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ABSTRACT Truck-lifting accidents are common in container-lifting operations. The most common
truck-lifting prevention system is based on lidar scanners which are very expensive, and it is more promising
to use cameras to detect truck-lifting accidents than to use lidar scanners. However, little work has been
conducted on visual detection of truck-lifting accidents, and the only previous visual approach fails in the
common scenario where wheel hubs in images appear as non-standard or incomplete circles. To this end,
this paper proposes a novel vision-based truck-lifting accident detection method for truck-lifting prevention
system, which is free from the disturbance of distorted or incomplete wheel hubs in the image. The main idea
of the proposed method is to utilize a deep learning-based object detection model to detect the truck body
within which to extract many key-points whose vertical displacements are tracked to determine whether the
truck is lifted. Based on this idea, the workflow for truck-lifting accident detection is delicately constructed.
In addition, a YOLOv5-based modified detection model is proposed to reduce the computation cost of
container and truck body detection, achieving 38.5% increase in inference speed on a single industrial
personal computer without performance decrease. The experimental results demonstrate that the proposed
truck-lifting accident detection method is capable of accurately recognizing the truck-lifting operations with
the recall rate of 100% and the false alarm rate of 0.42%.

INDEX TERMS Truck-lifting prevention system, truck-lifting accident detection, deep learning, object
detection, key-points.

I. INTRODUCTION
Container terminals are important infrastructures for con-
tainer transportation in global trade. In recent years, auto-
mated container terminals become more and more popular
in reducing labor costs, improving operation efficiency, and
promoting worker safety [1], [2], [3], [4], [5]. In the terminal
operation process, containers need to be transferred between
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various storage areas. The trucks carry the containers from
one place to another, and the container-lifting equipment such
as the gantry cranes lift the containers from the trucks and
place them in the container yard. During the container-lifting
operation, there is one common accident called truck-lifting
accident that occurs when the container lock pins are not
released properly (as shown in Fig. 1). The truck would
be lifted with the container together, and this would cause
damage to the container, the truck, and the lifting ropes
and endanger the safety of on-site workers. Therefore,
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FIGURE 1. The diagram of container-lifting operation. (a) Normal lifting. (b) Truck-lifting accident.

FIGURE 2. Representative images collected from real application scenarios, containing images of the head region of the
truck body (first column), images of the middle region of the truck body (second column), and images of the tail region
of the truck body (third column).

an automated accident detectionmethod is required to prevent
the accident.

The most common truck-lifting prevention system is
based on lidar scanners [6], [7], [8]. The lidar scanner
scans the contour of the truck and the container and builds
their corresponding 3D models. By analyzing the relative
positional relationship of the truck and the container, the
truck-lifting accident could be detected. However, this kind
of system requires a high-precision lidar scanner which is
very expensive, which significantly hinders its widespread
adoption and implementation.

Compared to a lidar scanner, a camera is a quite low-cost
sensor. Moreover, a camera could provide higher resolution
information than a lidar scanner, and achieve higher mea-
surement accuracy. When employed with deep convolutional
neural networks, it has the ability to recognize complex visual
features. In addition to the above advantages, a camera is
capable of supporting real-time remote monitoring or other
visual applications (such as container code recognition, truck
scheduling, and container damage identification). In case of
accident detection algorithm failure, the system could switch
to manual monitoring. This is a very useful feature that the
lidar scanner does not have.

In a word, it is more promising to use cameras to detect
truck-lifting accidents than to use lidar scanners. However,
very little work has been done on visual truck-lifting accident

detection. The article [9] firstly proposes a vision-based
method to detect truck-lifting accidents. It consists of an
object detector to detect the wheel hubs, a Hough circle
detector [10] to refine the wheel hubs detection, and a
bounding box tracking module to monitor the movement
of the wheel hubs to determine whether the truck is lifted.
However, it tends to fail when Hough circle detector cannot
detect the wheel hubs and this case often happens [9].
Several images collected from real application scenarios are
presented in Fig. 2, clearly demonstrating instances where the
Hough circle detector encounters failure due to the distorted,
incomplete, or even unseen wheel hubs. Distorted wheel hubs
refer to wheel hubs that do not appear as standard circular
shapes in the images. So there is still a large room to explore
in visual truck-lifting accident detection. In addition, visual
truck-lifting accident detection under limited computing
resources also needs to be explored, because lightweight
and low-cost computing devices are more desirable in real
applications.

