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ABSTRACT Vehicle object detection usingUAV images is a crucial undertaking in urban trafficmanagement
and the advancement of autonomous driving technologies. Conventional networks fail to achieve accuary in
detecting vehicle objects from a drone’s perspective due to the significant variations in the size of the target
items, unequal distribution of their positions in the image, and image degradation induced by the drone’s
movement.In order to surmount this challenge, this research suggests an enhanced TOOD object detection
model namedDrone-TOOD. The first proposal is to create a lightweight network skeleton called CSPRegNet
by merging CSPblock with Regblock. Secondly, we incorporate Regblock into CSPPAFPN to enhance
CSPRegPAFPN and incorporate EVCblock at the upsampling location of deep features to capture corner
area details and minimize the degradation of feature information. In addition, a efficient task decomposition
attention module is also proposed to enhance the interaction ability of positioning and classification tasks.
This task decomposition module can highlight the characteristics of a specific task while retaining the
characteristics of another task, thereby improving detection capabilities. Experiments conducted on the
Drone Vision Challenge Benchmark (VisDrone) demonstrate that the enhanced model can obtain superior
performance compared to TOOD. The average precision (mAP) achieved by our approach is 64%, surpassing
TOOD by 7.9%. The frames per second (FPS) stayed constant at 27.2. Drone-TOOD demonstrates superior
performance compared to other lightweight models on the VisDrone-2021 dataset. In order to demonstrate
the robustness of our approach, we additionally performed ablation experiments and conducted tests on the
UAV Detection and Tracking Dataset (UAVDT), resulting in an achieved mean average precision (mAP) of
64.6%. Furthermore, Drone-TOOD possesses a total of parameter approximately 21.7 M.

INDEX TERMS Vehicle detection, task align, real-time object detection, lightweight network.

I. INTRODUCTION
UAV technology is advancing rapidly and its use is increasing
in military and civilian fields. UAV aerial photography is
advantageous due to its lightweight, quick, cost-effective,
and user-friendly nature, allowing for the easy gathering
of high-precision aerial photos and minimizing expenses
associated with materials and labor. Drone technology has
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increasingly become prevalent in different industries such
as transportation, security, logistics, photography, surveying,
and mapping, serving as a crucial tool for humans to under-
stand the world and gather environmental information [1].

In the field of vehicle object detection, drone vehicle object
detection technology has gradually become a new hot spot
in research [2]. Due to the single shooting angle and geo-
graphical location of traditional surveillance cameras, it is
difficult to obtain more comprehensive detection in complex
scenes and severe occlusion situations. Unlike traditional
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surveillance cameras, Compared with surveillance cameras,
the flexibility and wide shooting angle of drones can well
make up for the shortcomings of traditional surveillance cam-
eras. Currently, the task of UAV object detection technology
is facedwith the problems of limited resources on the airborne
platform, rapid motion changes, and perspective specificity,
which lead to image degradation, uneven object distribu-
tion, and real-time detection requirements. These problems
Bringing major challenges to UAV vehicle object detection
technology [3].

UAV vehicle object detection techniques based on deep
learning can be separated into one-stage and two-stage cate-
gories in recent years due to the rapid growth of deep learning.
The improved precision of the two-stage algorithm is one
of its advantages. The object detection problem is divided
into two steps by this kind of algorithm. First, it creates
candidate areas, then uses those areas to do regression and
classification. Its drawback is that the detection speed is
comparatively slow because it produces a lot of candidate
areas, which adds to the computation and time required.
The R-CNN [4] series is a representation of the two-stage
detector. As the first deep neural network model to use CNN
for target detection, R-CNN is considered the founder of the
R-CNN series. Selective search is used to extract the region
proposals, and then a linear SVM classifier is used to forecast
the locations of items within each region and determine the
category of objects. Despite the significant advancements
made by RCNN, its excessive amount of overlapping region
proposals leads to an abundance of redundant feature calcu-
lations, causing a considerable decrease in detection speed.
In response to the slow detection speed of R-CNN, K. He
et al. proposed Spatial Pyramid Pooling Networks (SPPNet)
[5]. Although the detection speed has improved, it is still a
two-stage type during training. And SPPNet only fine-tunes
the fully connected layer and ignores other layers, so there
are still shortcomings. Fast-RCNN [6] subsequently proposed
by R. Girshick et al. combines the advantages of R-CNN
and SPPNet, but its detection speed is still limited by the
generated candidate box area. The Faster-RCNN, introduced
by S. Ren et al., improves upon the Fast-RCNN model by
reducing the time needed to produce candidate box areas
for target identification. This is achieved by the introduc-
tion of the Region Proposal Network (RPN). Nevertheless,
there is computational redundancy in later calculations. Later,
further researchers devised multiple enhancement techniques
using Faster-RCNN [6] to address the aforementioned issues.
Some of the strategies encompass Feature Pyramid Net-
works(FPN) [7], RFCN [8], Light head RCNN, and others.
They expanded the components of the two-stage detector
and improved its efficiency. Since the detection speed of the
Two-stage detector is slow and it is difficult to achieve real-
time detection tasks, the one-stage detector came into being.
The advantages of the one-stage algorithm are fast speed and
good real-time performance. This type of algorithm treats
the target detection problem as a single regression problem

