
Received 26 February 2024, accepted 11 March 2024, date of publication 18 March 2024, date of current version 25 March 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3378263

Security of AI-Driven Beam Selection
for Distributed MIMO in an
Adversarial Setting
ÖMER FARUK TUNA AND FEHMI EMRE KADAN, (Member, IEEE)
Ericsson Research, Ericsson Turkey, 34467 Istanbul, Turkey

Corresponding author: Ömer Faruk Tuna (omer.tuna@ericsson.com)

This work was supported in part by the Scientific and Technological Research Council of Turkey (TUBITAK) through the 1515 Frontier
Research and Development Laboratories Support Program under Project 5169902, and in part by the European Union’s Horizon Europe
Research and Innovation Program and Smart Networks and Services Joint Undertaking (SNS JU) through AI-powered eVolution towards
opEn and secuRe edGe architEctures (VERGE) Project under Grant 101096034.

ABSTRACT In distributed multiple-input multiple-output (D-MIMO) networks, beam selection is necessary
to predict the best beam and radio units (RUs) to serve the users in an optimumway. Finding the best RU and
beam requires measuring the downlink channel for all possible RU/beam pairs, which becomes a resource-
heavy operation, especially at the millimeter Wave band. To overcome this problem, artificial intelligence
(AI) solutions are investigated which aim to infer the best RU/beam from sounding the channel for a subset
of RUs and beams. While fairly accurate AI models can be obtained, these models have some intrinsic
vulnerabilities to adversarial attacks where carefully designed perturbations are applied to the input of the
AI model. In this study, we consider four different adversarial attack methods that craft perturbations using
gradients of the AI cost function under two different beam reporting scenarios considering sequential and
one-shot reporting of reference signal received power values for all RUs and demonstrate their effectiveness
over traditional methods by extensive simulations, showing the necessity of smart defense techniques.
To this aim, we propose an effective mitigation solution based on scrambling of RUs against these kinds
of adversarial attack threats and verify the efficacy of our solution via detailed simulations. The proposed
defense method provides up to 10 dB better signal strengths at the user side by selecting more accurate
RU/beam pairs under adversarial attacks.

INDEX TERMS Adversarial machine learning, beam selection, cell-free massive MIMO, deep learning,
distributed MIMO, security, 6G.

I. INTRODUCTION
Distributed multiple-input multiple-output (D-MIMO), also
known as cell-free massive MIMO, is a new network type
considered for beyond 5G communication systems where
many radio units (RUs) are geographically distributed in
a region to increase the coverage and reliability. RUs are
connected to a central processor (CP) with high baseband
capability to optimize resource allocation and performance
through coordination. Previous research studies [1] show
the benefits of D-MIMO compared to traditional unco-
ordinated small-cells, which are used in all previous
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generations, and collocated massive MIMO which is cur-
rently used in 5G systems. D-MIMO is well-suited for high-
frequency bands with challenging radio propagation, thanks
to its high line-of-sight probability and increased macro
diversity [2].

Machine learning (ML) is a subcategory of artificial
intelligence (AI) which helps us to abstract and extract
knowledge from data and then apply that data algorithmically
to make highly accurate predictions. One of the main reasons
why machine learning has become such a popular topic
in the last decade is the success of a specific category of
algorithms known as deep learning that have been immensely
successful in various domains such as computer vision
and machine translation. Wireless communication has been
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one of the recent domains that we started to use deep
learning algorithms effectively. There are different cases
where modern machine learning algorithms can help us, and
one possible scenario is where we don’t have a good physical
model. One example for such a case is whenwewant tomodel
the traffic pattern in a city where we don’t have any useful
tool to formulate the problem in the first place. In such a
scenario, machine learningmodels could help us and based on
seeing a lot of data, it can draw useful conclusions about the
possible trajectories about how the peoplemightmove around
the city. Another motivation for using machine learning
in wireless communication is that there might be some
problems for which we know the optimal solution, yet the
optimal solution is computationally very expensive. In such
a case, one might use machine learning techniques to find a
good enough approximation to the original highly complex
problem.

Wireless networks must perform demanding tasks such as
beamforming [3], [4] with robustness against attackers [5],
[6] in a dynamic spectrum environment influenced by traffic,
channel, and interference impacts. Deep learning has become
an indispensable tool for solving a wide range of variety
of wireless communication problems [7]. In a D-MIMO
network, there are lots of functions that are needed to be
performed in order to orchestrate the network resources to
optimize the network and maximize spectral efficiency of
the served users. Most of these functions are planned to be
handled by AI/ML due to various reasons such as reducing
complexity and overhead. One possible scenario where we
can use AI/ML is power allocation task where the aim is
to efficiently allocate the power of RUs among users to
optimize the system performance [8], [9]. The power control
is applied by RUs to allocate their transmission power among
user equipment (UE) allowing interference management
and spectral/energy efficiency enhancement in D-MIMO.
Although there is an exact analytical solution for this
problem by using sequential second order cone programming,
the computational complexity of the solution is extremely
high [10] especially when the number of RUs and UEs in
the network gets larger. Hence low complexity AI/ML based
solutions are proposed to approximate the exact solution.
Another scenario where we can use AI/ML techniques is
beam selection task where the aim is to find the best beam(s)
by sweeping a subset of all possible beams instead of a com-
plete beam sweeping procedure to decrease beam training
overhead and energy consumption [11]. We can also use AI
to efficiently find user-centric RU sets to serve UEs [12].
Although there are many RUs in a D-MIMO network, using
all RUs to serve a single UE might not be practical due
to the high fronthaul load. A better approach is to find a
suitable subset of RUs to serve each UE, allowing for control
of fronthaul loads and providing better energy efficiency.
The reason for using AI/ML technique in beam/RU selection
task is that there is a complex dependence to the positions
of the RUs and UEs, and hence developing an analytical
solution is very challenging. In summary, there is a need for

AI functionality at the CP to take care of many important
tasks.