To this end, we propose a novel vision-based method
for truck-lifting accident detection. The main idea of our
method is to utilize a visual object detector to detect the
truck body, including the truck chassis and the tire if the tire
exists, withinwhich to extract some key-points whose vertical
displacements are tracked to determine whether the truck is
lifted.
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FIGURE 3. Side and top views of the hardware of our system.

FIGURE 4. The real hardware of our system. Cameras are in the green rectangle.

The contributions of this paper can be summarized as
follows:

(1)We propose a novel vision-based method for truck-
lifting accident detection. The main idea of our method is
to utilize a visual object detection model to detect the truck
body within which to extract some key-points whose vertical
displacements are tracked to determine whether the truck
is lifted. Based on the idea, the workflow for truck-lifting
accident detection is constructed, and the experimental results
demonstrate the generalization and robustness of our method.

(2)Aiming to reduce the computation cost of container
and truck body detection, we propose a YOLOv5 [11] based
modified detection model which merely has the top detection
headwith only one anchorwhile the other two detection heads
are removed. Compared with the original YOLOv5 model,
it achieves 77 fps in inference with the input resolution of
608× 608 on a single industrial personal computer, gaining
38.5% speed acceleration without performance decrease.

II. RELATED WORK
With the rapid development of computer vision and deep
learning, vision-based detection and measurement technolo-
gies are widely used in industry [12], [13], [14], including
container terminals [5], such as container crane spreader
measurement [15], container code recognition [16], [17] and
container corner casting recognition [18], [19].
Utilizing cameras instead of lidar scanners to detect

truck-lifting accidents is more promising, however, this study
is still in its early stage and very little work has been done.
The article [9] proposes to employ a single shot multi-box

detector (SSD) [20] to detect the wheel hubs of the truck, then
utilize a Hough circle detector to improve the detection of the
wheel hubs, finally adopt a Deep Sort [21] based tracking
module to measure the displacement of the bounding box
of the wheel hubs to determine whether the truck is lifted.
However, the key module of this method, i.e., Hough circle
detector, often suffers from defaced tire, incomplete tire,
or image distortion, and such factors lead to poor robustness
in truck-lifting accident detection. Considering the truck body
has a larger span than wheel hubs and always appears in
the view of cameras, obviously, detecting the truck body
instead of wheel hubs is more robust. Besides, tracking some
significant key-points within the truck body is more robust
than tracking the bounding box of the wheel hubs, because
the truck detector is able to stably output a body rectangle box
within which some key-points can be constantly extracted,
no matter whether the tire is distorted, incomplete or even
unseen. In a word, compared to the method in [9], our method
could be free from the disturbance of distorted, incomplete,
or unseen wheel hubs in the image.

There are also two kinds of intuitive approaches to
detecting truck-lifting accidents. The first approach is object
detector-only. However, it has an inherent limitation in
accurate boundary localization, i.e., bounding box jitter, that
could potentially affect the truck-lifting accident detection
accuracy, as mentioned in [9]. The other approach relies
solely on key-points tracking technique which is widely used
in many fields, such as the internet of things, robotics, and
autonomous driving. However, it is challenging to identify
whether the truck is present, where the truck body is, and
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whether the truck is lifted because there are a lot of interfering
objects such as on-site workers, cars, forklifts, and other types
of equipment in the real operating environment.

III. METHOD
Object detectors provide category and location information
that guide point-level trackers, allowing them to concentrate
on interesting regions, thereby reducing computational costs
and enhancing precision. In turn, point-level trackers com-
pensate for the deficiency of detectors in accurate object
boundary localization. Consequently, integrating an object
detector with a key-point tracker presents a theoretically
sound approach for detecting truck-lifting accidents.

