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ABSTRACT Dengue fever is a rapidly increasing mosquito-borne ailment spread by the virus DENV
in the tropics and subtropics worldwide. It is a significant public health problem and accounts for many
deaths globally. Implementing more effective methods that can more accurately detect dengue cases is
challenging. The theme of this digital pathology-associated research is automatic dengue detection from
peripheral blood smears (PBS) employing deep learning (DL) techniques. In recent years, DL has been
significantly employed for automated computer-assisted diagnosis of various diseases from medical images.
This paper explores pre-trained convolution neural networks (CNNs) for automatic dengue fever detection.
Transfer learning (TL) is executed on three state-of-the-art CNNs — ResNet50, MobileNetV3Small, and
MobileNetV3Large, to customize the models for differentiating the dengue-infected blood smears from the
healthy ones. The dataset used to design and test the models contains 100x magnified dengue-infected and
healthy control digital microscopic PBS images. The models are validated with a 5-fold cross-validation
framework and tested on unseen data. An explainable artificial intelligence (XAI) approach, Gradient-
weighted Class Activation Mapping (GradCAM), is eventually applied to the models to allow visualization
of the precise regions on the smears most instrumental in making the predictions. While all three transferred
pre-trained CNN models performed well (above 98% overall classification accuracy), MobileNetV3Small
is the recommended model for this classification problem due to its significantly less computationally
demanding characteristics. Transferred pre-trained CNN based on MobileNetV3Small yielded Accuracy,
Recall, Specificity, Precision, F1 Score, and Area Under the ROC Curve (AUC) of 0.982 + 0.011, 0.973 £+
0.027,0.99 £ 0.013, 0.989 % 0.015, 0.981 £ 0.012 and 0.982 + 0.012 respectively, averaged over the five
folds on the unseen dataset. Promising results show that the developed models have the potential to provide
high-quality support to haematologists by expertly performing tedious, repetitive, and time-consuming tasks
in hospitals and remote/low-resource settings.

INDEX TERMS Deep learning, dengue fever, digital pathology, explainable artificial intelligence, Grad-
CAM, peripheral blood smear, pre-trained CNN, transfer learning.

I. INTRODUCTION
The associate editor coordinating the review of this manuscript and Dengue, an Aedes aegypti and Aedes albopictus mosquito-
approving it for publication was Ines Domingues . borne illness, emerged as a global health problem in the 1960s
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[1]. One study on the prevalence of dengue indicates that
about half of the global population is in danger, with an
annual estimate of 100-400 million infections [1]. Another
study estimates that about 3-9 billion people are vulnerable
to the dengue virus in >100 countries where the disease is
endemic [2]. As per a recent report on dengue by WHO,
the Americas, Southeast Asia, and Western Pacific regions
are dangerously affected, with Asia experiencing 70% of the
overall burden [3]. India is among the 30 most highly endemic
countries in the world [3]. Despite decades of attempts, a safe
and efficacious vaccine or anti-viral drug for dengue is not in
place [4]. Although many DENYV infections cause mild ill-
ness, severe dengue has been the primary cause of morbidity
and mortality in the dengue endemic regions. Severe dengue
is characterized by severe plasma leakage, fluid accumulation
with respiratory distress or shock, severe organ impairment,
and severe bleeding [5]. To date, there is no precise treatment
in place for dengue, and the death rates can only be reduced
by early detection of severe dengue [3]. Several methods
are currently available to detect DENV infection, including
isolation of the virus, serology methods, or RT-PCR [5],
[6]. Medical laboratories in remote/low-resource settings lack
specialized resources for the diagnosis of dengue by any
means other than serology methods [5]. Among serological
techniques, the detection of non-structural protein 1 (NS1)
antigen and Immunoglobulin M (IgM)/Immunoglobulin G
(IgG) antibodies are commonly used. NS1 antigen-capture
ELISA is a simple efficacious diagnostic tool that sup-
plies qualitative positive/negative results [5], [7]. IgM and
IgG antibody-capture ELISAs are beneficial in finding out
whether the DENV infection is recent or previous [5], [6].

This paper focuses on an alternative method of identify-
ing dengue infection through a digital pathology approach
from microscopic PBS images. The PBS analysis is a diag-
nostically relevant tool for evaluating various hematological
disorders [8]. The manual interpretation of PBS through a
microscope remains the backbone of hematological diag-
nostics, even though it is error-prone and time-consuming
owing to its invaluable nature [9]. Automation of PBS anal-
ysis is a very active field of research that has motivated
many researchers [8]. Automation can assist hematologists
in yielding accurate and quick results, especially when there
are tremendous amounts of samples to analyze. The digitiza-
tion of PBS images using a digital microscope or a whole
slide scanner, combined with the application of Artificial
Intelligence (AI) — based tools, makes automated PBS image
analysis feasible, limiting human intervention [8], [9].