Although AI-empowered solutions can be efficiently used
to solve many tasks in D-MIMO, adversarial attacks pose
severe security concerns for AI-driven systems. Very small
and undetectable changes in input data samples might be
sufficient to trick the most advanced classifiers resulting in
inaccurate predictions. To understand the effects of adversar-
ial attacks on D-MIMO networks, performance of different
attack methods should be evaluated and efficient defense
methods should be developed to mitigate the potential
disruptive effects. All potential scenarios and parameter sets
should be carefully considered to effectively use developed
techniques in practical networks.

A. RELATED WORK
AI/MLmodels have been discovered to be vulnerable tomali-
cious attacks [13]. Very small and often undetectable changes
in input data samples are enough to fool state-of-the-art
classifiers in inference time and lead to incorrect predictions.
In the past few years, extensive research studies have shown
the vulnerability of AI-driven systems in different domains.
Despite the distributed nature of the communication domain
and the heterogeneity of the network, there is still a risk
of adversarial attacks in the telecommunications domain.
Previous research [14] indicates that adversarial attacks with
optimized perturbations can target AI-driven tasks such as
power control and degrade the performance of a D-MIMO
network in terms of both spectral and energy efficiency.
In [15], it is shown that adversarial attacks on power control
in the training stage can ruin the performance of the AI
model with supervised learning. In [16], the authors analyze
the effects of over-the-air adversarial attacks on AI-driven
beam selection in collocated massive MIMO systems where
all beams are swept by a single base station. In [17],
the authors investigate the effects of poisoning attacks
implemented at the training stage for beam selection in
collocated massiveMIMO and propose a machine unlearning
method to mitigate the effects of adversaries. Finally, [18]
studies the effects of blackbox (without knowledge of the
true AI model at the victim) adversarial attacks on beam
selection for various use cases again for collocated massive
MIMO. There are different defense solutions proposed in
the literature for adversarial attacks. The most popular ones
are adversarial training [19], [20], [21], [22], [23], ensemble
adversarial training [24], defensive distillation [25], [26],
[27], [28], squeezed models [29], and auto encoder-based
input denoising [30], [31]. However, there is no existing
adversarial defense mechanism that achieves both efficiency
and effectiveness against adversarial samples [32].

B. MOTIVATION
Although there are existing adversarial attack and defense
frameworks for wireless networks using collocated MIMO,
it is not straightforward to extend the related methods to
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D-MIMO systems due to their special physical and transport
layer architecture, and specific areas such as beam/RU
selection. Existing studies for beam/RU selection task in
D-MIMO only covers developing AI techniques without any
attack/defense consideration. To the best of our knowledge,
there is not any related prior work investigating attack
and defense techniques for beam/RU selection in D-MIMO
networks.

C. CONTRIBUTIONS
In this study, we focus on the AI-driven beam selection task in
D-MIMO for the initial access stage where a small number of
beams are transmitted to find the best possible beam with the
help of AI. We consider a scenario where malicious software
infects a UE and reads/modifies measurements of the UE
modem to perturb the measurement reports to be sent back to
the network. The contributions of the paper is listed below:

• We first investigate the efficiency of various adversarial
attack methods on the beam/RU selection performance
of the D-MIMO network. We propose four different
attack approaches for crafting adversarial perturbations,
two of which are effective even only partial channel
knowledge is available at the attacker side. We consider
both the whitebox setting where the attacker has full
access to the original AI model and the blackbox setting
where the attacker trains a surrogate model to imitate
the functionality of the original AI model. The former
approach is considered to see the performance upper
bound whereas the latter one shows more practical
results. We empirically show that malicious software
in a compromised UE can easily target the beam
selection model in the network and result in dramatic
performance decreases, even under the most constrained
circumstances.

• Then, we propose a defense mechanism relying on a
scrambling operation prior to feeding the input to the AI
model to mitigate those adversarial attacks. We perform
detailed simulations for various attack types and UE
reporting scenarios to show the effectiveness of the
proposed technique.We also provide a practical solution
to use different scramblers in different D-MIMO sites in
a secure way.

The paper is structured as follows: Section II goes over
the system model together with the details of AI-driven
beam selection task in D-MIMO, some of the widely known
adversarial attack types, available defense techniques in the
literature and the details of our proposed defense solution.
In Section III, we provide the results of our comprehensive
simulations for different adversarial attack scenarios, and we
conclude the paper in Section IV.

II. SYSTEM MODEL
We consider a D-MIMO network with P RUs each with B
antennas and Q UEs each with A antennas, and we assume
that all UEs are served by all (or some subset of) RUs that

are connected to a CP via fronthaul links. Fig. 1 shows an
example D-MIMO network.

FIGURE 1. A typical D-MIMO network with 8 RUs and 4 UEs.

In a D-MIMO network, as in current 5G networks,
RUs should transmit some broadcast signals (such as
synchronization signal blocks, SSBs) for initial access of UEs
to the system. However, as there are many RUs each with
some number of beams to be transmitted, the total number of
SSBs will be very high. This causes beam sweeping overhead
to be large which is not desired as it will increase the latency
of UEs to connect to the system. Besides, this potentially
will cause a huge energy consumption due to a high number
of transmissions and measurements. An example of a full
beam sweeping approach is given in Fig. 2, where there are
P RUs each having B SSB beams, resulting in PB beams in
total. Herein, all beams from all RUs scan the coverage area
sequentially, where only one beam is active in a given time
interval.

FIGURE 2. Sequential full beam sweeping in a D-MIMO network. In this
example, there are P = 8 RUs each with B = 4 beams making 32 beams in
total.

