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ABSTRACT Human Action Recognition (HAR) is a vital area of computer vision with diverse applications
in security, healthcare, and human-computer interaction. Addressing the challenges of HAR, particularly
in dynamic and complex environments, is essential to advancing this field. The strength of the HADE
framework is its carefully curated dataset, which was primarily derived from smartphone camera footage.
This dataset encompasses a wide range of human actions captured in various settings, providing a robust
foundation for training our novel HAR models, HADE I and HADE II. These models have been specifically
designed and optimized for parallel processing on GPUs, showing significant improvements in the efficiency
of both training and inference processes. Through a comprehensive evaluation, the HADE framework
demonstrated a remarkable improvement in HAR accuracy, achieving 83.57% accuracy on our custom
dataset. This marks a considerable enhancement over existing methodologies and underscores the efficacy
of the HADE approach in accurately interpreting complex human actions. The framework’s potential
applicability in healthcare in the domain of neurological patient care is particularly noteworthy, where it can
aid in early detection and facilitate personalized treatment plans. Future research should focus on expanding
the range of actions covered by HAR and exploring avenues for real-time processing. The introduction of the
HADE framework not only makes a substantial contribution to the field of computer vision but also paves
the way for its practical application across various sectors.

INDEX TERMS Human action recognition, computer vision, machine learning, SlowFast, I3D ResNet50,
real-time action recognition.

I. INTRODUCTION the difference in terminology does not significantly alter

The distinction between human action and activity recog-
nition is fundamental in various domains, such as video
surveillance and sports analysis, involving the categorization
and identification of actions in videos and images [1].
Although the terms ‘action recognition’ and ‘activity recog-
nition’ might be used interchangeably in some contexts,
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the underlying principle [2]. Action recognition systems
are designed to identify discrete actions, such as ‘sitting,
whereas activity recognition systems encompass broader
sequences of actions, like ‘sitting down,” enhancing the
understanding of complex behaviors. This differentiation
is pivotal for a myriad of applications. Human Action
Recognition (HAR), a critical component of Computer Vision
(CV) [3] and Machine Learning (ML) finds its utility in
areas like security monitoring, healthcare, human-computer
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interaction, and sports analysis. Benchmark datasets, includ-
ing the widely referenced KTH dataset [4] serve as a
standardized metric for evaluating HAR algorithms. It’s
noteworthy that the delineation between actions and activities
can blur, contingent on the context; for instance, clapping
during a sports event or walking with a purpose like
commuting to work or leisurely strolling in a park can be
considered activities [5], [6].

Efficient action recognition is crucial for improving effi-
ciency, security, and decision-making across various fields
such as image processing [7], sign language recognition [8],
artificial intelligence [9], and human-computer interac-
tion [10], facilitating intelligent systems in making informed
decisions and reacting aptly. Nonetheless, in specific areas
like in-home nursing, elder care, and anomaly detection [11],
[12], the complex nature of human motion introduces
significant challenges. These obstacles encompass dealing
with occlusions, managing variations in noise levels during
data collection, and fulfilling the demands for real-time
processing. Such challenges underscore the pressing need
for innovative HAR strategies capable of adeptly handling
these complexities while ensuring high levels of accuracy and
efficiency.

Real-time HAR technologies have begun to play a pivotal
role in adaptive sectors such as security and healthcare,
facilitating the capability for anticipatory decision-making
and swift responses [13], [14]. These real-time systems are
adept at identifying actions within various contexts, offering
critical insights to decision-makers [15]. Their proficiency in
navigating diverse situations enhances the practical utility of
HAR systems in real-world applications. This is particularly
valuable in the security and healthcare fields [16], where
the demand for immediate action is high, such as in secure
monitoring systems aimed at thwarting potential security
threats [17], [18], [19], [20], [21].

Recent studies in HAR have increasingly focused on ML
and deep learning techniques, including well-regarded mod-
els such as two-stream networks and Convolutional Neural
Network (CNN)s [22], [23], [24]. Applying CNNs at the
frame level has demonstrated higher accuracy over traditional
manual feature extraction methods. Moreover, processing
sets of frames simultaneously has further enhanced this effec-
tiveness. These technological advancements have notably
increased the precision of HAR models, marking significant
progress in the field.

In recent years, the domain of image and video analysis
in the Internet of Things (IoT) has witnessed signifi-
cant advancements, particularly with the integration of
neuroheuristic approaches. Such methodologies have been
effectively utilized in diverse applications, from smart home
energy-management systems [25] to automated guided vehi-
cle navigation [26]. Our study, centered on the Human Action
in Diverse Environments (HADE) framework, contributes to
this evolving landscape by enhancing Convolutional Neural
Networks (CNNs) for HAR, a field in which neuro-heuristic
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methods have shown promising results, especially in surveil-
lance video analysis [25], [27]. The innovative approach
of the HADE framework is positioned to address some of
the critical challenges faced by contemporary video analysis
systems.

Recent advancements in the fields of deep learning and
artificial intelligence (AI) have led to notable breakthroughs
in HAR. These advancements are characterized by the
integration of diverse techniques and the adoption of
specific design strategies, marking significant progress in
the domain. For example, cascaded design strategies [28],
hybrid approaches [29], and the integration of HAR into
smart living support [30] showcase developments have shown
enhancements in action recognition systems, resulting in
better accuracy and understanding of context. Recent work
in this area focuses on explorations in complex hierarchical
feature reduction models, as earlier noted in a study by
Serpush et al. [31]. A thorough examination of vision-based
HAR by Jegham et al. [32] provides a comprehensive analysis
of vision-based HAR. In addition, the progress of advanced
three-dimensional CNN-based models has led to a shift
towards neural architectures with increased resilience and
adaptability [33]. Our objective is to broaden the practical
application of HAR systems and to improve their capacity for
accurately detecting human behavior. We are committed to
refining existing technologies through the introduction of an
innovative framework designed to address the core challenges
within HAR. This effort highlights the use of cutting-edge
technologies to develop a system that is both more precise
and adaptable, capable of functioning efficiently in a variety
of settings.

Our approach considers diversity and consistency using
state-of-the-art feature extraction techniques and machine
learning algorithms. It further enhanced our robustness in
results, as it reduced the blurring effect caused by occlusion
and changes in lighting. In this research, we introduce a
highly efficient unsupervised learning strategy for sequences,
employing advanced feature extraction techniques and
machine learning algorithms. This breakthrough significantly
enhances the accuracy of detected human action systems,
effectively addressing the difficulties posed by subject occlu-
sion and fluctuating light conditions in varied settings. The
HADE I and HADE II convolutional neural network (CNN)
models accurately categorize activities using motion data
from the HADE dataset. Based on our modeling results, the
SlowFast model demonstrated greater performance compared
to the HADE II model. This improvement greatly enhances
the effectiveness of human action recognition systems in
numerous applications and improves the accuracy of action
recognition in HAR systems. The HADE dataset is crucial
as it supplies the essential motion data for the HADE I
and HADE II CNN algorithms to precisely detect activities.
Moreover, the study revealed that the SlowFast model
surpassed the HADE II model, leading to a significant
enhancement in the performance of action detection in
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HAR systems. These discoveries significantly improve the
accuracy and dependability of HAR systems. Our goal is to
expand the limits of human action recognition by utilizing
breakthroughs in the field and offering new viewpoints. The
objective of our investigation was to give crucial highlights
that will contribute to the advancement of more precise and
dependable systems.

« We present the novel HADE dataset, capturing essential
motion information and enabling precise action catego-
rization using the HADE I and HADE II CNN models.

o Our approach employs State-of-the-Art (SOA) feature
extraction techniques and advanced machine learning
algorithms to effectively mitigate challenges arising
from occlusion, shifting lighting conditions, and back-
ground noise.

« We also provide a comprehensive benchmark evaluation
that demonstrates the performance of our model, consis-
tently achieving SOA outcomes.

The remainder of this paper is organized as follows.
Section II presents a thorough review of SOA HAR and
emphasizes the limitations of their contributions. Section III
introduces the curated and comprehensive HADE dataset and
explains its configuration in the HADE I and HADE II models
to capture spatial and temporal information. Section IV pro-
vides details of the dataset, GPU-based computing resources,
training configuration, and the evaluation metrics used in
the experiments. In Section V, we present a comprehensive
account of the experimental setup including the hardware
and software configurations employed, which are crucial
for evaluating the results of this study. Finally, Section VI
discusses our research and proposes directions for future
research.

Considering the significant advancements in HAR, this
research seeks to address the following research questions:

1) What are the differences between the HADE 1 and
HADE II models in terms of accuracy, precision, and
computational efficiency when applied to various HAR
scenarios?

2) How do advanced preprocessing approaches and GPU
parallel processing affect the speed and scalability of
HAR systems when processing various action datasets?

3) How can the HADE technique be enhanced for specific
real-world applications, especially in the healthcare
sector while maintaining a balance between accuracy
and real-time processing capabilities?

