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ABSTRACT Three-dimensional (3D) video with depth information is essential for many applications in
the consumer electronics industry. The 3D-high efficiency video coding (3D-HEVC) is the latest 3D video
coding standard. Nonetheless, it utilizes various complex coding techniques to create extra intermediate
views for better representation of 3D videos, which imposes significant challenges for real-time 3D video
applications. Specifically, the high complexity of 3D-HEVC intra coding could be a significant barrier to the
adoption of 3D video in consumer electronics. Therefore, in this research, a low-complexity 3D-HEVC intra
coding technique is proposed. Firstly, we perform a complexity analysis of 3D-HEVC intra coding. Secondly,
we develop a multi-layer features fusion (MLFF) model to estimate the optimal coding tree unit (CTU) depth
and prediction unit (PU) mode. Thirdly, to improve the model’s prediction accuracy, we incorporate two
external features into the model: the quantization parameter (QP) and texture complexity. Finally, we embed
the MLFF model into the 3D-HEVC test platform. The experimental results demonstrate that the suggested
method can effectively reduce the 3D-HEVC intra coding time with a small amount of rate-distortion (RD)

performance loss while maintaining the subjective quality of the synthesized view.

INDEX TERMS 3D video, 3D-HEVC, intra coding, low-complexity, multi-layer features fusion model.

I. INTRODUCTION

With the rapid development of Internet and multimedia
technology and the wide popularity of intelligent terminals,
information visualization has become the main trend in the
development of the global consumer electronics industry.
As a result, video has become an important medium for
transmitting information. Faced with increasing demands
for video telepresence, realism, and interactivity, three-
dimensional (3D) video [1] with depth information has
emerged as a hotspot in video applications.

To promote the wide application of 3D video in the con-
sumer electronics industry, some members of the motion
picture expert group (MPEG) and video coding expert group
(VCEG) cooperated to form a joint collaborative team on
three dimensional video (JCT-3V) to jointly develop the
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3D video coding standard [2], named as 3D-high efficiency
video coding (3D-HEVC) [3]. 3D-HEVC, an extension stan-
dard of HEVC, was finalized in 2015. Up to now, 3D-HEVC
is the newest 3D video coding standard, which uses multiview
video plus depth (MVD) [4] format to represent 3D scene.
The MVD format includes two or three views, each of which
contains the texture video and its corresponding depth video.
In the MVD, the intermediate views can be synthesized by
decoder through depth image based rendering (DIBR) [5]
technology. Furthermore, while coding 3D video in the MVD
format, if intra coding is utilized, it can not only encode and
decode independently, but also generate high-quality video
sequences. Consequently, 3D video often utilizes 3D-HEVC
intra coding to ensure viewing quality [6].

When coding the texture video in 3D-HEVC intra cod-
ing, it uses the same quad-tree partition structure [7] and
prediction method [8] as HEVC [9]. However, it does not
remain similar when coding the depth video. In contrast to
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the texture video, the depth video [10] represents the depth
information of the target object in the scene, which has a large
surface with a smooth texture and a sharp edge. If the depth
video is still coded with the original HEVC coding tools [11],
a significant amount of compression artifacts will occur in
the synthesized virtual view during decoding, resulting in
greater subjective quality distortion [12]. As a result, in order
to ensure the quality of the synthesized virtual view, it is
important to include coding technologies that are more con-
sistent with depth video during the 3D-HEVC intra coding
process. To achieve this objective, 3D-HEVC uses a variety
of complex coding techniques [13], [14], [15] for depth video.
However, it results in considerable computational complexity,
which seriously restricts the adoption of 3D-HEVC in real-
time applications.

Therefore, developing a low-complexity 3D-HEVC intra
coding technique is a critically important research task.
To address the real-time application requirement for
3D video, researchers are focusing on how to accelerate the
3D-HEVC intra coding process while ensuring subjective
quality. Several studies have presented strategies to minimize
the computational complexity of 3D-HEVC. Some of these
techniques focus on the partitioning of the coding tree unit
(CTU), while others are concerned with the mode selection
of the prediction unit (PU). Few studies, however, are capable
of simultaneously and accurately predicting CTU partition
depth and PU mode in advance.

Deep learning’s remarkable feature extraction abilities
have inspired researchers to gradually apply it to the field
of video coding. Motivated by this observation, this study
presents a multi-layer feature fusion (MLFF) model-guided
low-complexity 3D-HEVC intra coding method.

