ing variance-based sensitivity analysis, decomposing how
much variance in the performancemetric is explained by each
hyperparameter. The more variance explained by NFE (and
subsequently, the number of chains), the more controllable
the algorithm, as these are the easiest hyperparameters for
the user to set. The fraction of the variance in the performance
metric Y explained by the i-th hyperparameter Xi individually
is denoted its first-order sensitivity index, Si:

Si = Vi/Var(Y ) (6)

Vi = Var(E[Y |Xi]). (7)

Any remaining variability is assumed to be explained by
interactions across hyperparameters. Sensitivity indices were
estimated using the method of Plischke et al. [46] using the
Python SALib package [47].

The ranges of the hyperparameters for the LH samples
are detailed in Table 1. These ranges were informed by
values from the literature and were carefully selected to
cover a broad spectrum of possible configurations, ensuring
a thorough exploration of the algorithm’s behavior [29], [38].
By varying the hyperparameters, we not only are able to
assess the algorithm’s controllability, but also to identify
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TABLE 1. Ranges of algorithmic hyperparameters sampled uniformly by Latin hypercube sampling.

the settings that yield optimal results for different types of
problems (e.g. high-dimensional or multi-modal). Sensitivity
to additional hyperparameters could be explored in future
work, such as the initial covariance matrix of the Gaussian
proposal distribution, or the interval of samples that should be
dropped via thinning. Sensitivity to thinning could be further
investigated to determine the extent that autocorrelation
decreases the effective sample size which also increases the
standard error estimates of the posterior mean. Investigating
the sensitivity on an MCMC algorithm’s performance to the
thinning interval could inform the choice of effective ranges
to reduce the impact of autocorrelation on the reliability of
MCMC simulations.

The experimental framework was implemented on the
Rivanna high-performance computing cluster at the Univer-
sity of Virginia. The insights derived from this experiment
can provide guidance for selecting appropriate algorithms and
corresponding configurations for inverse problems with the
tested characteristics, as well as inform how to develop new
algorithms with improved controllability by adapting more
sensitive hyperparameters throughout the search. Finally,
it illustrates a new framework for evaluating MCMC
algorithms developed in the future.

IV. METRICS
To evaluate the effectiveness of the MCMC algorithms,
we use three performance metrics that quantify different
aspects of convergence: the GR diagnostic [18], KLD [48],
and WD [49]. These metrics provide valuable insights into
the quality of the MCMC samples and the approximation of
the target distribution.

A. GELMAN-RUBIN (GR) DIAGNOSTIC
The GR diagnostic is a widely used measure to assess
convergence when multiple, independent MCMC chains are
employed and the true posterior is unknown. It compares the

within-chain variance to the between-chain variance:

R̂ =

√
V̂

Ŵ
(8)

where V̂ is the estimated marginal posterior variance of the
target parameter across all chains and Ŵ is the estimated
average within-chain variance of the target parameter. A GR
value close to 1 indicates convergence to the same variance
across chains, making it an easy-to-interpret metric. The GR
diagnostic is computed using BayesianTools.

We note that the GR diagnostic is meant to be used to
ensure convergence to the same variance across independent
chains, and is therefore not an appropriate measure of
convergence for DREAM since the chains communicate.
This communication will likely result in a low GR early
in the search, even if the algorithm has not converged.
However, consistent variance across chains may not be an
appropriate measure of convergence even in the case of
independent chains, as the chains could represent consistently
poor approximations of the true posterior. Despite these
limitations, GR is still the most commonly employedMCMC
convergence metric when the posterior is unknown, including
for the DREAM algorithm [38]. As such, we still compute
the GR for all algorithms, but also compute additional
performance metrics that allow us to assess the utility of GR
as an MCMC performance metric.

B. KULLBACK-LEIBLER DIVERGENCE (KLD)
GR is a proxy measure of convergence used when the true
posterior is unknown. However, as discussed above, it can
prematurely indicate convergence, particularly when the true
posterior is multi-modal. For test problems where the true
posterior is known, we can assess convergence using the
KLD. KLD measures the difference between two probability
distributions, DKL(P ∥ Q), as the integrated divergence in
probability of one pdf P(θ ) (here, the estimated posterior) to
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another Q(θ ) (here, the true posterior):

DKL(P ∥ Q) =

∫
P(θ ) log

(
P(θ)
Q(θ )

)
dθ (9)

KLD is commonly used in Bayesian statistics to assess
the approximation of the true posterior distribution obtained
from an MCMC algorithm when the true posterior is known,
as is the case on test problems. It provides a measure
of the dissimilarity between the approximate and true
posterior distributions, allowing for flexible comparison of
distributions with different parametric forms. However, the
choice of the reference distribution (P vs. Q) can influence
the results, as the measure is not symmetric. While there is
a symmetric measure of KLD (Jeffrey’s divergence) [50],
we simply set the reference distribution to the true posterior
for consistency. We use the R function KL.divergence in the
FNN library to computed KLD [51], [52].