The main idea of our method for truck-lifting detection
is to utilize a visual object detection model to detect the
truck body within which to extract some key-points whose
vertical displacements are tracked to determine whether the
truck is lifted. To achieve this idea, selecting a proper
image as reference frame, obtaining a stable truck region
from the reference frame, extracting some key-points within
the truck region, establishing the reference information as
the starting point of tracking, and identifying truck-lifting
operation are essential for our method. So the workflow of
our system needs to be designed delicately. In this section, the
hardware setup for our truck-lifting prevention system will
be introduced first, then the workflow of our method and the
method for truck and container detection will be introduced
in detail.

A. HARDWARE SETUP
Fig. 3 presents the schematic diagram of our truck-lifting
prevention system, and Fig.4 presents the real system
hardware. Considering that the container mainly has two
different specifications, i.e., 20 feet and 40 feet, four internet
protocol cameras with resolution 1280× 720 are installed
at the leg of the rail-mounted container gantry crane(RMG)
to capture the images of truck and container. The captured
images are all processed on a single industrial personal
computer (IPC) with an Intel 1185G7 CPU (4 Cores,
8 threads) built-in an integrated graphics card (Intel Iris Xe
Graphics), to determine whether the container truck is lifted
or not. Once the truck-lifting accident is detected by any one
of the four cameras, the IPC will immediately send a signal
to the RMG controller, i.e., the programmable logic controller
(PLC), to stop lifting the container spreader.

B. WORKFLOW
For each camera, its video stream is processed through the
same workflow independently as shown in Fig. 5.

Initially, the system decodes the video stream and samples
frames at a constant rate of 15 frames per second to obtain the
image sequence, denoted as F = [F1,F2, . . .]. Subsequently,
the router dispatches F into the corresponding processing
branch (‘‘free branch’’ or ‘‘busy branch’’) based on the
current system state (‘‘free state’’ or ‘‘busy state’’). When the
truck is not ready for the gantry cranes to lift the container,

FIGURE 5. Wokflow of system method.

the system is in ‘‘free state’’, otherwise in ‘‘busy state’’.
In reference information construction step or completion
identification step, the system state may be updated.

1) ‘‘FREE BRANCH’’
The ‘‘free branch’’ (as shown in the red box of Fig. 5) is
responsible for monitoring whether the truck has stopped
at the right location and is ready for lifting operation and
constructing the reference information with regard to which
used to track the movement of the truck. It consists of three
steps: the construction of queue, the selection of reference
frame, and the construction of reference information.

a: QUEUE CONSTRUCTION

FIGURE 6. Flow chart of queue construction.

To monitor whether the truck has stopped at the right
location, we construct a queue with a fixed length of q,
which consists of the locations of the truck at each moment.
The queue is defined as Q = [b1, b2, . . . , bi, . . . , bq]. bi
represents the bounding box of the truck body extracted from
its corresponding frame Fi, b1 is the head of the Q, and bq is
the tail of the Q.

Fig. 6 shows how the queue is constructed. The Q must
meet three requirements: 1) its corresponding frames must
be continuous; 2) each corresponding frame must contain
both the container and the truck body; 3) the container
of each corresponding frame must be on the top of the
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truck body. To ensure the last two requirements, a modified
YOLOv5 detector (YOLOv5s-light, which will be detailed in
section III-C) is utilized to detect the container and the truck
body, whose bounding boxes are used to analyze the relative
positional relationship between them.

Once the Q is built successfully, it means that the truck
loading the container has arrived near the lifting location, and
the next step is to monitor whether the truck has stopped at
the right location and select an appropriate frame with regard
to which used to track the movement of the truck. We call this
appropriate frame reference frame, represented by the Fr .

b: REFERENCE FRAME SELECTION
The reference frame can be selected based on the intersection
over union (IoU) between b1 and bq. When IoU (b1, bq) >

0.95, we infer that the truck has been parked in the right
location, the reference frame is established as Fr = Fq,
and the truck body bounding box in the reference frame is
established as br = bq.