In recent years, DL, a subset of Al, has been extensively
and successfully used for automating various tasks, includ-
ing healthcare-related tasks [10]. In particular, CNNs have
gained popularity and become the main methodology for
medical image analysis [10]. Digital pathology is one of
the medical imaging areas where extensive use of CNNs
is observed [10]. Whole-slide imaging systems are applied
to digitize hematopathology/histopathology slides to gener-
ate images of high resolution [10]. The digitized slides are
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processed by incorporating CNN architectures to perform
different computer vision tasks, which include classifica-
tion (e.g., disease recognition), object detection (e.g., cell
counting), and segmentation (e.g., nuclei identification) [10].
The ability of CNNs to extract high-level features without
human supervision enables them to automatically learn the
most discriminative features directly from the image [9],
[11]. In particular, CNNs benefit from eliminating the tedious
feature engineering process [12]. However, training from
scratch demands a significantly huge labeled dataset. The
inadequacy of freely accessible labeled images is one of the
biggest hindrances in training CNNs for analysis of medi-
cal images (including digital pathology images) [10], [12].
An efficient solution in such a scenario is to employ pre-
trained CNNs [12].

A pre-trained CNN is previously trained on millions of
images from a generic dataset (e.g., ImageNet dataset) for
a specific problem and could be employed to fix a fresh
problem using a TL plan [10], [12]. TL signifies fine-tuning
the model to fix a fresh problem [12]. The Fully Connected
(FC) layers with randomly initialized weights are added to the
pre-trained base model and trained on the new task-specific
dataset during fine-tuning [13]. However, the base model
weights are frozen to prevent them from getting updated
during training to avert overfitting [13]. Commonly used
CNN architectures for the analysis of medical images include
AlexNet, VGGNet, ResNet, GoogLeNet, DenseNet, Xcep-
tionNet, and SqueezeNet [12]. These CNNs are trained to
identify images into 1000 subcategories [14]. The advantages
of transferred pre-trained CNNs include better performance,
training with limited data, eliminating training from scratch,
and speeding up the training process [12].

Lack of explainability is one main limitation of DL models
[15], [16]. The logic behind the predictions made by these
models is not clearly understood. Despite the excellent perfor-
mance of the DL models in various healthcare applications,
the medical fraternity still does not fully embrace them due
to their black-box nature [17], [18]. The XAI technique was
introduced to enable the medical fraternity to appreciate the
philosophy behind the model predictions [17]. XAl explains
the workings of the model and draws the users’ attention
to the regions of the image that highly influence the model
predictions [17]. The GradCAM XAI technique was built on
the original CAM invented by Zhou et al. in 2015 [17], [19],
[20]. GradCAM was developed to suit CNN architectures and
is, therefore, more popular among DL models [15], [17].

A. REVIEW OF RELATED LITERATURE
In recent years, enormous CNN architectures with TL have
been put forward to analyze medical images, including dig-
ital pathology image analysis [10]. The following are some
recently published articles that adopted pre-trained CNN
architectures with a TL strategy for classifying leukocytes
from digital microscopic PBS images.