and directly outputs the category and location information
of the target. However, due to the simplified detection pro-
cess, the disadvantage is that the accuracy is low and it is
easy to miss detections and false detections. One-stage is
represented by the YOLO series. YOLO was proposed by
Redmon et al. [9]. It is the first one-stage detector in the
deep learning era. This algorithm completely abandons the
detection paradigm of proposal detection and verification,
and instead applies a single neural network to the entire
image, segmenting the image into multiple regions while
predicting bounding boxes and probabilities for each region.
Subsequently, Redmon and Farhadi implemented a sequence
of enhancements to YOLO, resulting in the development of
YOLOv2 [10] and YOLOv3 [11]. These versions not only
increased the accuracy of object recognition but also pre-
served a high level of detection speed. Despite significant
advancements in the accuracy of the YOLO series object
detection system, its ability to accurately locate small targets
remains subpar. The Single Shot MultiBox Detector (SSD)
[12], proposed by Liu et al., is a one-stage target detector that
incorporates multi-reference and multi-resolution detection
technologies. This advancement significantly enhances the
accuracy of the one-stage target detector, particularly for
detecting small object target. The detection accuracy of the
one-stage detector has been improved to a certain extent
after continuous improvement, but it is still lower than that
of the two-stage object detector. T.-Y. Lin et al. found the
main reason that onestage detectors are less accurate than
two-stage objects was the extreme foreground-background
hierarchy imbalance encountered during dense detector train-
ing (extreme foreground-background class imbalance).For
this reason, RetinaNet incorporates a novel loss function
called Focal Loss [13] to address this issue. By modifying
the usual cross-entropy loss function, the detector allocates
greater emphasis to data that are challenging to categorize
throughout the training phase. The utilization of Focal Loss
enables a one-stage detector to attain precision that is on par
with a two-stage detector, all while preserving an exceedingly
rapid detection speed. Recently, several advanced one-stage
detectors, including CenterNet [14], YOLOv4 [15], TOOD
[16], and ObjectBox [17]have been developed thanks to the
contributions of numerous scholars. These target detectors
have progressively attained a level of performance that is
comparable to two-stage target detectors. Hence, to strike a
compromise between the speed and accuracy of object iden-
tification on UAVs with limited processing capacity, opting
for a one-stage target detector is more effective than a Two-
stage target detector.

The aforementioned conventional approaches exhibit sub-
par efficacy in detecting vehicle targets in UAV imagery.
Consequently, in recent years, certain researchers have under-
taken focused research and developed models on UAV
perspective object detection technologies. The rapid devel-
opment of large language models (LLM) and visual language
models (VLM) in recent years has expanded the ability of
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UAV to solve complex tasks, De Curt ò et al [18] proposed a
zero sample drone scene literary text description application
that combines LLM and VLM with the ability of drones
to provide real-time vision and high-level data throughput.
This technology can be further used to solve complex tasks.
Zhong et al. [19] proposed a robust and reliable autonomous
planning system for intelligent quadcopters to deal with the
dangers of dynamic obstacles to drone flight. By combin-
ing tracking and trajectory prediction of dynamic obstacles,
a more reliable real-time obstacle avoidance planning system
can be achieved than existing methods. At the same time,
this system, combined with LLM, makes human-machine
interaction more feasible. Muzammul et al. [20] enhanced the
detection of small-scale objects by integrating Slicing Aided
Hyper Inference (SAHI). This integration not only improves
the detection accuracy of the model but also opens up new
ways for advanced image analysis in UAV applications.
Yu et al. [21] proposed a multi-level micro vehicle detection
framework (MTVD) for mid- and high-altitude drone images
based on visual attention and spatiotemporal information,
by using a segmentation network to extract road areas in the
image and utilizing the attention mechanism. Improve the
RSS algorithm with spatiotemporal information technology
to suppress the impact of complex backgrounds on object
detection and reduce false detections. Momin et al. [22]
proposed a lightweight algorithm model that is feasible with
limited computing resources. This algorithm model is based
on YOLOv4-Tiny by using three prediction boxes and adding
the second layer and the third layer to the backbone network.
Three layers of output image resolution are used to increase
the algorithm’s detection accuracy of small targets in the
data set. Shen et al. [23] designed corresponding anchor
frames according to the size of vehicle targets in the drone’s
perspective, and used a branch structure to design a cost-
effective stem block. Finally, a 1 × 1 volume was added
to each stage block. To enhance small target feature extrac-
tion, this improved method is applied to Fast-RCNN, which
effectively reduces detection time and improves detection
accuracy. Luo et al. [24] introduced asymmetric convolution
and an improved SPP module to the residual blocks of the
upper, middle, and lower layers of the YOLOv5 backbone
network to reduce the computational complexity while main-
taining the original receptive field. Finally, in the Focus
module, an attentionmechanismmodule called ICEA is intro-
duced to assist the network in emphasizing important features
while suppressing irrelevant features. This improvement is
beneficial to suppressing interference caused by complex
backgrounds and achieving UAV vehicle target detection
accuracy and speed. balance. On the basis of YOLOv5,
Liu et al. [25] proposed a feature enhancement module called
FCblock to solve the problem of a large number of small
and dense targets and complex background interference in
high-altitude photography. into adaptive weights, and then
assign the weights to shallow feature maps to improve feature
extraction of small targets, and then integrate FEBlock into

spatial pyramid pooling (SPP) to generate enhanced spatial
pyramid pooling. Secondly, the self-feature extended version
(SCEP) is proposed to further improve the network’s feature
extraction capability, and finally a shallower detection layer
is added to the large, medium and small detection layers
to improve the network’s detection ability of medium and
small targets. Li et al. [26] proposed a lightweight rotat-
ing object detection algorithm. Aiming at the problem that
traditional algorithms do not consider the diversity of vehi-
cle scales in UAV images and cannot obtain rotation angle
information, a method was introduced. A circular smooth
label (CSL) angle classification method makes it suitable for
detection scenarios based on rotating boxes, and the Cas-
caded Swin Transformer Block (STrB) is used to reduce the
computational complexity in the feature fusion process in the
backbone network, further enhancing semantic information
and global perception capabilities of small objects. Finally
a feature enhanced attention module (FEAM) is proposed
to improve the utilization of detailed information through
local feature self-supervision. Although the vehicle object
detection task from the perspective of UAV has attracted the
attention and research of many scholars and achieved many
results, due to the problems of UAV angle specificity, limited
airborne platform and uneven distribution of image samples,
UAV Perspective vehicle object detection technology still
requires further research to achieve a balance between higher
detection accuracy and detection speed.