C. WASSERSTEIN DISTANCE (WD)
The WD, or ‘‘Earth mover’s distance’’ is another measure
of the similarity between two distributions. It measures the
minimum transport distance to transform one probability
distribution into another [53]. It can be used in MCMC
diagnostics to compare the true posterior distribution to the
estimated posterior distribution obtained from the algorithm:

W(P,Q) = inf
γ∈0(P,Q)

∫ ∫
∥x − y∥ dγ (x, y) (10)

where W (P,Q) represents the WD between distributions
P and Q; inf denotes the infimum, which represents the
minimum value over all possible transports γ that move
mass from P to Q; 0(P,Q) is the set of all joint probability
distributions γ (x, y) with marginals P and Q; and ∥x − y∥
represents a chosen distance metric between points −→x and
−→y in the underlying space.
The WD provides a measure of the discrepancy between

two distributions, considering their underlying structure [54].
It can handle distributions with different supports. However,
it can be computationally demanding, especially for high-
dimensional distributions. Additionally, the choice of the
distance metric may influence the results. To estimate WD,
we generate n points −→y from the true posterior Q where
n is equal to the total number of samples −→x from the
MCMC chains after removing burn-in, which represent the
estimated posterior P. The WD between these sets of points
is computed using the Sinkhorn approximation [55] from the
Python geomloss library, with transport distance between two
points quantified by Euclidean distance.

Comparing the KLD and WD, KLD quantifies how
dissimilar the estimated posterior probability is at each
point θ compared to the true posterior probability, while
WD compares how far the distributions are from one
another in parameter-space. As such, KLD may be a better
approximation of how close the estimated posterior is from
the truth, while WD may be a better approximation of how

far the search is from finding the true posterior in parameter-
space.

V. TEST PROBLEMS
Because MCMC is typically applied to estimate the parame-
ters of complex physical models, it would be useful to apply
our diagnostics to such models. However, the KLD and WD
metrics require a known posterior, so one would have to
set a synthetic true parameter set to apply our diagnostics
to a physical model. The posterior would then be a dirac
delta function at the synthetic truth, and the KLD would
be infinite. However, the WD could still be computed as
the average Euclidean distance between all chain elements
and the synthetic truth. This would capture closeness of the
estimated posterior to the truth in parameter space, but not
probability space. Because of these challenges, we simply
focus our diagnostics on two analytical test problems that
address two prevalent challenges encountered in complex
models: high dimensionality and multi-modality.

A. HIGH-DIMENSIONAL TEST PROBLEM
Physical and data driven systems often involve a large number
of interconnected variables, leading to high-dimensional
parameter spaces. To simulate such scenarios, we employ
a 100-dimensional multivariate normal distribution with a
mean of [0]d and covariance 6 where the off-diagonal
elements σi,j =

1
2
√
i ∗ j ∀i ̸= j and the diagonal elements

σi,i = i. This test problem is commonly used to represent
high-dimensional data [40].

The choice to target high dimensionality is motivated by
the need to develop robust techniques capable of effectively
exploring and optimizing parameter spaces in physical
and statistical models. Relevant model applications span a
wide range of fields including but not limited to machine
learning [56], climate [57], and finance [58].