Aziz et al. adopted a DL-based method for leukocyte clas-
sification (Munich AML Morphology dataset) from blood
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smear images. Leukocytes were segmented using K-means
clustering in the color space - L*a*b. The authors per-
formed classification by employing transferred pre-trained
AlexNet and ResNet18. Classification accuracies of 93.30%
for AlexNet, and 93.85% for ResNet18 were achieved [21].
Roy et al. presented a method for localizing and classify-
ing leukocytes (LISC dataset) using a DL approach. The
authors localized the leukocytes by semantic segmentation
using DeepLabv3+- and cropped the leukocytes. Further, the
cropped leukocytes were classified by employing pre-trained
AlexNet with TL. An average classification accuracy of
98.87% [22] was observed. Khaled et al. explored trans-
ferred pre-trained CNNs - VGG, ResNet, and DenseNet for
classifying different leukocytes (LISC dataset). The cropped
leukocytes were augmented by using image transformations
and generative adversarial networks (GAN). A classification
accuracy of 98.8% using DenseNet-169 [23] was obtained.
Li et al. combined GAN with ResNet to classify leukocytes
(BCCD dataset). The authors adopted GAN for increasing
the training data, transferred pre-trained ResNet for the
classification, and reported an accuracy of 91.7% with a
modified loss function [24]. Sharma et al. presented a strategy
for the automatic leukocyte classification (Kaggle dataset)
using pre-trained CNN DenseNetl121. With augmentation
and transfer learning, a classification accuracy of 98.84%
was achieved [25]. Cengil et al. employed pre-trained CNN
architectures — AlexNet, ResNet18, and GoogleNet, with TL
for automatically classifying leukocytes (Kaggle dataset).
ResNet18 yielded the best classification accuracy of 99.83%
[26]. Liu et al. put forward a DL technique for the leukocyte
classification. Various pre-trained CNNs were employed.
ResNet-50 excelled with an average classification accuracy
of 96.7% over C-NMC, ALL-IDB2, PBC, and LISC datasets
[27]. Chen et al. proposed a DL framework by integrat-
ing two pre-trained networks - ResNet and DenseNet with
an attention system for accurately classifying the cropped
leukocytes. An overall classification accuracy of 97.96%
and 98.71% for the LISC and Raabin datasets, respec-
tively, was achieved with data augmentation and transfer
learning. The GradCAM XALI technique was employed to
understand the logic behind the predictions made by the
model [28]. Meenakshi et al. adopted deep features extracted
from CNNs that are pre-trained for automatically classify-
ing leukocytes. The authors extracted 3,000 deep features,
1,000 each from pre-trained CNNs AlexNet, GoogleNet, and
ResNet50. Mayfly Algorithm with Particle Swarm Optimiza-
tion was used to select the most important 1,000 features.
These features were then given to the RNN - LSTM clas-
sifier to perform the classification. An overall classification
accuracy of 95.25% was achieved [29]. Dong et al. devel-
oped a novel ensemble CNN framework to classify the
five types of leukocytes. The prediction results of the three
transferred pre-trained CNN models VGG16, ResNet50, and
InceptionV3 were integrated through the Bagging process.
The Gompertz function was incorporated to formulate the
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combination strategy, which yielded an average classifica-
tion accuracy of 96.5% with ten-fold cross-validation [30].
Dipto et al. presented a strategy for identifying the types of
leukocytes (BCCD dataset) by utilizing a pre-trained vision
transformer (VT) and pre-trained CNN VGG19. An overall
classification accuracy of 84% and 85% was achieved for
VT and VGG19, respectively. However, VT demonstrated
significantly faster learning compared to VGG19. The Grad-
CAM XALI technique was integrated to understand the logic
behind the predictions made by the model [31]. To classify
leukocytes from blood smear images, Bhatia et al. employed
various pre-trained DL models, such as DenseNet121, Xcep-
tion, MobileNetV2, ResNet50, and VGG16. DenseNet121
outperformed with an average classification accuracy
of 98.59%. An XAI technique was integrated, thereby
leveraging local interpretable model-agnostic explanations
(LIME) into the models to make the model’s predictions
explainable [32].

The unique and distinctive contribution introduced by
this proposed work is an XAl-integrated, computationally
efficient deep-learning approach for automatically detecting
dengue fever from digital microscopic PBS images. PBS
analysis is a gold standard for diagnosing various hematolog-
ical disorders, including dengue fever. The literature review
revealed very few published works utilizing similar method-
ologies on comparable datasets. Most of the published work
associated with automatic dengue detection was centered on
tabular datasets containing symptoms/vital signs/blood pro-
file data [33], [34], [35], [36]. Hence, this proposed work
can potentially fill this gap in the literature. Only a few
articles have been published on the automatic diagnosis of
dengue from PBS images [37], [38]. In one of our published
works [37], we employed MobileNetV2 (a pre-trained CNN)
for extracting features of the lymphocyte nucleus. Further,
these deep features were administered to popular super-
vised classifiers to detect dengue-infected smears against
the normal ones. A classification accuracy of 95.74% was
obtained with the Support Vector Machine (SVM). This paper
presents an explainable DL approach for dengue detection
from 100x digital microscopic PBS images using pre-trained
CNNs with TL. Here, an end-to-end system performs the
classification process, bypassing segmentation and feature
extraction/selection. To the best of our knowledge, there has
been no prior publication on the use of this technique for
dengue detection from PBS images.

