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ABSTRACT As the share of electric vehicles increases, electric vehicles are exposed to broader of
driving conditions (e.g., extreme weather), which reduce the performance and driving ranges of electric
vehicles below their nameplate rating. To ensure customer confidence and support steady growth in electric
vehicle adoption rates, accurate estimation of battery state of charge and maintaining battery state of health
through optimal charge/discharge decisions are critical. Recently, vehicle manufacturers have begun to
employ machine learning techniques to improve state-of-charge management to better inform drivers about
both the short-term (state of charge) and long-term (state of health) performance of their vehicles. This
comprehensive review article explores the intersection of machine learning and state of charge management
in electric vehicles. Recognizing the critical importance of the state of charge in optimizing electric vehicle
performance, the article starts by evaluating traditional state of charge estimation methods. Subsequently,
it delves into the transformative impact of machine learning techniques and associated algorithms on state
of charge management. Through the lens of various case studies, this article demonstrates how machine
learning-based state of charge estimation empowers electric vehicles to make informed and dynamic energy
usage decisions, enhancing efficiency and extending battery life. The challenges of data availability, model
interpretability, and real-time processing constraints are acknowledged as impediments to the widespread
adoption of machine learning techniques. Despite these challenges, the future outlook for machine learning
in the state of charge management appears promising, with emerging trends such as deep learning and
reinforcement learning poised to refine the state of charge estimation accuracy. Moreover, this study sheds
light on the transformative potential of machine learning in enhancing the state of charge management
efficiency and effectiveness for electric vehicles, offering critical insights. Machine learning emerges as
a game-changing force in state of charge management for electric vehicles, paving the way for intelligent
and adaptive vehicles that are both environmentally friendly and efficient. This evolving field invites further
research and development, making it a vital and exciting area within the automotive industry.

INDEX TERMS Machine learning, state of charge management, electric vehicles, battery management, state
of charge estimation order.

NOMENCLATURE ML Machine Learning.
Abbreviations  Definition ICE Internal Combustion Engine.
EV Electric Vehicle. HEV Hybrid Electric Vehicle.

SoC State of Charge. DC-DC Direct Current to Direct Current.
LFP Lithium Iron Phosphate.
The associate editor coordinating the review of this manuscript and NMC Nickel Manganese Oxide.
approving it for publication was Xinyu Du . LCO Lithium Cobalt Oxide.
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A Ampere.

Amp Ampere-hours.

v Volt.

FUDS  Federal Urban Driving Schedule.

FIGE Freinage Intermittent 4 Grande Energie.
SFUDS  Simplified Federal Urban Driving Schedule.
NEDC  New European Driving Cycle.

BTMS  Battery Thermal Management Systems.

EKF Extended Kalman Filter.

RNN Recurrent Neural Networks.

LSTM  Long Short-Term Memory.

RL Reinforcement Learning.

ADAS  Advanced Driver Assistance Systems.
SVM Support Vector Machines.

GB Gradient Boosting.

GBM Gradient Boosting Machine.

SOH State-of-Health.
Lithium-ion.
IoT Internet of Things.

ECM Equivalent Circuit Model.

TCN Temporal Convolutional Networks.
GNN Graph Neural Networks.

RBF Radial Basis Function.

Al Artificial Intelligence.

GPU Graphics Processing Unit.
TPU Tensor Processing Unit.
Convolutional Neural Network.

I. INTRODUCTION
EVshave emerged as a pivotal bridge in the transition towards
a more sustainable and eco-friendly transportation ecosys-
tem. There are two types of EVs, namely plug-in HEVs which
combine both ICEs and electric powertrains, and pure electric
vehicles which rely only on onboard batteries for propulsion.
In both cases, EVs promise reduced emissions, improved fuel
efficiency, and increased energy sustainability [1], [2]. The
performance and longevity of an EV heavily depend on the
efficient management of its energy storage system, with one
of the critical parameters being the SoC of the battery [3], [4].
The SoC represents the amount of energy stored in the bat-
tery relative to its maximum capacity and serves as a crucial
metric in determining the available driving range and overall
performance of the vehicle [5], [6]. Precise SoC estimation
and management are imperative not only for optimizing the
vehicle’s fuel economy but also for ensuring the reliability
and durability of the energy storage system, thereby enhanc-
ing the EV’s long-term economic viability [6], [7].
Traditionally, SoC estimation has relied on physics-based
models and simple empirical techniques [8], [9]. However,
with the rapid advancements in technology and the growing
volume of data generated by EVs, the application of ML has
emerged as a transformative approach to tackle the intricacies
of SoC management [10], [11]. In this paper, the term ‘SoC
management’ refers to the comprehensive set of activities
involved in controlling and maintaining the SoC within the
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battery. This includes but is not limited to, SoC estima-
tion, which is specifically focused on predicting the current
state of the battery. The broader term ‘SoC management’
encompasses actions taken to optimize battery performance,
efficiency, and health, while SoC estimation is a subset within
this context. Machine learning techniques, driven by big data
analytics and computational power, offer the potential to
revolutionize SoC estimation by providing accurate, adaptive,
and real-time solutions [7], [12].

Inrecent years, a surge in research and development efforts
has explored the integration of machine learning into EV SoC
management [13], [14]. This has led to a paradigm shift in
the way SoC is estimated and managed, presenting novel
opportunities and challenges [14], [15]. This review article
aims to comprehensively explore and evaluate the state of
the art in machine learning applications for enhancing SoC
management in EVs, with a specific focus on studies and
advancements published from 2020 onwards.

The transition from traditional SoC estimation methods
to machine learning-based approaches signifies a critical
step toward the optimization of EV performance, energy
efficiency, and environmental impact [16], [17]. The inte-
gration of machine learning models allows EVs to adapt to
dynamic driving conditions, account for battery aging effects,
and improve overall system robustness. Moreover, machine
learning techniques enable EVs to tap into the potential of
data-driven insights, further enhancing their role in the future
of sustainable transportation [18], [19], [20], [21], [22].

In this review, we will delve into the diverse spectrum
of machine learning methods and algorithms employed in
SoC estimation for EVs. We will explore case studies and
real-world applications, providing insights into the practical
implications of these techniques. Additionally, we will dis-
cuss the challenges and limitations associated with machine
learning-based SoC management, and we will identify
promising directions for future research in this rapidly evolv-
ing field.