B. BIMODAL TEST PROBLEM
Multi-modal behavior, characterized by the simultaneous
existence of distinct modes or regions of high probabil-
ity in the parameter space, is a prevalent phenomenon
observed in various domains, including machine learning
and statistics [59], natural language processing [60], climate
modeling [61], and economics [62], where data often
exhibits multiple diverse patterns or states. To address this
characteristic, we employ a 10-dimensional bimodal mixed
Gaussian distribution as our multi-modal test problem. The
bimodal mixed Gaussian distribution consists of two distinct
modes, each following a Gaussian distribution with means of
[−5]d and [5]d and a common covariance matrix 6 = I ,
the identity matrix. The mode with mean [−5]d occurs with
probability 1/3 and the mode with mean [5]d with probability
2/3. By employing such a distribution, we can assess the
ability of our proposed approach to effectively locate and
characterize multiple optima within the parameter space,
a key challenge encountered in physical modeling.
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VI. RESULTS AND DISCUSSION
A. DIAGNOSTICS ON 100D MVN TEST PROBLEM
In this section, we present our diagnostics on the 100DMVN
test problem. Figure 2 displays two sets of maps to illustrate
the controllability, reliability, and efficiency of the MCMC
algorithms using the WD metric: Control and Attainment
Maps. SI Figures S1-S2 show the same maps for the KLD
and GR of the first dimension, respectively, which revealed
similar findings for KLD as presented in Figure 2, while all
algorithms did well on GR across hyperparameterizations.
Because our sensitivity analysis revealed that MH and AM
were most sensitive to whether or not optimization was used
to initialize the starting locations of each chain, we present
these maps separately for the cases where optimization =

True vs. False, yielding five algorithms for the comparison:
MHnoOpt, MHopt, AMnoOpt, AMopt, and DREAM.
The control maps in Figures 2a-2e illustrate the aver-

age WD between the estimated and true posterior across
25 random seeds as a function of the algorithm’s chain
count (x-axis) and number of function evaluations (NFE;
y-axis). The sooner a low value in blue is reached along the
y-axis, the more efficient the search is. Noise in the control
maps indicates less controllability, i.e. greater sensitivity to
other hyperparameters beyond NFE and number of chains.
Some hyperparameter combinations failed to yield posterior
distributions and are shown as gray.

When using optimization to initialize chain locations,
MH and AM both perform very poorly (Figures 2d-2e).
MH yields high WD across all combinations of chains
and NFE (Figure 2d). AM’s adaptation begins to improve
performance at low chain counts (Figure 2e), but both
algorithms perform much better when optimization is not
used to initialize chain locations (Figures 2a-2b). We inves-
tigate the reason optimization performs poorly through
additional visual diagnostics of the estimated marginal
posterior distributions in Figure 3. Without optimization,
MH and AM show slower convergence at higher chain
counts (Figures 2a-2b), indicating that for high-dimensional
but unimodal problems, it is better for these algorithms to
maximize iterations of a few chains to increase exploitation
than to spread them across chains to increase exploration.
DREAM (Figure 2c) is less hampered by spreading its
iterations across chains thanks to the interaction between
them, whereby the states of multiple chains are used to
propose new chain locations. This insensitivity to chain count
results in more controllability and robustness in DREAM’s
performance. However, its robustness does come at the
expense of optimality under certain configurations, as AM’s
adaptation initially slows convergence, but ultimately results
in better posteriors. Consequently, AMwith low chain counts
is the best choice if one is not computationally limited and
knows their problem is unimodal, but DREAM is the best
choice if one is more computationally limited.

In addition to finding posteriors that match the true poste-
rior across hyperparameters, we would also like algorithms
that do this reliably across random seeds. We investigate

this for the 100D MVN problem using attainment maps
in Figure 2f, which illustrate the probability of attaining
different WDs across random seeds. The more blue the
attainment map, the higher the probability of attaining low
WDs, i.e. the more reliably effective the algorithm is. MH and
AM with optimization are shown to be not only inefficient,
but unreliable, with a low probability of attaining low WDs.
AM without optimization has the highest probability of
achieving the lowest WDs (e.g. lowest WD achieved 50% of
the time); however, this comes at the expense of increased
variability as the probability of attaining near optimal WDs
is much lower than both MH and DREAM. We see from
the control maps that the higher WDs occur at higher chain
counts and lower NFE. DREAM has the highest probability
of attaining near-optimal WDs, proving to be not only the
most robustly efficient across hyperparameters, but also the
most reliably efficient across random seeds.