Significant contributions of this article are listed as fol-
lows:

1. Novel end-to-end computationally efficient DL system

for automatically detecting dengue from PBS images.

2. Integration of GradCAM XALI technique that provides

confidence to the clinicians in the DL model’s predic-
tions.

3. Utilizes an original hospital dataset (i.e., microscopic

PBS images of dengue-infected and normal controls)
collected systematically under ethical clearance.
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FIGURE 1. Dataset preparation.

The arrangement of the article is as follows. In Section II, the
details of the image dataset and the implementation process
of the models are presented. Section III provides the detailed
experimental results and discussion. Finally, Section IV pro-
vides the conclusions and directions for future works.

Il. METHODOLOGY

This paper proposes an explainable DL approach for detect-
ing dengue fever from microscopic images of blood smears.
State-of-the-art pre-trained CNNs are used to lower the
expenses of model training from scratch. Heat maps are
generated using the GradCAM XAI technique to highlight
which areas on the image are concentrated in the predictions
of the CNN model. The clear-cut details concerning the data,
and the implementation of the TL and the XAI are described
here.

A. IMAGE DATASET

The dataset adopted is authentic hospital data accumulated
from the Hematology Lab, Kasturba Hospital, Manipal. The
data is acquired under ethical clearance (114/2020) granted
by the Institutional Committee. Normal blood samples are
collected from the Department of Immunohematology, Kas-
turba Hospital, Manipal, from blood bank donors visiting the
department. Figure 1 shows the dataset preparation process.
The dataset contains 888 PBS images (446 dengue-infected
and 442 normal controls) garnered from 116 Leishman-
stained blood smear thin glass slides (60 dengue-infected and
56 normal controls). A high-quality technology brightfield
microscopic imaging system - Olympus DP25 digital micro-
scope facilitated with a 5-megapixel high-precision digital
camera and DP2-BSW software is used to capture the digital
images of exceptional quality (2560 x 1920 pixels) from the
slides. The microscope is coupled with a camera and linked
to a computer. The images captured are in RGB color space
with a color depth of eight bits per color channel. First, the
body region of the slide is identified by focusing the slide with
a 40x objective lens. Then, the images/oil immersion fields
(ROIs) are focused and captured with a 100x objective lens
with a resolution of 2560 x 1920x3. The images are resized
to 640 x 480x3 due to memory constraints. The dataset is
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FIGURE 2. PBS images. (a) Dengue-infected and, (b) Normal control.

split up randomly into training and validation, respectively,
in aratio of 4:1.

The emphasis is on the lymphocytes (one among the five
types of leukocytes) throughout the work. Dengue alters the
morphology of the lymphocytes. Studies show that this is an
important indicator for dengue diagnosis [39]. PBS images
of dengue-infected and normal control subjects are shown in
Figure 2.

B. IMPLEMENTATION DETAILS

TL is executed on three state-of-the-art CNNs — ResNet50,
MobileNetV3Small, and MobileNetV3Large and is utilized
to discriminate dengue-infected smears from normal. The
pipeline for dengue detection from PBS using transferred
pre-trained CNNss is displayed in Figure 3.

1) PRE-TRAINED CNNS—RESNET50, MOBILENETV3SMALL,
AND MOBILENETV3LARGE

ResNet50 is the most common type of residual network that
was introduced in 2015 to address the problems of vanishing
gradient and performance degradation associated with deep
CNNs [40], [41]. It has 107 layers (49 convolution layers
+ an FC layer) and approximately 26 million parameters
[42]. ResNet50 architecture begins with a convolution layer
and is followed by 16 stacked building blocks (residual)
and terminates with an FC layer [43], [44]. Each residual
block is a bottleneck block consisting of a stack of three
convolution layers (1 x 1,3 x 3, and 1 x 1) [41]. The build-
ing blocks of ResNet50 utilize residual connections, or skip
connections, to propagate information directly through the
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FIGURE 3. Pipeline for the detection of dengue using pre-trained CNNs.

network and overcome the degradation and vanishing gradi-
ent problems [41].

