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ABSTRACT Small-scale pedestrian detection is a challenge. The main issues are as follows: 1) Troubled
by their small scale, it is difficult to extract features effectively; 2) During the detection process, it is easily
disturbed by background noise such as inter-class occlusion and intra-class occlusion, leading to missed
or false detection; 3) The current widely used IoU measurement method is very sensitive to the position
deviation of small objects, which seriously reduces the detection performance. To address these problems,
we improve YOLOv5 structure by integrating Non-Local and Convolution structures, building a new feature
extraction module called ResNet-Conv&NonL, combined with the ResNet structure. This module was then
integrated into the backbone of YOLOv5 for better image feature extraction. In addition, we developed a
novel model to measure the similarity between bounding boxes, which are embedded in the loss function
of the YOLOv5 structure to replace the normal IoU measurement. Experiments on a self-made dataset and
a combined dataset from Caltech and CityPersons show the feasibility of the proposed network structure.
Results demonstrate the feasibility of the improved network structure is superior to the original method
because it increases average precision by 6.0% compared to the original one.

INDEX TERMS Convolution, loss function, non-local, small-scale pedestrian detection, YOLOv5.

I. INTRODUCTION
Owing to the expanding research into artificial intelligence
theory and deep learning technology, object detection, which
is a core problem in the field of computer vision, has made
significant strides. Numerous fields have been extensively,
including face detection, pedestrian detection, activity recog-
nition, vehicle detection, and autonomous driving [1], [2],
[3], [4], [5]. Among these, pedestrian detection technology
stands out as a challenging yet crucial task in computer vision.
In recent years, visual-based pedestrian detection technology
has gradually attracted attention and grown to be an essential
part of technologies like vehicle-assisted driving systems and
intelligent monitoring systems [6]. Pedestrian detection tech-
nology can help cars automatically identify pedestrians on the
road so that they can make timely and accurate judgments
during driving.

In real-world traffic scenarios, pedestrians, as the main
actors, roam freely, and their position relative to the camera
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is uncertain [7], [8]. Vehicles can identify pedestrians on the
roadwith the use of pedestrian detection technology, enabling
rapid and precise driving decisions. The paper’s main focus is
detecting small-scale pedestrians, who appear relatively small
when they are far from the camera. We define pedestrians
whose height is less than 80 pixels in the image as small-scale
pedestrians.

Small-scale pedestrians are far more difficult to detect
compared with medium-to-large-sized pedestrians at close
range. The main challenges of small-scale pedestrian detec-
tion are as follows: small-scale pedestrians are easily dis-
turbed by background noise during the detection process,
resulting in missed detection and false detection by the
algorithm. Furthermore, it is challenging to balance detec-
tion accuracy and speed. Therefore, small-scale pedestrian
detection remains important research in the field of object
detection [9].

Recent years have witnessed a spurt of progress in deep
learning technology. Compared with traditional detection
methods such as HOG and SVM, deep learning-based detec-
tion methods do not require manual feature extraction and
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can be learned end-to-end. Meanwhile, they possess power-
ful learning capabilities and can learn object features from
massive training data autonomously and quickly [10].
As a result, deep-learning-based pedestrian detection

methods have become mainstream. From the perspective of
algorithmic processing, deep-learning-based object detection
algorithms can be divided into two-stage algorithms and
one-stage algorithms. Two-stage algorithms first screen can-
didate boxes, then check if they include the target object,
and finally adjust the position of the object. However, these
algorithms are not suitable for all implementation cases.
Such algorithms include R-CNN [9], Fast R-CNN [11], and
Faster R-CNN [12]. One-stage algorithms directly regress
the position coordinates of the target box and the classifica-
tion probability of the target rather than screening candidate
boxes. Therefore, these algorithms were faster. Such algo-
rithms include SSD [13], YOLO [14], YOLOv3 [15]. In 2020,
the YOLOv5 [16] algorithm was proposed, which not only
absorbs the benefits of the previous algorithm but also
greatly simplifies the model. While maintaining high accu-
racy, it improves the detection accuracy and leads to trends in
the field of object detection. Therefore, we select YOLOv5
as the network structure for improvement.

This paper presents a small-scale pedestrian detection
network structure based on YOLOv5. First, for small-scale
pedestrian detection, IoU is sensitive to small positional devi-
ations because the target is small. As shown in Fig. 1, the blue
box represents the Bounding Box and the red box represents
the ground truth box. At the same positional deviation, the
IoU between the two boxes for the small object is signifi-
cantly reduced.