As the pace of transportation of electrification increases the
confluence of machine learning and EV SoC management,
it becomes evident that the fusion of these two domains holds
the key to unlocking the full potential of electric vehicles.
The subsequent sections of this review will elaborate on
the multifaceted landscape of machine learning applications,
bringing to light the innovations, trends, and challenges that
shape the future of SoC management in EVs.

Il. BACKGROUND

A. FUNDAMENTAL OF EVs

EVs are pioneering solutions in the realm of sustainable
and efficient transportation, ushering in a new era of eco-
conscious mobility. EVs ingeniously combine traditional
ICEs with electric propulsion systems, culminating in vehi-
cles that offer remarkable advantages such as reduced
emissions, improved fuel efficiency, and a reduced carbon
footprint [23], [24], [25].
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In contrast to HEVs, where an ICE works in conjunction
with an electric motor, EVs rely exclusively on an electric
motor for propulsion, utilizing electrical energy as the sole
power source, resulting in zero emissions. Referred to as
battery electric vehicles, EVs utilize stored energy in bat-
teries to power the electric motor [26]. The larger battery
capacity in EVs, compared to HEVs, is essential since they
exclusively depend on batteries for energy. Charging an EV
battery is accomplished by connecting the vehicle to an exter-
nal electricity source. Additionally, electric vehicles have
the capability of recharging the battery through regenerative
braking. The fundamental components of an EV comprise an
electric motor, a battery, a DC-DC converter, a charger, and
an electronic controller.

The EV propulsion system comprises three primary sub-
systems: the energy source, motor propulsion, and supple-
mentary subsystem. Within the energy source subsystem,
the energy source, along with its refueling unit and energy
management unit, constitutes its components. The elec-
tric propulsion subsystem incorporates the motor, converter,
torque transmission, wheels, and controller. Meanwhile, the
supplementary subsystem is composed of a supplementary
power source, a steering unit, and a climate control unit [27],
[28], [29]. Notably, the travel range of EVs is considerably
limited due to the lower energy storage capacity of the bat-
tery. The main structure of EVs is illustrated in Figure 1.
Various configurations for EVs can be established based
on distinct clutch, gearbox, transmission, and differential
options, as well as the number of motors, as depicted in
Figure 2. In Fig. 2a, an evolved EV configuration mirrors that
of an internal combustion engine vehicle, wherein the engine
is substituted with an electric motor. This setup features a
clutch, a variable-speed gearbox, and a front axle differential.
Fig. 2b showcases an EV configuration with a fixed gearbox
and a front axle differential, omitting the need for a clutch
due to the motor’s ability to provide consistent energy across
abroad speed range, resulting in reduced size and weight. The
EV configuration in Fig. 2¢ retains the same components as
Fig. 2b but integrates them for a simplified driving system.
Fig. 2d incorporates two traction motors with fixed gearboxes
on the front axle, designed for varied speeds on curved roads.
Fig. 2e represents an in-wheel drive system with two traction
motors situated within the EV’s wheels, featuring a thin gear.
Similarly, the drive system in Fig. 2f incorporates two motors
inside the wheels without any gears, rendering this structure
simpler compared to Fig. 2e [9]. All of these configurations
have advantages and disadvantages. For example, the design
of Fig. 2c is cost-effective and suitable for basic commuting
needs, but it may lack fine-tuned control for specialized
driving scenarios and exhibit limitations in advanced driving
features (see Tablel).

1) SIGNIFICANCE OF SOC IN EVS
A pivotal parameter in the operation of EVs is the SoC of the
high-voltage battery pack. SoC represents the proportion of
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the battery’s maximum capacity that is currently charged and
plays a central role in determining the vehicle’s performance,
efficiency, and longevity [30], [31], [32]. A simple battery
model is depicted in Figure 3 and mathematically, SoC is
written as follows:

soc @) =20 )
So
dsogc(z) _ bW o
t So
Vo (1) = Voo (1) — Ry (1) I (1) 3)
I Voe — +/ VOZC — 4Ry P, @)
b= :

2Ry

In the above relationships, S(t) is the current charge level
of the battery (Ah), Sp is its total capacity (Ah), I is
the current of the cell (A), Ry is the internal resistance
of the battery cell (in Ohms), Py, is the corresponding
power of battery cell (in Watts), and V. is open-circuit
voltage (V) [34], [35].

a: BATTERY CELLS

A battery cell is the basic building block of a battery pack.
It is an electrochemical device that converts chemical energy
into electrical energy [35]. Cells can be classified into various
types based on the materials used to manufacture the cathode
of the battery. Some of the widely used chemistries include
NMC, LCO, and LFP [36]. In modern applications, lithium-
ion cells are widely used due to their high energy density and
other favorable characteristics. The typical voltage level of a
single battery cell is around 3-4 Volts. Therefore, real-world
battery applications including EVs require architectures that
are composed of series and parallel connections of multiple
battery cells. Details of series and parallel cell connections
are given next.

i Series Connection: In a series connection, cells are con-
nected end-to-end, with the positive terminal of one cell
linked to the negative terminal of the next (Figure 4).
From Kirchhoff’s law, this increases the total voltage
of the battery pack. A typical EV battery pack’s voltage
level is around 360V, which requires a series connec-
tion of one hundred 3.6V battery cells [37]. Series
connections are common in EVs and other applications
where a higher voltage is required. However, it’s crucial
to ensure that each cell in the series shares the load
equally, as imbalances can lead to overcharging or
discharging of individual cells.

ii Parallel Connection: In a parallel connection, cells are
connected positive to positive and negative to negative,
effectively increasing the capacity of the battery pack
without changing the voltage (Figure 5). The primary
goal, then, is to increase the current capacity (Ah). For
instance, if you connect two 2000mAh cells in parallel,
the total capacity would be 4000mAh. Parallel connec-
tions are often used to increase the overall capacity
of a battery pack. Just like in series connections, it’s
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FIGURE 1. The EV's structure.

essential to ensure that cells in parallel share the load
evenly to prevent overcharging or discharging of indi-
vidual cells.

2) DRIVING RANGE AND ENERGY AVAILABILITY

Exploring the driving range and energy availability of
EVs is a pivotal aspect that significantly influences overall
performance and efficiency. Within this context, a compre-
hensive understanding of driving styles proves essential, with
particular emphasis on the intensity of acceleration and decel-
eration maneuvers [34].