As the common information is transmitted by SSBs, all
UEs inside the coverage region receive the same data and
hence we will only focus on a single UE. The received signal
yp,b ∈ CA×1 by the UE from the b-th beam of the p-th RU
can be written as

yp,b = Hpwp,bs+ np,b, p = 1, 2, . . . ,P, b = 1, 2, . . . ,B,

(1)

where Hp ∈ CA×B is the channel matrix and wp,b ∈

CB×1 is the corresponding beam vector, s is the unit-norm
scalar reference symbol (primary/secondary synchronization
sequence, PSS/SSS, or demodulation reference symbol,
DMRS) in the SSB signal which is the same for all RUs and
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beams, and np,b ∼ CN (0, σ 2
n I) is the internal noise of the

UE receiver. The UE uses the reference symbol s to measure
the reference signal received power (RSRP) values for each
beam transmitted by RUs using a combiner1 u ∈ CA×1

uHyp,b = uHHpwp,bs+ uHnp,b, ∀p, b. (2)

The UE can measure the RSRP information by estimating the
coefficient cp,b = uHHpwp,b using the equation (2) as

ĉp,b = uHyp,bs∗ = uHHpwp,b + uHnp,bs∗, ∀p, b, (3)

where ĉp,b is the least-squares estimation of cp,b and s∗ is
the complex conjugate of s. The coefficient ĉp,b involves
both RSRP (derived from |̂cp,b|2) and delay (derived from
̸ ĉp,b) information of the augmented channel. Due to the
transformed noise term uHnp,bs∗ in (3), the estimate ĉp,b
includes an additive Gaussian noise with variance σ 2

c =

σ 2
n u

Hu.
After measuring the RSRP values, the UE sends these

values back to the network using uplink control channels so
that the CP can collect the RSRP values from RUs and select
the best RU and beam pair to serve the corresponding UE.

A. AI-DRIVEN BEAM SELECTION
To find the best beam (wp,b vector) to be used to transmit
data in the downlink, the p-th RU should know the augmented
channel uHHp whose dimension is 1 × B. This can be done
by transmitting B different beams with independent wp,b
vectors and getting ĉp,b feedback for each of those beams.
Considering all RUs, this process requires PB different beams
to be transmitted resulting in a large overhead and high
energy consumption. To mitigate this problem, an AI-driven
beam selection process is proposed in the literature [16],
[17], [18]. In this approach, a subset of all possible beams
is selected and only the selected beams are sequentially
sent to the UEs. The UEs measure the corresponding RSRP
values of each selected beam and send the measurements
back to the network in the uplink. An AI model f (·, θ )
with model weights θ , whose output is a PB × 1 vector
of probabilities of each beam, is trained and used in the
network to find the best beam using the measured RSRP
values. The AI solution is proven to be effective in finding
the best beam index even if it is among the ones which are not
selected to send SSBs. In Fig. 3, an example block diagram
of this solution is given. In this example, there are P = 8
RUs each with 4 beams. To decrease the total number of
beams transmitted, the network chooses only 12 of beams
indicated in Fig. 3a. Beams are numbered from 1 to 32 in
the counterclockwise order from RU 1 to RU 8. The UE
measures the corresponding RSRP values and reports the
measurements back to the network. The RSRPmeasurements
are collected by the CP and fed to an AI model to generate the
probability of each beam being the best one. The final beam
decision is made by selecting the beam index with the highest
probability.

1We assume that the combiner is the same for all RUs and SSB beams.

FIGURE 3. In this example, there are M = 12 beams (indicated by red
solid lines in (a) out of total PB = 32 chosen to transmit SSBs to UEs. The
trained AI model is used to predict the best beam index using the
measured RSRPs for the selected M beams transmitted from P = 8 RUs.

B. ADVERSARIAL ATTACKS
The goal of adversarial attacks in classification tasks is
to craft a perturbation δ under given constraints (such as
|[δ]i| < ϵ, ∀i) which yields to an incorrect prediction as
yadv = argmax f (x + δ, θ ) which differs from a prediction
on a clean sample y = argmax f (x, θ ). The success criteria
of the attack might change depending on the type of task.
The attack can be considered successful if the model predicts
a class other than the actual class. For an AI-driven beam
selection task, the objective of the attacker can be to force
the target model to predict a beam index that is different than
the best beam, which falls under the category of untargeted
attacks. However, the motivation of the attacker might also
be to fool the model to predict as worst option possible to
lower the network performance, which can be considered as
a targeted attack. Besides, in a practical scenario as in most
of the wireless tasks, the attacker will not be able to have
complete knowledge of the target AI model, including its
architecture and weights, and therefore the attacker needs
to craft perturbations in a blackbox manner by training and
using a surrogate AI model that imitates the original one.

One of the most popular adversarial attacks in the literature
is the Fast Gradient-SignMethod (FGSM) [19] which utilizes
the derivative of the model’s loss function with respect to
the input sample to decide in which direction the feature
values of the input vector should be altered to minimize the
objective loss function of the model. As soon as this direction
is found, it perturbs all features simultaneously in the opposite
direction to maximize the loss. Then, Kurakin et al. [33]
suggested a small yet effective improvement to the FGSM,
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known as the Basic Iterative Method (BIM). In this attack
method, instead of taking one step of size ϵ in the gradient
sign’s direction, the attacker takes several but smaller steps
α and uses the given ϵ value to clip the result. Crafting
perturbations under ℓ∞ norm for BIM attack is given by (4).