MobileNetV3, introduced in 2019, is the latest version of
lightweight MobileNets [45], [46]. MobileNetV3 was built
upon the MobileNetV1 and V2 structures. MobileNetV 1 uses
lightweight depth-wise convolutions to reduce the number of
parameters [47]. MobileNetV2 was built upon MobileNetV1
with a new resource-efficient feature added: Inverted resid-
ual blocks with linear bottlenecking structure [47]. To make
the structure more accurate and efficient, MobileNetV3 was
introduced. Major improvements in MobileNetV3 include
the Squeeze and Excitation - attention module added to
the residual block and the use of hard-swish non-linearity
instead of ReLLU [47]. Moreover, platform-aware network
architecture search and NetAdapt algorithm are engaged to
optimize the architecture at the block and layer levels, respec-
tively [47], [48]. Furthermore, MobileNetV3 includes small
and large versions that operate on the same principle but
vary in depth and trainable parameters [45], [49]. These
networks have drastically lower parameter counts (approxi-
mately 2.9 million for small and approximately 5.4 million
for large) and can be effectively implemented on resource-
constrained devices [50].

2) TRANSFER LEARNING

The transfer learning plan accommodates the pre-trained
CNNs to the dengue dataset. The pre-trained CNNs
ResNet50, MobileNetV3Small, and MobileNetV3Large are
base models. TL signifies fine-tuning the CNNs to resolve
a new problem [12]. During fine-tuning, the trainable layers
with randomly initialized weights are added on top of the
pre-trained base model and trained on the new task-specific
dataset [13]. Trainable layers include a flattened layer,
a dense layer with 512 neurons and ReL.U activation, a batch
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normalization layer, a dropout layer with rate=20%, a dense
layer with 256 neurons and ReLU activation, a dropout layer
with rate=20%. The output is fed to the final dense layer
with two classes and Softmax activation to classify. These
layers are added after the frozen base model, as illustrated
in Figure 4.

3) HYPERPARAMETERS
The hyperparameters used to train the transferred pre-trained
CNN architectures are tabulated in Table 1. These hyperpa-
rameters are fine-tuned to attain the optimum performance.
Dropout is used after each dense layer to mitigate overfitting
by randomly dropping out 20% of the neurons during train-
ing. The Learn Rate is initialized to 0.0001, and a scheduler
is employed to dynamically decay the Learn Rate by a factor
of 0.1 when the validation loss does not improve over four
consecutive epochs. The size of the batch is fixed to 32 due
to memory constraints, and the network is trained with max-
imum epochs set to 40. The early stopping mode is triggered
to halt the training when the validation loss does not improve
over six consecutive epochs, and the best weights are restored.
The randomly initialized weights of the trainable layers are
upgraded during the training of the models, depending on
the optimization algorithm, to lessen the loss function [51].
Here, the loss function is cross-entropy. Cross-entropy loss is
represented by Eq. (1)

Lep ==Y tilog(pi) (1)

In Eq. (1), n is the number of classes, #; corresponds to
the truth label, and p; corresponds to the Softmax probabil-
ity of i class. Gradient descent is a common optimization
algorithm that updates the weights of the network itera-
tively. The gradient is mathematically represented as a partial
derivative of the loss concerning the weight. A single update
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FIGURE 4. The architecture of transferred pre-trained CNNs based on (a) ResNet50 (b) MobileNetV3Small (c) MobileNetV3Large.

of the weight is represented in Eq. (2).
w:i=w—adL/ow 2)

In Eq. (2), w stands for the weight, o stands for
learn rate, and L stands for the loss function. Many
improvements to the gradient descent algorithm have been
proposed, such as stochastic gradient descent with momen-
tum (sgdm), RMSprop, and Adam [51], [52]. Here, the
binary cross-entropy loss during training has been curtailed
using an Adam optimizer (Solver). Figure 5 illustrates the
pseudo-code for implementing TL for the proposed method.

All the CNN models are executed using Keras (with Ten-
sorFlow backend) on Kaggle Notebooks with Nvidia GPU
P100 Accelerator (15.9GB RAM) conducted on a 64-bit Lap-
top with an Intel Core i5-7200U CPU (8GB RAM).

4) GRADCAM EXPLANATIONS

GradCAM is the most extensively employed XAl technique
for medical image analysis [17], [53]. It is very often coupled
with DL models such as CNNs, which are popular for image
recognition [15], [17]. The last convolution layer of a CNN
model contains the most discriminative features with detailed
spatial information [15], [17]. GradCAM uses the gradients
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Import libraries: tensor flow, Keras, sklearn
Import dataset: 8§88 PBS images
Data preprocessing: Resizing (640x480)
Model development: pre-trained base model + Trainable layers
added
Dataset splitting: for 5-fold cross-validation (Training 80%,
Validation 20%)
Repeat
Model training for each iteration: with the best combination of
hyperparameters after tuning
Model evaluation for each iteration
Until five iterations are complete
Model evaluation (Average): visualizing loss & accuracy for
training and validation epoch by epoch,
confusion matrix, performance metrics for
validation data, GradCAM visualization
Model testing with unseen data: confision matrix, performance
metrics for test (unseen) data