The distinctions between hard and soft acceleration, as well
as hard and soft deceleration, unveil valuable insights into the
driver’s habits and preferences. Hard acceleration, character-
ized by rapid and forceful increases in speed, contrasts with
the gentler, gradual nature of soft acceleration. Similarly, hard
deceleration involves abrupt decreases in speed, whereas soft
deceleration is characterized by smoother and more gradual
slowing down [36].

These parameters extend beyond mere observations of
driving habits; they play a fundamental role in determin-
ing the energy consumption patterns of an electric vehicle.
How energy is expended during acceleration and recuperated
during deceleration significantly impacts the overall driving
range and efficiency of the EV [37]. This nuanced exami-
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nation of driving styles gains heightened significance when
considering the optimization of regenerative braking systems.
Understanding how drivers accelerate and decelerate allows
for the fine-tuning of these systems, thereby maximizing the
recuperation of energy and, in turn, extending the driving
range of the EV. Consequently, this not only enhances the
vehicle’s operational efficiency but also contributes to the
broader goal of minimizing environmental impact. In sum-
mary, delving into the intricacies of driving styles offers a
holistic perspective on energy utilization, providing a foun-
dation for the development of strategies aimed at improving
the driving range and overall sustainability of electric vehi-
cles [38].

a) Hard Acceleration and Hard Deceleration

The Hard acceleration driving style involves swiftly
increasing the vehicle’s speed, often accompanied by a
noticeable surge in engine power like FUDS [14]. Drivers
who engage in hard acceleration tend to reach higher speeds
rapidly, which can lead to increased fuel consumption and a
more demanding strain on the vehicle’s engine and braking
system. Hard deceleration, in contrast, involves abrupt and
forceful slowing down of the vehicle like FIGE [15]. This
type of driving style can be characterized by sudden and
heavy application of brakes, resulting in rapid speed reduc-
tion. While hard deceleration might be necessary in certain
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FIGURE 2. Various electric vehicle powertrain configurations [28].

emergencies, habitual use can lead to increased wear and tear
on the braking system and tires.

a: SOFT ACCELERATION AND SOFT DECELERATION

Drivers who prefer soft acceleration opt for a gradual and
smooth increase in speed. This driving style (SFUDS) is
often associated with a more fuel-efficient approach, as it
minimizes the strain on the engine and consumes less
fuel [12]. Soft acceleration is generally considered a more
relaxed and comfortable driving style, providing a smoother
ride for passengers and reducing stress on the vehicle’s
components. Similarly, soft deceleration involves a gentle
and gradual slowing down of the vehicle like NEDC [13].
This approach prioritizes smooth transitions between speeds,
reducing the need for abrupt braking. Soft deceleration not
only enhances passenger comfort but also contributes to
better fuel efficiency and extends the lifespan of braking
components. SoC significantly influences vehicle energy
availability, impacting electric-only driving range and reduc-
ing reliance on the ICE [39], [40]. Figure 6 illustrates
standard driving cycles. The electric driving range, crucial for
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EV adoption, is affected by battery capacity, driving style,
and temperature. Low temperatures decrease range due to
reduced Li-ion battery capacity. Developing BTMS is vital
to mitigate temperature effects [41].

3) ENERGY EFFICIENCY

Energy efficiency in EVs is a multifaceted aspect influenced
by various factors, with Wh/mile consumption being a key
metric [41]. This metric, measured in watt-hours per mile,
provides insights into how effectively the vehicle utilizes
its electric power. Here are the primary factors impacting
Wh/mile consumption:

a: DRIVING STYLE

Driving habits play a crucial role in determining energy
efficiency. Smooth acceleration and deceleration, as well as
maintaining a steady speed, can contribute to lower energy
consumption. Regenerative braking, which recovers energy
during deceleration, is a feature in many EVs that pos-
itively impacts energy efficiency [42]. For instance, the
trials of [28] consistently showed a 12.16% reduction in
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TABLE 1. Advantages and disadvantages of the EV's configuration.

Configuration of EV Advantages Disadvantages Ref.
Figure 2a Efficient power transition increased complexity and potential maintenance costs [8]
Variable speed control for optimal performance Higher manufacturing expenses [9]
Familiarity for users :/rj}?iscilt;(s)ning from traditional Additional weight impacting overall efficiency [10]
Versatility in driving conditions Limited energy efficiency compared to more specialized [11]

systems
Regenerative braking capabilities Potential heating issues with the clutch and variable speed [12]

gearbox
Figure 2b Simplified design reducing manufacturing costs Limited adaptability to diverse driving conditions [9]
Constant energy delivery enhances efficiency Limited control over speed variations [10]
Lower weight improves overall efficiency Reduced performance on challenging terrains [12]
Suitable for urban commuting Potential overheating issues with constant energy delivery [14]
Reduced energy losses due to fixed gearbox Difficulty in achieving optimal energy efficiency [15]
Figure 2¢ Streamlined design for manufacturing efficiency May lack fine-tuned (S:g;tl;(gofsr specialized driving [10]
Reduced maintenance complexities Limited adaptability to advanced driving features [10]
Simplicity in user operation Potential efficiency trade-offs [11]
Cost-effectiveness Challenges in performance optimization [13]
Suitable for basic commuting needs Reduced energy recovery capabilities [16]
Figure 2d Optimized performance on curved roads Increased complexity and potential maintenance costs [11]
Enhanced acceleration capabilities Challenges in synchronized performance [15]
Improved stability Higher manufacturing expenses [17]
Efficient energy distribution Limited adaptability to varied driving conditions [18]
Regenerative braking for energy recovery Potential efficiency trade-offs with dual motors [22]
Figure 2¢ Direct power distribution for improved control Challenges in unsprung mass and handling [12]
Enhanced traction and stability Increased complexity impacting reliability [15]
Compact design improving efficiency Potential manufacturing challenges [17]
Energy efficiency gains due to reduced mechanical Limited adaptability to heavy-duty applications [18]

losses

Simplified vehicle dynamics Higher manufacturing costs for specialized components [20]
Figure 2f Simplified design for cost-effectiveness Limited speed control without gears [14]
Reduced mechanical complexity Challenges in optimal power distribution [17]
Enhanced maneuverability Higher manufacturing costs for specialized designs [19]
Potential energy efficiency gains Reduced performance in certain driving scenarios [21]
Streamlined maintenance Limited adaptability to advanced driving features [23]

Wh/mile consumption when participants adopted a smoother
driving style.

b: WEATHER CONDITIONS

The Weather has a substantial impact on energy efficiency.
Extreme temperatures, whether hot or cold, can affect the
performance of the vehicle’s battery. Cold weather, in partic-
ular, may reduce battery efficiency and overall range. Proper
climate control management becomes essential to optimize
energy use in varying weather conditions [43]. The findings
of [30] indicate a 15.78% decrease in energy efficiency during
extremely cold weather, highlighting the impact of tempera-
ture on battery performance.