x∗

1 = 0 and for all j = 1, 2, . . . , jmax

x∗

j+1 = Clipϵ

{
x∗
j + α · sign

(
∇x

(
L(x∗

j , θ , ytrue)
))}

ytrue = argmax f (x, θ) (4)

where x∗
j is the crafted perturbation at j-th iteration, θ

represents the parameters of the AI model, L is the loss
function, ∇x shows the derivative with respect to the input
vector x, ϵ is a tunable parameter, limiting the maximum
level of perturbation for ℓ∞ norm, α is the step size, ytrue is
the actual class which can be estimated by running the AI
model and finding the most probable class and Clipϵ{·} is the
clipping operator that clips entries of the argument larger than
ϵ to ϵ and smaller than−ϵ to−ϵ. The final perturbation vector
can be found after jmax iterations or at the stage where the rate
of change of x∗

j becomes small enough.
We can easily modify (4) to produce a targeted variant of

BIM. At each intermediate step, we can try to minimize the
loss with respect to the target class while at the same time
maximizing the loss with respect to the original class as in (5).

x∗

1 = 0 and for all j = 1, 2, . . . , jmax

x∗

j+1 = Clipϵ

{
xj + α · sign

(
∇x

(
L(xj∗, θ , ytrue)

− L(x∗
j , θ , ytarget)

))}
ytrue = argmax f (x, θ), ytarget = argmin f (x, θ ), (5)

where ytarget is the targeted class which can be estimated by
running the AI model and finding the least probable class.
It should be noted that perturbations with the above attack
algorithms are specific to a particular sample. So, another
research direction is to find perturbations that when added
to ‘‘any’’ input sample can fool the target model. For this,
the universal adversarial perturbation (UAP) method [34] is
proposed for cases where complete input knowledge is not
available. As a final remark, in case the original AI model
f (·, θ ) is not available at the attacker side, a well-trained
surrogate model f̃ (·, θ ) can be used to make the calculations
in (4) and (5).

C. ADVERSARIAL ATTACK SCENARIOS IN D-MIMO
Current UE modems are vulnerable to malicious soft-
ware [35]. A highly capable malware can settle down in a UE
and read/modify RSRP values measured by the UE modem.
The malware can train a local AI model that imitates the
actual AI model used in the CP to carefully craft adversarial
perturbations. In Fig. 4, a typical attack scenario is shown.
The malware infecting the UE can read the measured SSB

RSRP values from the UE modem in a period to collect
sufficient RSRP data and it can learn the labels (the best beam

FIGURE 4. A block diagram of a typical adversarial attack scenario where
the attacker aims to fool the target AI model.

index) by observing the RSRP values for data channels. In this
way, it can train a surrogate model that imitates the original
one.

We consider two different attack scenarios under two
different settings:

Scenario 1: In this scenario, the RSRP reports are sent
in uplink so that in each report only the RSRP values
corresponding to the beams of the current RU are included.
This is compatible with what is in the current 5G NR
implementation. Due to this assumption, the attacker crafts
the adversarial samples with missing information (to craft
adversarial samples for the p-th RU, only the RSRP values
for 1, 2, . . . , p-th RU beams can be used.) As the best
perturbation calculation requires all RSRP information for
all RUs one at a time, we assume that the attacker uses the
UAP technique, allowing to craft perturbations with limited
knowledge.

Scenario 2: In this scenario, all the RSRP reports are sent
in one shot for all RSRP information of all RUs. In this case,
since the attacker will know all the parts of the AI model’s
input, there won’t be any need to apply UAP and the attacker
can use existing attack algorithms, such as BIM.

Setting 1, Whitebox: In the whitebox setting, we assume
that the attacker perfectly knows the original AI model
implemented at the CP. This might not be realistic scenario
but it can be used to observe the theoretical performance limit.

Setting 2, Blackbox: In the blackbox setting, we assume
that the attacker has no access to the actual AI model in
the CP. So, the attacker trains a separate surrogate model
imitating the actual AI model’s functionality, and crafts
the perturbations accordingly. The training is performed as
shown in Fig. 4.

To make the attack practical, we assume the following:

1) The attacker designs a perturbation so that for each
RSRP value, the added perturbation has a magnitude
of at most ϵ dB, where ϵ is a small quantity. (It should
be smaller than typical large-scale channel variations,
such as shadowing standard deviation.) This is required
for attackers not to be detected by the network.

2) Due to uplink channel effects, the measured RSRP
values might not be perfectly delivered to the network.
We add some noise to the RSRP values (in both
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clean and perturbed cases) to model this effect at both
training and inference stages.

D. PROPOSED ATTACK ALGORITHMS
We consider two different attack algorithms for each of the
two scenarios to see their effects on the beam selection
performance of the network. The attacker uses the original
f (·, θ ) or a surrogate f̃ (·, θ ) AI model according to the
whitebox/blackbox setting. All algorithms use the RSRP
measurements rp,b = |̂cp,b|2 and the given perturbation
amount ϵ to derive perturbation values δp,b satisfying |δp,b| ≤

ϵ, ∀p, b. For all methods, we use the cross entropy loss
function as the loss function L.

1) UAP-BASED ATTACK FOR SCENARIO 1
For Scenario 1, only some portion of the input of AI is known
at any RSRP measurement stage at the UE side. We assume
that the RU, beam pairs used to transmit SSBs form the set
B, where |B| = M , and after the p0-th RU SSB transmission
stage, the UE and hence the attacker, has only the knowledge
of RSRP values for rp,b, (p, b) ∈ B, p ≤ p0. A UAP-based
algorithm is proposed to craft perturbation values by filling
out the unknown input values (for p > p0) by drawing
some typical input vectors r1, r2, . . . , rN from the attacker’s
set of collected data. (Here as shown in Fig. 4, the attacker
monitors the RSRP measurements done by the UE modem
and collects RSRP data for each transmitted SSB beam. The
UAP method draws N measurement vectors r1, r2, . . . , rN
(each with dimension M × 1) from the stored data set and
updates the known part (for RUs with p ≤ p0) of each vector
by their known values. By this way, the UAP method creates
N different potential AI inputs whose known parts are the
same, but the unknown parts include different measurements
corresponding to random UE locations drawn from the past
measurements.) The final perturbations are calculated using
principal component analysis (PCA) that finds the principal
singular vector of the matrix of possible perturbation vectors.
The detailed algorithm is presented in Algorithm 1.
Algorithm 1 generates perturbation values for the p0-th RU

after it sends its SSB beams to the UE. We run Algorithm 1
for each p0 = 1, 2, . . . ,P to design all perturbation values
sequentially. In Stage 6, as −v1 is also a valid right singular
vector as v1 corresponding to the same singular value of R,
we check both δ1 and δ2 to find the best perturbation vector.