The main contributions are summarized as follows:

1) We perform a complexity analysis of 3D-HEVC intra
coding utilizing statistical techniques, then propose the
complexity-guided fast 3D-HEVC intra coding method.

2) We suggest a preliminary estimation of the complexity
level of CTU based on its texture complexity and quantization
parameters (QP) features.

3) We develop an MLFF model that introduces two external
features, QP and texture complexity, to predict the CTU depth
and PU mode in advance, which reduces the complexity of
3D-HEVC at the intra-mode.

4) We embed the constructed MLFF model into the
3D-HEVC testing platform. The experimental results indi-
cate that the proposed MLFF model-guided low-complexity
3D-HEVC intra coding approach can efficiently reduce cod-
ing time with a small rate-distortion (RD) performance loss
while ensuring the subjective quality of the synthesized view.

The rest of this paper is organized as follows. Section II
reviews previous research on 3D-HEVC complexity reduc-
tion. The examination of 3D-HEVC intra coding complex-
ity is reported in Section III. Section IV describes the
MLFF model-guided low-complexity 3D-HEVC intra coding
method. Section V summarizes the experimental findings.
Finally, Section VI concludes this paper.
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Il. RELATED WORKS

In this section, we classify the current 3D-HEVC low-
complexity intra coding works into three categories: CTU
partition decision, PU mode selection, and a combination of
CTU partition decision and PU mode selection.

The CTU partition decision can be roughly classified into
traditional-based methods and learning-based methods. The
early CTU partition decision mainly relied on traditional
methods. Among them, Zhang et al. [16] skipped some
tree blocks based on the correlations of inter-view, spatial-
temporal, and texture-depth. Fu et al. [17] designed a two-step
adaptive selection method, which was used to split the CTU.
Zhang et al. [18] proposed to skip some CTUs based on
statistically analysis of spatial and inter-view correlations in
3D video content.

However, the above-mentioned methods mainly employed
the decision rules by manually extracting texture complexity,
RD cost, and other features to determine the CTU partition
depth in advance and reduce the 3D-HEVC intra coding
complexity. They are not suitable for video sequences with
complex textures. Recently, with the rapid development of
deep learning in video coding, some researchers utilized
deep learning to design decision rules. Saldanha et al. [19]
utilized data mining to build the static decision trees
that defined the CTU partition. This approach, however,
is only suitable for video sequences with a relatively
simple background. It is impossible to mine the gen-
eral video features of a video sequence with a complex
background. Given this, Zhang et al. [20] introduced a con-
volutional neural network (CNN) into 3D-HEVC for the
first time. Later, Liu et al. [21] proposed a CNN network
with adaptive QP to address the problem of high com-
putational complexity caused by CTU iterative partition.
Zhang et al. [22] proposed an adaptive coding unit (CU) size
CNN network to predict CTU partition. In addition, Li and
Yang [23] proposed a depth edge classification CNN frame-
work, utilizing post-processing to improve the classification
result.

The PU mode selection can be roughly classified into
edge-based methods and non-edge-based methods. For edge-
based methods, a low complexity intra mode decision method
was proposed by Hamout and Elyousfi [24], which skipped
unnecessary modes by detecting the flat area and edge direc-
tion. In addition, Hamout and Elyousfi [25] proposed a
depth learning network based on edge detection to reduce
the computational complexity caused by the traversal selec-
tion of prediction modes. For non-edge-based methods,
Wang et al. [26] utilized the automatic merging possibility
clustering method to construct an intra prediction model,
which was used to predict intra prediction mode. Further-
more, Zou et al. [27] implemented tensor feature extraction
and data analysis to skip conventional depth modelling modes
(DMMs). Lin et al. [28] proposed a depth intra mode decision
method with multiple strategies, including rough mode deci-
sion termination, candidate mode reduction and fast DMM
decision.
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For a combination of CTU partition decision and PU mode
selection, Chen et al. [29] presented early mode selection
and adaptive CTU pruning termination based on the Bayesian
decision rule. Song et al. [30] utilized a human visual system
to reduce PU mode and additionally combined the boundary
continuity and RD cost to accelerate the CTU partition deci-
sion. In addition, to accelerate the selection of CTU depth
and PU mode together, Shen et al. [31] proposed to reduce
the intra coding time based on boundary continuity. In this
method, the thresholds of the total sum of squares (TSS) of
PU boundaries and the RD cost were designed for CTU early
termination.