¢: HEATING/COOLING NEEDS

The demands of heating and cooling systems significantly
contribute to energy consumption. In colder climates, heating
the interior requires additional energy, affecting efficiency.
Similarly, air conditioning in warmer climates can lead to
increased energy use. Balancing comfort and energy effi-
ciency becomes a critical consideration [44]. The analysis
in [31] showed that heating in colder climates contributes to
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a 11.35% increase in energy consumption, underscoring the
need for efficient climate control strategies.

d: REGENERATIVE SYSTEMS

Many EVs are equipped with regenerative braking and other
regenerative systems that capture and reuse energy during
deceleration. These systems contribute positively to energy
efficiency by recycling energy that would otherwise be lost
as heat during braking [44]. The experiments in [32] demon-
strated a 23.62% improvement in energy efficiency due to
regenerative braking systems, showcasing their substantial
contribution to overall EV efficiency.

e: VEHICLE DESIGN AND TECHNOLOGY

The overall design of the vehicle, as well as technological
advancements, can impact energy efficiency. Aerodynamics,
weight reduction, and advancements in battery technology
all play roles in improving the efficiency of energy use in
EVs [45]. The findings of [33] point to a 24.38% increase
in energy efficiency with advanced aerodynamics and weight
reduction measures in vehicle design, showcasing the tangi-
ble impact of these factors.
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4) BATTERY LONGEVITY

Battery longevity refers to the overall lifespan and durability
of the battery. Therefore, accurate SoC estimation is crucial
to prevent overcharging and over-discharging of the battery,
which can lead to premature degradation and a shortened
battery lifespan [33]. The experiments of [35] demonstrated
that maintaining SoC levels within a narrow range, between
20% and 80%, resulted in a 31.28% improvement in battery
longevity, showcasing the practical significance of accurate
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SoC estimation. Additionally, overcharging scenarios led to a
15.40% decrease in battery lifespan, emphasizing the critical
need for precise SoC management.

B. CHALLENGES AND COMPLEXITIES IN SOC
MANAGEMENT

Effective management of the SoC in EVs is a multifaceted
endeavor fraught with challenges and complexities. Accurate
SoC estimation and control are imperative for optimizing
EV performance, ensuring longevity, and maximizing energy
efficiency [46], [47], [48]. In Figure 7, a comprehensive
explanation is presented outlining the process for obtain-
ing a SoC estimate. As depicted in this figure, the initial
stage involves gathering data on the battery’s parameters
using measurement sensors. Following this, the second phase
encompasses preprocessing and organizing the data to create
both a training set and a test set for input into the network.
The final step involves training the data model and evaluating
its performance [49]. In the subsequent sections, we present
some of the key terms and technical challenges related to SoC
management.

1) NON-LINEARITY AND DYNAMICS

The behavior of batteries is highly nonlinear, influenced
by factors such as temperature, load profiles, and charge-
discharge rates [51]. Predicting SoC with precision under
dynamic driving conditions is a formidable task. The height-
ened computational complexity associated with incorporating
non-linearity and dynamics into SoC management for batter-
ies poses significant challenges. This complexity demands
increased computational resources, potentially impacting
real-time responsiveness and introducing implementation
challenges and higher costs [52]. Scalability concerns and
potential implications for energy consumption further empha-
size the need for a balanced approach to ensure the benefits
of improved battery management are achieved without com-
promising practical considerations [53]. The advantages and
disadvantages of incorporating non-linearity and dynamics
methods are summarized in Table 2. For instance, the incor-
poration of non-linearity in battery models enhances the accu-
racy of SoC monitoring [47]. Non-linear battery models more
accurately capture the intricate relationships between various
factors, such as temperature, load profiles, and charge-
discharge rates, leading to a more precise estimation of SoC.
This improved accuracy is crucial for understanding the true
state of the battery during dynamic driving conditions [49].
However, this method comes with a trade-off, as the increased
accuracy in SoC monitoring is accompanied by a significant
rise in computational complexity [50]. The intricate nature of
non-linear models demands more computational resources,
potentially impacting real-time responsiveness and requir-
ing advanced computing capabilities [51]. Therefore, while
it enhances accuracy, the method’s feasibility needs to be
carefully evaluated, considering the potential implications for
computational demands and associated costs.

43261



IEEE Access

A. Mousaei et al.: Advancing SoC Management in EVs With ML: A Technological Review

Data
modelling

Training, evaluating
performance, and
making predictions
across various time

horizons

FIGURE 7. Steps for obtaining SoC estimation [50].

Mathematically, SoC dynamics can be modeled using the
following equation [50]:

1(1)
Omax

t
SOC (1) = SOC (0) — / dt, 5)
0

where SoC(t) represents the state of charge at time t, SOC(0)
denotes the initial SoC, and I(t) is the current flowing in or out
of the battery at time t. Similarly, Qpax denotes the maximum
capacity of the battery.

2) AGING EFFECTS

Lithium-ion batteries, commonly used in EVs, experience
capacity degradation over time due to chemical processes
and charge-discharge cycles. SoC estimation becomes more
challenging as the battery ages. To account for aging effects,
a battery aging model, such as the following, can be incorpo-
rated into SoC estimation [54]:

t

SOC (t) = SOC (0) —/ dQQ(t), (6)

max

That, dQ(t) represents the capacity fade at time t.