2) GENERATIVE AI (GAI)-BASED ATTACK FOR SCENARIO 1
This method is also proposed for Scenario 1. In this case, the
attacker trains different AI models to predict the RSRP values
for p > p0 using the RSRP measurements obtained for p ≤

p0. A different predictiveAImodel gp0 (·, θ ) is trained for each
p0 value (considering whitebox or blackbox setting) as shown
in Fig. 5.

After estimating the unknown RSRP values, the BIM
method is used to design the perturbation vector. The detailed
algorithm is presented in Algorithm 2.

Algorithm 1 UAP-Based Attack for Scenario 1
Input: rp,b, (p, b) ∈ B, p ≤ p0, ϵ

Data: {r1, r2, . . . , rN } and g(·, θ ) = f (·, θ ) or f̃ (·, θ )
Output: δp,b, (p, b) ∈ B, p = p0

1 Form a column vector r by augmenting the input rp,b RSRP values.
2 Define a matrix R̂ ∈ CN×M using r and the vectors

{r1, r2, . . . , rN } taken from the data set. Firstly, initialize the
matrix R̂ as R̂ = [r1 r2 · · · rN ]T . Then update R̂ using the known
rp,b values, i.e., [R̂]i,j = [r]j for all known term indices j and for
all i = 1, 2, . . . ,N .

3 For each row r̂Ti of R̂, run the AI model g(·, θ ) and find an estimate
of the best beam index (true class) by ytrue,i = argmax g(̂rTi , θ ).

4 For each row r̂Ti of R̂ and the estimated true class ytrue,i, apply the
BIM in (4) to generate the matrix
1 ∈ CN×M

= [ρ r̂1 , ρ r̂2 , . . . , ρ r̂N ]
T of perturbation vectors.

5 Compute the principal right singular vector v1 of R as
1 = U6VH , and v1 is the first column of V.

6 Compute two perturbations δ1 = ϵ · sign(v1), δ2 = −δ1 and
calculate total losses corresponding to the perturbed inputs, i.e.,

Lu =

N∑
i=1

L (̂ri + δu, θ , ytrue,i) for u = 1, 2. Find the index

u0 ∈ {1, 2} such that u0 = argmax
u∈{1,2}

Lu.

7 δ = δu0 .
8 Choose the elements of δ corresponding to the beams of p0-th RU

to determine δp,b values for beam pairs with (p, b) ∈ B, p = p0.
9 return δp,b, (p, b) ∈ B, p = p0

FIGURE 5. Predicting missing RSRP values via generative AI models.
In this example, B = 8 beams are transmitted from each of P = 10 RUs.

Algorithm 2 GAI-Based Attack for Scenario 1
Input: rp,b, (p, b) ∈ B, p ≤ p0, ϵ

Data: gp0 (·, θ ) and g(·, θ ) = f (·, θ ) or f̃ (·, θ )
Output: δp,b, (p, b) ∈ B, p = p0

1 Using the input RSRP values and the predictive AI model gp0 (·, θ )
estimate the unknown RSRPs and generate the full RSRP vector
r ∈ CM×1.

2 Run the AI model g(·, θ ) and find an estimate of the best beam
index (true class) by ytrue = argmax g(̂r, θ ).

3 Using the vector r and the estimated class ytrue, apply the BIM
method in (4) to design the perturbation vector δ.

4 Choose the elements of δ corresponding to the beams of p0-th RU
to determine δp,b values for beam pairs with (p, b) ∈ B, p = p0.

5 return δp,b, (p, b) ∈ B, p = p0

As in Algorithm 1, the attacker iteratively runs Algorithm 2
for each p0 = 1, 2, . . . ,P to design all perturbation values.
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3) ATTACKS FOR SCENARIO 2
For Scenario 2 where all RSRPmeasurements are available at
one-shot at the UE and attacker side, the attacker can directly
design the perturbation values using the BIM as in (4) or
targeted BIM (T-BIM) as in (5).

E. PROBLEMS WITH EXISTING DEFENSE SOLUTIONS
Adversarial training is one of the most widely used defense
technique [19], [20] against adversarial attacks. The aim
of adversarial training is to augment training data with
previously crafted adversarial samples and then use this
augmented data for training in order to increase robustness.
However, there are important drawbacks of adversarial
training some of which are listed below:

• First of all, adversarial training procedure necessitates
applying known adversarial attacks to whole training
data and this is a computationally expensive process.
Even so, it still does not provide perfect robustness to
adversarial attacks. This means that adversarially trained
models might still suffer some degree of performance
problems when facing adversarial samples [22].

• Secondly, there is a tradeoff between the perfor-
mance and robustness when using adversarial training
method [23]. It means that applying adversarial training
has a negative impact on the natural (clean) performance
of the model [21].