Although the methods mentioned above have reduced
the 3D-HEVC intra coding time, yet have the potential
for improvement. The shortcomings of the above-mentioned
studies mainly include: 1) only using CTU partition deci-
sion or PU mode selection has limitations in reducing the
3D-HEVC intra coding complexity; 2) although there are
currently 3D-HEVC intra complexity reduction methods that
include CTU partition decision and PU mode selection,
these methods are usually divided into two steps and cannot
be implemented at one time. Therefore, more research is
required to determine CTU partition decision and PU mode
selection simultaneously.

In this paper, we propose an MLFF model-guided low-
complexity 3D-HEVC intra coding method. We develop a
deep learning model that can fully mine the internal fea-
tures of 3D video, enabling low-complexity 3D-HEVC intra
coding with a small RD performance loss. Compared with
traditional methods, the proposed method overcomes the
problem of relying on manual feature extraction. Compared
with the methods based on machine learning techniques, the
proposed method addresses the problem of being unable to
mine generalized video features. Compared with the methods
based on deep learning, the proposed method makes full use
of the internal characteristics in 3D video. Most importantly,
the proposed method, which introduces two external features
composed of QP and texture complexity into the model, has
never been investigated before.

lll. 3D-HEVC INTRA CODING COMPLEXITY ANALYSIS

To determine the reason for the high computational complex-
ity of 3D-HEVC intra coding, we analyzed the two important
processes of 3D-HEVC intra coding, CTU partition decision
and PU mode selection.

To obtain the optimal partition result for the CTU partition
decision, for a CTU of size 64 x 64, it will be split into four
sub-CUs of size 32 x 32. For each 32 x 32 CU, it will be
split into four sub-CUs of size 16 x 16. For each 16 x 16
CU, it will be split or not. Based on this, it can be calculated
that for size 16 x 16 CU, there exists 2 partition structures.
For size 32 x 32 CU, there exists 17 partition structures.
For the CTU of size 64 x 64, there exists 83,522 partition
structures. Table 1 shows the probability distribution of CTU
partition depth. Table 1 indicates that the CTU partition depth
changes with QP. The video sequences coded with small QP
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usually select CTU with large depth. On the contrary, the
video sequences coded with large QP usually select CTU with
small depth. Therefore, it is not necessary to code CTU in full
traversal in all cases. If the partition depth of the current CTU
can be predicted in advance, some unnecessary CTU partition
processes can be skipped, reducing 3D-HEVC intra coding
complexity.

For PU mode selection, it mainly includes two steps. The
first step is rough mode decision (RMD), which is used to
select N modes from 35 intra prediction modes and add them
to the candidate mode list (RD-List). The second step is
rate-distortion optimization (RDO), which is used to calculate
the RD cost of all modes in the RD-List. If the partition depth
of the current CTU does not reach the maximum partition
depth, the current CTU is partitioned into 4 sub-CUs, and
then the PU mode selection process is performed again until
the size of the sub-CUs reaches 8 x 8. Table 2 illustrates the
calculation times of RMD and RDO. It should be noted that
in the process of RDO for the depth video, it is necessary to
traverse DMMs mode, which is a unique intra coding mode
for the depth video and has higher computational complex-
ity [15]. Table 3 depicts the probability distribution of the PU
mode. It can be observed that the PU mode being selected
varies significantly. Among them, the Planar and DC modes,
which are mainly used to encode the smooth texture, have
the highest probability to be selected. However, the Angular

TABLE 1. Distribution probability of CTU partition depth.

Sequence QP Depth 0 Depth 1 Depth 2
Balloons (2534)  28.13% 1.04% 70.84%
(1024x768) (40,45)  55.21% 13.54% 31.25%
Poznan_Street (25,34) 10.78% 3.53% 85.69%
(1920x1088) (40,45)  78.43% 8.63% 12.94%
Average - 43.14% 6.69% 50.18%

TABLE 2. Calculation times of RMD and RDO in PU mode selection.

RDO times
PU Size Number of RMD times -
Sub PU Texture  Depth
64x64 1 35 3 5
32x32 4 140 12 20
16x16 16 560 48 80
8x8 64 2,240 512 640
4x4 256 8,960 2,048 2,560
Total 341 11,935 2,623 3,305
TABLE 3. Distribution probability of PU mode.