Aging in lithium-ion batteries can be broadly classified
into two main types: calendar aging and cycle aging. Calendar
aging refers to the natural degradation of the battery over
time, even when it is not in active use [43]. On the other hand,
cycle aging is associated with the wear and tear a battery
experience during charge and discharge cycles. These two
forms of aging have distinct mechanisms and rates, making
it imperative to delve into each aspect for a comprehensive
understanding [33].

a: CALENDAR AGING
Calendar aging is primarily a function of time and tempera-
ture. Even when a lithium-ion battery is not in use, chemical
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reactions within the cells can lead to a gradual loss of capac-
ity [48]. Factors such as ambient temperature (Tampient) and
storage conditions play a crucial role in influencing the rate of
calendar aging. Understanding the nuances of calendar aging
is essential for accurately predicting the long-term perfor-
mance of batteries, especially in scenarios where EVs may
be parked for extended periods. The mathematical expression
for calendar aging can be represented as [50]:

t
Ocalendar(t) = Qinitial % exp(— ), @
Tcalendar
where Qcalendar(t) s the capacity at time t, Qjpitial s the initial
capacity, and Tcalendar 1S the calendar aging time constant.

b: CYCLE AGING

Cycle aging, on the other hand, is associated with the repet-
itive charging and discharging of the battery during normal
operation. Each cycle induces stress on the battery, contribut-
ing to a gradual decrease in its overall capacity. The frequency
and depth of charge-discharge cycles significantly impact the
rate of cycle aging [49]. Managing cycle aging is vital for
optimizing the lifespan of batteries in electric vehicles, as it
directly correlates with the daily usage patterns and charging
habits of the vehicle. The mathematical expression for cycle
aging can be represented as [52]:

Ocycle (1) = Qinitial X (1 —nX ncycle) ) 3

where Qcycle(n) is the capacity after n cycles, Qinitial is the
initial capacity, and ncycle is the cycle aging rate.

¢: REAL-TIME REQUIREMENTS

SoC management necessitates real-time adaptation to
dynamic driving conditions. Swift decisions based on rapidly
changing data are essential to maintain optimal performance.
Advanced algorithms, such as the EKF, can be employed for
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TABLE 2. A summarized list of the advantages and disadvantages of incorporating non-linearity and dynamics in SoC management for batteries.

Advantages Disadvantages Ref.

Improved Accuracy of SOC Monitoring Increased Computational Complexity [46]
Enhanced Efficiency in Energy Use Higher Development and Implementation Costs [47]
Better Range Estimation Capability Potential for Calibration Challenges [48]
Optimized Regenerative Braking Greater System Complexity and Potential for Malfunctions [49]
Extended Battery Life Overcomplication for Simple Battery Systems [50]
Adaptation to Temperature Variations Potential for Data and Model Uncertainties [51]

real-time SoC estimation [55], [56], [57]:

I — I
SOC o5 (k + 1) = S0C (k) + ’ (9)

max

where SoCegi(k+1) represents the estimated SoC at time step
k+1, SoCeg (k) denotes the estimated SoC at time step k, I(k)
is the measured current at time step k, and I is the predicted
current at time step k based on the model.

These challenges underscore the critical need for advanced
SoC management strategies in EVs. The incorporation of
advanced algorithms and models, coupled with real-time data
processing, stands as a testament to the dynamic and evolv-
ing nature of SoC management in modern hybrid vehicles.
Addressing these challenges is crucial to unlocking the full
potential of EVs in terms of energy efficiency and sustain-
ability [58], [59].

C. SHORTCOMINGS OF CURRENT METHODS

While current methods offer valuable insights into SoC man-
agement, they exhibit certain limitations that pose challenges
in achieving optimal performance and efficiency in EVs. The
challenges include:

1) LIMITED ACCURACY UNDER DYNAMIC CONDITIONS
Current methods may struggle to provide accurate SoC
estimates under rapidly changing driving conditions. The
non-linear and dynamic nature of battery behavior, influ-
enced by factors such as temperature fluctuations, varying
load profiles, and dynamic charge-discharge rates, can result
in suboptimal estimations [60], [61], [62] This limitation is
particularly evident during scenarios where quick and precise
SoC adjustments are crucial, such as sudden acceleration
or regenerative braking. In controlled experiments simulat-
ing rapid acceleration, current methods showed an average
deviation of about 8% from actual SoC values, highlighting
the challenge of accurate estimation under dynamic condi-
tions [38], [39], [40], [41].

2) INCREASED COMPUTATIONAL COMPLEXITY

The incorporation of non-linear and dynamic models intro-
duces heightened computational complexity into SoC esti-
mation processes. While these models enhance accuracy,
they may demand significant computational resources, poten-
tially hindering real-time responsiveness [63], [64], [65].
This increased complexity could lead to delays in decision-
making, impacting the ability of the system to adapt swiftly
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to changing driving conditions. Computational analysis
revealed that the inclusion of dynamic models increased
the processing time by 19.71%, emphasizing the trade-off
between accuracy and real-time responsiveness [50], [52].

3) CALIBRATION CHALLENGES

Current methods may face challenges related to model cali-
bration, especially in ensuring the accuracy of SoC estimates
across diverse operating conditions. Calibrating models to
accommodate variations in temperature, load profiles, and
other external factors is a delicate task. Inaccurate calibra-
tion may lead to discrepancies between predicted and actual
SoC values, impacting the reliability of the entire SoC man-
agement system [66], [67], [68]. Across various operating
conditions, calibration inaccuracies led to a deviation of up
to 13.34% in SoC estimates, underlining the importance of
precise model calibration [50], [S1].

4) POTENTIAL FOR DATA AND MODEL UNCERTAINTIES

The reliance on historical data and models to predict SoC
introduces the potential for uncertainties. Variability in bat-
tery behavior over time, changes in environmental conditions,
and the introduction of new driving patterns may lead to
inaccuracies in SoC estimation. Uncertainties in the data and
model may compromise the reliability of the SoC manage-
ment system [68], [69].

5) OVERCOMPLICATION FOR SIMPLE BATTERY SYSTEMS
Some current methods, designed to handle complex battery
behaviors, may introduce overcomplication when applied
to simpler battery systems. For EVs with straightforward
battery designs, the added complexity may not necessarily
translate into proportional benefits, leading to inefficien-
cies in terms of computational resources and implemen-
tation costs [70], [71], [72]. In simple battery systems,
the added complexity resulted in an 11.17% increase in
computational resources without significant improvement in
accuracy, highlighting the inefficiency of applying complex
models [51], [54].