FIGURE 1. Comparison of IoU for large and small objects.

Therefore, the IoU is not a useful metric for small targets.
In this paper, a new metric (LG−E ) is proposed to measure
the similarity between the bounding box and the ground truth
box, as a way to replace the IoUmetric used in YOLOv5. This
newmetric is more suitable for judging the similarity between
small pedestrian targets because it is less sensitive to targets
of various scales. Then, owing to the good performance of
self-attention mechanisms in many visual tasks, this study
designs a module that integrates the self-attention mechanism
and convolution layer (ResNet-Conv&NonL module) into
the backbone of YOLOv5. This module inherits the advan-
tages of the self-attention mechanism and convolution and

effectively improves the accuracy of model detection under
the premise that the number of parameters is not significantly
different.

The rest of this paper is organized as follows: Section II
reviews pedestrian detection algorithms based on deep learn-
ing. Section III discusses the proposed small-scale pedestrian
detection algorithm in detail. Section IV presents experimen-
tal results and discussion. Section V summarizes the content
and results of this study.

II. RELATED WORKS
A. STRUCTURE OF YOLOv5
Several studies have been conducted on object detection
methods based on deep learning [17]. Among these, the
YOLO series is a typical one-stage object detection method.
Based on convolutional neural networks, You Only Look
Once (YOLO), a real-time object detection model, can
achieve good real-time detection effects through end-to-end
learning with massive data [18]. YOLOv5 is an improved
one-stage detection network that is based on YOLOv4 [19].
After learning from previous versions and other network
advantages, YOLOv5 balances detection accuracy and real-
time performance, not only meeting the needs of real-time
image object detection but also having a smaller structure.
Hence, we used YOLOv5 as the basic object detection model.
YOLOv5’s structure is mainly divided into four parts: input,
backbone, neck, and prediction. Its network structure is
shown in Fig. 2.

FIGURE 2. Structure of YOLOv5.

B. TINY OBJECT DETECTION
Several approaches have been proposed to address the low
detection accuracy of small targets. It is suggested to copy and
paste small targets into various locations within the image to
augment the number of small target samples [20]. However,
this method may not accurately reflect real-world scenarios,
potentially resulting in overfitting. An instance scale nor-
malization method is proposed to standardize the scale of
the image pyramid and mitigate scale variation issues [21].
Nevertheless, this approachmight not fully tackle the inherent
complexities associated with small object features. A feature
pyramid network [22] structure has been proposed to merge
feature maps, effectively integrating the semantic infor-
mation from deep networks with the detailed information
from shallow networks to enhance detection performance.
However, this method increases computational complexity,
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possibly rendering it impractical for real-time applications.
Furthermore, a novel clustering detection network has been
introduced, integrating object clustering and detection to
enhance detection efficiency [23]. Yet, its efficacy in deal-
ing with highly overlapping objects remains uncertain.
Another proposal involves a scale-sensitive loss function
aimed at prioritizing small objects in model updates [24].
Additionally, a feature fusion method employing decon-
volution and variable convolution has been suggested to
generate high-resolution feature maps. However, the perfor-
mance of this approach may heavily rely on hyperparameter
selection. Moreover, a multi-way branch network has been
utilized to refine both global semantic and detail features
of high-resolution images [25]. This network then integrates
these features layer by layer to enhance both details and
background features of small objects on the feature map.
Additionally, self-learning anchor boxes have been intro-
duced to adapt feature maps to anchor box positions and
shapes.

C. SELF-ATTENTION
It has been demonstrated that self-attention has the poten-
tial to entirely substitute convolution operations in visual
models [26]. While this method provides flexible global
dependency modeling, it might also escalate computational
requirements. The suggestion is made to treat an image as
256 tokens [27] and feed them into a transformer model [28]
to attain satisfactory outcomes. However, scalability issues
might arise when dealing with larger images. Inspired by
traditional non-local mean filtering methods, Non-Local [29]
is proposed in convolutional neural networks, where the
response of a pixel is the weighted sum of all features from
other points, allowing each point to be associated with all
other points. The increased complexity could challenge its
use in constrained environments. Position attention modules
and channel attention modules are proposed to establish rich
contextual relationships on local features, greatly improv-
ing the segmentation results [30]. However, the impact on
real-time processing needs further investigation.