To verify the patterns seen in the control maps, we illus-
trate the posterior marginals for a random seed from the
hyperparameter nearest each corner and the centroid of
the control maps. Figure 3 illustrates these marginals for the
50th dimension of the 100D MVN, while SI Figures S3-S4
show them for the 1st and 100th dimensions, respectively,
which yield similar conclusions. Across algorithms, as the
NFE increases (higher plots), the posterior distributions
tend to more closely approach the true posterior (black),
with the exception of MH with optimization (light green),
which performs poorly across hyperparameters. AM with
optimization (light blue) also poorly matches the true
posterior, but moves in the right direction as NFE increases
for low chain counts. MH and AM without optimization
(dark green and dark blue) ultimately come closest to the
true posterior, but DREAM (red) performs better when the
chain count is high but NFE is low (Figure 3e), illustrating
its improved robustness at the expense of optimality. Further
investigation is needed to understand why using optimization
to initialize chains in MH and AM does not direct the search
toward the true, single mode. It appears the Nelder-Mead
optimization does not converge to the true mode, instead
initializing the search in different regions of the space for
different chains, and the algorithm takes a long time to
explore beyond those estimated modes toward the truth.

Finally, we combine our illustration of reliability and
controllability in Figure 4, which illustrates the CDF of WD
for each hyperparameter. SI Figures S5-S6 show the same
for the KLD and GR of the first dimension, respectively.
In Figure 4, the color of each CDF represents the value of the
hyperparameter that most explains variability in WD (yellow
= low, purple = high). This hyperparameter is indicated by
the variance decomposition shown in Figure 4f. The steeper
the CDF, the more reliable the algorithm; the closer the CDFs
are to 0, the more effective it is; and the more sensitive
the algorithm is to NFE (blue), the more controllable it
is. Fortunately, NFE is the most influential hyperparameter
across all algorithms except for MHopt, which is most
sensitive to the number of chains (orange). AMopt is also
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FIGURE 2. (a-e) Control maps for the 100D MVN test problem illustrating the average Wasserstein distance (WD) across random seeds as a function of
the number of function evaluations (NFE) and number of chains for (a) MH without optimization, (b) AM without optimization, (c) DREAM, (d) MH with
optimization, and (e) MH with optimization. (f) Attainment maps illustrating the probability of attaining different WDs (shown on the y axis) across all
seeds and hyperparameters for each algorithm.

FIGURE 3. Posterior marginals of the 50th dimension of the 100D MVN test problem when using the hyperparameter closest to (a) the least number of
chains and the most NFE, (b) the highest number of chains and the most NFE, (c) the median number of chains and the median NFE, (d) the least number
of chains and the least NFE, and (e) the most number of chains and the least NFE.

fairly sensitive to the number of chains. This sensitivity to the
number of chains, and the multimodal nature of the posteriors

estimated by these algorithms in Figure 3, suggests that the
optimization may be resulting in different chains converging
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FIGURE 4. (a-e) CDFs of WD across random seeds for each hyperparameter on the 100D MVN test problem. The color of the hyperparameter indicates
the value of the parameter to which that algorithm’s WD was most sensitive. (f) Decomposition of how much variance in WD is explained by each
hyperparameter and their interaction for each algorithm.

to different modes near their starting locations, which may
not be near the true mode.

Analyzing the CDFs, they are steep for nearly all
algorithms and hyperparameters, indicating reliability across
random seeds. However, they are far more consistently close
to 0 for DREAM, which aligns with the findings illustrated
by the control maps. Across all algorithms, as the most
explanatory hyperparameter increases, the CDFs tend to
converge toward lower WD values. This is desirable for the
algorithms that are most sensitive to NFE. Among these
algorithms (all but MHopt), DREAM exhibits the greatest
sensitivity to other parameters beyond the number of chains
(green) and interactions between hyperparameters (red).
This suggests that although this algorithm is robust across
hyperparameters, the additional operators do reduce control-
lability. This could perhaps be reduced by adapting their
values and probabilities throughout the search as has proven
successful in multi-objective evolutionary algorithms [28],
something that could be explored in future work on algorithm
development.

B. DIAGNOSTICS ON 10D BIMODAL MIXED-GAUSSIAN
TEST PROBLEM
Here, we present our diagnostics assessing the perfor-
mance of MH, AM, and DREAM on the 10D Bimodal
Mixed-Gaussian test problem. Interestingly, unlike for the
100D MVN, the performance of MH and AM was not

sensitive to whether optimization was used to initialize chain
locations, so we include all hyperparameters together in our
visualizations. We hypothesize that the different estimated
modes across chains from the Nelder-Mead algorithm was
less problematic than for the 100D MVN problem because
there is in fact more than one mode on the bimodal problem.