Il. RELATED WORK
HAR encompasses various learning methods, including
supervised and unsupervised approaches, to achieve the
accurate recognition and classification of human movements.
In this section, we provide an overview of the relevant
methodologies employed in HAR, focusing on the models
and their information factors, and highlight the crucial role of
benchmarking techniques in optimizing system performance.
Recent advancements in HAR have been characterized
by diverse and innovative approaches. The work presented
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by Chen et al. [34] demonstrates a hybrid approach that
combines multiple techniques to enhance recognition accu-
racy. Similarly, [28] explored a cascaded design strategy that
offered a nuanced method for action recognition. Within the
realm of smart living, Diraco et al. [30] offered insights into
the utilization of HAR in smart services and applications,
emphasizing the incorporation of HAR in everyday technolo-
gies. A hierarchical feature reduction model is introduced
by Serpush et al. [31] to identify complex human behaviors.
A comprehensive study of vision-based hyperparameters for
human activity recognition (HAR) and their evolution was
recently published by Jegham et al. [32]. Wang et al. [33]’s
study on 3D CNN-based models emphasizes how important
it is to use cutting-edge neural network designs to boost
the effectiveness of Human Activity Recognition (HAR)
systems. The works highlight the dynamic and complex
character of the most recent HAR research, illustrating the
field’s continuous progress toward advanced, accurate, and
flexible action recognition systems.

Using labeled data during the training phase has shown
promising outcomes in Human Activity Recognition with
supervised learning methods. For example, in a study by
Liu et al. [35], they implemented a supervised learning-based
APSR framework and achieved an accuracy of 86.5%
on a specific dataset. Creating a framework that includes
constructing a network to generate features for each body part
and performing weighted pooling based on relevance scores
in the word-embedding space. The utilization of labeled
data during training guides the learning process, and the
pooling result is employed for one-shot recognition. The
UT-Kinect dataset [36] consists of RGB and depth videos,
and it has been extensively utilized within HAR research.
Supervised learning techniques have delivered an accuracy
of 94.8% in the recognition of ADL, through the UT-Kinect
dataset. These results suggest that large labeled training
sets and supervised learning can significantly improve the
performance of HAR applications.

During the past decade, HAR has traditionally been
performed using supervised learning techniques that work
through labeled activity data to learn patterns of interest
(e.g., statistics, structures, and features). However, a growing
body of recent work focuses on unsupervised learning,
including various approaches that autonomously discover
insights and patterns through activity data using methods
like clustering, dimensionality reduction, and generative
modeling. Such methods enable HAR systems to discover
patterns and insights without guidance (e.g., labels) and
thereby enable their operation across diverse dynamic and
open-ended real-world scenarios. For instance, the demon-
strated recognition system is easily adapted to new sensor
platforms and activities and was never trained nor tested
with activities in the presence of obstacles or taken from a
person skiing. Consequently, this recent trend in unsupervised
HAR research holds great promise for the development
of general and adaptive context-aware recognition systems.
Notably, PCANet-TOP [37], SCAR [38], and TSN [39]
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have demonstrated promising results on benchmark datasets,
attaining accuracies of up to 83.9%, 92.9%, and 82.8%,
respectively. These findings contribute to the development
of more robust HAR systems. However, some researchers
have argued that unsupervised learning approaches may be
inherently less accurate than supervised methods that rely
on labeled data [40]. Although unsupervised techniques
may not achieve the same level of accuracy, they provide
valuable tools for exploratory analysis, data comprehen-
sion, and feature extraction. Despite their potentially lower
accuracy, unsupervised learning approaches complement a
broader range of techniques in HAR research, thereby
enhancing the overall understanding and versatility of the
field.

Recent advancements in deep learning models have
revolutionized HAR, thereby surpassing the limitations of
traditional approaches. Deep learning models, such as Slow-
Fast [22], 13D [41], and their variants, exhibit exceptional
capabilities in the autonomous learning of intricate patterns
and representations, leading to enhanced performance and
potential in HAR systems. These models are highly accurate
and robust, particularly for handling variations in the lighting,
pose, and background. To address computational costs,
smaller variants of models, such as C3D, R-C3D, TSN, and
TSM, are recommended, and multigrid training techniques
enhance the generalization capabilities.

Researchers can also use the 3DPW dataset [42], [43] for
3D human pose estimations and feature extractions. Using a
simple deep-learning model, researchers can extract features
that are instrumental in training a classifier for action label
prediction. This technology enables the capture of detailed
3D human pose and motion data, aligning them to advance
HAR by leveraging sensor data.

Recent developments in HAR underscore the field’s rapid
evolution propelled by deep learning and augmented reality.
Studies such as Tangina et al. [44] offer a taxonomy-based
analysis of HAR techniques, illuminating the strides made
in both deep learning and traditional approaches. This
comprehensive review not only showcases the current state
of HAR but also identifies gaps in understanding the full
complexity of human activities. The introduction of the
SepCNN model by Chunzhao et al. [27] resulted in a
significant improvement in AR-P300 recognition accuracy.
This advancement highlights the potential of AR to enhance
HAR, particularly in complicated environments through
fine-grained visual recognition and multimodal systems.
In actual life, human actions are more unpredictable, making
it difficult to apply these advanced methods.

Adaptive HAR systems such as LAPNet-HAR demon-
strate a field shift towards accommodating dynamic and
diverse data qualities. The LAPNet-HAR framework pro-
posed by [45] represents adaptive learning in processing
sensor-based data streams, and addresses the critical issue
of catastrophic forgetting in HAR. Nonetheless, as argued
by [46], modeling complex human behavior through machine
learning is inherently limited by the incompressibility and
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unpredictability of social systems. This critique highlights
a significant gap in HAR research: the need for models
that capture the nuances of human actions and address the
societal and ethical implications of these technologies. The
challenge lies in developing HAR systems that are not only
technically proficient but also socially responsible, recogniz-
ing and mitigating the potential for historical and societal
bias.

In addition, the clustering-based DeepTransHAR model
with GRU layers [47] demonstrated superior performance,
achieving an accuracy of 86.89% with reduced training
time. Multi-view actions such as the Northwestern-UCLA
dataset [48] can be a valuable resource for training and
evaluating models for action recognition tasks that involve
the soft weighting of body parts, temporal modeling, and
classification based on RGB-D videos focused on human
body components. This contributes to a better generalization,
robustness, and overall performance of the model in real-
world scenarios, where actions may be observed from
various viewpoints and performed by different individuals.
Some other har system works might acquire complex spa-
tiotemporal patterns and adapt to varied real-world settings,
thus spiraling up in challenges and reaching state-of-the-art
performance.

The integration of communication and sensor technologies
has spearheaded research on HAR is providing novel insights
for human behavior analysis and has enhanced the perfor-
mance significantly. For example, interior human behavior
analysis has been greatly facilitated by the exploitation
of Channel State Information (CSI) and the Fresnel zone
model [29]. Furthermore, deep neural network algorithms
introduce innovative approaches for integrating image infor-
mation across video sequences in HAR [49], resulting
in significant performance improvements compared with
previous methods. These advancements have contributed to
ongoing progress in HAR research, highlighting the potential
for further enhancing the accuracy and effectiveness of action
recognition systems.

The techniques utilized by the developers to ensure that
it offers real-time processing in the HAR are quite amazing
and inventive. For example, the use of I3D-ResNet50 [50],
in the method of modeling through pruning techniques gives
remarkable effectiveness in terms of the performance of
the system. The redundancy and computational efficiency
problems in the HAR systems have been handled elegantly.
For example, state-of-the-art accuracy in the Human Activity
Pruning with Deep Neural Network (HAP-DNN) architecture
has led to computational efficiency problems as obtained
by the authors in [51]. Depth cameras offer a significant
advantage in terms of spatial information compared to other
types of cameras. This is due to their ability to directly
capture 3D space information. Furthermore, it has been
noted that the algorithms used to compute this information
have been enhanced, resulting in superior feature repre-
sentation. Therefore, the findings of our research suggest
that the implementation of segmentation techniques can

VOLUME 12, 2024



M. Karim et al.: HADE: Exploiting HAR Through Fine-Tuned Deep Learning Methods

IEEE Access

yield highly favorable outcomes in real-world scenarios. The
authors of the study also present the advancements made
in segmentation algorithms and the incorporation of more
detailed spatial information through the adoption of depth
cameras [52].

Skeleton-based graph designs and Graph Convolutional
Networks (GCNs) have emerged as promising approaches
to action recognition in HAR. A SkeletonPose method
proposed by [53] improves 3D human pose estimation by
integrating human skeleton constraints. Unlike exclusive
deep-learning methods, they combine data-driven and
calculation techniques. When tested with the Human Eva
dataset [54], it utilizes a skeleton length before reducing the
predicted skeleton errors and enhancing accuracy. This aligns
with the trends in skeleton-based approaches and Graph
Convolutional Networks for action recognition in HAR
research. Jiagang Zhu [55] utilizes the H3D-MHAD dataset
and achieved an average accuracy of 93.5% to enhance action
recognition. Their two-stage model initially extracts features
from 3D skeletal data, effectively transforming them into
a graph-based representation, which is the cornerstone of
skeleton-based graph design. These methods utilize graphs
to represent actions, with nodes representing body joints, and
edges intuitively capturing the movements and structure of
the human body [56]. GCNs have demonstrated impressive
results on benchmark datasets, further highlighting their
effectiveness in action recognition [57], [58], [59]. Another
innovative approach, known as Spatio-Temporal Attention-
based Transformer (STAR), effectively represents the
cross-modal features for action recognition [60]. These
advancements have contributed to the overall progress of
HAR research, paving the way for more accurate and
effective action-recognition systems in various application
domains.