6) CHALLENGES IN ADDRESSING AGING EFFECTS

Current methods face difficulties in accurately addressing the
aging effects on lithium-ion batteries commonly used in EVs.
The capacity degradation over time due to chemical processes
and charge-discharge cycles poses a considerable challenge
for precise SOC estimation [71], [72], [73].
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7) CHALLENGES REAL-TIME REQUIREMENTS

Meeting real-time adaptation to dynamic driving conditions
poses challenges for current SoC management methods.
Swift decisions based on rapidly changing data are essential
to maintain optimal performance [72], [73].

8) SCALABILITY CONCERNS

The scalability of current SoC management methods is a
concern, particularly as EV technology advances. The poten-
tial implications for energy consumption emphasize the need
for a balanced approach to ensure practical benefits without
compromising scalability [61], [70].

9) POTENTIAL FOR UNINTENDED SYSTEM COMPLEXITY
Some advanced features, such as optimized regenerative
braking, may introduce unintended system complexities with
current SoC management methods [63], [67].

10) IMPACT ON SIMPLE BATTERY SYSTEMS
The integration of non-linearity and dynamics may lead
to overcomplication for simple battery systems, reducing
their efficiency [34], [60], [74]. In simpler battery systems,
the integration of non-linearity and dynamics resulted in
a 12.61% reduction in overall efficiency, raising questions
about the suitability of such methods [54], [56], [57].
Addressing these shortcomings is crucial for advancing
SoC management capabilities in EVs. The following section
explores the potential of machine learning as a promising
avenue to overcome these challenges and enhance the effi-
ciency and sustainability of EVs.

D. MACHINE LEARNING AND ITS POTENTIAL IN EV'SOC
MANAGEMENT

The advent of ML has ushered in a transformative era in
the realm of SoC management for EVs. ML, a subfield of
artificial intelligence, offers a robust arsenal of techniques
to address the multifaceted challenges associated with SoC
estimation, control, and optimization [75]. In empirical stud-
ies, machine learning models, such as RNNs and LSTM
networks, achieved a 17.52% improvement in SoC estimation
accuracy compared to traditional methods [57], [76]. This
highlights the significant advancement ML brings to adapt-
ability in diverse driving conditions.

Machine learning techniques have demonstrated excep-
tional potential in revolutionizing SoC management for EVs.
They provide precise, adaptive, and real-time solutions that
outperform conventional methods across various dimen-
sions [76], [77], [78]. Here, we delve into key aspects of ML’s
potential in EV SoC management, along with new references
and relevant formulas:

1) ADAPTIVE LEARNING

MVL’s hallmark advantage lies in its adaptability to diverse
driving conditions, continually enhancing SoC estima-
tion accuracy through continuous learning from historical
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data [76]. Machine learning models, such as RNNs and
LSTM networks, can continually refine their predictions
based on real-world driving patterns, leading to more accu-
rate and adaptive SoC estimates [77], [79]. Some of the
benefits and defects of this method are listed in Table 3.
The adaptive learning approach using RNNs demonstrated
a 23.84% reduction in prediction errors when compared to
static models, showcasing its effectiveness in dynamic driv-
ing conditions [77]. The formula for Adaptive SoC estimation
using RNN is given as below:

SOCest (t - 1) )

SOC"S’(t)ZRNN(I(t—l),...,I(t—n))’ (10)

where I(t—1), ..., I(t—n) are the previous n time steps of
current measurements used for prediction.

2) BATTERY AGING MITIGATION

Advanced ML algorithms can dynamically adjust SoC esti-
mates to account for battery aging effects, ensuring accurate
representation of the battery’s state [74], [80]. These mod-
els can incorporate aging models to provide precise SoC
estimates that consider the battery’s current condition. Imple-
menting ML-based aging mitigation resulted in a 32.13%
reduction in predicted capacity fade, contributing to pro-
longed battery lifespan [74]. Table 4 lists the specifications
of this method. The formula for SoC adjustment with aging
effects:

SOCadjusted (t) = SOC s (1) — ASOCtlging @) . (11)

In the above relation, SoCygjusted(t) represents the SoC
adjusted for aging at time t, and AS0C,ging(t) is the estimated
aging-related SoC degradation at time t.

3) REAL-TIME OPTIMIZATION

ML techniques are well-suited for real-time SoC manage-
ment, making instantaneous decisions to ensure that the SoC
remains within optimal operating limits while maximizing
fuel efficiency and extending battery lifespan [65], [70].
Algorithms like RL, which advantages and disadvantages
of its listed in Table 5, can be employed for real-time SoC
optimization. Implementing RL-based SoC control strategies
resulted in a 24.79% increase in overall energy efficiency,
validating its effectiveness in real-time optimization [78].
Formula for RL-based SoC control is given by,

SOC control (t +1) = RL (SOCoq (t) , 1 (1), ..., 1 ( +n)),
(12)
where, SoCconirol(t+1) represents the SoC control action at

the next time step t+1, and I(t),...,I(t4n) are current mea-
surements over the next n time steps [52], [78].

4) DATA-DRIVEN INSIGHTS

ML empowers EVs with data-driven insights, contributing to
the overall sustainability of transportation systems [38], [64].
By processing extensive real-time data generated by EVs,
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TABLE 3. Advantages and disadvantages of adaptive learning in EV's SoC management.

Advantages

Disadvantages Ref.

Enhanced Accuracy and Predictive Capability
Improved Efficiency and Energy Optimization
Real-time Adaptation to Changing Conditions
Extended Battery Life
Reduced Range Anxiety
Customized SoC Management for Different Vehicles and Batteries
Data-Driven Insights for Continuous Improvement
Potential for Autonomous SoC Management

Data Complexity and Quality Challenges [
Initial Model Training and Development Costs [
Overfitting and Generalization Issues [
Increased Computational Demands [
Potential Vulnerability to Data Anomalies [
Lack of Transparency in Decision-Making [
Potential for Model Degradation Over Time [
Integration Challenges with Legacy Systems [

ML algorithms can provide valuable information on driving
behavior, energy consumption patterns, and optimal SoC
management strategies [79], [80]. Incorporating machine
learning models into SoC management in EVs represents a
significant leap forward from traditional methods. Integration
of ML-based data-driven insights led to about 20% reduc-
tion in energy consumption, highlighting the efficiency gains
achieved through informed decision-making [64].

The synergy of ML and EV SoC management enhances
energy efficiency (See Table 6), vehicle performance, and
sustainability [43], [84].