Once the reference frame is selected successfully, that
signifies the truck has stopped at the right location waiting for
lifting container and the next step is to construct the reference
information with regard to which used to track the movement
of the truck.

c: REFERENCE INFORMATION CONSTRUCTION
The reference information comprises the truck body bound-
ing box, i.e., br , key-points coordinates, and key-points
descriptors. These key-points are extracted within the truck
body region in Fr using ORB [22].

After the reference information is established, the system
will switch from ‘‘free state’’ into ‘‘busy state’’, and the router
will dispatch the next frame into ‘‘busy branch’’.

2) ‘‘BUSY BRANCH’’
The ‘‘busy branch’’ (as shown in the green box of Fig. 5)
is responsible for monitoring whether the lifting operation
is complete and whether the truck is lifted based on
the reference information. It comprises three steps: the
identification of completion, the tracking of reference points,
and the identification of truck-lifting.

a: COMPLETION IDENTIFICATION
In this step, the truck body is detected using YOLOv5s-
light in the current frame, and the output bounding box is
denoted as bc. Then, for a consecutive sequence of 10 frames,
if IoU (bc, br ) < 0.5 is met, we infer that the lifting operation
is complete and the truck is going to leave. Then, the system
switches into ‘‘free state’’. Otherwise, the system goes to the
reference points tracking step.

b: REFERENCE POINTS TRACKING
Reference points refer to the key-points in the reference
information in section III-B1.c, and they are denoted as a
set Pr =
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p presents the number of reference points. Reference points
tracking is the process of tracking these points within each
subsequent frame.

To update the reference points tracking results in the
current frame, we define a temporary buffer Pc =[(
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in Pc is initialized with

the coordinate of the corresponding reference point, i.e., xci =

xri , y
c
i = yri . In each subsequent frame, we first extract some

key-points within the truck body bounding box using ORB in
the current frame, then we utilize a feature matching-based
method, i.e., brute-force matcher in OpenCV [23], to track
the reference points. Finally, for those successfully matched
reference points, the corresponding coordinates in the buffer
Pc will be updated to be the coordinates of the matched points
in the current frame.

c: TRUCK-LIFTING IDENTIFICATION
After reference points tracking, we analyze the movement
of all reference points in the current frame to identify the
truck-lifting result as either ‘‘danger’’ (there is the truck-
lifting risk) or ‘‘safe’’ (there is no truck-lifting risk). Because
the variation of the distance (as shown in Fig. 3) between the
truck and the camera is very small, the mapping between
the vertical displacement in pixels and the displacement in
centimeters is constant. Therefore, we can use the vertical
displacement in pixels to determine whether the truck is
lifted.

Firstly, the vertical displacement di of the ith reference
point is computed by (1).

di = yci − yri (1)

Then, displacements of all reference points can be obtained
and denoted byD =

[
d1, d2, . . . , di, . . . , dp

]
. Following that,

the movement of the ith reference point is computed by (2).

mi =

{
1, if di > Td
0, otherwise

(2)

where Td is the distance threshold, controlling our system’s
sensitivity. Ultimately, we defineM as the sum of all mi, i.e.,

M =

p∑
i=1

mi, and the truck-lifting result is computed by (3).

r =

{
1, if M > max

(
T an ,T rn p

)
0, otherwise

(3)

where r = 0 and r = 1 indicate that the truck-lifting result of
the current frame is ‘‘safe’’ and ‘‘danger’’, respectively. T an is
the absolute quantity threshold, and T rn is the relative quantity
threshold. If r = 1, our system sends a signal to PLC to stop
the lifting operation.

C. DETECTION MODEL
Our method for truck-lifting accident detection is based on
a visual object detector. The object detection model detects
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the container and the truck body for each frame in the queue
construction step or the completion identification step, and
this would cost a lot of computing resources.