• It is known that adversarially trained models can be
made robust to whitebox attacks if the perturbations
computed during training closely maximize the model’s
loss. However, it is shown that adversarially trained
models are still vulnerable to blackbox adversarial
attacks which are the practical attack scenarios in wire-
less communications. As a solution to mitigate blackbox
adversarial attacks, ensemble adversarial training is pro-
posed [24]. This method augments model’s training data
with adversarial examples crafted on other static pre-
trained models. By doing this, it decouples adversarial
example generation from the learned model’s parame-
ters and enhances the diversity of perturbations observed
during training. However, ensemble adversarial training
is an extremely expensive process, as one needs to train
tens of different models using adversarial training and
still not provide a perfect performance.

Another commonly used technique is defensive distillation
method but the main problem with this method is that it
does not work for blackbox attacks [28]. Other techniques
such as squeezed models [29], and auto encoder-based
input denoising [30], [31] cannot be directly used in attack
scenarios considered in this study.

As a result, we need to find an alternative defense solution
that is both effective and practical while not suffering from
any of the aforementioned shortcomings.

F. PROPOSED DEFENSE SOLUTION
To mitigate the adversarial effectiveness of the attacker
that attacks over UEs by modifying RSRP measurement

FIGURE 6. An example AI input ordering after scrambling. Here the new
order of RUs is 2, 3, 5, 1, 7, 8, 4, 6.

reports, we propose a defensive solution that significantly
reduces the attack’s success without degrading clean (natural)
performance. Our solution is based on permuting the order
of RUs during both AI model training and inference phases.
Given its characteristics, we name this proposed technique
as the scrambling. The success of our proposed solution
lies in the effectiveness of hiding the actual model from
potential intruders, thereby preventing anyone from training
a surrogate model which can infer the exact input/output
relationship. Since the scrambling operation is not known by
the attacker, the original AI input ordering will be different
than that of the surrogate AI model used by the attacker,
resulting in degradation in the attack performance. In Fig. 6,
we present an example scrambling operation where we use
the same setting as in Fig. 3 with the new RU ordering
2, 3, 5, 1, 7, 8, 4, 6. Notice that a new AI should be trained
together with each new scrambler to be used.

The following facts allow us to efficiently use scramblers
where the last one describes a potential limitation:

Fact 1: The beam selection problem does not include a
strong correlation between different RUs. Therefore, when
the RU ordering is changed and a new AI is trained
accordingly, we do not observe any significant performance
change compared to the case with no reordering when there
is no attack. Notice that a similar operation would not
be possible in other domains like image, text, or audio
processing as the scrambling of the input will completely
change the semantics of the input and break the strong
correlation between neighbor input points, thus causing a
poor performance model.

Fact 2: The main motivation of an adversarial attack is to
determine sensitive points of the AI function where the rate
of change of the objective loss function with respect to the
input is large. The attacker calculates the perturbation values
to push the input towards those sensitive points to degrade
the performance of the AI. The sensitive points depend on
the input ordering and when a scrambler is applied, their
locations also change. Therefore, without the knowledge of
the new ordering, the attacker cannot determine new sensitive
points in the AI function and hence the attack becomes
ineffective.

Fact 3: The computational complexity of the scrambling
operation is very low as it only permutes the ordering of RUs.

Fact 4: There are P! different permutations of RUs and the
probability of choosing the correct scrambler will be 1/P! for
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FIGURE 7. Protection of the scrambler information.

the attacker. For example, assuming P ≥ 10, the probability
will be less than one in a million, which is extremely low.
Tomake sure to find the correct scrambler, the attacker should
train P! different surrogate AI models which are impractical.
Fact 5: If it is required to implement the proposed solution

to previously deployed models that are already functioning in
any D-MIMO site, then a retraining operation will be needed
based on the assigned scrambling pattern.

For this method to be successful against adversarial
attacks, the scrambling operation should be protected and not
known/extracted by the attacker. For this purpose, we propose
to use different scrambling patterns in each D-MIMO site
(D-MIMO site refers to a separate D-MIMO network set up
in a different geographic area. Each D-MIMO site consists
of a set of RUs which are cooperatively serving multiple
users whereas different D-MIMO sites do not coordinate.)
to increase security. Furthermore, the scrambling information
for each D-MIMO site can be generated at the core
network, and the corresponding scrambler information can
be transmitted to the related D-MIMO site via backhaul links
with effective encryption techniques. This approach protects
the scrambler information as no scrambler information is
shared in fronthaul (CP-RU) and access (RU-UE) links.

To have a site-specific scrambler, a related function can be
placed in the core network that generates different scramblers
and uses D-MIMO site ID (which can be defined as similar
to physical cell identifier in current 5G networks which is
determined by the primary and the secondary synchronization
signal indices) to map those scramblers to different sites.
This function can first generate a codebook of scramblers
and map each scrambler to a specific site in a one-to-one
manner. Finally, the related scrambling operation, which can
be seen as a permutation of {1, 2, . . . ,P} and labeled by
a scrambler ID, can be encrypted and sent to the related
D-MIMO site via backhaul links. Here we use an ID for each
permutation to decrease the communication overhead in the
backhaul links. In Fig. 7, we present the block diagram of the
solution proposed to protect the scrambler information. Here,
the one-to-onemapper in the core networkmatches scrambler
IDs with D-MIMO site IDs. The encrypted scrambler ID
information is sent to related D-MIMO sites via backhaul
links and a related AI model is trained to be used together
with the related scrambler at the CP.

FIGURE 8. Flowchart of the proposed defense solution.

In our proposed method, for each D-MIMO site, there
needs to be one site-specific AI model for the beam selection
task and that model needs to be trained by using site-
specific data. A flowchart summarizing the main steps for our
proposal is shown in Figure 8.

To summarize, we propose to use a scrambler before the AI
model to shuffle the places of RUs as shown in Fig. 6 so that
the attacker cannot design an effective perturbation to fool the
AI model. When the scrambler operation is protected, it will
not be possible for attackers to design effective adversarial
perturbations eliminating the need to employ previously
mentioned complex adversarial defense techniques.