Recent literature on image and video analysis highlights
a trend toward neuroheuristic methods, particularly within
IoT applications. These approaches, for instance, have been
effective in enhancing different tasks, including but not lim-
ited to energy optimization in intelligent residence tasks [25]
and tasks of enhancing precision and reliability of automated
guided vehicles [26]. In this context, neuroheuristic analysis
has been applied and emerged as an efficient approach in the
contexts of surveillance for the detection related to real-time
behaviors [61] Our work with the HADE framework goes
well with this background in the research area focused on the
improvement of HAR, especially by exploring advanced deep
learning models. We position our work in the present research
and, therefore, in a way, also in further developing the HADE
framework.

The HAR study has conducted more research on the
capability of smartphone sensors to capture and analyze
human actions on a larger scope. The use of accelerometers
and wearable sensors has yielded encouraging outcomes
in HAR, providing a handy and inconspicuous method for
monitoring human actions [62], [63], [64]. These investiga-
tions add to the progress in monitoring human activity and
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FIGURE 1. The HADE Architecture for Action Recognition.

enhance our comprehension of human behavior in different
situations.

We review methodology and advances in HAR and related
studies. Current research contributes to the field, but its
limits must be addressed. Using tagged data for training
limits the scalability and generality of supervised learning
systems. Deep learning methods are effective yet computa-
tionally expensive. These expenses can be reduced by using
smaller variations and multigrid training. Smartphone sensor
technologies are promising but need improvement. In the
next section, we will propose a framework to overcome
these restrictions and address the related issues. We use
supervised learning and powerful machine-learning algo-
rithms to improve action recognition accuracy, efficiency, and
robustness.

Ill. HADE: PROPOSED ARCHITECTURE

We present the HADE model for 3D action recognition.
HADE combines the strengths of HADE 1 and HADE 11
models to recognize and categorize human actions in 3D
space. These models possess a keen ability to capture the
complex spatial and temporal aspects of various scenes
and are equipped to handle a range of lighting variations,
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TABLE 1. Overview of research studies: models, methods, datasets, results, contributions, and limitations.

Reference ~ Model Method Dataset Results Contributions Limitations
[22] SlowFast Deep Learning Kinetics-400, 79.8% accuracy Handles Requires
Something- variations in  additional
Something V2 lighting,  pose, parameters, high
background computational
cost
[35] ASPR framework  Supervised UT-Kinect 86.5% accuracy Utilizes labeled Limited scalabil-
Learning data for training, ity due to reliance
one-shot on labeled data
recognition
[37] PCANet-TOP Sparse  Coding  UCF-101, Up to 83.99% ac-  Adaptability Potentially
(Unsupervised HMDBS51 curacy to real-world  lower accuracy
Learning) scenarios compared to
supervised
methods
[38] SCAR Two-stream Net- COCO, 74.2% accuracy  Practical Routing map
works YouTube-VOS on COCO, 80.3%  technique learning
on YouTube-  for object unclear, affects
VOS segmentation robustness,
in videos generalization
[41] 13D ResNet50 Resolution UCF-101, 90.5% on UCF-  Segments-based Limited
Convolutional HMDB51 101, 87.6% on 3D ConvNet  exploration
Networks HMDB51 captures spatial,  of generalization
temporal features  ability in other
domains
[47] DeepTransHAR Deep Learning Northwestern- 86.89% accuracy  Reduced training  Best performance
(Clustering) UCLA time, robustness with specific
datasets
[29] HAP-DNN Communication, UCI-HAR, 99.38% accuracy  Hybrid attention-  Complex
Sensor OPPORTUNITY on WISDM, based DNN for network, requires
Technology 99.23% on  multi-sensor extensive training
OPPORTUNITY  pruning data
[50] Optimization 3D Convolutional ~ Kinetics, Hand 30.7% on Efficient real- Lack of detailed
(Pruning) and Two-stream  Gesture Dataset Kinetics, 94.0% time action  implementation,
Models on Hand Gesture recognition on  statistical
Dataset mobile devices analysis
[57] STAR or ST-  Skeleton- Kinetics, NTU 52.8% on  Motion Does not consider
GCN based Graph RGBD Kinetics, 88.3%  energy/entropy- graph  structure
Convolutional on NTU RGBD based segment variations among
Networks selection strategy ~ actions, subjects
[58] CNN based Raw Accelerom- WISDM 96.7% accuracy Automatic learn-  Limited analysis
LSTM eter Signaling ing of complex of different
features from raw  performance
signals segments
[60] MPA based CNN  Optimized CNN  UCI-HAR, 98.2% on UCI- Captures spatial Uneven datasets
based Graph  WISDM HAR, 97.8% on and temporal  handling unclear,
Convolutional WISDM connections could impact effi-
Networks among  human  ciency
joints
[25] Heuristic-Based IoT-Enabled Custom Optimized Trade-  Integrates Limited to spe-
Algorithm Smart Homes offs demand response,  cific home envi-
renewable ronments
sources
[26] Neuro-Heuristic Pallet Detection  Custom High Accuracy Combines image  Specific
Model for Vehicles processing with  to vehicle
neural networks navigation
contexts
[61] Neuro-Heuristic Surveillance Centralized IoT Real-Time Detec-  Enhances behav-  Requires high

Framework

Video Analysis

tion

ior analysis using
CNNs

computational
power

diverse poses, and complex backgrounds. HADE uses these
capabilities to improve 3D action recognition accuracy and
reliability. This is supported by a carefully curated dataset that
provides a thorough evaluation and forms the basis of precise
action-recognition systems.

Figure.l outlines the proposed architecture, which com-
prises three layers. These three layers are the Data Acqui-
sition and Preprocessing Layer, the Algorithmic Processing
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Layer, and the insight generation and visualization layer.
In the next three sections, we describe these layers in further
details.

A. DATA ACQUISITION AND PREPROCESSING LAYER

The human action recognition (HAR) system depends on the
efficient management of the HADE dataset’s gathering and
organization. This layer includes a variety of pre-processing
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methods to ensure that the data is properly organized for
subsequent processing. A smartphone camera was used to
collect the data, and the action scenes were saved as.mp4
video clips. Each video file was between 4 to 5 seconds and
during the recording, they were at a frame rate of 30 frames
per second (fps). The frames were then organized in separate
folders according to subject and action name.

1) PROPOSED DATASET - HADE

The HADE dataset comprises 699 samples of four fundamen-
tal actions, as listed in Table 2, which lists the number of
samples available for each action.

TABLE 2. Action sampling in video collection.

Action # Action Name # of Sam-
ples

1 Clapping 178

2 Sitting down 171

3 Standing up 171

4 Walking 178

Total 699

The HADE dataset stands out from other datasets for 3D
action recognition because of its breadth of action coverage
and environmental diversity. This variety is crucial to the
generalization of trained models, effectively preparing them
to handle a wide range of real-world scenarios.

Figure 2 presents a diverse selection of clapping action
samples, highlighting the variability and richness of the
actions within the dataset.

EERENT T
BR=ESATE
EERRERERE

FIGURE 2. Selected Samples of Clapping Action from 4 Randomly Chosen
Subjects out of 22.

2) COMPARISON WITH OTHER DATASETS
A comparison of the 3D action recognition datasets in
Table 3 highlights the diversity of the datasets and identifies
their unique features of the proposed dataset (HADE). This
provides a comprehensive overview of the datasets that
are currently available and can help researchers choose an
appropriate dataset for their specific research objectives.
These datasets were compared to HADE based on the sam-
pling size and diversity, which influenced our preprocessing
decisions for informed analysis.

a: UTKINECT-ACTION3D DATASET
UTKinect-Action3D captures ten actions from ten subjects
using RGB, depth, and skeletal joint data at 30 fps [62].
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Challenges include viewpoint variations, self-occlusions, and
intraclass differences. Researchers have employed alignment,
normalization, and augmentation for this enhancement.

b: CMU MOCAP3D DATASET

The CMU Mocap3D dataset, which contains 2600+ motion
trials by 144 actors in diverse settings, yielded nearly
600 samples. Captured using a Vicon optical system with
12 cameras at 120 Hz [65], it provides the 3D marker posi-
tions, skeleton joint angles, and BVH animation files. Chal-
lenges encompass viewpoint variations and self-occlusions,
which are addressed via meticulous data alignment and
normalization during preprocessing, thereby enhancing the
usability of the dataset.