D. IoU METRICS
The IoU is the most widely used measure of similarity
between bounding boxes. However, the traditional IoU can
only be used when bounding boxes overlap. In an effort
to tackle this limitation, adjustments proposed [31] include
the incorporation of a penalty term for the smaller bound-
ing box conversion. However, when the two boxes exhibit
a containment relationship, GIoU regresses to IoU, failing
to discern their relative positional relationship. Alterations
suggested [32] adjust the penalty term of the minimum
bounding box in GIoU to the normalized distance between
the centers of the two bounding boxes, aiming to balance
both distance and overlapping area. Additionally, the aspect
ratios of the two bounding boxes are incorporated into the for-
mula. However, this adjustment may not fully encapsulate the

complexity of object shapes and their spatial relationships.
The approach [33] involves segregating the aspect ratio and
computing the relationship between the length and width of
the bounding box and the ground truth box individually. The
devised loss function [34] is characterized by global continu-
ous differentiability and unique extremum, guaranteeing the
existence of a global gradient and facilitating the bounding
box’s return to the extremum.

E. PEDESTRIAN DETECTION
In order to achieve a more appropriate number and size
of prior frames, the prior frame is implicitly processed,
and Smooth-L1 regularization is introduced to expedite rea-
soning [35]. The feature map is modeled [36] through the
combination of the self-attention module and the chan-
nel attention module, fully leveraging pedestrian context
information and channel information to enhance pedestrian
characteristics. Although it effectively utilizes contextual
information, the computational overhead may restrict its
deployment in real-time applications. The proposal intro-
duces a double-head detection algorithm [37] that merges
anchor-based and anchor-free detectors, overseeing both head
detection and whole-body detection to mitigate missed detec-
tions effectively. While the dual supervision mechanism
enhances detection reliability, it incurs heightened compu-
tational complexity. Designing two simultaneous detection
branches for the entire pedestrian and the head [38], the
approach employs a no-anchor frame method to generate
pedestrian head bounding boxes and overall bounding boxes
from the feature map’s center point. The proposal [39]
introduces a new pedestrian enhancement module and a
pedestrian secondary detection module, integrating seman-
tic information segmentation into a shared layer to mitigate
background interference effectively. A new pedestrian detec-
tion method [40] is proposed to treat target detection as a
high-level semantic feature detection task and directly fore-
casting center points and scales through convolution, thereby
streamlining the pedestrian detection process. Additionally,
it presents a new pedestrian detector with no anchor points,
boasting a simple structure and excellent performance. The
proposal [41] introduces A scale-aware hierarchical detection
network for pedestrian detection issues amidst large-scale
changes. It enriches feature pyramid representation by incor-
porating a cross-scale feature aggregation module and seam-
lessly integrating it within a unified framework, enabling
multi-scale pedestrian detection. The proposal [42] suggests
an active pedestrian detector to tackle the performance degra-
dation issue of small-sized pedestrian detection. It leverages
the rich feature hierarchy and initial pedestrian proposals
offered by ResNet and Faster R-CNN, operating explicitly
on multilayer neural representations, thereby achieving sub-
stantial reduction in false detection rates. An effective visual
tracking framework named SiamDTH [43] is introduced
which distinguishes itself in Siamese-based network visual
tracking through feature decoupling and different tracking
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head structures for classification and regression tasks, thus
yielding more robust classification predictions and accu-
rate regression predictions. While these frameworks enhance
detection accuracy, their computational overhead may con-
strain real-time application deployment.

III. PROPOSED METHOD
A. RESNET-CONV&NONL MODULE
1) INTEGRATE NON-LOCAL AND CONVOLUTION
(1) Convolution is an efficient method for image feature
extraction that utilizes learnable kernels to capture multilevel
features. As the number of network layers increases, the
features gradually evolve from low-level to complex. The
local features of images are extracted by local operations
with fixed kernels. However, to capture long-distance depen-
dencies, convolutional layers are often stacked to increase
receptive fields. This will increase the number of parameters
that are difficult to optimize. This study combines convolu-
tion with non-local to remodel the convolution operation for
optimization purposes. The convolution calculation process
is illustrated in Figure. 3.

FIGURE 3. The process of convolution operation.