To address the issues of target detection in UAV pho-
tos in real-world circumstances, we initially break down
the target detection algorithm into two tasks: classification
and location. Prior target identification algorithms employed
a coupled head structure to accomplish the tasks of cat-
egorization and location. This structure is susceptible to
generating a significant quantity of parameters and process-
ing resources, as well as overfitting. Consequently, in recent
times, numerous academics have started utilizing decoupled
head structures to accomplish classification and positioning
duties while developing target detection algorithms. This
structure can efficiently decrease the number of parameters
and computations and improve its capacity to generalize and
its robustness. However, this structure still has certain issues.
Due to the interdependence of classification and positioning
tasks, processing them individually can lead to misalignment
and thus decrease the effectiveness of the detector. Feng C
et al. proposed TOOD, which effectively solves the prob-
lem of task misalignment using decoupled head detectors by
interactively processing classification and positioning tasks.
Therefore, in order to solve the problem of different target
sizes in the drone’s perspective, uneven distribution of detec-
tion objects, misalignment of classification and positioning
tasks, and difficulty in feature extraction, we further improved
and proposed the Drone-TOOD based on TOOD. Our main
contributions can be summarized as follows:
(1) Due to the large number of parameters and calculations

in the TOOD model, it is not suitable for real-time
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FIGURE 1. The structure of TOOD.

detection when the airborne platform is limited. Hence,
this research employs the concepts of RegNet [27] and
CSPNet [28] to revamp its primary network, resulting
in a new network called CSPRegNet. This redesign
aims to strengthen the backbone network’s ability to
extract features, decrease computing complexity, and
enhance both detection accuracy and speed. CSPReg-
Net integrates the design space concept of RegNet
with the cross-stage local network structure of CSP-
Net. The RegNet design space concept is utilized to
determine the ideal network depth, network width,
and network component modules. These parameters
are then combined with the CSPNet network struc-
ture to enhance computational efficiency and improve
detection performance, especially in scenarios with
restricted computing resources.

(2) In order to address the issues of missed detection
and false detection in unmanned aerial vehicle (UAV)
imagery in dense vehicle scenarios, we employ the
same building blocks as CSPRegNet and combine
them with PAFPN [29] to obtain a more powerful and
efficient feature extraction capability called CSPReg-
PAFPN. In addition, the principle of the Explicit Visual
Center(EVC) [30] we introduced is to obtain explicit
visual center information from the features in the deep-
est layer to adjust the shallow features, thereby improv-
ing the dense object detection capability. Therefore,

we introduced EVC into CSPRegPAFPN to improve
the detection of the detector in dense vehicle scenes.

(3) In the TOOD network structure, due to the interac-
tion of single-designed task features, it is inevitable
to introduce certain feature conflicts in the two
tasks of classification and positioning. Therefore, the
head network TAP uses the Layer Attention mod-
ule to encourage the decomposition of task features,
so that the classification and positioning tasks can
pay more attention to the specific features of their
own tasks after interacting with the features. How-
ever, the higher computational complexity of this
module affects the detection efficiency. Therefore,
we designed the Efficient Task Decomposition Atten-
tion (ETDA)module to replace it, which can effectively
reduce the computational complexity and enhance
task decomposition capabilities to improve detection
efficiency.

Experiments show that the detection accuracy and speed
of our method on VisDrone and UAVDT are effectively
improved. The improvement of the TOOD model.

II. RESEARCH METHODS
This section describes the TOOD network structure,
the design of CSPRegNet, the design of CSPReg-
PAFPN, the addition of EVCblock, and the design of
ETD-Attention.
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FIGURE 2. The space design structure of RegNet.

A. TOOD STRUCTURE
TOOD is a one-stage detection network that uses task align-
ment learning, task alignment indicators, and task alignment
loss to solve the problem of inconsistent feature learning
between classification tasks and positioning tasks in the exist-
ing decoupled head structure detection network.

The TOOD model architecture consists of four main com-
ponents: input, backbone network, neck network, and head
network. The network structure of the TOOD is illustrated in
Figure 1.

B. CONCEPTS AND PRINCIPLES OF CSPREGNET DESIGN
The backbone network uses ResNet-50 [31] for feature
extraction, the neck network uses FPN for feature fusion,
and the head uses TAP to output the target prediction. The
detection method begins by feeding the image into ResNet-
50, which produces four feature maps of varying sizes. Next,
the feature maps generated by the second, third, and fourth
layers are chosen and fed into the FPN to combine their fea-
tures and improve the network’s capacity to recognize objects
at different scales. Prior to being inputted into TAP, the Task
Interaction module is utilized for the purpose of task fea-
ture interaction and decomposition, subsequently followed by
TAP for prediction. Since the task features of classification
and positioning tasks have different focuses, TAP uses the
Layer Attention hierarchical attention mechanism to dynam-
ically calculate the task features specific to positioning and
classification to decompose the tasks to avoid introducing
conflicts between the two task features. Finally, task align-
ment learning (TAL) is used to further guide the head network
for task alignment. The detector’s task alignment method can
achieve good accuracy in UAV vehicle object detection. Nev-
ertheless, the ResNet-50 and Layer Attention modules suffer
from reduced efficiency and hinder real-time performance
due to their numerous parameters and extensive calculations.

Additionally, although the FPN neck network can transmit
multi-scale information, it fails to adequately address the
issue of incomplete information transmission caused by the
significant variation in target object scales from the drone’s
perspective. Hence, the TOOD detector, which employed
for the purpose of detecting targets in drone vehicles, still
required additional enhancements. The backbone network
is an essential element of the whole object detector. The
task of this component is to extract features from the input
image by performing convolutional operations, which also
help in abstracting the input image. TOODutilizes ResNet-50
as its backbone network architecture. Despite its impressive
feature extraction capabilities, the detector’s performance in
detection can be enhanced by utilizing a less sophisticated
backbone network, owing to the significant number of net-
work parameters and computing demands. We got inspiration
from RegNet,CSPNet,and YOLOX [32] and designed the
CSPRegNet backbone network. RegNet followed a progres-
sive design method through design space design to find the
optimal network model and discovered some general guide-
lines for network design. First, the initial neural network
model was abstracted into three parts: stem, body, and head,
as shown in Figure 2 (a). The stem is the input layer used
to process different types of input data. The body is the main
body of the network and is also called the backbone layer. The
backbone layer is generally divided into four stages as shown
in Figure 2(b). Each stage is composed of multiple blocks,
as shown in Figure 2(c), block is generally the level at which
convolution operations are performed, and its structure and
parameters have no restrictions, as shown in Figure 2(d).