¢: HUMANEVA DATASET

The HumanEva dataset contains 87,000 frames of synchro-
nized motion capture and video data recorded by seven
cameras at 60 Hz [54]. Illustrating six typical actions carried
out by four people in real-world scenarios comes with its own
set of difficulties, such as changes in lighting and obstacles
obstructing the view. Addressing these issues requires careful
data alignment and synchronization during the preprocessing
phase.

d: NORTHWESTERN-UCLA DATASET

Each of the ten action categories in the Northwestern-UCLA
dataset is completed twice by ten subjects. The Kinect
cameras captured the movements, encompassing data related
to the skeleton, depth, and RGB colours. Obstructions and
differences in vision are two challenges. To rectify these
deficiencies and enhance the dataset’s suitability for analysis,
it underwent preparation through the implementation of
normalization, data augmentation, and temporal alignment
techniques.

e: BMHAD DATASET

The BMHAD dataset includes 11 action categories performed
five times by 12 individuals in various scenarios, resulting
in a total of 660 action samples. Acquired data consists
of RGB, depth, and inertial sensor information, along with
ground-truth labels and bounding boxes [67]. The tasks
involved extracting depth frames, removing background
noise, extracting features, and using machine learning
algorithms for accurate action classification, leading to a
comprehensive dataset analysis.

f: MSR ACTIONPAIRS DATASET

The MSR ActionPairs dataset represents an invaluable
resource within the field of computer vision, specifically
tailored for the examination of 3D action recognition through
depth sequences. This dataset encapsulates a collection
of 12 distinct actions, each executed by ten different
subjects, thereby offering a comprehensive framework for
the analysis and interpretation of human motion in a
three-dimensional context. The diversity of subjects and
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TABLE 3. Comparing 3D action recognition datasets.

Dataset

Preprocessing

Actions

Samples

Diversity

UTKinect-Action3D [62]
CMU Mocap3D [65]
HumanEva [54]

Northwestern-UCLA [66]

BMHAD [67]

MSR ActionPairs [68]

3DPW [42]

ViBe-3D [69]

H3D-MHAD [70]

Data alignment, normalization,
and data augmentation

Data alignment and
normalization

Data alignment and
synchronization

Temporal alignment of data,
normalization, and data
augmentation

Depth frame extraction,
background noise reduction,
feature extraction

Depth frame extraction, noise
reduction, feature extraction
using HON4D

Data acquisition, conversion,
alignment, normalization, and
data augmentation

Data alignment, model
parameter prediction,
adversarial learning, and
incorporation of temporal
information

Data import, data extraction,
quality control, encoding,
partitioning, and data scaling

3

6

15

10

10

15

15

10

10

90

600

1080

100

100

150

450

400

500

Limited
Limited
Limited

Limited

Limited

High

High

High

High

HADE

Data collection, data cleaning,
data augmentation, and
temporal consistency check

900

High

actions within the dataset provides a robust basis for the
development and evaluation of computational models aimed
at understanding and classifying human movements with
a high degree of accuracy. Unique to this dataset, it pairs
actions exhibiting similar motion patterns and shapes but
different relationships [71], [72]. The preprocessing pipeline
includes depth-frame extraction, noise reduction, and feature
extraction using a HON4D histogram [73].

g: 3DPW DATASET

The 3DPW dataset provides real-world 3D human pose
estimations using synchronized video and motion capture
data. It features 60 outdoor video sequences, detailed 2D
and specialized 3D pose information, camera poses, 3D body
scans and human models [42]. Preprocessing encompasses
various stages such as data acquisition, conversion, align-
ment, normalization, and data augmentation, ensuring that the
dataset is primed for accurate and comprehensive analysis.

h: VIBE-3D DATASET

With 22,000 different video clips, VIBE-3D provides a
specialised dataset and framework for 3D human pose
and shape estimation [69]. Preprocessing entails careful
procedures including data alignment, model prediction,
adversarial learning, and temporal information integration to
handle issues like temporal learning and view variations.

i H3D-MHAD DATASET

3D LiDAR and inertial sensors were used to enable 3D
human action detection with the H3D-MHAD dataset. With
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annotations providing 3D point clouds, skeletal joint
locations, and sensor readings, it covers 12 activity
categories [70]. Data extraction, encoding, partitioning,
scaling, quality assurance, and encoding are all included in
pre-processing.

Figure 3 visually compares the actions and sizes listed in
Table 3.

3) PRE-PROCESSING HADE DATASET

A methodical approach was used in the production of the
video data to ensure accuracy and consistency. To ensure
a consistent analysis, the videos were segmented into 16-
frame chunks to standardize the input size. Techniques for
choosing frames that capture the subtleties of the material
include uniform, random, and dense sampling. To maintain
data consistency, the frames were scaled to 256 pixels by
256 pixels, a standard resolution. It is necessary to record the
motion dynamics for video analysis. Temporal information
is added via optical flow computation, which calculates the
motion between frames. Gaussian blur, color jittering, and
random flips were used to enhance the dataset’s variety
and strengthen the model’s robustness. Large video files,
however, call for efficient data handling. This is made
possible by temporal jittering, which guarantees a variety
of contexts, and temporal sampling, which chooses clips to
cut down on processing expenses. To stabilize the training,
the pixel values were normalized to have a mean of O and
a standard deviation of 1. To capture the temporal context,
the frames were stacked in a 16. The data were organized
into batches of size x num_frames x height x width x
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Group 1 (Actions <= 4)

Group 2 (Actions <= 10)

Group 3 (Actions > 10)
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FIGURE 3. Comparing total actions based on the number of total samples of each dataset in Table 3.

channels for efficient computation. Action labels are encoded
in numerical formats such as one-hot encoding or integer
labels for precise model interpretation.

Pre-processing techniques were used during the dataset
curation process to guarantee the quality and usability of the
dataset for training advanced 3D action recognition models.
Among these methods are the following ones.

« Data Augmentation (DA): Rotation, rotating, and crop-
ping are used to enhance dataset size using data
augmentation. These adjustments increased dataset size
and variety. So, models get more training cases, to assist
them. These methods increase knowledge and help iden-
tify data trends, which improves model performance.
This improves model accuracy and generalizability
across many conditions.

o Missing Data Imputation (MDI): Incomplete or missing
samples in datasets are addressed by MDI data prepa-
ration approaches. These methods include interpolation,
which estimates missing data points by using adjacent
data points; extrapolation, which extends data analysis
beyond the original observation range to infer missing
values; and mean imputation, which replaces missing
values with the mean of the available data. These
methods help researchers assure dataset integrity and
completeness, improving analysis dependability.

o Quality Control (QC): To ensure dataset quality and
dependability, QC techniques are used. This process
involves detailed error checking, identifying gaps, and
fixing issues like corrupted files and incorrect labels.
These methods ensure the dataset’s stability and quality,
making it useful for analyses and model training.
A rigorous dataset validation reduced biases and errors
that could affect training.

The dataset pre-processing process can be represented as
follows:

~ OC -~
x 24 x, MPL g 9 % (1)
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By applying these preprocessing techniques, the dataset
became more suitable for subsequent analysis and model
training, resulting in improved reliability and accuracy of the
obtained results.

Algorithm 1 Data Preprocessing and Augmentation
for HADE Dataset
Require: Raw video dataset X
Ensure: Pre-processed and augmented dataset X
1: Divide video into 16-frame clips
2:  Apply frame selection techniques (uniform, random, dense
sampling)
3: Resize frames to 256 x 256 pixels
4: Compute optical flow for temporal information
5: Apply data augmentation (random flips, color jittering,
Gaussian blur)
6: Apply temporal sampling and jittering
7: Normalize pixel values (mean = 0, std dev = 1)
8
9

Stack frames in a 16-frame format
: Organize data into batches
10: Encode action labels
11: Process dataset through DA to obtain
12: Process dataset through MDI to obtain
13: Process dataset through QC to obtain final dataset
14: Return Pre-processed and augmented dataset

B. ALGORITHMIC PROCESSING LAYER
The Algorithmic Processing Layer focuses on using super-
vised learning to improve HAR performance. This includes
training and fine-tuning models like HADE I and HADE 11
with labeled data from the HADE dataset.

The training process involved the following steps:

1) FINE-TUNING THE PARAMETERS

To update the model parameters during training, a gradient-
based optimization algorithm was employed. The parameters
were updated by multiplying the gradient of the objective
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function by the learning rate («), as shown in Eq. (2).
A0 =a-VO 2

The key parameters involved in the fine-tuning process and
their specific roles in the training process are outlined below:
o Learning Rate («): Set at 0.0001, this learning rate
was optimized to ensure a balance between efficient
learning and the risk of overshooting the minimum
during gradient descent. This value was experimentally
determined to achieve a steady convergence.

o Weight Decay (wd): Set at 0.0001 for L2 regulariza-
tion, this parameter helps in preventing overfitting by
penalizing large weight values, ensuring the model’s
generalizability.

« Momentum (mom): Setting the momentum value at
0.9 significantly enhances the optimization process,
facilitating quicker convergence towards the optimal
solution and effectively navigating the challenges posed
by local minima. This momentum parameter acts as a
catalyst, propelling the optimization algorithm forward,
thereby optimizing the learning pace and improving the
overall efficiency of the model’s training phase.

vel = mom x vel — o x grad 3)

In Eq. (3), the term vel represents the integral of velocity
in the parameter update process, highlighting the role of
momentum in how parameters are adjusted over time.