Table 1 compares the proposed method with two bench-
marksmethods. As indicated by Table 1, the proposedmethod
provides a robust solution with low beam sweeping overhead.

III. NUMERICAL RESULTS
To show the effects of the adversarial attack methods UAP
and GAI for Scenario 1 and BIM and T-BIM for Scenario
2 under whitebox/blackbox settings, we perform various
numerical simulations. As a baseline technique, we also
consider white Gaussian noise (WGN) attack where the
attacker injects a white Gaussian noise into the input with
standard deviation ϵ dB. For all four adversarial attacks,
the perturbation value for each RSRP value is in [−ϵ, ϵ]
dB. We only consider small enough ϵ values (compared to
typical shadowing standard deviation values causing natural
fluctuations in the RSRP values) for the attacker not to be
able to detected by the network. We place P = 10 RUs each
with B = 32 antennas in a region given in Fig. 9 and the
single-antenna UE position is randomly chosen inside this
region.We assume that each RU sends 8 SSB beams as shown
in Fig. 9 to decrease the transmission overhead by 75 percent
compared to the full transmission of PB = 320 beams. Here
the selection of P,B and M (the number of total beams to be
sent which is 80 here) and the directions of SSB beams in
Fig. 9 are arbitrary. We selectM = 80 to be significantly less
than PB = 320 to focus on a case where AI can reduce the
overhead significantly. One can also consider different values
and beam directions to see the effect on performance.

All simulation parameters are given in Table 2. All RSRP
data is generated in MATLAB using the simulation scenario
given by Fig. 9 according to the channel models provided by
3GPP TR 38.901 [36].

We use the original and surrogate AI models shown in
Fig. 10 for simulations. The surrogate model is chosen as
a smaller deep neural network (DNN) model compared to
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TABLE 1. Comparison with two benchmarks.

FIGURE 9. RU positions and SSB beams used in simulations.

TABLE 2. Simulation parameters.

the original model to make the attack practical. We use
1.7 × 106 training data, and 1.7 × 105 test data to test the
performance of models. We train the models for 30 epochs
with an initial learning rate (LR) of 0.001 and batch size of
128 using Adam optimizer and decrease LR to half after each
10 epoch. Both models are built based on multiple successive
residual blocks (each consisting of 2 convolutional layers)
followed by 2 dense layers. Input and output channels for
the convolutional layers are set to 10 and 8 for the original
and surrogate model, and 3 × 3 kernel is used for both
models. Final model performances of the two models on
test data are 99.73% and 99.62%, respectively. The model
training took around 110 minutes in a local machine with
Intel Core i5 processor (2.4 GHz base frequency, 8 MB
cache and 4 cores). The input to the models is 80 RSRP
values and the output is a vector with size 320, showing
the probability of each beam being the best one. Notice that
there are PB = 320 beams in total whereas the network
only sends 80 of them to decrease the overhead and energy
consumption. In GAI method, to estimate the missing RSRP
values using the previous measurements, we assume that the
attacker uses 9 simple 4-layer DNNs as shown in Fig. 10c

where the missing 80 − 8k RSRP values are estimated using
the known 8k RSRP values for k = 1, 2, . . . , 9. We only
consider ϵ values less than shadowing standard deviation of
the channel as larger ϵ values might cause attacker to be
detected.

A. EFFECTIVENESS OF THE ADVERSARIAL ATTACKS
For comparison, we evaluate the RSRP error which is the
RSRP difference between the actual best beam and the
beam inferred by the AI method. Even a few dB RSRP
error is important as it directly lowers the signal-to-noise-
ratio by that much at the UE side due to a wrong beam
selection. In Fig. 11, we observe the RSRP error statistics for
ϵ = 3, 6 dB under the whitebox/blackbox setting. Here, the
x-axis shows the percentiles of the cumulative distribution
function of the RSRP errors. We first observe that RSRP
errors are larger in the whitebox setting for each method
compared to the blackbox setting. This is expected since the
perturbations crafted using the original model can maximize
the same original model’s loss function better than the
surrogate model. Another direct consequence is that all four
adversarial attack methods outperform WGN attacks in all
cases. This result proves the effectiveness of the adversarial
attacks over known techniques. A final observation is that
in all cases, the best method among BIM and T-BIM is
better than the best one of UAP and GAI. This is because
Scenario 2 allows more complete input data information for
the attacker to efficiently design perturbation compared to
Scenario 1.

In Fig. 12, we observe the 50-th and 90-th percentile RSRP
errors for various ϵ values under the whitebox/blackbox
setting. Similar results obtained from Fig. 11 are also valid
here. We observe that UAP outperforms GAI in the blackbox
setting for all ϵ values whereas the situation depends on the
ϵ value in the whitebox setting. When we compare BIM and
T-BIM, we conclude that T-BIM is better for large ϵ values
whereas BIM is more useful when ϵ is small. According to
the scenario (1 or 2), setting (whitebox/blackbox), and the
perturbation amount (ϵ) it is possible to determine the best
adversarial attack method (UAP, GAI, BIM, T-BIM) using
the findings of this study. As a final observation, in blackbox
setting, all methods are ineffective at small ϵ values as shown
in Fig. 12d, which is because of limited knowledge about the
AI model and small input variations.
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FIGURE 10. Original, surrogate and GAI AI models.

FIGURE 11. RSRP error statistics for ϵ = 3, 6 dB.

Considering all results presented in Fig. 11 and 12, we con-
clude that adversarial attacks have substantial effects on
network performance. Even in the most challenging scenario
and setting from the attacker’s perspective (Scenario 1,
blackbox) the attacks can significantly degrade the beam
selection performance. The results show the importance and
necessity of a smart and effective defense technique against
these threats.