FIGURE 5. The pseudo-code for the implementation of transfer learning
for the proposed work.

of the class score with respect to the feature maps at the final
convolution layer to generate heat maps [15], [17]. These
heatmaps are then superimposed on the images, which help
the users to see the areas of the image that are most valuable
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TABLE 1. Hyperparameters used to train the transferred pre-trained CNN
architectures

Hyperparameter Value
Maximum Epochs 40
Batch Size 32

Solver Adam

Loss Function Binary Cross Entropy

Initial Learn Rate 0.0001
Learn Rate Patience 4 Epochs
Decay Monitor Validation Loss
Factor 0.1
Patience 6 Epochs
Early Stopping Monitor Validation Loss
Weights Restore Best Weights
Regularization  Dropout Rate 0.2

for the model predictions. GradCAM follows three steps [15],
[18], [54] to generate the heat maps, as shown below:

Step 1: Calculate the class score gradient ¢, y¢ (before
the Softmax), with respect to k feature maps A of the last
convolution layer,

je 2

Ak

Step 2: Global average pool the gradients to obtain the
weights o} as given by Eq. (3). This weight picks up the value
of feature map k for a target class c.

DI I &)
CTN i Al

In Eq. (3), N represents the pixels in the feature map.

Step 3: The GradCAM map is then a weighted combina-
tion of the feature maps with an applied ReLU as given by
Eq. 4).

M = RELU (Zk a,ﬁA") “

The ReLU activation preserves only the features that have
a positive contribution to the class of interest.

Ill. RESULTS AND DISCUSSION

All three models are assessed using the five-fold cross-
validation scheme, wherein the data is split randomly into
training (80%) and validation (20%). Further, the models are
tested with unseen data. The test dataset contains 78 PBS
images, of which 37 are dengue-infected, and 41 are normal
controls. Six popular indices — Accuracy, Recall, Specificity,
Precision, F1-score, and Area Under the ROC Curve (AUC)
are used to gauge the model’s performance. These statistical
metrics are derived from true positives (‘Dengue’ correctly
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FIGURE 6. Accuracy and Loss plots - Training (Blue) / Validation (Orange)
for five folds of the transferred pre-trained CNN based on
MobileNetV3Small.

classified; TP), true negatives (‘Normal’ correctly classified;
TN), false negatives (‘Dengue’ incorrectly classified as ‘Nor-
mal’; FN), and false positives (‘Normal’ incorrectly classified
as ‘Dengue’; FP) and are defined in Eq. (5) - (9).

TP + TN
Accuracy = x 100 5)
TP 4+ TN + FP 4+ FN
T
Recall = ——— x 100 6)
TP 4+ FN
Specificit il 100 @)
ecificity = ——— x
ey = Bp r TN
T
Precision = ——— x 100 ®)
FP 4 TP
2 % Pre % Sen
F1 Score = ——— x 100 )
Pre + Sen
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TABLE 2. Classification accuracies on the validation dataset for each of the 5 folds and the overall (MEAN =+ SD) classification accuracy.

Transferred Pre-trained Accuracy
Model
odets Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Overall
ResNet50 1.000 0.983 0.989 0.983 0.989 0.989 +0.007
MobileNetV3Small 0.977 0.989 0.977 0.977 0.983 0.981 +0.005
MobileNetV3Large 0.983 0.983 1.000 0.989 0.983 0.988 +0.007
TABLE 3. Training/validation performance (MEAN =+ SD) for five-fold cross-validation.
Transferred Pre-trained Training Training Validation Validation
Models Accuracy Loss Accuracy Loss
ResNet50 0.998 £0.001  0.015+0.006 0.989+0.007 0.035+0.016
MobileNetV3Small 0.997+0.002 0.018£0.005  0.981+0.005 0.043 = 0.007
MobileNetV3Large 0.997+0.003  0.016£0.006 0.988+0.007 0.033+0.015
TABLE 4. Performance metrics (MEAN =+ SD) for five-fold cross-validation on the validation dataset.
Transferred Pre-trained o . .
! Accuracy Recall Specificity Precision F1 Score AUC
Models
ResNet50 0.989+0.007 0.986+0.010 0.990+0.012  0.992+0.008 0.989+0.007 0.988 +0.008
MobileNetV3Small 0.981+0.005 0.978+0.007 0.984+0.007 0.984+0.006 0.981+0.004  0.981 £ 0.005
MobileNetV3Large 0.988+0.007 0.986+0.016 0.988+0.012 0.989+0.011 0.987+0.008 0.987 +0.008
TABLE 5. Performance metrics (MEAN + SD) for five-fold cross-validation on the test dataset.
Transferred Pre-trained cpe s ..
! Accuracy Recall Specificity Precision F1 Score AUC
Models
ResNetS0 0.982+0.015 0.995+£0.012 0.971+0.027 0.969+0.027 0.981+0.015 0.983+0.014
MobileNetV3Small 0.982+0.011 0973+0.027 0.990+0.013 0.989+0.015 0981+0.012 0.982+0.012
MobileNetV3Large 0.992 +0.007 1.000£0.000 0.985+0.013 0984 +0.014 0.992+0.007 0.993 +0.007