+ Learning Rate Decay: A decay rate of 0.1 gradually
lowers the learning rate, enabling finer tuning of weights
during training and reducing fluctuations around the best
solution.

« Batch Size: A batch size of 5 balances computational
effort and generalization, aiding in effective gradient
calculation.

o Total Epochs: The model underwent training for
15 epochs, a period chosen from practical experience,
showing adequate learning without excessive fitting to
training data.

The combination of these parameter values and the
optimization process was critical for achieving high accuracy
in our models. By carefully fine-tuning these parameters,
we ensured that our models adapted and improved their
performance throughout the training process, ultimately
contributing to accurate results.

Parameter Value
Learning Rate (o) 0.0001
Weight Decay (wd) 0.0001
Momentum (mom) 0.9
Learning Rate Decay 0.1
Batch Size 5
Total Epochs 15

2) HADE | MODEL
The HADE I model, which captures spatial and temporal
information by separating the slow-moving and fast-moving
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parts of a video into distinct pathways, is introduced. The
architecture is explained, including the slow pathway, fast
pathway, and the fusion of their outputs. Eqs.s were used
to describe the operations involved in the HADE-I model.
A network flow diagram was included to visualize the
processing of the video streams through the pathways and the
final output in the following steps.

Step 1. Determining the standard architecture features to
capture spatiotemporal connections.

The SlowPath in Eq. 4 represents the slow pathway.

I; = SlowPath(7) )
and FastPath functions represent the fast pathways in Eq. 5.
Iy = FastPath(]) 5)

where I represents the input video and I and I are the outputs
of the slow and fast pathways, respectively. Similarly, the
Fuse function in Eq. 6 combines the outputs of defined slow
and fast pathways.

y = Fuse(l;, I) (6)

where y denotes the final prediction of the action in the video.

Figure 4 depicts the HADE 1 architecture, illustrating
the processing of video streams through the slow and
fast pathways. The intermediate feature maps generated by
these pathways were fused, and the combined feature map
underwent spatial average pooling, Softmax, and additional
processing to produce the final output.

Step 2. Fine-Tuning the Parameters. The same method was
applied to tune the parameters used in Eq. (2).

Step 3. Training the HADE I model.

The HADE approach with the HADE I model, outlined
in Algorithm 2, was employed for action recognition. The
algorithm begins by preprocessing the dataset of the video
clips, including tasks such as resizing, normalization, and
augmentation. The dataset was divided into training and
validation datasets. Subsequently, training parameters, such
as the learning rate, batch size, and optimization algorithm
settings, were initialized. The HADE I model M is initialized
using Eqs.4, 5, and 6. The algorithm iteratively samples
batches of data from the training set and passes them
through the HADE I model to obtain predicted outputs. The
trained model was evaluated using a validation set, and its
performance was calculated. If the validation performance
satisfied a predefined convergence criterion, the training was
continued; otherwise, the training was stopped. Ultimately,
the trained HADE I model was returned as the output of the
algorithm.

The integration of the HADE I model into our system,
along with iterative training and validation monitoring,
enabled effective action recognition by leveraging the
model’s capabilities in capturing temporal and spatial fea-
tures accurately.

VOLUME 12, 2024



M. Karim et al.: HADE: Exploiting HAR Through Fine-Tuned Deep Learning Methods

IEEE Access

Output Generation

Results And Analysis

Action Class Prediction

T

Training the Model
CombFeatMap SpatialAvgPool SoftMax
Adapt
Fusion InterMap ap CombFeatMap €
Pool

Fast

Path Conv Res 2-4 InterMap <
way

Slow

Path Conv Res 2-4 InterMap <
way

Input Video Streams

EEEEN
HNEEN

FIGURE 4. HADE I Network Flow Diagram.

3) HADE Il MODEL
The HADE II model is built for video classification, using
3D convolutions and connections that help it pick up on
patterns over time and space. It’s set up to handle video data
by breaking it down into features that can be analyzed. The
model is explained with equations that outline its key parts
and how they work together. A network flow diagram was
included to illustrate the connectivity and output of the HADE
II model.

Step 1. Determining the standard architecture features to
capture spatiotemporal and residual connections.

Wecony = Conv1(7 x 7, stride : 2) 7)

InEq. 7, a7 x 7 Convolutional layer 1 (Conv1) layer with a

stride of 2, capturing low-level features from the input video
frames.

WnaxPool = MaxPool(3 x 3, stride : 1) )
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Algorithm 2 Training HADE I Model

Require: Dataset D video clips

Ensure: Trained Dataset D on HADE I model M

1: Preprocess dataset D

2: Split dataset D into training and validation sets

3: Initialize training parameters

4: Initialize HADE Il model M using layers defined in eq.(4),

(5), and (6).

. Initialize the initial performance as prev_val_perf

Sample a batch of data from the training set

7. Perform a forward pass through the model M to obtain
predicted outputs

8: Compute the loss between the predicted outputs and the
corresponding ground truth labels

9: Compute the gradients of the loss for the model parameters
using backpropagation

10: Update the model parameters based on the gradients using
gradient descent:

11:  Compute the parameter update by eq.(2)

12: Evaluate the trained model M on the validation set

13: Calculate the validation performance val_perf if
val_perf > prev_val_perf then

Update model M based on training data;
L Set prev_val_perf as val_perf;

g\m

else
L Break the training loop;

14: return Trained HADE I model M

In Eq. 8, a 3 x 3 Max pooling layer (MaxPool) layer with
a stride of 1 reduces the spatial dimensions.

Wres = Res(2,3,4) ©))

In Eq. 9, Wgesi represents the 16 residual blocks
with varying block and filter sizes and i is the block
number.

W avegPool = AvgPool(7 x 7, stride : 1) (10)

Eq. 10 signifies a 7 x 7 average pooling layer, employed
with a stride of one, aiming to diminish the spatial dimensions
within the model.

The HADE II model’s architecture is designed for gradual
downsampling and alteration of features, as illustrated in
Figure 5. This diagram visually represents the model’s flow,
highlighting how input video streams are processed through
the Inflated 3D (I3D) configuration settings, culminating in
the model’s output.

Step 2. Training the HADE Il model.

The HADE approach, specifically through the HADE II
model as outlined in Algorithm 3, is applied for action
recognition. This process begins with preprocessing the
video clip dataset, including resizing, normalization, and
augmentation. The dataset is then split into training and
validation sets. Initial training parameters such as learning
rate, batch size, and optimization algorithm settings are
set up. The HADE II model, denoted as M, is initialized
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FIGURE 5. HADE Il Mode Network Flow Diagram.

according to equations 7, 8, and 9. Through iterative sampling
of data batches from the training set for processing by the
HADE II model, predicted outputs are obtained. The model’s
performance is assessed using the validation set, and based
on whether it meets a specific convergence criterion, training
is either continued or halted. The outcome of this algorithm is
the fully trained HADE II model, ready for action recognition
tasks.

The incorporation of the HADE II model into our
framework significantly bolsters the reliability and efficiency
of human action recognition tasks. The advanced architecture
of HADE II and the iterative procedures used in its
training are credited with this improvement. The model’s
contribution to enhancing the overall system performance
in identifying complicated human movements is highlighted
by this strategic integration, which makes it easier to
identify human actions in a more nuanced and precise
manner.
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Algorithm 3 Training HADE II Model

Require: Dataset D video clips

Ensure: Trained Dataset D on HADE II model M

1: Preprocess dataset D

2: Split dataset D into training and validation sets

3: Initialize training parameters

4: Initialize HADE II model M using layers defined in eq.(7),

(8), and (9)

. Initialize the initial performance as prev_val_perf

Sample a batch of data from the training set

7. Perform a forward pass through the model M to obtain
predicted outputs

8: Compute the loss between the predicted outputs and the
corresponding ground truth labels

9: Compute the gradients of the loss for the model parameters
using backpropagation

10: Update the model parameters based on the gradients using
gradient descent:

11:  Compute the parameter update by eq.(2)

12: Evaluate the trained model M on the validation set

13: Calculate the validation performance val_perf if
val_perf > prev_val_perf then

Update model M based on the training data;
L Set prev_val_perf as val_perf;

g\m

else
L Break the training loop;

14: return Trained HADE II model M

Algorithm 4 HADE Model

Require: Trained HADE I and HADE II models
Ensure: Trained HADE Action Recognition Model
1: Initialize Trained Models:

2: 13d_model « Algorithm 3

3: slowfast_model <— Algorithm 2

4: evaluate_model(i3d_model, slowfast_model, val_set)

5: trained_model < (val_acc_i3d >
val_acc_slowfast)?i3d_model : slowfast_model

6: evaluation_results <— evaluate_model(trained_model)

7: return trained_model

4) UTILIZING TRAINED MODELS FOR INSIGHTS
GENERATION AND VISUALIZATION

This section presents a detailed comparison of HADE I and
HADE II models, which are built for action recognition.
After evaluating both models using a validation dataset,
Algorithm 4 was applied to select the more suitable model
for leading action recognition efforts. The chosen model
was then crucial in analyzing new data, leveraging its
understanding of spatial and temporal dynamics for accurate
action identification in videos. This analysis extends beyond
just accuracy, including metrics like precision, recall, and
Fl-score, offering a holistic view of the models’ action
recognition capabilities and effectiveness.
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Section V compares HADE II and HADE I models on
the validation set, focusing on performance metrics like
accuracy. It uses visualizations to pinpoint misclassifications,
dissect decision-making processes, and explore the spatial
and temporal cues critical for action recognition, offering a
deep dive into each model’s effectiveness and insights for
improvement.