Similar to the 100D MVN test problem, we display the
control and attainment maps on the bimodal problem for the
three MCMC algorithms in Figure 5. However, unlike for
the 100D MVN problem, different metrics yielded different
conclusions, so we show these maps for all three metrics:WD
(Figures 5a-5d), GR of the first dimension (Figures 5e-5h),
and KLD (Figures 5i-5l).

Examining the control maps, it’s clear that DREAM
exhibits better performance in achieving lower values of GR
and WD (Figures 5d and 5h) compared to MH (Figures 5b
and 5f) and AM (Figures 5c and 5g). DREAM also appears
more controllable, with low GR values regardless of the NFE
and number of chains, and WD improving for higher NFE.
On the contrary, WD is poor for MH and AM regardless of
the hyperparameterization, while GR is controlled primarily
by NFE. DREAM is also shown to be more reliable on
these metrics by the attainment maps (Figures 5a and 5e),
as DREAM has a higher probability of achieving lower
values of WD and GR across random seeds than MH and
AM. However, we should note the comparison on GR is
not fair since the DREAM chains are not independent,
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FIGURE 5. Attainment and control maps of each algorithm on the 10D Bimodal test problem based on (a-d) WD, (e-h) GR diagnostic of the first
dimension, (i-l) KLD.

FIGURE 6. Comparison of the estimated MH marginal posterior of the first dimension of the 10D bimodal test problem from individual chains and
across chains using select hyperparameter sets with (a) a high GR and low KLD and (d) the reverse; (b) a high GR and low WD and (e) the reverse;
and (c) a high KLD and low WD and (f) the reverse.

thus potentially providing a false sense of improved
convergence.

This false sense of improved convergence is confirmed
by the control and attainment maps of KLD, which tell a
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FIGURE 7. Control maps showing the number of seeds (out of 25) of each algorithm that achieved (a-d) KLD<1, (d-f) WD<120, and (g-i) both on the 10D
Bimodal test problem.

different story. On this metric, all three algorithms show good
performance in achieving low values of KLD, and in fact,
MH and AM seem to outperformDREAM in achieving lower
KLD values across hyperparameterizations and seeds. This
is particularly true when employing a small (near 2) or high
(near 20) number of chains, with all algorithms performing
similarly at moderate numbers of chains (near 10). One
can also see that the number of chains appears to be the
controlling hyperparameter for this metric, similar to GR for
MH and AM, but different from WD for DREAM.

To understand why conclusions about which algorithms
perform best differ under these different metrics, we selected
individual hyperparameterizations from the Latin hypercube
sample of MH that yielded high values of one metric
and low values of another. Figure 6 compares the true
posterior marginal of the first dimension (black) to the
estimated posterior marginals when using the elements
of each individual chain of these hyperparameterizations
(colored lines), as well when using the elements from all
chains (red, dashed line). SI Figures S7-S8 show similar
results for the 5th and 10th dimensions.

Analyzing the GR vs KLD plots (Figures 6a and 6d),
we see that individual chains from the LH sample with
a low KLD and high GR tend to find only one mode.
Since these modes differ across chains, the GR diagnostic is
high. However, the proportion of chains finding each mode
is similar to those mode’s likelihood, resulting in a close
approximation to the true posterior across chains, i.e. a low
KLD. Conversely, individual chains from the LH sample with
a high KLD and low GR each converge to the same mode,
resulting in low GR values. However, that mode is the less
probable one, resulting in a high KLD. These results confirm
what we would expect from theory [25]. Moving on to the GR
vs WD plots (Figures 6b and 6e), we see similar phenomena.
Individual chains from the LH sample with a high GR and
low WD each identify different modes of the distribution,
but in similar proportions to their likelihood, resulting in
a close approximation to the true posterior across them.
Conversely, individual chains from the LH sample with a
high WD and low GR only detect the less likely mode. These
findings again confirm theoretical understandings of these
metrics, and illustrate that the GR diagnostic can be a poor
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FIGURE 8. (a-c) CDFs of KLDs across random seeds for each hyperparameter. The color of the CDF indicates the value of the hyperparameter to which that
algorithm’s KLD is most sensitive. (d) Decomposition of how much variablity in KLD is explained by each hyperparameter and their interaction for each
algorithm. (e-g) Comparison of the estimated marginal posterior of the first dimension of the 10D bimodal test problem from individual chains and across
chains using select hyperparameter sets with (e) KLD near 0, (f) KLD near 10 and (g) KLD near 20.

metric of convergence on multi-modal problems, raising the
question of how to best diagnose convergence on problems
with unknown posteriors.