IIl. MACHINE LEARNING METHODS FOR SOC
ESTIMATION IN EVs

A. RECURRENT NEURAL NETWORKS (RNNs) FOR SoC
ESTIMATION

RNNs have emerged as a powerful tool in the domain of
SoC estimation for EVs. RNNs are well-suited for capturing
the dynamic behavior of battery SoC over time due to their
ability to process sequential data [69] (see Figure 8). Their
architecture allows them to maintain hidden states, enabling
them to remember past information and consider it when
making predictions about future SoC values. Mathematically,
an RNN can be represented as a series of equations:

hy = f(Whphi—1 + Wiyxy) (13)
v = g(Wynhy) (14)

where h, represents the hidden state at time t, f is the activation
function, typically a hyperbolic tangent or rectified linear
unit, and Wy, and Wy are weight matrices. Also, y; is the
output at time t, g is the activation function for the output
layer, and Wy, is the weight matrix for the output layer.
RNNSs can be applied to SoC estimation by using sequences
of input data (current measurements, voltage, temperature,
etc.) to predict the SoC at each time step. The sequence
of input data (x;) is typically a window of past measure-
ments, and the RNN updates the hidden state (h¢) at each
time step to capture dependencies in the data. The out-
put of the RNN (y;) represents the estimated SoC at each
time step [81]. Reference [82] reported a 15.49% increase
in SoC estimation accuracy when using RNNs, achiev-
ing an accuracy rate of 92% compared to 77.16% with
traditional methods. Reference [84] observed a 12% improve-
ment in energy efficiency through the application of RNNss,
resulting in an average energy consumption reduction from
18 kWh/100 miles to 15.8 kWh/100 miles. Reference [85]
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FIGURE 8. The general architecture of the 3-layer neural network for SoC
estimation [69].

conducted on-road tests and found that RNNs adapted in
real-time to diverse driving patterns, achieving a 20.16%
reduction in SoC prediction error compared to static models.
Reference [86] demonstrated the effectiveness of RNNs in
customizing SoC management for different vehicles, achiev-
ing a 10.18% improvement in SoC accuracy across a range
of EV models. Also, reference [87] showcased the poten-
tial for autonomous SoC management using RNNs, with an
autonomous adaptation accuracy rate of 88.05% in varying
driving conditions. On the other hand, reference [88] inte-
grated RNN-based SoC estimation with ADAS, resulting in
a 15% reduction in SoC prediction latency and enhancing
overall vehicle safety. Reference [89] observed a 25.35%
reduction in battery degradation when utilizing RNNs for
SoC estimation, contributing to a prolonged battery lifespan.
Reference [90] found that RNNs adapted in real-time to envi-
ronmental factors, achieving a 18.19% improvement in SoC
estimation accuracy during temperature fluctuations. Zhang
et al. applied RNNs for predictive maintenance, resulting in
a 31.72% reduction in unplanned maintenance incidents and
improving overall SoC estimation reliability. Huang et al.
conducted on-road tests and cross-validation, confirming the
effectiveness of RNNs in real-world scenarios with a 12.58%
reduction in SoC prediction errors.

1) APPLICATIONS AND FURTHER ADVANTAGES OF RNNS IN
SOC ESTIMATION

a: SEQUENTIAL DEPENDENCY

RNNSs excel in capturing sequential dependencies in time-
series data [91]. In the context of EV SoC estimation,
they can effectively model how past SoC values and
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TABLE 4. Advantages and disadvantages of battery aging mitigation in EV's SoC management.

Advantages Disadvantages Ref.

Prolonged Battery Lifespan Increased Computational Demands and Complexity [68]

Reduced Battery Degradation Initial Development and Implementation Costs [69]

Enhanced Long-term Performance Data Sensitivity and Accuracy Requirements [70]

Improved Battery Safety Integration Challenges with Existing Systems [72]

Increased Vehicle Resale Value Dependence on Real-time Data and Sensor Accuracy [73]

Lower Total Cost of Ownership Potential for Overly Conservative SoC Management [75]

Reduced Environmental Impact Potential for Unintended SoC Control Behavior [76]

Enhanced Battery Health Monitoring Complexity of Battery Health Monitoring [77]

Customized SoC Strategies for Battery Types Maintenance and Software Update Requirements [79]

Potential for Autonomous Aging Management Limited User Control Over Battery Health Policies [80]

TABLE 5. Advantages and disadvantages of reinforcement learning in EV's SoC management.

Advantages Disadvantages Ref.

Adaptive and Self-Improving Control Strategies High Computational Demands and Complexity [77

Real-time Adaptation to Dynamic Driving Patterns Initial Model Training and Implementation Costs [78

Enhanced Energy Efficiency and Fuel Economy Data Sensitivity and Quality Requirements [79

Prolonged Battery Lifespan
Reduced Environmental Impact
Customized SoC Management for Different Vehicles
Potential for Autonomous SoC Management
Data-Driven Insights for Continuous Improvement
Improved User Experience
Integration with ADAS

Integration Challenges with Existing Systems [8
Potential for Unpredictable Behavior and Learning [8
Dependency on Real-time Data and Sensor Accuracy [8
Limited Explainability and Control Over Decisions [8
Maintenance and Software Update Requirements [8
Potential for Over-Exploration and Instability [8
Ethical and Safety Considerations [8

TABLE 6. Advantages and disadvantages of data-driven insights in EV's SoC management.

Advantages

Disadvantages Ref.

Informed Decision-Making
Enhanced Energy Efficiency
Improved Vehicle Performance
Adaptive SoC Management
Prolonged Battery Lifespan
Reduced Environmental Impact
Real-time Optimization
Customized SoC Management for Different Vehicles
Potential for Autonomous SoC Management
Integration with ADAS

Data Quality and Reliability Requirements [

Computational Demands and Processing Overhead [
Initial Development and Implementation Costs [6
Integration Challenges with Existing Systems [7
Potential for Overreliance on Data and Algorithms [7

Vulnerability to Data Anomalies and Sensor Errors [79

Potential for Unintended SoC Control Behavior [8
Maintenance and Software Update Requirements [8
Privacy and Data Security Concerns [8
Limited User Control Over SoC Management Policies [8

TABLE 7. Advantages and disadvantages of RNN for SoC estimation.

Advantages Disadvantages Ref.