Figure 6 shows the Accuracy and Loss plots of the Training
and Validation for five folds of the transferred CNN based
on MobileNetV3Small.Table 2 presents the classification
accuracies of the transferred CNN models on the validation
dataset for each of the five folds, along with the classification
accuracy averaged over the five folds. Table 3 highlights the
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performance of the models during training and validation,
averaging over five folds. Table 4 summarizes the detailed
classification performance of the models on the validation
dataset, averaging over five folds. Figure 7 reports the confu-
sion matrices, and Table 5 reports the overall model’s perfor-
mance on the test (unseen) data, averaging over the five folds.
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FIGURE 7. Confusion matrices (Mean + SD) for five-fold cross-validation on the test dataset of the transferred pre-trained
CNN based on (a) ResNet50, (b) MobileNetV3Small, and (c) MobileNetV3Large.
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FIGURE 8. Activation map for Dengue class obtained from the GradCAM technique for the transferred pre-trained CNN

based on ResNet50.

While all models rendered good performance (above 98%
overall classification accuracy), MobileNetV3Small is the
recommended model for this classification problem due
to its significantly less computationally demanding char-
acteristics. MobileNetV3Small is characterized by limited
parameters, i.e., approx. 2.9 million, and therefore is the least
time-consuming and has the least resource requirement.

Figures 8 and 9 demonstrate the GradCAM localization
of the areas of the image that are most valuable for the
predictions. As a result, the proposed transferred pre-trained
CNN models (for example, based on ResNet50) recognized
the changes in the morphology of the lymphocytes in Figure 8
and highlighted it with an activation map, demonstrating that
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it is the noteworthy region of interest for the identification of
Dengue class in the image. Instead, as indicated in Figure 9,
the model for the Normal class did not highlight the lym-
phocyte region, indicating no morphological changes in the
lymphocyte. The red/yellow color in the activation maps indi-
cated more concentrated regions, and the less concentrated
regions are with lighter colors approaching green/blue.

The outcomes of this work are inspiring and demon-
strate that the pre-trained CNNs have the capacity to yield
commendable assistance in the PBS analysis for dengue
diagnosis. This work is crucial and can contribute signifi-
cantly to healthcare as this offers some level of explainability
of the inner workings of the CNNs that clinicians may
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FIGURE 9. Activation map for Normal class obtained from the GradCAM technique for the transferred pre-trained CNN based

on ResNet50.

TABLE 6. Comparison of the proposed work with the state-of-the-art works from the literature.

Cross- XAI
Author (Ref.) Input /data Model Validation technique Accuracy
Gambhir et al. symptoms, vital signs, and ML. - PSO
?;81 71)1'[2 S]a blood profile data (tabular optimized Yes No 87.27%
data) ANN
Mello-Roman et al.
- 0,
(2019)[35] symptoms (tabular data) ML - MLP No No 96.00%
Katta et al.
- 0
(2021)[33] symptoms (tabular data) ML - RF No No 94.39%
Mo s e 1M ML-SVM Yes No 95.74%
Hoyos et al. symptoms, vital signs, and
blood profile data (tabular ML - FCM Yes No 89.40%
(2022)[36] data)
Mayrose et al. morphological/GLCM 0
(2023)[38] features from PBS images ML - SVM Yes No 93.62%
DL -
Proposed work PBS images transferred Yes Yes > 98.00%
pre-trained
CNNs