The head is the output layer, and the output layer structure
is adjusted according to different task types and con-
tent.RegNet first starts optimizing from the body part. In each
stage, the block has four hyperparameters, which are the
number of layers of the block di, the network width wi,
the bottleneck rate, and the number of groups of grouped
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convolutions. According to the range of these four hyperpa-
rameters, a large number of experiments were conducted to
obtain four basic guidelines for model design. First, introduce
a shared bottleneck rate; second, use shared group convo-
lutions in all stages; third, the width of the stage increases
as the stage increases; the depth of the stage increases as
the stage increases. And increase (excluding the last stage).
Continuing in-depth optimization based on the above basic
guidelines, we found that the width under each block can be
approximately fitted to a linear relationship, but the design
space limits all blocks in each stage to use the same width,
so the width needs to be quantified. First, the block width is
linearly parameterized through the following formula:

uj = w0 + wa · j, 0 ≤ j < d (1)

This parameterization has four parameters, namely net-
work depth, bottleneck rate j, initial widthw0,and straight line
slope wa Then the quantization factor Sj is calculated by the
following formula:

uj = w0 · w
Sj
m (2)

Round the calculated quantization factor Sj and express
it as ⌈Sj⌋, and recalculate the network width through the
following formula:

uj = w0 · w
⌈Sj⌋
m (3)

Then put blocks with the same network width into the same
stage, so that the width of the i-th stage can be expressed as:

wj = w0 · wim (4)

The number of blocks di counts the number of blocks
with the same width, and the width wj in each stage can be
expressed as:

wj = w9 · wim (5)

di =

∑
j

1[⌈Sj⌋ = i] (6)

In this way, the quantification of width is achieved, where
w0, wa and wm can be determined by performing a network
search based on the network depth. On the premise that the
number of stages is four, we specify the network structure
through six parameters di, w0, wa, wm, bottleneck rate b and
group width g, and generate the width and depth of the block
by formulas (2)-(4), thereby obtaining a network structure
with better design space.

Therefore, RegNet effectively reduces computational com-
plexity and enhances feature extraction capabilities by opti-
mizing the design of the neural network structure, thereby
improving detection speed and accuracy. However, due to
the small vehicle targets in UAV images, higher resolution
is often required for small object detection and more detailed
features for accurate detection, although RegNet can adapt to
small targets by increasing the resolution, it will also increase
the computational complexity, so we need to further optimize
based on RegNet. In order to enhance the feature extraction

FIGURE 3. The structure of CSP.

capabilities of small targets, we combine the design space
idea of RegNet with CSPNet.

The core idea of CSPNet is to divide the feature map into
two parts, one part is called the main path (Main), and the
other part is called the branch (branch). Its structure is shown
in Figure 3.

The main path is responsible for extracting global and
abstract features, while the branch path is responsible for
extracting local and detailed features. This separated design
enables CSPNet to better capture features of different scales
and levels, thereby better capturing detailed information
about small targets.Many detectors improve feature extrac-
tion capabilities and computational efficiency by introducing
CSP connections and CSP structures. Therefore, we com-
bined the design space idea of RegNet with the Cross Stage
Partial Network structure, obtained CSPRegNet and replaced
it with the backbone network of TOOD. The CSRegNet
structure is shown in Figure 4.CSPRegNet is divided into
a stem layer and four stages. The initial three stages are
outfitted with a ConvModule and a CSPRegBottleNeck.
In the final stage, the SPPFBottleNeck module is incorpo-
rated to enhance the network’s receptive field and its capacity
to detect tiny objects. The ConvModule class comprises a
Conv2d layer, along with Batch Normalize and SiLu [33]
activation functions. In CSPRegBottleNeck, we put RegNet-
block (Regblock) at the branch position, and perform feature
splicing after the feature map is processed by main and
branch. Then the spliced features will go through the channel
attention mechanism module we introduced, which consist-
ing of an adaptive average pooling consists of a conv and a
hardsigmoid, allowing all channels to learn from each other
the features learned in main and branch, and finally output the
featuremap after passing through aConvModule.CSPRegNet
takes full advantage of the advantages of CSPNet and RegNet
and can bring powerful feature extraction capabilities and low
computing costs.

C. CSPREGPAFPN STRUCTURE OF DRONE-TOOD
Due to the wide area specificity of UAV and the large dif-
ferences in vehicle target sizes, it is necessary to fuse the
feature maps incoming from the backbone network so that
the network can obtain multi-scale fusion information and
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FIGURE 4. The structure of CSPRegNet.

improve the model’s adaptability to targets of different sizes.
FPN establishes connections for feature maps at different
levels using a top-up and bottom-down approach to fuse deep
features with shallow features, thereby extracting and utiliz-
ing multi-scale features. However, when FPN has large-scale
differences, it is difficult to align and integrate the features
between the bottom layer and the top layer. The top-down
structure prevents the bottom layer features from affecting
the top layer features. Therefore, we use the PAN structure
to introduce a path aggregation module to solve the above
problems.

By adding a bottom-down path to the top-down path of
FPN, PANnot only shortens the information propagation path
but also utilizes the positioning information of underlying
features. Not only that, we use CSPRegBottleNeck in PAN,
whose structure is the same as that in CSPRegNet, to enhance
network feature fusion capabilities and improve detection
performance. We named it RegPAFPN, and its network struc-
ture is shown in Figure 5.

D. EVC STRCTURE OF DRONE-TOOD
The feature pyramid is widely used by many object detectors
due to its excellent performance. However, many current
works only focus on inter-layer feature interaction and ignore
intra-layer features. In scenes where small-sized objects are
too densely spaced between objects in UAV images, although
effective feature interaction can be performed through feature
pyramids to obtain rich feature representations or the Vision
Transformer method can be used to obtain global context and
long-term dependencies these methods suffer from limited
contextual information, complex calculations, and neglect of
corner areas.