Sequence Planar/DC Angular DMMs
Balloons o o o
(1024x768) 77.30% 13.72% 8.98%

Poznan_Street o o o
(1920+1088) 91.75% 5.46% 2.79%
Average 84.53% 9.59% 5.88%

VOLUME 12, 2024



C. Liy, K. Jia: Multi-Layer Features Fusion Model-Guided Low-Complexity 3D-HEVC Intra Coding

IEEE Access

Size Order

N _
Te{0,1.2f Texture — o1, . Depth=0

CTU Division

Complexity
Depth Level ..
.. Depth=1
0<{0.1.2}| Quantization
CTU QP }—4 Degree Level | Hd

i Depth=2
High Low Order JL. < {2.3.4 .=. P

Current CTU

Multi-layer Feature Extraction

CTU Structure Classification

FIGURE 1. The process of CTU complexity level classification.

and DMMs mode, which are mainly used for coding the sharp
edge, have a small probability to be selected. Therefore, if the
PU mode can be predicted in advance, some unnecessary PU
mode calculation processes can be skipped, thus reducing
3D-HEVC intra coding complexity.

Based on the above analysis, it is clear that the process
of CTU partition decision and PU mode selection is filled
with uncertainty. If the CTU partition depth and PU mode
can be directly predicted, the full traversal process of CTU
partition and PU mode selection can be avoided, reducing the
complexity of 3D-HEVC intra coding.

IV. PROPOSED MLFF-GUIDED LOW-COMPLEXITY
3D-HEVC INTRA CODING METHOD
A. CLASSIFICATION OF CTU COMPLEXITY LEVEL
The aforementioned analysis of 3D-HEVC intra coding com-
plexity indicates that QP and texture are important for CTU
partition decision and PU mode selection. Motivated by this
finding, we attempt to determine the complexity level of CTU
by utilizing QP and texture. Fig. 1 shows the process of CTU
complexity level classification. The specific process is as
follows.

Firstly, we divide the texture complexity of CTU into three
categories based on the size of encoded CTUs, and record it
as texture complexity parameter 7.

0, if CUgjze = 64 x 64
T = 11, if CUgpe =32 x 32 (1)
2, if CUgjze = 16 x 16 0r 8 x 8

where the subscript n € {0, 1, 2, 3} is the index of CTU
partition depth and the superscript 0 < k < 63 is the index
of sub-CUs split from the CTU. If the size of encoded CU is
64 x 64, the current CU almost has no texture details and the
texture complexity is the lowest. Set T to O at this time. If the
size of encoded CU is 32, the current CU has fewer texture
details and the texture complexity is medium. Set T to 1 at this
time. If the size of encoded CU is 16 x 16 or 8 x &, the current
CU has the most texture details and the texture complexity is
the highest. Set T to 2 at this time.

Secondly, considering that the quantization step (Qstep) Of
CU has a direct impact on the quality of encoded video, the
relationship between QP and QOyep is defined as follows:

Ostep ~ 2(QP—H/0 2)

VOLUME 12, 2024

We divide the quantization degree of CU into three categories
according to the QP range of 0-51, and record it as quantiza-
tion degree parameter Q.

0, if QP =45~ 51
if QP =35~ 44 ?3)
2, if QP=0~ 34

where the subscript n € {0, 1, 2, 3} is the index of CTU
partition depth and the superscript 0 < k£ < 63 is the index
of sub-CUs split from the CTU. If the QP range is 45-51,
the current CU belongs to rough quantization with the lowest
quantization degree. Set Q to O at this time. If the QP range
is 35-44, the current CU belongs to general quantization,
and the quantization degree is medium. Set Q to 1 at this
time. If the QP range is 0-34, the current CU belongs to
fine quantization with the highest quantization degree. Set Q
to 2 at this time.

Finally, we define two complexity control parameters,
L = T&&Q and L, = T + Q, to classify the CTU
complexity level. It is worth noting that, in the proposed
MLFF model, L; and L, are added as external features and
participate in training together.

B. PROPOSED MLFF MODEL

In this section, an MLFF model is developed to predict the
CTU depth and PU mode in advance. Here, we integrate
the texture and QP of CTU into multi-layer features. The
MLFF model is designed as shown in Fig. 2 according to
the complexity control parameters that represent the CTU
complexity level in Fig. 1.