C. FEATURE EXTRACTION

We identify key video parts using three steps: SlowPath,
FastPath, and Fusion, detailed in equations 4, 5, and 6.
This approach helps us capture and combine crucial details
efficiently. However, it presents challenges such as the
complexity of combining features, the need for precise
adjustment of settings, missing broader context, and high
computational requirements, all critical for enhancing system
performance and reliability.

lowPath FastPath
y:X SlowPat X astPat] Xiuse (11)

where:
« SlowPath applies operations to extract relevant features.
« FastPath performs operations to extract complementary
features.
« Fuse combines the extracted features from the SlowPath
and FastPath to obtain the fused feature (y).

By utilizing both SlowPath and FastPath, the feature-
extraction process enhances the capability of the model to
capture and represent diverse levels of information. This
improvement leads to enhanced feature representations that
can be effectively utilized in various downstream tasks.

1) LIMITATIONS OF THE FEATURE EXTRACTION PROCESS
Despite its benefits, the feature-extraction process has several
limitations that must be considered when designing and
implementing HAR systems. These limitations include the
following.

1) Complexity of Feature Fusion: Integrating features
from SlowPath and FastPath adds complexity, requiring
careful crafting and tuning of fusion methods to
maximize data utility and avoid loss of valuable
insights.

2) Sensitivity to Parameter Settings: Parameter settings
in data analysis, including kernel size, stride, and
pooling, are crucial for extracting meaningful features
necessary for clear differentiation.

3) Limited Contextual Information: Feature extraction
from videos focuses on local movements’ specifics and
timing but may overlook broader contextual actions
necessary for comprehensive understanding.

4) Computational Complexity: Deep learning-based
feature extraction in videos demands significant com-
putational resources and time, challenging scalability,
and real-time processing.

Acknowledging limitations is vital for evaluating the
feature-extraction process in HAR systems, necessitating the
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exploration of strategies to mitigate challenges for enhanced
performance.

IV. EXPERIMENTAL SETUP

This section provides a comprehensive overview of the
experimental setup employed for human-action recognition.
It encompasses key aspects, including the dataset description,
GPU-based training, training configuration, and evaluation
metrics used to assess model performance. The objective
was to establish a rigorous framework for the experiments
and to offer in-depth insights into the setup and evaluation
procedures.

A. DATASET DESCRIPTION

For our studies, we put together our collection of footage,
tagged as D, filled with 900 video clips. These aren’t just
any clips; they showcase an array of 3D human actions
captured in both indoor and outdoor environments (E).
We didn’t just stop at the variety in settings; we made sure
our dataset reflected real-world diversity, roping in 22 folks
from different walks of life, covering a wide age span from
15 up to 54 years. A big chunk of our participants are in
their twenties, aligning with the age group we see a lot in our
research. But we’re not closing the door on diversity; we’re
fully intending to bring more age groups into the fold in our
upcoming projects.

Bias? We’re on it. From making sure we’ve got an even mix
of genders to mixing up the lighting and backdrops, we’re all
about keeping our data as real and inclusive as possible. Plus,
we’re constantly taking a magnifying glass to our methods,
hunting down any hidden biases that might throw off our
findings, all intending to make sure our model stands strong
and useful in as many situations as possible.

B. GPU-BASED TRAINING AND INFERENCE

The development and fine-tuning of models tailored to our
unique dataset underline the need for advanced computing
solutions. Recognizing human actions, a complex endeavor
within the field of computer vision, demands significant
computational resources for both the training phase and real-
time application.

In response to these requirements, we selected NVIDIA
Tesla V100 GPUs for our computational infrastructure. The
Tesla V100 is noted for its exceptional capabilities in deep
learning tasks, making it an ideal choice for our project.
Its notable processing speed and computational efficiency
are essential for managing the intricate calculations our
human action recognition models necessitate. The decision
to employ this particular GPU model was influenced by its
proficiency in processing extensive data sets and handling
the demanding aspects of model training, thus markedly
decreasing the duration of training periods and improving the
overall performance of our models.

Furthermore, to maximize the efficiency of our GPU
resources, we incorporated the GluonCV Python library,
based on the MXNet framework. This library is specifically
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designed for executing high-performance deep-learning oper-
ations, thereby ensuring the Tesla V100 GPUs are used to
their fullest potential. Integrating this advanced hardware
with meticulously optimized software not only improves
the precision of our action recognition models but also
enhances their scalability and adaptability in the face of future
technological advancements.

C. GPU-BASED EVALUATION

To assess our work, we tapped into the power of GPUs,
choosing Amazon EC2 instances that come packed with
NVIDIA Tesla T4 GPUs (G), each loaded with 16 GB of
memory. This setup is a beast when it comes to parallel
processing, making our evaluation tasks run much faster.
Plus, the hefty memory on these GPUs, way more than what
you’d get with regular CPUs, means we can train and test our
complex action recognition models more effectively. And the
best part? If researchers need more oomph, they can just rent
extra GPU instances, keeping it scalable.

D. EVALUATION METRICS

The performance of the human action recognition models
trained and tested on our dataset was assessed using a range
of rigorously selected evaluation metrics, including

1) ACCURACY (ACCURACY (ACC))

ACC measures the ratio of correctly predicted labels to
the total number of predictions made by the model. It is
calculated as:

_ TP 4+ TN

" TP+TN + FP +FN
where TP denotes true positives, TN denotes true negatives,
FP denotes false positives, and FN denotes false negatives.

ACC

12)

2) POSITIVE CLASSIFICATION CORRECTNESS

(PRECISION(PCC))

PCC measures the ratio of true positives to the total number

of predicted positives made by the model. It is calculated as:
TP

~ TP+ FP

where TP represents true positives and FP represents false

positives.

PCC (13)

3) RECALL
Recall measures the ratio of true positives to the total number
of actual positives. It is calculated as:

TP
Recall = —— (14)
TP + FN

where TP represents true positives and FN represents false
negatives.

4) F1-SCORE
The F1-Score, which is the harmonic mean of the precision
and recall, is commonly used to evaluate imbalanced datasets.
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It is computed as:

PCC x Recall
Fl1—Score=2x ——— (15)
PCC + Recall

where PCC and Recall are the precision and recall values,
respectively.

These meticulously chosen evaluation metrics provide a
comprehensive means of assessing the performance of human
action recognition models trained and tested on a dataset.
Through a detailed analysis of these metrics, the strengths
and weaknesses can be identified, facilitating continuous
improvement to enhance the model’s performance.

V. RESULTS AND ANALYSIS

This section describes the final layer of the proposed archi-
tecture, which consists of two distinct stages: Results and
Analysis as well as Action Classification. A comprehensive
understanding of this layer can be gained by delving into
subsequent sections, which provide a detailed exploration of
the results obtained and the process of generating the output.

A. COMPARISON WITH BASELINE MODELS AND MODEL
EVALUATION

In our experimental evaluation, we compared SlowFast
16x8, R101+NL [22], and S3D [41] models. SlowFast
integrates slow (16 fps) and fast (128 fps) pathways for spatial
and fine motion analysis, connects via lateral pathways, and
merges through a fully connected layer. S3D utilizes 3D
CNNs, as well as temporal and spatial attention modules.
We introduced two proposed models, HADE I and HADE
II, and thoroughly assessed their performance alongside the
baseline models (SF and S3D) by examining their training
and testing accuracy, as shown in Figure 6.

Comparison of Top-1 (Training) and Top-2 (Testing) Accuracy Scores for Different Models

97.5
—e— Top-1 (Training) 95,50

-@- Top-2 (Testing) ;

93‘9\0 /
,

Accuracy in %

SlowFast 16x8, RLO1+NL HADE I HADE Il S3D
Model

FIGURE 6. Comparison of top-1 (training) and top-2 (testing) accuracy
scores for different models.

1) MODEL PERFORMANCE ANALYSIS

The graph in Figure 6 depicts the top-1 and top-2 accuracy
scores obtained using different models. The top-1 accuracy
is the percentage of training examples for which the model
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correctly predicted the most likely label. Conversely, the top-
2 accuracy represents the percentage of examples in which
the model correctly predicted either the most or second-most
likely label. In general, all models had higher top-1 accuracy
than top-2 accuracy. This was anticipated because the top-
2 score was less demanding than the top-1 score. A careful
examination of the graph reveals significant discrepancies
between the top-1 and top-2 accuracy scores of some of the
models. For example, the SlowFast 16 x 8 and R101+NL
models achieved a top-1 accuracy of 97.5% but only top-2
accuracy of 96.0%. This disparity suggests that, although the
model can accurately predict the most likely label in most
instances, it is difficult to determine the second-most likely
option.