There is limited contextual information, complex cal-
culations, and neglect of corner areas. In order to solve
the above problems, we introduce EVC, which captures
global long-distance dependencies and local corner areas
of the image by using lightweight MLP [34] and a learn-
able visual center mechanism (LVC) in parallel, as shown
in Figure 6 Show.Lightweight MLP is mainly composed
of residual blocks based on depth convolution and residual
blocks based on channelMLP. Specifically, in the lightweight
MLP processing flow, the feature map first undergoes fea-
ture smoothing processing through a stem layer to obtain
the feature map Xin after passed to the deep convolution
residual module, in which the deep convolution residual
module uses group normalization and depth separable con-
volution to process the feature map and uses channel scaling
operations and drop path operations to improve the general-
ization of features and robustness capabilities, followed by
residual connections. The above process can be expressed
as:

X̃in = DConv(GN (Xin)) + Xin (7)

After obtaining X̃in from the depth-based convolutional
residual module, it is then passed to the channel MLP-based
residual block for group normalization and channel MLP
processing. At the same time, the channel scaling operation
is used again on the processed feature map and DropPath
operations to enhance feature generalization and robustness
capabilities, followed by residual connection to finally obtain
feature maps with global long-distance dependencies. The
above process can be expressed as:

MLP(Xin) = CMLP(GN (X̃in)) + X̃in (8)
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FIGURE 5. The structure of CSPRegPAFPN.

LVC is a coder with an inherent dictionary, which con-
sists of an inherent codebook and a set of scaling factors.
In the LVC processing flow, the feature map Xin that has
been smoothed by the stem layer is first passed into a set
of convolutional layers for combined encoding, and then the
encoded features are processed by the CBR block and passed
into the codebook. A set of scaling factors s is used in the
codebook to sequentially map Xi and bk to the corresponding
position information. The information for the k-th codeword
can be calculated using the following formula:

ek =

N∑
i=1

e−Sk ||X̃i−bk ||2∑K
j=1 e

−Sk ||X̃i−bk ||2
(X̃i − bk ) (9)

Then useφ to fuse all ek to obtain the full information about
the K codes of the entire image. The specific formula is as
follows:

e =

K∑
k=1

φ(ek ) (10)

Then the output of the codebook is passed into a fully
connected layer and a 1 × 1 convolution layer to predict the
prominent key class features to obtain the part and corner
region features of the scale factor coefficient, and then per-
form channel multiplication and residual connection with the
input features Xin to obtain the feature with feature mapping
of local corner region information. Finally, the two feature
maps processed by lightweight MLP and LVC are connected
channel by channel to obtain global long-range dependencies
and feature maps that retain local corner area information of

the input image as much as possible to complete intra-layer
feature adjustment. Since the deep features of the top layer
contain global information, we insert the EVC module at the
upsampling point in the top-down path in RegPAFPN. The
EVC module uses the acquired EVC features to adjust the
shallow features by capturing the image’s local corner area
information and global long-range dependencies. In reality,
top-level features are gradually fused by top-down path con-
tinuous upsampling; however, this approach will gradually
dilute the EVC feature information in the process. There-
fore, we adopt a cross-level feature fusion method to directly
upsample the EVC features to shallow features and then use
1 × 1 convolution to reduce the dimension to 256 channels
after splicing along the channels, thereby realizing the top-
level features to adjust the shallow features across levels so
that each layer of the feature pyramid obtains Obtain global
but differentiated feature representations., thereby improving
the network’s feature extraction capabilities in dense objects
and thus improving detection accuracy.

E. ETDA STRCTURE OF DRONE-TOOD
In the TAP structure of the TOOD network, Layer-Attention
is used to decompose the interactive features of the posi-
tioning and classification tasks. Firstly, the task interaction
features obtained by stacking the feature maps of each
layer passed in from the neck network can be expressed
as:

Xinter
k =

{
δ(convk (XFPN )),k=1
δ(convk (X inter

k−1 )),k>1
, ∀k ∈ {1, 2, . . . . . . ,N } (11)
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FIGURE 6. The structure of EVCblock.

Among them, convk and σ are the convolution layer and
activation function, XFPN is the feature map passed in from
FPN, and thenX interk is processed by adaptive average pooling
and then passed to two fully connected layers to calculate the
specific task feature weights. The process It can be expressed
as:

w = σ (fc2(δ(fc1(x inter)))) (12)

Finally, the specific task feature weight and the feature
interaction feature map are multiplied channel by channel to
obtain the specific task interaction feature map. The process
can be expressed as:

Xtask
k = wk · Xinter

k , ∀k ∈ {1, 2, . . . . . . ,N } (13)

Although the above method can effectively interact with
positioning and classification task information and retain
task-specific features, due to the complex calculations in
Layer Attention and excessive dimensionality reduction oper-
ations, information loss affects detection efficiency and
performance. Therefore, we designed ETDA to use To
enhance specific task decomposition capabilities and improve
detection efficiency, the structure of ETDA is shown in
Figure 8.Since the interaction features incoming from the
neck network are mixed with classification and positioning
information and there is a lot of redundant information in
the features, this method first extracts some features from
the task interaction feature map for convolution operations
and then decomposes them according to specific tasks. The

FIGURE 7. The structure of ETDA.

requirement is to obtain the feature weight of a specific task.
After splicing the feature map and performing a convolution
operation, the feature information of a specific task in the
task interaction feature map can be highlighted while still
retaining the feature information of another task, thereby task
alignment capabilities and improving detection efficiency.
The process can be expressed as:

Xpartial
k = Xinter

k × ω (14)

Partial channel feature map Xpartialk is obtained through
factor ω and used for subsequent adaptive task feature weight
extraction. The adaptive task feature weight module extracts
specific weights from the incoming partial channel feature
maps according to specific task requirements to obtain posi-
tioning task weight wL and classification task weight wc. The
specific formula is as follows:

wL = Conv(concat(Avg(Xpartial),Max(XPartial)) (15)

wC = σ (Conv(Avg(Xpartial)) (16)

Finally, specific task weights are assigned to some chan-
nel feature maps and spliced with the remaining channel
feature maps. After a simple convolution, the feature map
X taskk obtains the positioning and classification task weights,
thereby enhancing task alignment capabilities and improving
detection accuracy. The specific formula is as follows:

X taskk = Conv(concat(wL/C ⊗ Xpartialk ,X residuek )) (17)

III. EXPERIMENTAL RESULTS AND ANALYSIS
In this work, all experiments in this article were conducted
on theWindow 10 system. In the hardware configuration, our
CPU uses I9-11900K and the GPU uses RTX 3090 (24GB).
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We do not use pre-training in the training strategy, and we use
AdamW [35] as the training optimizer. The initial learning
rate is 0.002, the momentum weight is 0.0002, the weight
attenuation coefficient is 0.0001, the number of training
batches is 16, the total training is 300 epochs, and there is
cosine annealing [36]The learning rate strategy intervenes at
150 epochs.