In general, the proposed MLFF model includes three chan-
nels. From top to bottom, each channel corresponds to each
layer of the CTU partition structure. The input of the model is
the CTU of size 64 x 64. The output of the model corresponds
to the probability prediction results of Depth=0, Depth=1,
and Depth=2, respectively. If the prediction probability for a
certain depth is greater than 0.5, the prediction process for the
next layer is terminated and the current depth is used as the
optimal partition depth. The structure of the proposed MLFF
model is described in detail below. Specifically, the proposed
MLFF model consists of three preprocessing modules, nine
convolution layers, four concatenate layers and nine fully
connected layers.
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FIGURE 2. The proposed MLFF model.

First, the input CTU must be preprocessed in order to make
the model output in the form of a CTU partition structure.
In Fig. 2, Module A, Module B, and Module C are all pre-
processing modules. In these three preprocessing modules,
we adopt average pooling and mean removed to reduce the
feature dimensions and interference information.

Second, as compared to advanced features such as image
semantics, texture is considered a shallow feature that CNN
can obtain through a simple network structure. Therefore,
the convolutional operation after the preprocessing module
is the core part of the model. The convolution core size of the
first group of 14 convolution layers is 4 x 4. The dimensions
of the feature maps are 13 x 13, 29 x 29, and 61 x 61,
respectively. The convolution core size of the second group of
22 convolution layers is 2 x 2. The dimensions of the feature
maps are 12 x 12, 28 x 28, and 60 x 60, respectively. The
convolution core size of the third group of 30 convolution
layers is 1 x 1. The dimensions of the feature maps are
12 x 12, 28 x 28, and 60 x 60, respectively. Considering that
the proposed model is essentially a classification problem,
the activation function utilized in the convolution layer is
the Rectified Linear Unit (ReLU). The specific calculation
process can be expressed as follows:

CTU,, =0
Cp (CTU,) = " "
ReLU (WyCpu1 (CTU,) + Bp), m<M
)
41078

where C,, represents the convolutional layer after the pre-
processing module, M represents the total number of con-
volutional layers, and m represents the current processing
layer. W, is the weight matrix and B,, denotes the offset.
In addition, n denotes the CTU that is currently being pro-
cessed. If the processed video resolution is 1920 x 1088,
and there are 510 CTUs in a frame, the range of n is
1 < n < 510. If the processed video resolution is
1024 x 768, and there are 192 CTUs in a frame, the
range of nis 1 < n < 192. It is worth noting that the
higher the video resolution, the more CTUs are included
in a frame, but also the larger the inaccuracy of model
prediction.

Third, following the convolutional layers, the extracted
features from the second and third groups of convolutional
layers are passed to the concatenate layer. The fully connected
layers that learn the correlation of features from different
channels and convolutional layers. Moreover, we introduce
two external features, L1 and L, to the fully connected layers.
At the same time, in order to avoid overfitting, 50% of the
first fully connected layer features will be randomly dropped
out.

Finally, because the binary cross entropy loss function
is frequently used in binary classification, and since the
model proposed in this research is essentially a binary clas-
sification problem, we use binary cross entropy as the loss
function of the MLFF model. The specific calculation of loss
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function L is defined as follows:

N
1
L= _ﬁnz—:'(ln xInY,+(1—1) xIn(1=Yy)) (5
where [, represents whether the currently encoded CTU is
partitioned, Y;, is the output of the model, N denotes the total
number of CTUs to be processed, and n represents the index
of the CTUs currently being processed.

C. FLOWCHART OF THE PROPOSED METHOD

Fig. 3 gives the flowchart of the proposed MLFF
model-guided low-complexity 3D-HEVC intra coding
method.

C Start D)
v

I Read the 3D Video |

v

I Call the MLFF Model |

v
]

Predict the CTU Depth |

|
Depth =0 [ Depth =1 | Depth =2 |

v v

PU Mode: PU Mode: PU Mode:
Planar. DC Angular DMMI1. DMM4

N Last CTU?
Y

C_w

FIGURE 3. Flowchart of the proposed method.

From Fig. 3, firstly, we read the 3D video to be encoded and
call the proposed MLFF model. Secondly, we read the CTU to
be encoded and use the model to predict CTU partition depth.
Finally, we determine the selection range of PU mode based
on CTU depth.

V. EXPERIMENTAL RESULTS

A. SETTINGS

1) TRAINING ENVIRONMENT

Table 4 presents the hardware and software environments.
It is worth noting that the GPU is only utilized to acceler-
ate model training, not the coding process. Model training
conditions are used as follows: set the batch size to 64, set
the number of iterations to 10,000, and the initial learning
rate to 0.01. The learning rate drops at a rate of 0.1 for every
4,000 iterations as learning times increase.