The state-of-the-art (SOTA) in the object detection
field includes two-stage detectors such as Faster R-CNN
series [24] and one-stage detectors like SSD series andYOLO
series. The two-stage detectors have high detection accuracy
but with low inference speed and high computational
demand. The one-stage detectors achieve decent detection
accuracy with faster inference speed. Compared with SSD
series, YOLO series has a better balance in accuracy and
speed, which is widely used in industry and academia.
After thorough comparison (detailed in section IV-A3), the
YOLOv5s is adopted in our method. Considering that the
images of four cameras are all processed on a single IPC
with limited computing resources, this would be still a big
burden for the IPC, so the detection model needs to be further
improved to reduce the computation cost for the IPC.

FIGURE 7. The size and shape distribution of objects in our dataset.

FIGURE 8. The architecture of YOLOv5s-light. The red parts of the original
YOLOv5s are pruned, and only one anchor is retained on the top feature
map in our detector.

Original YOLOv5s imposes nine anchors with different
sizes and aspect ratios on three different scale feature maps to
detect different objects. However, for our system, the distance
between the truck and the camera varies little, and the lifting
position relative to the camera is also fixed. This results in the
size and the aspect ratio of the truck body and container in the

image varies little. Besides, the truck body and the container
have similar size and aspect ratios in the image, as shown in
the first column and third column of Fig. 2. The size and shape
distribution of all objects in our dataset is shown in Fig. 7.
So there is no need to use nine different anchors on three scale
feature maps to detect the container and the truck body.

The architecture of modified YOLOv5 (YOLOv5s-light)
is shown in Fig. 8. Considering that the container and the
truck body in image are relatively large, we only retain the
top detection head while the bottom and middle detection
head are removed, and only one anchor is imposed on the
top feature map. The size of the anchor is set to be the
average size of the container and the truck body in our
training set. Theoretically, our proposedmodification reduces
the computational cost of the detection head by 98% in
comparison with the original YOLOv5s model.

FIGURE 9. Detection results of truck body and container.

IV. EXPERIMENT
In this section, we will evaluate the modified object detection
model first, and then evaluate the whole system.

A. DETECTION MODEL EVALUATION
1) TRAINING DATA
Using the hardware setup introduced earlier, we collected
a total of 5000 images as training data(60%), validation
data(20%), and test data(20%). Each image contains a part
of the container and the truck body. All data are annotated
by professional engineers. They are used for the training and
testing of our container and truck body detector. It should
be noted that images such as those in the second column of
Fig. 2, which contain the middle region of the truck body, are
not annotated.

2) TRAINING DETAILS
Our detection networks are trained with Pytorch [25].
The detection model is trained for 150 epochs from the
YOLOv5s model pre-trained on coco datasets using SGD
optimizer [26], with a learning rate of 0.01 and batch size of
128 on 8 NVIDIA V100 GPUs. The size of the input image
is resized from 1280× 720 to 608× 608 using the adaptive
resizing method, which maintains the original aspect ratio of
objects. We suggest using at least 3000 images to train the
truck detection model.
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TABLE 1. Performance comparison including mAP, recall, and detection
speed(in FPS) between different state-of-the-art models.

3) EXPERIMENTAL RESULTS
We compare our modified detection model with SOTA detec-
tors, including Faster-RCNN, SSD, YOLOv5n, YOLOv5s,
YOLOv5m in terms of mAP, recall, and inference speed.
Fig. 9 shows the detection results of our model, and Tab. 1
shows the comparison result.

Because one single IPC needs to process data from four
cameras at 60 frames per second, the system must achieve a
minimum processing frame rate of 60fps. Taking into account
the additional time consumed by key-points extraction and
tracking, it is recommended for the detector to run at a speed
over 70fps.

Among these detectors, YOLOv5n demonstrates a remark-
able processing speed of 98fps, but this comes at the cost
of a 13.1 mAP@0.5 decrease in detection precision when
compared to YOLOv5s. On the other hand, YOLOv5m
achieves the best detection accuracy, but its inference speed
is much slower than our requirement. YOLOv5s presents an
excellent trade-off between accuracy and speed, however, its
inference speed falls a little below the desired threshold of
70fps, thereby motivating us to improve YOLOv5s for faster
inference speed.