A. DATASET
All experiments in this article use two public data sets,
namely VisDrone-2021 [37] and UAVDT [38]. VisDrone-
2021 is a dataset for drone vision benchmark evaluation, that
was jointly developed by the Institute of Automation, the
Chinese Academy of Sciences (CASIA), and the Chinese
University of Hong Kong (CUHK).The pictures in this data
set contain most daily scenes, with rich shooting environ-
ments, various shooting heights and angles, and complete
annotation information. They are of great value and can
provide more credible verification for the method proposed
in this article. In the object detection challenge, the data set
contains 8629 static aerial images, including 6471 training
set images, 548 verification sets, and 1610 test sets. These
images contain ten categories, namely Car, Truck, Van, Bus,
Bicycle, Awning Tricycles, Tricycles, Pedestrians and Peo-
ple. In this article, we only perform detection analysis on
four-wheeled motor vehicles, so we remove images that only
contain non-four-wheeled motor vehicle categories from the
data set to obtain the VisDrone-2021 subset. The VisDrone-
2021 subset contains 7982 static aerial images, of which
the training set contains 5930 images, the verification set
contains 518 images, and the test set contains 1534 images.
The detection categories are Car, Truck, Van and Bus. The
image resolutions of theVisDrone-2021 subset are distributed
from 960 × 540 to 2000 × 1500, and our experiments in this
dataset unified the input images to 1280 × 1280.
UAVDT is a vehicle traffic data set based on drone

shots. It consists of frame images captured from 100 video
sequences. These video sequences were shot by drones in
multiple locations, covering common scenes in urban areas.
Including squares, main roads, toll booths, highways, inter-
sections, etc.,we selected 8228 static images from it, of which
5760 images were used as the training set, 823 images were
used as the training set, and 1645 images were used as the
test set. This data The set of images contains three categories,
namely Car, Truck and Bus, and the image resolution is
1024× 540. Our experiments in this dataset unified the input
images into 640 × 640. Since this data set is mainly used for
target tracking tasks and is not specifically designed for target
detection, its authoritativeness in vehicle object detection
research on actual targets is not as good as VisDrone-2021.
Therefore, this data set serves as a supplementary experimen-
tal data set for this article. Demonstrate the effectiveness of
our proposed method. In addition, we uniformly use Rezise,
RandomCrop, and RandomFlip to enhance the input image
data to improve model robustness and generalization. The

FIGURE 8. Dataset label distribution chart.

FIGURE 9. Dataset label distribution chart.

distribution of the number of category labels and the distribu-
tion of target sizes in the VisDrone-2021 subset and UAVDT
are shown in Figure 8 and Figure 9, which truly reflect the
overview of actual UAV traffic application scenarios.
Evaluation indiators:
In this experiment, we select the commonly used evalu-

ation indicators in object detection tasks, average precision
(AP), average precision average precision mean(mAP). as a
metric for our model evaluation. These evaluation metrics are
defined as follows:

AP =

∫ 1

0
P (R) dR =

N∑
k=1

P(k)1R(k) (18)

mAP =

n∑
i=0

AP (i)

n
(19)

P =
TP

TP+ FP
(20)

At the same time, this experiment considers the complexity
of the model and the detection efficiency to evaluate the
real-time performance of the model. The complexity of the
model can be evaluated by the size of the model, the number
of parameters, and FLOPs. The detection efficiency of the
model can be evaluated by the frames per second(FPS).

B. BACKBONE NETWORK COMPARISON EXPERIMENT
In order to prove the effectiveness of our proposed
CSPRegNET, this article conducts comparative experiments

42008 VOLUME 12, 2024



K. Ou et al.: Drone-TOOD: A Lightweight Task-Aligned Object Detection Algorithm

TABLE 1. The backbone network comparison experiment.

between different backbones in the VisDrone-2021 data
set. We selected ResNet-50, RegNet-400M, RegNet-800M,
RegNet-1.6G, RegNet3.2G, and CSPResNet50, the above
networks are derived from our improved baseline network.
The comparative experiments are shown in Table 1.Although
ResNet-50 can achieve higher accuracy, due to the high
computational complexity of its model, it is not suitable for
situations where the airborne platform is limited. Compared
with ResNet-50, RegNet can achieve better accuracy with
lower model complexity as the network depth and width
deepen, such as RegNet-800M. With the same accuracy,
RegNet-800Mhas fewer parameters. Comparedwith ResNet-
50, the number of parameters has been reduced by 19.7M and
the detection speed has been increased by 5FPS. Therefore,
the network structure designed through space is more suitable
for UAV image vehicle detection tasks than deeper networks.
In order to balance speed and accuracy, we selected RegNet-
800M as the benchmark for our subsequent experiments.

In the vehicle object detection task from the drone per-
spective, the difficulty in extracting small target features has
always been a problem for today’s target detectors. In order
to verify the effectiveness of the cross-stage local network
structure in improving small object detection capabilities,
we separate the CSPNet structure into a Fusion comparison
with ResNet-50 and RegNet-800M.And the CSPRegNet-
800M we proposed is still 0.3% more accurate than the
CSPResNet-50 with its low parameter quantity and low com-
plexity. Therefore, the CSPRegNet-800M proposed in this
article obtains the optimal network depth, network width,
and network component modules through the RegNet design
space idea, and then combines the cross-stage local net-
work structure to achieve efficient calculation and more
efficient calculations under the condition of limited com-
puting resources. Its well detection performance achieves a
balance between accuracy and real-time performance. The
visual training process of the skeleton network comparison
experiment is shown in Figure 10.

C. ABLATION EXPERIMENT
The ablation experiments in this article were all conducted on
VisDrone-2021 and UAVDT based on CSPRegNet-800M as

FIGURE 10. Backbone Network comparison experiment visualization.

the skeleton network to fairly verify the effectiveness of the
improvement of each part of the module.