2) CODING CONFIGURATION

The test experiment is conducted in Common Test Conditions
(CTC). We use All Intra (AI) mode to test the performance of
3D-HEVC intra coding. The test platform is HTM-16.0, the
compiling software is Visual Studio 2010, and the configura-
tion file is baseCfg_3view+ depth_AllIntra. The standard test
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TABLE 4. Training environment.

Hardware

13th Gen Intel(R) Core(TM) i9-
13900K 3.00 GHz

Processor

Random Access Memory (RAM) 32.0 GB
Graphic Processing Unit (GPU) NVIDIA GeForce RTX 3080
Software
Python 35
Tensorflow 1.4.0
CUDA 8.0

sequence and specific coding configuration parameters used
in this paper are shown in Table 5. It is worth mentioning that
the dataset of the MLFF model was collected from standard
test sequences Kendo and Undo_Dancer, hence these two
video sequences are not included in the test sequence.

TABLE 5. Standard test sequence coding configuration.

Standard test sequence

Sequence Resolution Frame rate View
Balloons 1024x768 30 315
Newspaper 1024x768 30 426
Poznan_Hall2 1920x1088 25 675
Poznan_Street 1920%1088 25 453

3) EVALUATION CRITERIA
The coding complexity of the proposed method is measured
as follows:

THTM—Iﬁ.O,total - Tproposed,total

ATotal = x 100 (%) (6)

THTM-16.0,total

where THTM-16.0,10tal Tepresents the coding time of HTM-
16.0 and Tproposed,total T€presents the coding time of the
proposed method. Fig. 4 depicts the computation process for
calculating the PSNR of the synthesized view. PSNR of the
synthesized view is the average PSNR of the six virtual views.
The specific calculation formula can be expressed as follows:

S PSNR,

PSNRyynin = =

,n=20.25,0.5,0.75,1.25, 1.5, 1.75
N

where PSNRgy,, represents PSNR of the synthesized view,
and PSNR,, represents PSNR of the six virtual views.

B. TRAINING PERFORMANCE EVALUATION

Fig. 5 (a) and Fig. 5 (b) show the loss and accuracy curves
in predicting CTU partition depth, respectively. The loss is
calculated by (5), and the accuracy is computed by comparing
the prediction results with the ground truth. It can be seen
that as the number of iterations increases, the prediction loss
gradually decreases, and the prediction accuracy gradually
increases.
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FIGURE 5. PSNR calculation process of the synthesized view.

In addition, we also recorded the model running time and
the total coding time of the proposed method. As shown in
Fig. 6, the running time of the model accounts for just about
0.4% of the entire coding time. As a result, introducing the
MLFF model will not add too much coding time.

C. OBJECTIVE PERFORMANCE EVALUATION
The test experiment employs four video sequences that are
not included in the dataset. As demonstrated in Table 6,
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Comparative experiments were carried out to evaluate
the proposed method’s performance in more detail. Having
comparison to the test sequences at resolution 1024 x 768,
Table 7 indicates that the coding time is 9.4%, 3.7% and
4.8% less than that of reference [26, 27, and 30]. Further-
more, in test sequences with all other resolution cases, our
method performs better in 36.6% [24], 33.7% [25], and
32.6% [28].

Regarding coding performance, the synthesized view’s
quality has more significance than that of the texture
and depth videos. Hence, we examine the BDBR of
the synthesized view using several approaches. The term
“Synth PSNR/total bitrate” refers to the BDBR that is
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FIGURE 7. Comparison of the subjective quality for the synth 0.25 of “Balloons”, “Newspaper”, “Poznan_Street”, and

“Poznan_Hall2".

TABLE 6. Coding time comparison of the proposed method to original HTM-16.0.

Sequences Coding Time (s) AT, (%)
HTM-16.0 Proposed
Balloons 2293.7540 1534.1218 33.1
Newspaper 3274.6653 1793.6025 45.2
Poznan_Hall2 5184.2390 3283.4488 36.6
Poznan_Street 6976.4223 4569.0478 345
Average 4432.2700 2795.0550 374

determined by comparing the total bitrate to the synthe-
sized view PSNR. Table 7 demonstrates that the sug-
gested method’s synthesized view BDBR loss is 0.31%
at all resolutions and just 0.17% at 1024 x 768 reso-
lution, which is far better than most of the comparison
methods.