We can see that our detection model could run at the
speed of 77 fps and achieve 38.5% acceleration in inference
speed without performance decrease in mAP@0.5 and
recall@0.5 compared with the original YOLOv5s model.
This indicates that it is unnecessary to detect the container and
truck body using multi-scale feature maps with nine anchors
in our system. This is very significant for the scenario under
limited computing resources. So our modified detection
model can help to reduce the cost of the whole system.
Notably, the decline in mAP@0.95 has a negligible impact
on the truck-lifting accident detection performance, given that
pixel-level key-points extraction and tracking are conducted
in subsequent stages.

B. SYSTEM METHOD EVALUATION
1) TRAINING DATA
Relatively, truck-lifting accidents happen not very often in
daily lifting operations, so it is very difficult to collect
sufficient accident samples for our experiment and we collect
truck-lifting accident samples by manually simulating the
accidents. Considering all the cases that the lock pin is
not released, there are fifteen combinations in total for
the four lock pins. For each combination, constrained by
the experimental loss of truck, container, and lifting rope, the

truck-lifting operation is manually repeated only ten times,
then we could get 150 videos for the truck-lifting operation
in total. Besides, the videos for the normal container-lifting
operation can be easily collected from daily container-lifting
operations and 1000 lifting operation videos are collected in
our experiment. All the videos are split into the training set,
the validation set, and the test set. Therein, 100 truck-lifting
videos and 650 normal operation videos are used as training
(80%) and validation (20%) data, and the rest videos are used
as test data.

2) TRAINING DETAILS
We utilize the training and validation videos to optimize
the truck-lifting identification parameters introduced in
section III-B in an iterative way within a predefined range.
The optimal parameter combination can be obtained when the
recall and false alarm rate reach the best, and here we list the
suggested parameters: q = 30, Td = 20, T rn = 0.4, and
T an = 40.

3) EXPERIMENTAL RESULTS
We evaluate our method for truck-lifting accident detection
and our method achieves 100% recall (all 50 truck-lifting
videos are recognized as ‘‘danger’’ successfully) and 0% false
alarm (all 350 normal lifting videos are recognized as ‘‘safe’’
successfully).

Fig. 10 compares the reference points tracking process
of a normal container-lifting operation and a truck-lifting
accident operation. During the normal lifting operation (the
first row), the truck body experiences a slight rebound at the
early stage and then stays static. So we can see some short
trajectories in the second column of Fig. 10(a). During the
truck-lifting accident operation (the second row), the truck
body continues to rise along with the container. So we can
see that a large portion of reference points have a large
vertical displacement in the second column and the third
column of Fig. 10(b). We can see that our method still
successfully detects the truck-lifting accident when wheel
hubs are distorted, incomplete, or even unseen, while this is
a very common failure in article [9].

4) DISCUSSION
In addition to the videos in the aforementioned dataset, our
system has consistently operated in multiple container ter-
minals and collected some additional test samples. In nearly
100000 normal lifting operations, our system mistakenly
reported ‘‘danger’’ 42 times. In all 6 truck-lifting accidents,
our system accurately identified the accidents and triggered
the PLC to stop the lifting operation, thereby significantly
avoiding potential accident losses. So, the recall and false
alarm rates are updated to 100% and about 0.42%.

We analyzed the false alarm samples and found that when
the container is excessively heavy, even during the normal
container-lifting operation, there can be a significant upward
bounce of the truck body, leading our system to incorrectly
identify the operation ‘‘danger’’. Increasing the thresholds
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FIGURE 10. Truck-lifting detection results of our method. (a) Normal container-lifting operation. (b) Truck-lifting accident operation. The first column is
the moment when the truck stops and is ‘‘Ready’’ for lifting. The second column is the ‘‘Early’’ stage of the lifting operation. The third column is the
‘‘Later’’ stage of the lifting operation. The green dots represent the key points extracted within the truck body, the blue curves depict the trajectories
during the lifting operation, and the orange line is the reference line for the initial position of the truck body.