Understanding the disagreement between WD and KLD
values requires more investigation. Figure 6c reveals that the
selected LH sample with a high KLD and low WD only
detects the more likely mode of the distribution. This results
in a high KLD because the posterior probabilities diverge
significantly in the less likely mode. However, the WD is
fairly low because the cost of transporting some of the density
in the more probable mode to the less probable mode is
small. Individual chains from the LH sample with a high
WD and low KLD (Figure 6f) find different modes, but in
near opposite proportions to their true likelihood. This results
in a high WD because it is much more costly to transport
excess density from the less likely mode to the more likely
mode. However, the divergence between the estimated and
true posterior is less significant since both modes are found,
just not in the right proportions.

Figures 6c and 6f reveal the importance of consid-
ering multiple metrics to assess algorithm performance,
as both WD and KLD are capturing important elements
of distribution closeness, while failing to capture others.
Consequently, in Figure 7, we show control maps combining
KLD and WD to see which algorithms perform best on

both. These figures illustrate the number of seeds yielding
KLDs<1 (Figures 7a-7c), WDs<120 (Figures 7d-7f), and
both (Figures 7g-7i), with darker blue indicating a higher
number of seeds. Consequently, these maps illustrate all four
diagnostic metrics: reliability is indicated by the number of
random seeds meeting thresholds of acceptable effectiveness;
controllability is illustrated by a lack of noise in reliability,
with its value a function primarily NFE or chains; and
efficiency is indicated by increased reliability at lower NFE.
Consistent with Figure 6, we see that MH and AM meet
the KLD threshold across more hyperparameterizations than
DREAM, particularly at low NFE, while DREAM meets
the WD threshold more often. Combining these, we see
that MH and AM are able to meet both thresholds more
often for low NFE (in about 5-10 seeds for <50,000 NFE
compared to <5 seeds for DREAM), while DREAM meets
both thresholds more often for >50,000 NFE. Thus, for
multimodal problems, it may be best to use MH or AM if
computationally limited, and DREAM otherwise.

Finally, to hone further in on algorithmic reliability,
we show CDFs of the KLD metric for each algorithm in
Figure 8. We choose the KLD metric since it better captures
divergence in probability estimates from the true posterior.
We also show CDFs of WD and GR of the first dimension in
SI Figures S9-S10. As suspected from the control maps, the
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sensitivity analysis in Figure 8d illustrates that the KLD of all
algorithms is primarily controlled by the number of chains
(orange). Consequently, for each hyperparameter, we color
the CDF of its WD across random seeds by its associated
number of chains, with yellow being low (2 chains) and
purple being high (20 chains).

For MH and AM, we can see that low KLDs occur for high
chain counts (Figures 8a-8c), while the trend vs. number of
chains is less pronounced for DREAM. This is likely due
to DREAM’s higher sensitivity to other hyperparameters.
We also observe three distinct clusters of KLD values
at approximately 0, 10, and 20, particularly for MH and
AM. Plotting the marginal posteriors of the first dimension
from LH samples of MH with KLDs near these values in
Figures 8e-8g, we see that a KLD near 0 indicates that
the algorithm successfully captures both modes in close to
perfect proportions, while a value near 10 suggests most
chains captured only the more likely mode, and a value near
20 signifies detection of solely the less likely mode. These
distinct KLD valuesmake their measure of performancemore
intuitive than theWD values (see SI Figure S11), indicating it
may be a clearer, although less precise performance measure
for multimodal problems.

VII. CONCLUSION AND STATUS OF THE SCIENCE
This study introduced novel diagnostics for comparing
MCMC algorithms in terms of their effectiveness, efficiency,
reliability, and controllability via control and attainment
maps. This fills an important gap in the MCMC literature,
as existing diagnostics solely focus on diagnosing the effec-
tiveness and efficiency of an individual search process, not on
diagnosing its consistency (i.e. reliability and controllability)
across multiple search processes with different random seeds
and hyperparameter configurations. The findings from these
new diagnostics have the potential to reduce the time required
for hyperparameter tuning. While the diagnostics themselves
require a non-trivial computational experiment, they can
be performed on computationally cheap test problems with
known posteriors, as done here. Users can then leverage the
findings from these diagnostics to choose the most efficient
algorithm and corresponding hyperparameter configuration
to calibrate a more computationally expensive real-world
problem with similar characteristics to the test problems.
Existing MCMC diagnostics can then be applied to the single
calibration run of the real-world problem to assess conver-
gence of that individual search process. As such, our new
diagnostics fill a complementary role to existing diagnostics:
our diagnostics can inform the choice of algorithm, while
existing diagnostics can then assess convergence using that
algorithm.