TABLE 4. Performance comparison of different models with inference,
Top-1 and Top-2 accuracy scores.

Model IT top-1 top-2
SF [10] 0.6 79.80 93.90
S3D [41] 0.6 86.60 96.80
HADE I 0.6717 88.85 83.57
Hade IT 0.6462 83.85 71.57

HADE 1 exhibited noteworthy superiority in terms of
accuracy, with a training accuracy of 88.85% and testing
accuracy of 83.57%. In contrast, HADE 1II achieved lower
accuracy metrics, with a training accuracy of 83.85% and
a testing accuracy of 77.57%. These results suggest that
the modifications made to HADE 1 resulted in improved
predictive capabilities, particularly with respect to the
single-best predictions.

B. RATIONALE FOR DATASET COMPARISON

To contextualize our comparative analysis, it is essential to
briefly describe the datasets used in conjunction with HADE
and provide rationales for their selection.

Kinetics-400: A large-scale, high-quality dataset with
a diverse range of human actions. Its inclusion in the
comparison highlights HADE’s applicability of HADE in a
broad spectrum of actions.

UCF-101: One of the most widely used datasets in
action recognition research, UCF-101 provides a benchmark
for evaluating HADE’s performance against established
standards.

Something-Something V2 [74]: This dataset focuses on
human-object interactions, offering a unique perspective on
action recognition. Its comparison with HADE emphasizes
the versatility of our dataset for handling complex scenarios.

Quo Vadis [75]: Quo Vadis, distinguished by its concen-
tration on repetitive human movements, acts as a crucial
testing ground for gauging HADE's effectiveness in identify-
ing and distinguishing between such repetitive actions. This
environment allows for a detailed examination of HADE’s
precision and adaptability in scenarios dominated by repeated
movements.

Breakfast [75]: This dataset, focusing on nuanced activ-
ities, particularly within cooking environments, offers a
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unique backdrop to assess how well HADE can identify
detailed actions. We selected these datasets due to their
significance in the action recognition domain and their
unique characteristics. They offer a thorough framework
for evaluating the advantages and capabilities of HADE,
showecasing its ability to distinguish between finely detailed
actions.

1) METRIC ANALYSIS AND DATASET COMPARISON

Our study utilized several key internal metrics to gauge
performance, such as Inference Time (IT) and Positive
Classification Correctness (PCC) scores, along with top-1
and top-2 accuracy rates. These measures are particu-
larly important for assessing real-time action recognition
capabilities. They offered a clear view of how efficient
and accurate our models are under different conditions.
This comprehensive evaluation highlighted the strong per-
formance of HADE when compared to existing bench-
marks, demonstrating its effectiveness in various testing
environments.

TABLE 5. Temporal length (M) and stride (T) for datasets.

Dataset Temporal Length (M)  Stride (T)
Kinetics-400 4 1
UCF-101 8 1
Something-Something V2 16 4
Quo Vadis 32 1
Breakfast 16 1
HADE 4.5 2

In Table 5, a detailed comparison between HADE and
other datasets is illustrated, emphasizing the aspects of
temporal length (M) and stride (T). HADE stands out with
its specific arrangement of analyzing 4.5 seconds of video
alongside a 2-frame stride. This setup is particularly effective
for capturing slower movements, offering a well-rounded
approach to action recognition. The deliberate design of
HADE’s temporal length and stride aims to strike an ideal
balance between achieving precise action recognition and
maintaining computational efficiency, thereby setting it apart
from alternative datasets. For example, Kinetics-400 and
UCF-101, which are characterized by their shorter temporal
durations and strides, focus primarily on quicker action
sequences. In contrast, HADE affords a more detailed
examination.

Note on Frame Stacking: Additionally, HADE employs a
frame stacking technique involving 16 frames, designed to
encompass a broad array of human actions comprehensively.
This method diverges from those used in datasets like
Something-Something V2 and Breakfast, each tailored to
their specific goals and technical prerequisites. Through
this strategy, HADE ensures not only a thorough coverage
but also the flexibility and accuracy necessary for captur-
ing and analyzing an extensive variety of human actions
effectively.

This comparative analysis underscores HADE’s unique
positioning in the landscape of 3D action recognition
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datasets. By balancing the temporal resolution and com-
putational demands, HADE stands as a robust tool for
researchers looking to delve into the nuances of human action
recognition.

Table 6 presents the model details and performance metrics
for various models. Although the SlowFast 16 x 8 and
R1014NL (SF) models demonstrated the highest accuracy
for human action recognition, they were also the most
computationally expensive and required the longest training
time. The segment-based 3D ConvNet (S3D) model offers
a balanced trade-off between accuracy and computational
costs. Additionally, the HADE I and II models are the
fastest and most efficient; however, they have compromised
accuracy. In certain applications, models with lower accuracy
can be an efficient solution, such as real-time human
action recognition on mobile devices, where a reduction in
computational cost and power consumption may be preferred,
even if some accuracy is sacrificed. Furthermore, models
with lower accuracy can be deployed on more devices and
used in applications where the power budget is a constraint,
such as in wearable devices. The selection of the best
model for human-action recognition depends on the specific
requirements and constraints of the application. If accuracy
is the primary concern, the SF model is the preferred choice.
If efficiency is a higher priority, then models with lower
accuracy, such as the S3D or HADE models, may be more
suitable.

TABLE 6. Performance comparison of HAR models. SlowFast (SF) and
S3D offer high accuracy, but require extensive computational resources.
HADE 1 and Il are more efficient with reduced training times and
parameters but have lower accuracy. This table assists in selecting
models based on accuracy-efficiency balance.

Model PCC  Training Time Parameters
SF 0.818 24 hrs 10.7M
S3D 0.78 24 hrs 8.77M
HADEI  0.6717 8 hrs 5M
HADEII  0.6462 16 hrs I15M
TOTAL 24 hrs 90M

We obtained the following results regarding PCC, training
time, and number of parameters for the various models
from Table 6 which shows that the SF model had the
highest PCC, indicating superior performance in terms of
classification accuracy, whereas the S3D model had the
shortest training time, making it an efficient choice for model
development. HADE II has the fewest parameters, which can
be advantageous in cases where model complexity needs to
be reduced.

2) COMPARISON WITH STATE-OF-THE-ART MODELS AND
ABLATION STUDY

To establish the standing of HADE models in the field
of Human Action Recognition, we conducted an extensive
comparison with state-of-the-art models, complemented by
a detailed ablation study. This approach provides a compre-
hensive understanding of the performance of HADE models
based on the latest advancements in HAR.
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a: ABLATION STUDY

The study involved systematically altering key components of
the HADE models to evaluate their contributions. For HADE
I, we examined the impact of the SlowFast model, and for
HADE II, we examined the effect of 3D convolutions. This
helped to identify the most important features and potential
areas for improvement.

b: STATE-OF-THE-ART COMPARISON

Our study incorporated a comprehensive comparison with
a variety of recent models in the field of Human Action
Recognition. This comparison not only encompasses diverse
methodologies ranging from vision-language models to
advanced convolutional network architectures but also covers
a spectrum of datasets from standard action recognition
benchmarks to more recent and challenging ones.

The visualization in Figure 7 presents a clear and concise
comparison of the top-1 accuracies, providing a visual
representation of where the HADE models stand with other
contemporary solutions in HAR. The bar chart delineates the
accuracy achieved by each model, illustrating the competitive
edge of the HADE models, particularly HADE I, with
superior accuracy.

Table 7 extends our analysis by providing a detailed
breakdown of the characteristics and performance metrics of
each model. This highlights the diversity in methodologies
and breadth of datasets employed in recent HAR research.
The inclusion of the ablation study results for HADE 1
and II in this table offers a direct and nuanced comparison,
emphasizing the specific contributions of the key features in
our models and their relative importance in achieving high
accuracy.

Through this rigorous comparative analysis, the HADE
models demonstrated their capacity to stand alongside the
recent innovations in the HAR domain. The insights gained
from both the ablation study and state-of-the-art comparison
not only validated the effectiveness of the HADE models but
also shed light on potential avenues for future enhancements.

C. MODEL EVALUATION

We conducted a performance evaluation of the HADE II and
HADE I models on our custom HADE dataset of human
action videos. As shown in Figure 8, HADE 1 initially
achieved an accuracy of 60% compared to HADE II's
accuracy of 50% (p < 0.05). By the tenth epoch, HADE I
attained an accuracy of 85%, surpassing that of HADE II by
75% (p < 0.05). The superior performance of the HADE I
model can be attributed to its two-stream architecture, which
captures both spatial and temporal information, thereby
enhancing video-based human action recognition across
multiple epochs.

1) ACTION CATEGORY PERFORMANCE

Table 8 presents the evaluation metrics for comparing the
performance of HADE I and HADE 1I video classification
models across different action categories.
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Top-1 Accuracy Comparison of HAR Models
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FIGURE 7. Bar chart showcasing the top-1 accuracy comparison among various HAR models, including HADE I and II, ActionCLIP, FineKNN, CSI-ARIL,
“Look Less Think More”, AR3D, and ACTION-Net. This visualization underscores the competitive performance of HADE models against recent
state-of-the-art methods, highlighting their robustness and efficacy in action recognition tasks.