Td is a potential solution. However, such an adjustment
concurrently lowers the system’s sensitivity and recall rate.
In practical applications, it is acceptable to introduce a small
number of false alarms while maintaining a high recall rate.
Designing a dynamic threshold mechanism is the direction
for our future research.

FIGURE 11. Key-points (green dots) within entire images. There are many
useless and even interfering key-points. It is challenging to identify which
object each key-point belongs to, whether the truck is present, where the
truck body is, and whether the truck is lifted.

C. COMPARISON RESULTS
To analyze the performance of the proposed approach,
we compare different methods for truck-lifting accident
detection on the test dataset in terms of recall and false alarm,
and the results are shown in Table 2.

1) KEY-POINTS-ONLY
Key-points-only method refers to directly extracting and
tracking key-points on the input images. During the early
stages of our research, we tried to develop the truck-lifting

TABLE 2. Comparison results of different truck-lifting accident detection
methods. Detector-only method is only tested on the test set in
section IV-B1, whereas our method is tested on both the test set in
section IV-B1 and the additional test samples in section IV-B4.

accident detection method only using key-points tracking but
it did not work at all. This is because there are a lot of
interfering objects, and we can not identify whether the truck
is present, where the truck body is, and whether the truck
is lifted. So the test result of this method is not provided in
Table 2. We use ORB algorithm to extract key-points from
the entire images, and some results are shown in Fig. 11.

2) DETECTOR-ONLY
In theory, only using an object detector can analyze the
motion of the truck body, but the experimental results show
that the boundary localization of the truck body is not
accurate enough, this limitation is similar to the description
mentioned in [9]. It can be seen from Table 1 that the
map@0.5 is very high, but the map@0.95 is not high
enough, that is, when the IoU threshold is set to 0.95, the
accuracy of the detector will be greatly reduced, suggesting
that detector’s boundary localization accuracy falls short for
reliable truck-lifting accident detection. Fig. 12 shows a
representative bad case of the method using only the detector.

3) METHOD IN [9]
As mentioned in [9], their method fails when the wheel hubs
are distorted or defaced (incomplete). So their method is

42408 VOLUME 12, 2024



Z. Ji et al.: Novel Vision-Based Truck-Lifting Accident Detection Method

FIGURE 12. A representative false alarm example of the detector-only method. It occurs due to jitter of the bounding box.

FIGURE 13. Wheel hubs detection results of the method in [9] in our
scenario. The green rectangles represent the approximate regions of
wheel hubs detected by the first-stage object detector in [9], while the
Hough circle detector, i.e., the second-stage detector in [9], fails to further
locate the wheel hubs.

completely unsuitable for our scenario (using Hough circle
detectionmethod to detect distorted, incomplete, or even non-
existent wheel hubs).

We reproduced the method in [9] to detect wheel hubs,
but it did not work completely on our test set, and Fig. 13
shows some examples of failures. Even though the first-stage
detector is capable of detecting distorted or incomplete wheel
hubs, the second-stage Hough circle detector still fails to
locate wheel hubs.

V. CONCLUSION
We have presented a novel vision-based truck-lifting accident
detection method for truck-lifting prevention system in this
paper. The workflow for truck-lifting accident detection is
constructed based on the idea that utilizing a visual object
detector to detect the truck body within which to extract some
key-points whose displacements are tracked to determine
whether the truck is lifted. The experiments demonstrate
that our method is feasible and reliable, and is free from
the disturbance of distorted, incomplete, or even unseen
wheel hubs in the image, could robustly detect truck-lifting
accidents with an extremely low false alarm rate. In addition,
our YOLOv5-based modified detection model could reduce
the computation cost of container and truck body detection
and help us to reduce the cost of the whole system. Further
investigation of truck-lifting accident detection with only
normal samples or few negative samples will be an interesting
direction, because collecting sufficient negative samples, i.e.,
real truck-lifting accident samples, is a dangerous and cost-
consuming work.
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