According to Table 2, in order to prove the effectiveness of
the spatially designed convolution module of the cross-stage
local network in PAFPN, we designed an ablation experiment
of the neck network to verify that the spatially designed
convolutionmodule of the cross-stage local network is used in
PAFPN. The enhanced effect on feature fusion. Experimental
results show that PAFPN not only shortens the information
propagation path by adding a bottom-down path to the FPN
top-down path, but also utilizes the positioning information of
the underlying features, thereby increasing the feature fusion
capability and improving the accuracy by 0.1%. In con-
trast, CSPRegPAFPN adds a spatially designed convolution
module of the cross-stage local network to PAFPN, thus
improving the multi-scale feature extraction capability. Due
to the increase in the number and complexity of its network
model parameters, the detection speed of the neck network
structure has slightly decreased, but its detection accuracy has
improved by 0.4%.

According to Table 3, this topic introduces the EVC mod-
ule to solve the problem that many neck networks currently
focus on inter-layer features and ignore intra-layer features
when performing feature fusion. This often results in limited
context information, complex calculations, and corner areas.
Neglected problem. In order to ensure the effectiveness of
the module in the experiment, the module was inserted at
the upsampling operation of the top-up path of the neck
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TABLE 2. The neck network comparison experiment.

TABLE 3. The EVC in different neck networks comparison experiment.

FIGURE 11. Neck Network and EVC comparison experiment visualization.

FIGURE 12. ETDA comparison experiment visualization.

network for experiments. The experimental results show that
the upsampled feature map is processed by the EVC module
to obtain corner area information and global information
adjustment and is improved to varying degrees in different
neck networks. The EVC module achieves an accuracy of
0.3% based on CSPRegPAFPN. The visual training process
of its neck network comparison experiment is shown in
Figure 12. In dense scenes, the EVC module can enhance
the network’s attention to the global and corners of dense
targets. At the same time, this module also brings a certain
amount of complexity and parameters to the network but still
maintaining the balance between precision and speed.

Before the neck network is passed to the head network,
the fusion features output by the neck network will interact
with task features and then be passed to the head net-
work for task feature decomposition. Since the incoming

features of the neck network are sufficiently saturated, the
processing of interactive features should pay more attention
to the respective specificities of classification and localiza-
tion task features in the task decomposition process. The
visual training process of its ETDA comparison experiment
is shown in Figure 12. This paper was designed by ETDA to
improve the task decomposition process. In ETDA, we con-
ducted multiple experiments on the factor w of the partial
channel feature map. The experiment found that when the
factor w is too large, the specific task features affected are
too large. When performing convolutional fusion later on,
it will weaken the original interactive feature effect, reduce
detection accuracy, and increase computational complexity,
resulting in a decrease in detection speed. When factor w is
too small, the specific task features affected are too small,
making it difficult to decompose task interaction features into
specific tasks, resulting in task conflict issues and a decrease
in detection accuracy. In the end, we selected 0.25 as the
optimal value for our factor w and applied it to subsequent
experiments. The experimental results are shown in Table 4.
The classification and positioning tasks can highlight their
task feature information in the interactive features according
to their own task feature requirements while still retaining the
feature information of another task. The experimental results
are shown in Table 5.
In order to visualize the effectiveness of our proposed

module, we generate a heat map as shown in Figure 14.
We observe that the model using EVC in the neck network
can pay more attention to the contour information of the
target object than the model without EVC in dense scenes.
This enables the model to accurately focus on the target
object. At the same time, the ETDA we proposed pays more
attention to the target object than the Layer Attention used
by the baseline model because we use ETDA to enhance
the interactivity of the model’s classification and positioning
tasks, thereby improving The model’s attention to the target
object improves detection accuracy, and its heat map is shown
in Figure 15.
In addition, in order to further verify that the proposed

method makes the network robust, we conducted ablation
experiments on the proposed method in the UAVDT data
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TABLE 4. The ETDA in different factor comparison experiment.

TABLE 5. The ETDA in different neck networks comparison experiment.

FIGURE 13. EVC and ETDA usage comparison heat map.

set. The experimental results are shown in Table 6. Using
CSPRegNet-800M as the baseline network and CSPReg-
PAFPN as the neck network, the performance compared
to the baseline network is improved by 4.2%. There are
many target objects of different scales in the drone images.
CSPRegPAFPN has many targets of different scales in the
drone images. It shows excellent performance on problems

where target objects make it difficult to extract features,
confirming the effectiveness of CSPRegPAFPN. At the same
time, adding the EVC module to the upsampling posi-
tion in the CSPRegPAFPN bottom-up path improves the
network’s ability to extract dense target features, improv-
ing 4.3% compared to the baseline network performance.
As the experiment in the VisDrone-2021 data set, this
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TABLE 6. Ablation experiments of different modules in UAVDT.

TABLE 7. Performance of different models on VisDrone dataset.

module brings certain The model complexity and number
of parameters increase, but the balance between accuracy
and speed is still maintained, confirming the effective-
ness of this module in improving network performance in
vehicle detection tasks in UAV images. Finally, we veri-
fied the effectiveness of our proposed ETDA in improving
network performance on UAVDT. Experiments show that
ETDA enhances specific task features in the task interaction

feature map, while maintaining the feature information of
another task, improving task alignment capabilities, and
increasing detector performance. The ETDA implemented in
the CSPRegPAFPN improves performance by 0.2% with a
marginal increase of 0.4 million parameters. The decrease
in model complexity improves FPS and confirms the mod-
ule’s effectiveness in improving the accuracy of the detection
network.
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FIGURE 14. Performance of different networks in various categories in VisDrone-2021.

FIGURE 15. Comparison of environment with occlusion and uneven illumination object detection result.

D. COMPARATIVE EXPERIMENT
This article compares Drone-TOOD with the YOLO target
detector in recent years, other lightweight detectors, and clas-
sic target detectors, mainly to evaluate the speed and detection
accuracy of the algorithm. This comparison experiment uses
a network model similar in size to the network model pro-
posed in this article to ensure the fairness of this comparison
experiment. The experimental results are shown in Table 7.
We chose VisDrone-2021 as the comparative experimental
data set and adopted consistent data augmentation methods,
image input size, and learning strategies. At the same time,
we also compared it with some of the current excellent
object detectors. Even if their model sizes are larger than the
detectors proposed in this article, it can better prove that our
detector can match the detection performance of these high-
parameter detectors under the premise of being lightweight.