We illustrate how our diagnostics can reveal which
algorithm ismost effective, efficient, controllable and reliable
by applying them to three widely used MCMC algorithms
– MH, AM, and DREAM – on test problems characterized
by high dimensionality and bimodality, attributes commonly
found in physical systems. The diagnostics offered valuable

insights into the performance of these algorithms on different
types of problems, as well as on which performance metrics
should be used to evaluate algorithms in different contexts.
In the context of the high-dimensional (100D) MVN test
problem, our analysis revealed a notable sensitivity of
MH and AM to the binary optimization hyperparameter,
ironically resulting in sub-optimal performance when using
optimization to initialize chains. While, MH and AM
without optimization exhibited improved convergence and
closer alignment with the true posterior distribution, these
algorithms needed significant NFE to do so, especially
when using multiple chains. In contrast, DREAM consis-
tently demonstrated strong performance, as evidenced by
both control and attainment maps. For the 10D Bimodal
Mixed-Gaussian test problem, DREAMcontinued to perform
well, achieving lower WD and GR values compared to
MH and AM. However, when considering the KLD metric,
MH and AMdisplayed competitive performance, particularly
in scenarios involving a smaller number of chains.

These conflicting findings across performance metrics on
the bimodal problem analysis revealed intricate trade-offs
between WD, GR, and KLD values, shedding light on their
strengths and weaknesses in assessing algorithm perfor-
mance. Critically, it was highlighted that low GR values
do not necessarily indicate convergence, just consistent
variance across chains. This is particularly uninformative
if the chains are consistent only because they are not
independent, but communicate as in DREAM. In reality, the
chains may represent consistently poor approximations of the
true posterior. Consequently, multiple metrics could be used
to assess MCMC convergence on problems with unknown
posteriors, and further research is needed on developing alter-
native convergence metrics for such problems. For algorithm
development, test problems with known posteriors could be
used for performance assessment to avoid these biases. When
the true posterior is known, WD and KLD represent better
measures of performance, but capture different aspects of
that performance. KLD is a better measure of how close
the estimated probabilities of different parameter values are
to their true probabilities, while WD is a better measure of
how close those two distributions are in parameter space. For
multi-modal problems, KLD may then be more appropriate.

Finally, the analysis in this paper also points to new
avenues of research. First, an important area of future
research is in applying these diagnostics to assess not only
efficiency in the mean estimate of the posterior, but in the
variance of that estimate. As discussed in the introduction,
because of the Markovian property of MCMC algorithms,
consecutive elements in the chain are not independent.
This autocorrelation can reduce the effective sample size
of the chain, thereby increasing the Monte Carlo error, and
corresponding standard error of the posterior mean estimate.
Future work could investigate how this uncertainty changes
across hyperparameter configurations and random seeds by
making control and attainment maps of the standard error
of the posterior mean estimate across chains. Such analysis
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could also include thinning of the chain as a hyperparameter,
whereby only every k elements in the chain are retained,
to see what impact that hyperparameter has on the standard
error.

Second, the finding that while DREAM was robust, it did
exhibit greater sensitivity to its additional hyperparameters
suggests DREAM’s controllability could be improved by
adapting its probability of using its different proposal
operators based on their success in proposing new chain
locations that are accepted. This idea comes from the obser-
vation in the literature that performance of multi-objective
evolutionary algorithms can be improved by adapting the
probability of using different operators based on their success
in generating non-dominated solutions [63]. In testing such
proposed advancements for MCMC, performance metrics
such as KLD and WD could be used to evaluate performance
on known test problems. The visual diagnostics proposed
here can then be used to evaluate and inform the design and
hyperparameterization of such new MCMC algorithms.

VIII. CODE AND DATA
We provide the scripts written to generate synthetic data
and do the analysis in this study in our Zenodo repository.1

Code development history may also be found on our GitHub
repository.2
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