B. PERFORMANCE OF THE PROPOSED DEFENSE METHOD
In this part, we present the results obtained with extensive
simulations under the proposed defense method relying on
a scrambling operation before the AI model. We use the
same AI model at the CP and the same surrogate AI

model at the attacker side. We only consider the blackbox
setting as it is the practical one and investigate the same
attack algorithms analyzed before under Scenario 1 and 2
accordingly. We assume that the new RU ordering after
scrambling is 6, 10, 5, 1, 4, 9, 3, 8, 2, 7, which is assumed
to be unknown to the attacker. The attacker crafts the
perturbation values as if the RU order is 1, 2, . . . , 10.

In Fig. 13, we present the RSRP error and RSRP gain
statistics for ϵ = 3, 6 dB with scrambling operation. Here
RSRP errors (Fig. 13a, 13c) show the RSRP difference
between the actual best beam and the beam selected by AI
with scrambler, and RSRP gains (Fig. 13b, 13d) indicate
the enhancement in the RSRP error compared to the no
scrambler case. We first observe that for ϵ = 3 dB, all
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FIGURE 12. RSRP errors for various ϵ values.

FIGURE 13. RSRP error/gain statistics for ϵ = 3, 6 dB with scrambling.

attacks become ineffective thanks to the scrambler. As shown
in 13b, RSRP errors due to adversarial attacks are decreased
by 4 to 11 dB at the 90th percentile value. No RSRP
gain is obtained for clean or WGN attacks as there is

no input-dependent perturbation in these cases. When we
consider ϵ = 6 dB case, as presented by 13b, the median
(50th percentile) RSRP errors are again close to zero when
we use a scrambler. Even though adversarial attacks can
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FIGURE 14. RSRP errors/gains for various ϵ values with scrambling.

result in some non-negligible errors at higher percentiles,
their resulting RSRP errors are close to that of WGN. This
result shows that the scrambling operation eliminates the
effectiveness of the adversarial attacks over WGN whose
perturbations are independent from the input. As indicated
by 13d, 4 to 9 dB RSRP enhancements are obtained against
adversarial attacks, which can also be validated by comparing
Fig. 11 and Fig. 13. As a result, we conclude that by using a
scrambler, a substantial enhancement is obtained in the beam
selection performance.

In Fig. 14, we observe 50th and 90th percentile RSRP
errors and RSRP gains with scrambling as ϵ varies. We con-
clude that median RSRP errors become negligible for all
ϵ values showing the effectiveness of the proposed defense
technique. 90th percentile RSRP errors are not negligible for
ϵ > 3 dB but as shown in Fig. 14d, at least 4 dB RSRP gain is
obtained against any four adversarial attacks. For all methods,
the RSRP gains with scrambling have a global maximum
for a specific ϵ value. This is because when ϵ is small, the
effectiveness of the attacks is limited and hence there is not
much space to enhance RSRP errors. When ϵ is sufficiently
large, the performance degradation under any attack becomes
very high and even the WGN can have substantial effects
on the performance. Therefore, the mitigation performance
of the scrambler starts degrading. Nevertheless, intermediate
values of ϵ are more practical as a small ϵ is ineffective
and a large ϵ may cause the attacker to be detected by the
network, and hence we conclude that the defense algorithm
can successfully mitigate those threats.

In Table 3, we present the 90% RSRP errors under the
blackbox setting for WGN and the best attack, and the

TABLE 3. Summary of numerical results.

corresponding RSRP gains when the defense method is
applied. (RSRP errors/gains are rounded to the nearest integer
for a better illustration.) We only consider ϵ = 3, 4, 5, 6 dB
values as attacks are not effective at smaller ϵ values.
We observe that depending on the scenario (1 or 2) and the
amount of perturbation (ϵ), the most disruptive attack method
and the related performance gain when the scrambling is
applied changes. In all cases, it is clearly seen that the
proposed defense technique relying on scrambling prior to
AI operation significantly enhances the performance. After
the RSRP gain by defense, we obtain nearly the same RSRP
errors as in the WGN attack case, showing that the defense
technique can successfully eliminate the disruptive effects of
the smart adversarial attacks.

By applying the scrambling operation, our method can
obfuscate how the RSRP values corresponding to different
RUs are input to the AI model running at the CP. The
permutation of RUs establishes a secret, which makes it more
challenging for an attacker to predict the relationship between
the input and output of the AI system. In particular, the
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permutation makes it almost impossible for an attacker to
identify the boundaries in the space of measurement values
where the determination changes, and thus makes it very
challenging to design an effective perturbation to attack
the AI model, i.e., makes it very challenging to modify
the measurement values to mislead the AI model as an
operational controller of the wireless access network.

IV. CONCLUSION
In this work, we investigate potential vulnerabilities of
AI-driven beam selection functionality in a D-MIMO net-
work. We demonstrate a practical scenario where a potential
malware infects UE and performs smart adversarial attacks,
thereby lowering the network performance. We proposed
four different adversarial attack methods, two of which make
use of only partial knowledge about the RSRP values of
forwarded beams.We experimentally showed that adversarial
attacks can lead to a considerable degree of RSRP error for
beam selection tasks. And the amount of error introduced
by these adversarial attacks is much larger than conventional
attacks. These results show that effective defensive strategies
should not be ignored when using AI for D-MIMO tasks.
To that aim, we present a simple but effective mitigation
solution against adversarial attack threats providing up to
10 dB better signal strengths by selecting more accurate
RU/beam pairs, support our proposal with detailed simulation
results, and finally provide a potential deployment option for
our proposed solution. As a future work, one can investigate
the effectiveness of a similar defense mechanism against
adversarial threats on other AI-driven tasks including power
control and RU serving subset selection in D-MIMO.
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