The performance remains on par or even higher, highlighting
the advantages of the detector proposed in this paper.

In Table 7, we can see that the algorithm performance of
the YOLOv5 series is relatively low. Although its number
of parameters is smaller than Drone-TOOD, its speed and
model complexity are still higher than ours, and its detection
performance is still lower than our proposed Drone-TOOD.
In addition, although YOLOv6s is slightly higher than the
YOLOv5 series detectors in low complexity and situations,
it is not ideal for small object detection, and due to the
use of decoupling heads, the classification and positioning
tasks cannot be aligned, so the overall detection perfor-
mance Still lower than Drone-TOOD, where we used the
task alignment method. Compared with the previous YOLO
series,YOLOv7-tiny and YOLOv8-nano perform better in
small object detection capabilities, and the detection speed is
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FIGURE 16. Comparison of environment with poor lighting conditions and low contrast at night object detection result.

FIGURE 17. Comparison of argets are densely distributed object detection result.

faster. Compared with Drone-TOOD, although the small net-
work models YOLOv7-tiny and YOLOv8-nano have faster
detection speeds, their detection performance is still worse
than that of Drone-TOOD. At the same time, we also com-
pared it with non-YOLO series equivalent network models
such as PPYOLOE Plus-m, EfficientDet, and ObjectBox.
Experiments show that our improved model is better than
other equivalent models, and the performance of all networks
in each category is shown in Figure 14 shown. Since the
number of vans and buses is small and appearance features
are not fixed, the performance of all networks is lower in
this category, Therefore, the performance of all networks in
this category is lower, and our improved model outperforms
other networks in all categories, proving the effectiveness of
our proposed method in the task of vehicle detection in UAV
images.

E. ALIDATION OF PREDICTION EFFECT
In the VisDrone data set, we selected images in three situ-
ations for detection. The first case is shown in Figure 13.
In an environment with occlusion and uneven illumination,
the original model has occlusions for the vehicle position and
uneven illumination, resulting in missed detections and false
detections. In the above situation, the detector Only 30% to
40% accuracy is obtained. Our improved model has strong

robustness to the above situations due to the strong feature
extraction ability of CSPRegNet, which establishes a stable
relationship between patterns and features during training.
When an object is occluded, the model can infer the possible
features and shapes of the occluded part based on the visible
features around it. Therefore, our model can accurately detect
target vehicles with occlusion and uneven lighting in the
image. This indicates that our model has strong local feature
acquisition ability.

The second scenario is shown in Figure 16. In images with
poor lighting conditions and low contrast at night, due to
image degradation, the original model is prone to missing
the detection of vehicle targets, and erroneous detection may
occur under poor lighting conditions. Our model has a power-
ful CSPRegPAFPN for multi-scale fusion and ETDAttention
module for task alignment, which enables the model to learn
the feature representation of vehicles under image degrada-
tion and strong lighting conditions and accurately classify and
locate vehicles.

The third scenario is shown in Figure 17. The targets are
densely distributed in the image.When the targets are densely
arranged, the original model does not capture corner area
feature information and global context information, making it
difficult for the target detection network to accurately distin-
guish the boundaries and positions of each target. Therefore,
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the detection effect in dense target situations is poor, and a
large number of false detections and missed detections occur.
Our improved model introduces the EVC module to capture
corner area feature information and global contextual feature
information. In dense vehicle situations, it can capture cor-
ner area feature information and establish contextual feature
information with global information. At the same time, the
ETDAttention enables the model to accurately classify and
locate vehicle targets, greatly reducing detector missed and
false detections in this situation.

IV. CONCLUSION
In view of the image degradation, target occlusion, and dense
target distribution that exist in the UAV image object detec-
tion task, this paper proposes an improved TOOD model
and names it Drone-TOOD for the UAV image vehicle
object detection task. Based on the innovative combina-
tion of RegNet spatial design ideas and CSPNet cross-stage
local network structure, a new backbone network named
CSPRegNet is proposed, which has powerful feature extrac-
tion capabilities and reduces computational complexity and
model parameters. At the same time, a new PAFPN is
launched based on the CSPRegBlock structure proposed in
CSPRegNet and PAFPN, which enhances multi-scale fea-
ture fusion and solves the problem of different target sizes
in drone images. In addition, we also introduced the EVC
module to capture corner area feature information and global
upper feature information in deep features to adjust shallow
feature information, effectively improving the performance
of the detector in dense target situations. Finally, we replaced
the task decomposition module in the head network of the
original model TOODwith the more efficient and lightweight
ETDAttention. This module not only avoids the loss of fea-
ture information caused by over-dimensionality reduction in
the original decompositionmodule but also adapts to the task-
specific It can obtain the characteristics of a specific task
while retaining the characteristics of another task, thereby
enhancing task alignment ability and improving detection
performance.

Through our experiments, we found that the proposed
CSPRegNet has higher detection accuracy and less compu-
tational complexity than RegNet, ResNet, and CSPResNet.
At the same time, we further proposed CSPRegPAFPN,
which has better feature fusion capabilities than the current
mainstream neck network. Finally, we The proposed ETDAt-
tention enhances the task alignment capability, enables the
positioning and classification tasks to be effectively decom-
posed, and each has task specificity without losing the other’s
information. It also effectively reduces the computational
complexity and improves the detection network performance.
In general, Drone-TOOD has greatly improved compared to
TOOD on the VisDrone-2021 and UAVDT data sets and is
also the best compared to other advanced detectors in the
UAV image vehicle detection task.

This work has been verified on VisDrone-2021 and
UAVDT data and achieved good results. Due to the

limitations of the UAV airborne platform, the detector still
needs to be lightweight to reduce the computational com-
plexity and the number of parameters while ensuring stable
performance. At the same time, there are few severe weather
scenes in the data set used in this article, and the detector
may fail in some severe weather scenarios. The performance
is poor, so our future research direction is to further reduce
the weight of the target detector and improve the detection
performance under severe weather conditions.
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