relate to. Moreover, this work is better in the context that
it bypasses laborious steps like segmentation of lymphocyte
nucleus, feature extraction, and feature ranking, in contrast
to the classical machine learning methods. In one of our
previous works [38], ten, morphological and GLCM fea-
tures were extracted from the segmented lymphocyte nucleus.
These features, when coupled with SVM, achieved the best
classification with Accuracy, Recall, Specificity, Precision,
F1 Score, and AUC of 93.62%, 92.59%, 95%, 96.15%,
94.34%, and 0.96, respectively. Furthermore, this work dif-
fers from works in that the authors have taken advantage
of pre-trained CNNs as feature extractors and linked them
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to a separate machine-learning classifier. In another previ-
ous work [37], 1,000 deep and 177 Local Binary Pattern
generated features were derived from the segmented lym-
phocyte nucleus. Deep features were derived by utilizing
pre-trained CNN MobileNetV?2 as a feature extractor. Feature
selection algorithm ReliefF was used to select 100 impor-
tant features. These features given to SVM yielded the best
classification with accuracy, recall, specificity, precision,
F1 Score, and AUC of 95.74%, 98.15%, 92.50%, 94.64%,
96.36%, and 0.98, respectively. The model’s performance
can be further boosted by exploring different fine-tuning
strategies.
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There was a dearth of existing publications employing
PBS images for dengue diagnosis, and the literature review
revealed no published works from other research groups uti-
lizing similar methodologies on comparable datasets. Most
of the research work reported on automated diagnosis of
dengue is by utilizing symptoms, vital signs, blood profile
data, or a combination of these. Gambhir et al. proposed
a PSO-optimized ANN for the diagnosis of dengue. With
16 attributes containing symptoms, vital signs, and blood
profile data, authors classified the data and documented
an accuracy, recall, and specificity of 87.27%, 68%, and
92.94%, respectively [55]. Mello-Roman et al. developed
a symptom-based diagnostic model for dengue fever. With
38 attributes, including symptoms, the authors classified
the data using MLP and documented an accuracy, recall,
and specificity of 96%, 96%, and 97%, respectively [35].
Katta et al. used symptoms to develop an efficient model
for dengue detection. The RF classifier yielded an accuracy
and sensitivity of 94.39% and 95.60%, respectively [33].
Hoyos et al. developed a decision-support system for dengue
diagnosis using the fuzzy cognitive map. With 22 features,
including symptoms, vital signs, and blood profile data, the
authors achieved a classification accuracy of 89.40% [36].
Table 6 summarizes the comparison of the performance of
the proposed work with other works on automated detection
of dengue published in the literature.

This work incorporates an end-to-end computationally
efficient DL system for automatically detecting dengue from
PBS. The system is integrated with GradCAM explainability
and utilizes data sourced authentically from Kasturba Hospi-
tal, Manipal, under ethical clearance. Certainly, the entries in
Table 6 depict that the proposed method for dengue diagnosis
outperformed in comparison with the state-of-the-art studies
published in the literature.

IV. CONCLUSION AND FUTURE WORK

The examination of the PBS is a powerful adjunct to other
clinical procedures. In connection with dengue diagnosis,
it can be a crucial add-on to the Complete Blood Count
test and NSI antigen capture and can substantially aid
dengue diagnosis in low-resource settings. This work uti-
lizes pre-trained CNNs for dengue fever detection from
digital microscopic PBS images. The transfer learning strat-
egy was successful in differentiating dengue-infected and
normal smears. All three models rendered good perfor-
mance with classification accuracy above 98%. Despite
being less computationally expensive, the performance of the
transferred pre-trained CNN based on MobileNetV3Small
is at par with the other two models. Hence, transferred
pre-trained CNN based on MobileNetV3Small is the pre-
ferred model for the proposed method of dengue diagnosis.
Explainability is recognized as a key component for the
acceptance of Al systems for clinical use. An explainabil-
ity technique - GradCAM was integrated to the models
to visualize the specific regions of the smears that were
most dominant in making the predictive decisions. Promising
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results show that the developed models have the poten-
tial to provide high-quality support to haematologists by
expertly executing tedious, repetitive, and time-consuming
duties in hospitals and remote/low-resource settings. Future
works could be focused on examining different fine-tuning
strategies to facilitate performance improvement. The dataset
size (multiple hospital data) could be further improved to
increase the algorithm’s robustness. Moreover, a multiclass
problem could be considered for analyzing dengue sever-
ity (normal/mild dengue/severe dengue). Furthermore, in the
future, our method could be incorporated into mobile devices
with a microscope attachment and utilized as a standalone
product to screen for dengue in hospitals.
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