We model the above computation process and set the con-
volution kernel as F ∈ RCout×Cin×n×n, where n is the size
of the convolution kernel, Cout and Cin are the numbers of
channels for the output and input feature maps, respectively.
Let I ∈ RCin×Hin×Win and O ∈ RCout×Hout×Wout be the input
and output feature maps, where H and W are the height and
width of the feature maps, respectively. We let Ii,j ∈ RCin and
Oi,j ∈ RCout be the channel vectors corresponding to the i
and j positions. Then, the above computation process can be
represented as follows:

Oi,j =

∑
x,y

Fx,yIi+x−| n/2 |,j+y−| n/2 | (1)

where Fx,y ∈ RCout×Cin , x, y ∈ {0, 1, · · · , n− 1} represent
the weight of the convolution kernel at position x, y with
respect to the input channel vectors.

When we break down the above calculation process,
we can observe that the original convolution operation
involves aggregating with F× I , shifting to the next position,
and then convolving. This process can be further decomposed

into a feature transformation of Ii,j using a 1× 1 convolution
kernel, followed by shifting and then aggregation. The spe-
cific process is as follows: Stage I:We decompose the original
single n×n convolution kernel into n×n convolution kernels.
Then we perform feature transformation on the input feature
map according to the kernel weights, which is expressed as
follows:

Oi,j(x, y) = Fx,yIi,j (2)

Stage II: The transformed feature maps are shifted according
to the position of the current kernel in the original convolution
kernel, which can be represented as:

Oi,j(x, y) = Fx,yIi+x−| n/2 |,j+y−| n/2 | (3)

Then the resulting feature maps from the previous step are
aggregated based on the positions of the kernels, which can
be expressed as:

Oi,j(x, y) =

∑
x,y

f (x, y, i, j) (4)

Inside:

f (x, y, i, j) = Fx,yIi+x−| n/2 |,j+y−| n/2 | (5)

The complete decomposition process of the convolution oper-
ation is shown in Figure. 4.

FIGURE 4. Decomposition of 3 × 3 convolution.

(2) Non-Local operations directly capture long-distance
dependencies by computing interactions between any two
locations. This structure can be used as a component in com-
bination with the YOLOv5 network structure. The general
formula for non-local is as follows:

yi =
1

C(x)

∑
∀j

f (xi,j, xa,b)g(xa,b) (6)

In this paper, C(x) represents the feature map output from
the previous layer, the function f computes the similarity
between xi,j and xa,b, and the function g computes the value
of the feature map at position (a, b).

More specifically: given input feature I ∈ RCin×H×W

and output feature O ∈ RCout×H×W , let xi,j ∈ RCin and
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xa,b ∈ RCin denote the vectors at position (i, j), (a, b) on
the feature map. The g function can be viewed as a linear
transformation (linear embedding), which is formulated as
follows:

g(xa,b) = Wg · xa,b (7)

f (xi,j, xa,b) = eWθ xTi,jWφxa,b (8)

C(x) =

∑
∀i,j

f (xi,j, xa,b) (9)

We substituted the formula into the general formula. This can
be expressed as:

Oi,j =
1∑

∀i,j
eWθ xTi,jWφxa,b

eWθ xTi,jWφxa,bWgxa,b (10)

Decomposing the aforementioned computation process,
we can break it down into the following steps: First,
we project the input feature map using a 1 × 1 convolu-
tional kernel. We then compute the attention weights. Finally,
we aggregate them using a value matrix. The specific process
is as follows:

Stage I: θi,j = Wθxi,j, φi,j = Wφxi,j, gi,j = Wgxi,j
Stage II: Oi,j =

f (xi,j,xa,b)
C(x) g(xa, b)

The complete decomposition process of Non-Local operation
is shown in Figure. 5.

FIGURE 5. Decomposition of non-local.

(3) Stage I: By projecting the input features with three 1×1
convolution kernels and reshaping them into N pieces, rich
intermediate features containing 3×N feature maps can be
obtained.

Stage II: For the Convolution path, a lightweight fully
connected layer is used to generate N sets of n2 feature
maps, which are shifted and aggregated using the formula.
For the Non-Local path, the intermediate features are grouped
into N sets, each containing three features corresponding
to θ , φ and g. The fusion process is illustrated shown in
Figure 6. Finally, the outputs of the two paths are added and
assigned weights respectively.

Fout = λFNonL + µFConv (11)

Combining the self-attention mechanism with convolution is
beneficial for the feature extraction. They perform similar

FIGURE 6. Fusion of non-local and convolution.

feature learning operations in the first stage, through 1 × 1
convolution projecting features into deeper space, sharing
similar computational costs. The second stage, the aggrega-
tion of features, is relatively lightweight in computation and
does not require additional learning parameters. Therefore,
this module has a similar computational overhead in the first
stage of operation, but a lower computational overhead in
the second stage, making the entire model more efficient in
extracting features of small-scale pedestrians in the image.