TABLE 7. Ablation study results and comparison with state-of-the-art HAR models.

Model Year Dataset Method Accuracy Observations
(%)
ActionCLIP [76] 2023 Kinetics-400  Vision-language model 76.03 High computational costs and

potential generalization issues.

FineKNN [77] 2023 MCAD, IX- Skeleton-based FineKNN  89.75 Not explicitly mentioned.
MAS with EFS
CSI-ARIL [78] 2023 Not specified  CSI-based cross-scene  90.0 Not provided.
recognition
Less Think 2022 STH-ELSE Contrastive learning with ~ 71.7 Challenges in adapting to dif-
More [79] common sense emphasis ferent action categories.
AR3D [80] 2021 UCF101 Attention Residual 3D  89.28 Increased model complexity
Network and training difficulty.
ACTION- 2021 SomethingV2  Multipath Excitation 62.5 High computational require-
Net [81] ments.
HADE I 2023 Self-created SlowFast model 88.85 Limited to fundamental ac-
dataset tions.
HADE II 2023 Self-created 3D convolutions 83.85 Similar to HADE I, with scope
dataset for further enhancement.

TABLE 8. Comparison of proposed methods performance metrics.

Model Precision Recall F1-Score
HADE I 0.90 0.88 0.89
HADE II 0.87 0.86 0.86

Figure 9 compares the Fl-score performance of the
HADE I and HADE II models for different actions. It illus-
trates that the HADE I model generally achieves higher F1
scores, except for the “Clapping” action, where the HADE
II model outperforms it.

Figure 10 shows the recall performances of the two models
for different actions. It indicates that the HADE II model has
higher recall scores for “Clapping” and “Walking,” while
the HADE I model performs better for ““Sitting down” and
“Standing up.”
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Figure 11 displays the precision performance of HADE II,
which outperforms HADE I in “Clapping” and *“Walking”
actions. Conversely, HADE I outshines HADE II in ““Sitting
down” and ““Standing up” actions.

The comparative performance of the HADE I and HADE
IT models, as analyzed across different metrics and action
types, underscores the importance of choosing a model that
aligns with the specific accuracy and speed requirements of
an application. HADE I excelled in accuracy, while HADE
IT offered quicker results. The decision on which model to
utilize hinges on the particular demands of the application in
question.

Table 9 presents an in-depth comparison of the per-
formance indicators for various action categories within
the HADE 1 and HADE II models, illustrating the
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FIGURE 8. Comparing Accuracy Improvement of HADE | and HADE Il
Models over training epoch (epoch).

Comparison of Evaluation Metrics between Proposed Models
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FIGURE 9. Comparing F1-Score Performance of HADE | and HADE Il
Models for Different Actions.

differences in precision, recall, and Fl-score for each
action.

D. ANALYSIS OF CONFUSION MATRICES

Confusion matrices were utilized to evaluate the performance
of the HADE I and HADE II models in four basic activities:
clapping, sitting, standing, and walking. These matrices
provide essential details regarding the models’ ability to
recognize each action and the likelihood of misclassifying
an activity. Confusion matrices were utilized to evaluate
the performance of the HADE I and HADE II models in
four basic activities: clapping, sitting, standing, and walking.
These matrices reveal crucial details on the models’ action
detection capabilities and the likelihood of misclassification.

1) HADE | MODEL PERFORMANCE

The results displayed by the confusion matrices for the
HADE I and HADE II models can be seen in Figure 12:
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FIGURE 10. Comparing Recall Performance of HADE | and HADE Il Models
for Different Actions.

Precision Comparison for Actions
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FIGURE 11. Comparing Precision Performance of HADE | and HADE Il
Models for Different Actions.

o Clapping: When it comes to detecting clapping
gestures, the system shows impressive performance,
achieving a TP rate of 40.71 and a TN rate of 629.0, with
no false positives (FP).

« Sitting down: Displayed a thorough performance,
achieving a low False Positive rate of 2.22 and a high
True Positive rate of 42.09. The TN rate of 626.78 for
this activity indicates a satisfactory level of model
accuracy.

« Standing up and Walking: These actions showed high
TP rates (62.79 and 65.28, respectively), but also higher
FP rates (33.81 for Standing up and 27.98 for Walking),
suggesting a tendency to over-predict these actions.

2) HADE Il MODEL PERFORMANCE
The confusion matrix for the HADE II model exhibits the
following characteristics.

o Clapping: Notable improvement in TP (64.17) com-
pared to HADE I, but with an increased FP rate of 4.10,
indicating a higher likelihood of false alarms.

« Sitting down: The model struggled with this action,
showing a very high FN rate of 64.86, meaning it
frequently failed to recognize sitting-down actions.

« Standing up and Walking: While the TP rates were
high (57.96 for Standing up and 87.12 for Walking),
the FP rates were also significant (62.79 and 16.59,
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TABLE 9. Model performance.

Model Action Precision Recall F1-Score Support

HADE 1 Clapping 1.00 0.59 0.75 69
Sitting down 0.95 0.61 0.74 69
Standing up 0.65 0.91 0.76 69
Walking 0.70 0.96 0.81 68

HADE II Clapping 0.94 0.93 0.93 69
Sitting down 0.67 0.06 0.11 69
Standing up 0.48 0.84 0.61 69
Walking 0.84 0.99 0.91 88
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FIGURE 12. Confusion matrices for HADE | and HADE Il models, illustrating classification performance across the actions: Clapping, Sitting down,
Standing up, and Walking. These matrices highlight the comparative accuracy and the differing tendencies in false predictions between the two

models for each action.

respectively), reflecting a tendency to incorrectly clas-
sify other actions as Standing up or Walking.

3) IMPLICATIONS

The analysis of these confusion matrices reveals that while
both HADE I and HADE II are proficient in identify-
ing specific actions, they exhibit different tendencies in
terms of false positives and negatives. HADE 1 generally
shows a conservative approach, with lower FP rates, but
at times, missing out on certain actions (higher FN for
specific actions). Conversely, HADE II tended to overclassify
actions while achieving higher TP rates, leading to higher
FP rates.

This analysis is crucial for understanding the practical
applicability of these models in real-world scenarios. For
applications where missing an action has significant conse-
quences, HADE II’s approach might be preferable, despite its
higher FP rate. Conversely, in scenarios where false alarms
are more critical, a conservative approach might be more
suitable.

Overall, this detailed analysis assists in guiding further
model improvements and choosing the appropriate model
based on the specific requirements of the application domain.
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VI. CONCLUSION AND FUTURE DIRECTIONS

This study represents a significant advancement in Human
Action Recognition (HAR), a field that intersects computer
vision and wireless computing. Although existing method-
ologies and datasets have made notable contributions to
HAR, they also have certain limitations. Our proposed human
actions in a diverse environment (HADE) framework seek to
address these challenges by building upon the strengths of
previous approaches.

The HADE architecture, characterized by its innovative
leap in HAR, integrates a comprehensive dataset derived
primarily from smartphone cameras. This approach captures
a wide spectrum of human movements processed using the
novel HADE I and HADE II models. These models employ
advanced machine learning algorithms and GPU parallel
processing to enhance the accuracy, precision, recall, and
F1-score of HAR systems.

Our findings demonstrate the effectiveness of the HADE
approach, achieving an accuracy of 83.57%, thereby
significantly surpassing existing benchmarks. This improve-
ment substantiates our hypothesis regarding the capability
of the HADE approach to enhance recognition accuracy and
overall system performance in HAR.
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However, our study has some limitations that open
avenues for future research. Currently, our framework focuses
primarily on fundamental human actions such as clapping,
walking, sitting down, and standing up. To increase the
applicability and robustness of our model, future work will
involve expanding the range of actions within the HADE
dataset to cover more complex and diverse human activities.
In addition, we aimed to test the practical deployment of
our system in specialized domains, particularly in healthcare.
Collaborating with medical experts to develop customized
datasets for neurological patient monitoring could signifi-
cantly enhance the utility and impact of our research on
personalized healthcare applications. Moreover, while the
HADE I and HADE II models have shown promising results,
exploring more advanced machine-learning algorithms and
techniques could further improve accuracy and efficiency.
These future endeavors aim to transform the application and
impact of HAR across various domains.

In summary, the HADE approach not only marks a
forward leap in the field of HAR but also paves the way
for new interdisciplinary applications. Our carefully curated
and diverse dataset provides evidence of our dedication to
continuous improvement and innovation in HAR, setting the
stage for future breakthroughs, and expanding applicability
in this dynamic field.

LIST OF ABBREVIATIONS
ACC Accuracy. 14.

CNN Convolutional Neural Network. 2.

Convl Convolutional layer 1. 11.

CSI Channel State Information. 4.
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HADE Human Action in Diverse Environments. 2, 3,
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MaxPool Max pooling layer. 11.
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