VOLUME 12, 2024

D. SUBJECTIVE PERFORMANCE EVALUATION

Fig. 7 illustrates the subjective quality of the synthesized
view of the proposed and the original HTM-16.0 methods.
Fig. 7 indicates that, despite a slight decrease in objective
data, there is no decline in subjective. This further proves
that the proposed method can reduce 3D-HEVC intra coding
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TABLE 7. Coding time comparison of the proposed method to others under HTM-16.0.

1024x768 resolution

[26] [27] [30] Proposed
Sequences o N N o
AT, (%) BDBR(%) AT, (%) BDBR (%) AT, (%) BDBR (%) AT (%) BDBR (%)
Balloons 28.1 0.20 323 0.37 343 0.12 33.1 0.14
Newspaper 31.4 0.13 38.7 0.17 34.4 0.35 453 0.20
Average 29.8 0.17 35.5 0.27 34.4 0.24 39.2 0.17
All resolutions
[24] [25] 28] Proposed
Sequences N N N N
AT (%) BDBR (%) AT (%) BDBR (%) AT, (%) BDBR (%) AT} (%) BDBR (%)
Balloons 379 0.40 31.9 0.61 33.0 0.62 33.1 0.14
Newspaper 37.0 0.40 30.2 0.37 33.8 0.65 453 0.20
Poznan_Hall2 35.7 1.13 36.0 0.82 32.1 0.47 36.7 0.52
Poznan_Street 35.7 0.19 36.7 0.57 314 0.29 34.7 0.38
Average 36.6 0.53 33.7 0.59 32.6 0.51 37.4 0.31
complexity without compromising the quality of synthesized [4] P. Gao, W. Xiang, and D. Liang, “Texture-distortion-constrained joint
views. source-channel coding of multi-view video plus depth-based 3D video,”
1EEE Trans. Circuits Syst. Video Technol., vol. 29, no. 11, pp. 33263340,
Nov. 2019, doi: 10.1109/TCSVT.2018.2877903.
VI. CONCLUSION [5] G. Wang, Z. Wang, K. Gu, K. Jiang, and Z. He, “Reference-free DIBR-
Existin D-HE intr in roach vari synthesized video quality metric in spatial and temporal domains,” IEEE
sting 3 VC tra CO.d g app oac' s use a ariety Trans. Circuits Syst. Video Technol., vol. 32, no. 3, pp. 1119-1132,
of complicated coding techniques to provide extra interme- Mar. 2022, doi: 10.1109/TCSVT.2021.3074181.
diate views for better representations of 3D videos, posing [6] G. Sanchez, J. Silveira, L. V. Agostini, and C. Marcon, “Performance
significant challenges for real-time 3D video applications. analysis of depth intra-coding in 3D-HEVC,” IEEE Trans. Circuits
g L. g . . Pp Syst. Video Technol., vol. 29, no. 8, pp. 2509-2520, Aug. 2019, doi:
To address this issue, we propose in this research, a low- 10.1109/TCSVT.2018.2865645.
complexity 3D-HEVC intra coding method. The complexity [7] Y. Zhang, G. Wang, R. Tian, M. Xu, and C. C. J. Kuo, “Texture-
of 3D-HEVC intra coding was examined first in the pro- classification accelerated CNN scheme for fast intra CU partition in
. . HEVC,” in Proc. IEEE Data Compress. Conf. (DCC), Snowbird, UT, USA,
posed method. Then, instead of performing a full traversal Mar. 2019, pp. 241-249.
search, an MLFF model was built that learns to predict the [8] Z. Chen, J. Shi, and W. Li, “Learned fast HEVC intra coding,”
best CTU partition depth and PU mode at the same time. IEEE Trans. Image Process., vol. 29, pp.5431-5446, 2020, doi:
Th t t 1 feat d of OP and text 10.1109/T1P.2020.2982832.
en, two external features composed of QP and texture [9] G.J. Sullivan, J.-R. Ohm, W.-J. Han, and T. Wiegand, “Overview of the
were introduced into the model, to improve its prediction high efficiency video coding (HEVC) standard,” IEEE Trans. Circuits
accuracy. The experimental findings confirmed that the pro- Syst. Video Technol., vol. 22, no. 12, pp. 1649-1668, Dec. 2012, doi:
osed method is better than existing methods in terms of 10.11097/TCSVT.2012.2221 191
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