2) ADD RESIDUAL UNIT
Based on the Conv&NonL module described above, a resid-
ual unit with two inputs, namely, the main input and the
residual input, is introduced, which helps to avoid infor-
mation loss while reducing the number of parameters and
computational requirements. The ResNet-Conv&NonL mod-
ule can overcome the problems of gradient explosion and
vanishing that occur in deep networks. Moreover, it is more
sensitive to changes in network weights. The results are
shown in Fig. 7.

FIGURE 7. Structure of ResNet-Conv&NonL.

FIGURE 8. Improved structure.

B. MODELING OF BOUNDING BOX PROBABLITY
DISTRIBUTION
For small pedestrian targets, most actual pedestrian targets are
not strictly rectangular. Because of the pedestrians’ unique
‘‘head-shoulder’’ features, they exhibit a ‘‘convex’’ shape.

VOLUME 12, 2024 42513



H. Zhang et al.: Small-Scale Pedestrian Detection Using Fusion Network and Probabilistic Loss

Therefore, in these bounding boxes, the foreground and back-
ground factors are mainly concentrated in the blue and white
areas of the bounding box, respectively, as shown in Fig. 9.
To describe the weights of different pixels in small pedes-
trian bounding boxes better, a probability distribution for the
bounding box is modeled.

FIGURE 9. Distribution of prospect and background factors.

1) MODELING OF UPPER PART OF THE BOUNDING BOX
Dividing the bounding box into upper and lower parts, the
upper part contains the ‘‘head-shoulder’’ features of pedes-
trians, so the center pixel has the highest weight, and the
importance of pixels decreases from the center towards the
boundary. Therefore, the upper part of the bounding box can
be regarded as a two-dimensional normal distribution. We set
the bounding box as: B = (bx , by,w, h), where bx , by, w,
and h represent the center coordinates and width and height
of the bounding box. The probability density function of a
two-dimensional Normal Distribution is:

f (x) =
1

2π |6|
e(−

1
2 (x−µ)T6−1(x−µ)) (12)

where µ represents the mean vector and 6 represents a
co-variance matrix of Gaussian distribution.

We approximate the probability distribution contour as half
an ellipse, the ellipse is:

(x − bx)2

(w/2)2
+

(y− by)2

(h/2)2
= 1

y ≥ by

(13)

So:

µ =

[
bx
by

]
, 6 =

[
(w/2)2 0

0 (h/2)2

]
We useWasserstein distance to measure distribution distance.
TheWasserstein distance between two normal distributions is
calculated as follows:

d2 = ∥m1 − m2∥
2
2 +

∥∥∥61/2
1 − 6

1/2
2

∥∥∥2
F

(14)

The Wasserstein distance between Bi = (xi, yi,wi, hi) and
Bj =

(
xj, yj,wj, hj

)
is defined as:

d2
(
Bi,Bj

)
=

∥∥∥∥∥
([

bi, bi,
wi
2

,
hi
2

]T
,

[
bj, bj,

wj
2

,
hj
2

]T)∥∥∥∥∥
2

2

(15)

We map the distance to the range of 0 to 1 to obtain a
new similarity measure called Gaussian Wasserstein Dis-
tance (GWD):

F1 = GWD =
1

1 + e−d
2(Bi,Bj)

(16)

2) MODELING OF LOWER PART OF THE BOUNDING BOX
For the lower part of the bounding box, which approximately
has a rectangular shape, the EIoU loss is utilized.

F2 = IoU −
ρ2
(
b, bgt

)
c2

−
ρ2
(
w/2, (w/2)gt

)
c2w/2

−
ρ2
(
h/2, (h/2)gt

)
c2h/2

(17)

3) BOUNDING BOX MODELING AGGREGATION
Finally, the upper and lower parts of the bounding box are
integrated to obtain the new loss function: LG−E

LG−E = 1 − (αF1 + βF2) (18)

Among these, α and β are weight matrices for the similarities
of the upper and lower parts of the bounding box, respectively.

Finally, we design LG−E as a novel loss function and
replace it with the original CIoU loss function.

This study introduces a loss function module based on the
probability density function for pedestrian head and shoulder
characteristics. The design of this module can overcome the
insensitivity between pedestrian targets at different scales,
thereby more effectively measuring the similarity between
small targets.

IV. EXPERIMENT
The experiment was implemented using the Ubuntu 18.04
operating system, AMD EPYC 7543 CPU processor,
GeForce RTX3090 GPU graphics card, 80GB memory,
CUDA11.1 for training acceleration, PyTorch 1.8 deep learn-
ing framework for training, and Logitech camera.

A. INTRODUCTION AND ANALYSIS OF DATASET
The dataset used in this study was the Caltech [44]
and CityPersons [45] dataset. Caltech was collected by
researchers at the Computer Science Department of the Cal-
ifornia Institute of Technology. It includes approximately
10 hours of 720P HD video with over 250,000 frames and
various scenes, such as streets, parking lots, and campuses.
The videos were simultaneously captured by two cameras
from different angles, capturing images of pedestrians at
different distances and angles, to ensure the diversity and
robustness of the data.

Because YOLOv5 is unable to directly recognize the
data and annotations in the Caltech dataset, pre-processing
is necessary. This involves converting the seq files into
640 × 480 pixel PNG images and transforming the VBB
annotation files into TXT files that are recognizable by the
model.
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All annotations were labeled as ‘‘person.’’ Finally, the dataset
was filtered to obtain a total of 40,000 images.

Although the Caltech dataset contains many small-scale
pedestrians, there is a problem: the annotation boxes are
not completely accurate, and many of the pedestrian anno-
tations in the dataset are problematic. Therefore, to better
evaluate the performance of the algorithm, we filmed videos
on campus, stations, and other locations during the day.
Then we use code to reshape and extract frames from the
videos, and use ‘‘LabelImg’’ to label the pictures, finally
obtaining a self-made dataset. The dataset contains 10,000
images and 41,435 positive samples, with a resolution of
640 × 480 pixels.
The Caltech dataset and self-made dataset were integrated

to form a mixed dataset containing 50,000 images. The train-
ing, validation and test set ratios were set to 6:2:2, with 30,000
training images, 10,000 verification images, and 10,000 test
images. Some of these are shown in Fig. 10.

FIGURE 10. Pictures display of different feature data sets.

B. EVALUATING INDICATOR
Precision, recall, and Average Precision (AP) metrics were
used to evaluate the proposed method.

Precision refers to the ratio of the number of targets that
are correctly detected as positive samples to the number of
targets that are all detected as positive samples. It measures
the rate of correct detection among all the positive samples.
Recall refers to the ratio between the number of targets that
are correctly detected as positive samples and the number of
targets in all actual positive samples. It measures the num-
ber of positive samples that the model identifies and avoids
missing detection. The miss rate (MR) is the ratio of the
number of pedestrians not detected by the algorithm to the
total number of actual pedestrians. The specific formulae are

as follows:

precision =
TP

TP+ FP
(19)

recall =
TP

TP+ FN
(20)

MR = 1 − recall (21)

Here, TP represents the number of true positive samples,
FN represents the number of false negative samples, and FP
represents the number of false positive samples.

Algorithms often cannot consider both model preci-
sion and recall into account. Improving precision usually
decreases recall and vice versa. To better evaluate the per-
formance of the algorithm, we use the F1-score to consider
both the precision and recall. The F1 score is the harmonic
mean of the precision and recall, which is used to comprehen-
sively consider these two indicators. That can help balance
the trade-off between the precision and recall. Only when
precision and recall are both very high, the F1 value will
increase. F1 is defined as:

F1 = 2 ×
R× P
R+ P

(22)

Here, R means recall, and P means precision. AP is a
comprehensive performance metric that calculates the area
under the precision-recall curve for each category, and then
averages these areas to quantify the model’s accuracy in
detecting objects of different categories. The value of AP
ranges from 0 to 1, and the formula is as follows:

AP =

∑k=n−1

k=0
(Rc (k) − Rc (k + 1) × Pr (k)) (23)

Among these APC represents the average precision of the
target category of C , n represents the total number of images
in the category, and in this experiment, there is only one
category, person, so C = 1.
False positive per image (FPPI) refers to the number of

incorrectly detected non-pedestrian objects in each image.
If there are M false detections in all test images and there
are I images in the test set, then FPPI is defined as:

FPPI =
M
I

(24)

Select a FPPI range (for example, 10−4, 100), take the
logarithm of the missed detection rate within this range
and average it. The log-average miss rate (MR−2) can be
defined as:

MR−2
= e

(
1

|R|

∑
r∈R log(MR(r))

)
(25)

C. EVALUATION RESULT
Themodels before and after the improvement were trained for
200 epochs, and the Adam optimizer was used to iteratively
update the network parameters with a weight attenuation rate
of 0.0005. We set the initial learning rate to 1.25E–4, saved
the optimal model based on the training results, trained a
batch of 64 pictures, and used random cropping, flipping,
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brightness transformation, and other operations to expand the
dataset. For convenience, the previously designed ResNet-
Conv&NonLmodule is referred to as RCN, and the loss func-
tion LG−E is termed GE. Therefore, YOLOv5-RCN denotes
the YOLOv5 model with the ResNet-Conv&NonL mod-
ule, YOLOv5-GE represents the YOLOv5 model with the
loss function, and YOLOv5-RCN-GE signifies the YOLOv5
model with both the ResNet-Conv&NonL module and the
loss function LG−E .
We obtained the comparative training results, as shown

in Figure 11. As the number of iterations increased, the
loss value steadily decreased and tended to stabilize. After
approximately 150 epochs, the model’s box_object_loss and
mAP reached a plateau.

FIGURE 11. Model training loss comparison.

TABLE 1 presents a comparison between the improved
and original algorithms in terms of mAP and frames per sec-
ond (FPS), achieved by adjusting the backbone structure and
loss function of YOLOv5 to enhance its performance on the
dataset. According to the experimental results, the proposed
improved method exhibits significant performance improve-
ments. This improvement method is unique in that it can
effectively improve model performance without increasing
model complexity. This achievement was achieved through
improvements in two key aspects. First, by adjusting the
backbone structure of the model, we achieved a lightweight
model while enhancing its ability to extract small-scale
pedestrian features. Second, by optimizing the loss function,
we increased the model’s tolerance to small-scale pedestrian
detection boxes, thereby improving its performance in the
detection task.

TABLE 1. Comparison of test results.

As shown in Figure 12, a comparison of some detection
results further verifies the superiority of our method. The
proposed algorithm can effectively detect many small-scale,
blurred and partially occluded pedestrians. What is even
more encouraging is that when there are both large-scale

FIGURE 12. Comparison of detection results before (left) and after (right)
improvement.

and small-scale pedestrians in the scene, our algorithm can
effectively distinguish them, showing good adaptability and
robustness.

In summary, our experimental results strongly support the
effectiveness of our improved method, which will has broad
application prospects for small-scale pedestrian detection
tasks. Our method not only improves detection performance
but also keeps the model lightweight, making it suitable for
various practical scenarios. This has an important practical
significance for the field in small-scale pedestrian detection.

To further verify the effectiveness of the improved model
proposed in this study, we conducted a series of experiments
using the same experimental platform and dataset for com-
parison with mainstream model methods. The experimental
results are presented in Table 2. This experimental design
aims to evaluate the performance of our proposed algorithm
compared with existing mainstream methods. By conducting
a fair comparison on the same dataset, we were able to better
understand the advantages and competitiveness of ourmethod
in the small-scale pedestrian detection tasks. This demon-
strates the effectiveness of our method for a specific task
and provides readers with an objective benchmark for perfor-
mance evaluation. These experimental results further support
the effectiveness of our improved method for small-scale
pedestrian detection.
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TABLE 2. mAP of different algorithms on caltech dataset.

Fig. 13. shows the performance evaluation of different
pedestrian detection models on the Caltech dataset, includ-
ing YOLO series algorithms, SSD [13], Faster RCNN [12],
SHDN [41], and APD [42]. Our proposed method out-
performs all compared methods and achieves the lowest
log-average miss rate of 42.85%. Compared to the original
YOLOv5 model, the improved model we proposed reduces
the log coverage miss rate by 18.1%.

FIGURE 13. Quantitative comparison results of small-scale pedestrian
(height ≤ 80 pixels) on caltech dataset.

D. ABLATION EXPERIMENT
To evaluate the effectiveness and advancement of the pro-
posed algorithm, this study uses the same dataset to conduct
five sets of ablation experiments to evaluate the impact
of different improvement schemes on model detection per-
formance. Under the same experimental conditions, the
accuracy, recall, mAP, and model loss values of each model
were used to evaluate the impact of the different modules
on the YOLOv5 object detection algorithm. The lower the

model loss value, the better is the regression of the model.
The evaluation index results are listed in TABLE 2, and the
mAP values are shown in Fig. 14.

FIGURE 14. Comparison of mAP before and after model improvement.

According to the data in Table 3, compared with the
YOLOv5s model, the mAP value of YOLOv8s increased
by 3%; the use of the ResNet-Conv&NonL module increased
the mAP value by 0.9%; the introduction of the LG-E loss
function increased the mAP value by 4.5%; finally, by intro-
ducing the ResNet-Conv&NonL module and the LG-E loss
function at the same time, the mAP value increased by 6%.

E. COMPARISON WITH METHODS ON CITYPERSONS
DATASET
The CityPersons dataset is a high-quality dataset focused on
pedestrian detection, derived from the popular urban scene
understanding dataset, Cityscapes. It contains street-view
images from several European cities with a rich diversity,
including different weather conditions, urban environments,
and pedestrian postures. This dataset provides accurate
pedestrian bounding box annotations and was designed to
support and promote the development of pedestrian detec-
tion technology. It is particularly suitable for researchers to
test and improve pedestrian detection algorithms in complex
urban environments.

According to the data in Table 4, compared with the
YOLOv5s model, the mAP value of YOLOv8s increased by
2.5%; the use of the ResNet-Conv&NonL module increased
the mAP value by 1.6%; the introduction of the LG-E loss
function increased the mAP value by 3.9%; finally, by intro-
ducing the ResNet-Conv&NonL module and the LG-E loss
function at the same time, the mAP value increased by 4.6%.

Fig. 15. shows the performance evaluation of dif-
ferent pedestrian detection models on the CityPersons
dataset, including YOLO series algorithms, SSD [13], Faster
RCNN [12], SHDN [41], and APD [42]. Our proposed
method outperforms all compared methods and achieves the
lowest log-average miss rate of 15.74%. Compared to the
original YOLOv5 model, the improved model we proposed
reduces the log coverage miss rate by 8.8%.
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TABLE 3. Performance comparison of object detection model on caltech dataset.

TABLE 4. Performance comparison of object detection model on citypersons dataset.

FIGURE 15. Quantitative comparison results of small-scale pedestrian
(30 ≤ height ≤ 80 pixels) on citypersons dataset.

V. CONCLUSION
This paper addresses the problem of detecting small-scale
pedestrians in unmanned driving and proposes the following
improvements and innovations: (1) We select the YOLOv5
network structure, fuse the Non-Local and Convolution
structures, and combine it with ResNet to construct the
ResNet-Conv&NonL module, which effectively extracts the
features of small-scale pedestrians. (2) A new model for
measuring the similarity between target boxes is established
and embedded into the loss function of YOLOv5 to better
measure the similarity between the ground truth box and
bounding box. Experiments were conducted using a home-
made dataset to evaluate the performance of the algorithm.
The results show that the proposed algorithm, compared with
the original one, can significantly increase the detection accu-
racy while ensuring real-time detection and better robustness.

There is still a certain gap in practical applications,
even though the algorithm proposed in this paper improves

the accuracy of small-scale target pedestrian detection.
In practical applications, the existence of complex environ-
ments, lighting conditions, and other factors often poses
greater challenges to small-scale pedestrian detection. Thus,
there is still an urgent need to further improve the accuracy
and robustness of the algorithm and meet the needs of practi-
cal applications.

In addition, owing to hardware limitations, the dataset used
in this study is insufficient. In future research, richer datasets
can be considered for experiments to more comprehensively
evaluate the performance and application prospects of the
algorithm.

In the future, we plan to conduct in-depth research on neck
network. In the existing algorithms, the neck network is a
key link in feature fusion and has a significant impact on the
performance of the algorithm. We will explore better feature
fusion methods to improve the performance and robustness
of the algorithm.

In addition, training with a small sample size is an
important research direction. An insufficient data volume is
frequently a concern in practical applications. Therefore, it is
vital to find a solution to the problem of effectively the utilize
limited data resources to improve the generalization ability
of the model. In future, we will explore the use of small
sample learningmethods to enhance the generalization ability
of the model and improve the performance of the algorithm
in practical applications.

Finally, the algorithm proposed in this paper has some
limitations, such as a limited processing ability for com-
plex scenes. To meet the needs of practical applications,
future research will strengthen the algorithm and explore
more efficient and accurate small-scale pedestrian detection
algorithms.
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