Improved SoC Estimation Accuracy Data Quality and Quantity Requirements [79]
Enhanced Energy Efficiency Computational Demands and Processing Overhead [84]

Real-time Adaptation to Driving Patterns Initial Model Training and Implementation Costs [85]
Reduced Battery Degradation Integration Challenges with Existing Systems [86]
Customized SoC Management for Different Vehicles Limited Explainability of RNN Decision-Making [87]
Potential for Autonomous SoC Management Dependence on Real-time Data and Sensor Accuracy [88]
Integration with ADAS Potential for Overfitting or Poor Generalization [89]

input data influence the current SoC. Studies comparing
RNNS to traditional models revealed a 33.78% improvement
in capturing intricate sequential dependencies, showcas-
ing the efficacy of RNNs in modeling complex temporal
relationships [91].

b: REAL-TIME ADAPTATION

RNNs adapt to changing driving conditions in real-time.
As new data becomes available, the RNN updates its predic-
tions, making it suitable for dynamic driving scenarios [52].
In a controlled experiment simulating dynamic driving con-
ditions, RNN-based SoC estimation demonstrated a 15.94%
reduction in prediction error compared to static models, high-
lighting its ability to adapt swiftly to real-time changes [54].
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c: ADAPTIVE LEARNING

RNNSs continually learn from historical data, allowing them
to improve SoC estimation accuracy over time. They adjust
their internal parameters to minimize prediction errors [56].

d: COMPLEX DRIVING PATTERNS

EVs often encounter complex driving patterns, including fre-
quent starts and stops. RNNs can handle such scenarios by
learning patterns from the data [72].

e: NON-LINEAR RELATIONSHIPS

RNNs are capable of capturing non-linear relationships in the
data, which is crucial for accurate SoC estimation in varying
conditions [75].
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f: BATTERY AGING MITIGATION

RNNs can be extended to consider battery aging effects
by incorporating aging models into the estimation process,
facilitating improved accuracy in SoC representation as the
battery undergoes aging [92], [93]. Integration of RNN with
aging models allows for more precise SoC predictions, con-
tributing to better overall battery management.

B. LONG SHORT-TERM MEMORY (LSTM) NETWORKS FOR
SoC ESTIMATION

LSTM networks have gained prominence in SoC estimation
for EVs due to their ability to capture long-term dependencies
in time-series data effectively [94], [95], [96], [97]. LSTMs
are a type of RNN designed to mitigate the vanishing gradient
problem, allowing them to capture information over longer
time horizons.

The vanishing gradient problem refers to a difficulty
encountered during the training of deep neural networks,
particularly in the context of RNNs. As information is prop-
agated through the network during the learning process,
the gradients of the loss function tend to diminish expo-
nentially as they move backward through the layers. This
diminishing gradient makes it challenging for the network to
learn long-range dependencies in sequential data effectively.
They excel in modeling complex sequential patterns in SoC
data [95].

Mathematically, an LSTM unit consists of several gates
that regulate the flow of information [96]:

fi =0 (Wy [hi—1,x]1+ by) (15)
ii=0 (Wi [ht—lvxt] + bi) , (16)
Ci = tanh (Wc [hy—1, X1 + bc) (17)

where f; is the forget gate output at time t, Wy represents the
weights associated with the forget gate, hi_ is the previous
hidden state, x; is the input at time t, o is the sigmoid
activation function, i; is the input gate output at time t, W;
represents the weights associated with the input gate, C,is the
candidate cell state at time t, and W¢ represents the weights
associated with the candidate gate. Moreover, LSTM has the
following relevant equations [98]:

C =fiCi—1 + iCy, (18)
or =0 Wy lhi—1,x]+by), (19)

where o; is the output gate output at time t, W, represents
the weights associated with the output gate, h; is the hidden
state at time t, tanh is the hyperbolic tangent activation func-
tion. LSTMs leverage these equations to process sequential
data and capture intricate relationships between past and
current SoC values. In the continuous we say that how these
parameters might be associated with electrical characteristics
relevant to battery systems [98].

Interception of f: The forget gate determines the amount
of past cell state information (C¢—1) that should be retained
or discarded. In the context of SoC estimation, f; might be
associated with factors that contribute to the fading influence
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of previous SoC values. This could include factors related to
voltage or current trends that are considered less relevant over
time.

Interceptions of i; and C: These parameters together influ-
ence the update of the cell state (C;) based on the current input
(x¢). In the context of SoC estimation, i; could be related to
new information coming in, such as current measurements
or voltage Changes.C‘, represents the candidate cell state,
and its interpretation may involve understanding how new
information is processed and added to the current state.

Interception of Cy: C; is the updated cell state, combining
information from the previous state, the forget gate, and
the input gate. In SoC estimation, this could represent the
comprehensive internal representation of the battery state,
incorporating information about current and past conditions.

Interception of o;: o; determines the amount of information
from the cell state that should be output. In the context of
SoC estimation, this might be associated with the decision of
what information is relevant for predicting the current SoC.
It could involve factors related to voltage, current, or other
relevant features.

1) ADVANTAGES OF LSTMS IN SOC ESTIMATION

a: LONG-TERM DEPENDENCY MODELING

LSTMs can capture long-term dependencies in SoC data,
making them suitable for scenarios where SoC changes occur
gradually over time [83].

b: HANDLING IRREGULAR PATTERNS

EVs may exhibit irregular driving patterns. LSTMs adapt to
such variations by learning patterns from the data, resulting
in accurate SoC predictions [83].

¢: IMPROVED LEARNING STABILITY

LSTMs mitigate the vanishing gradient problem often
encountered in traditional RNNs, enhancing training stability
and convergence [86].

d: BATTERY AGING CONSIDERATION
LSTMs can be extended to incorporate aging models into SoC
estimation, accounting for battery degradation effects [91].

C. SUPPORT VECTOR MACHINES (SVMs) FOR SoC
ESTIMATION

SVM is an emerging technique for SoC estimation in EVs.
SVMs aim to find a hyperplane that maximizes the margin
between different classes of data points while minimizing
prediction errors [91], [94]. In the context of SoC estimation,
SVMs are used for regression tasks to predict SoC values
based on input features. Mathematically, SVMs can be for-
mulated for regression as follows [92]:

N
fe0) =D oK (x,x) +b,. (20)

i=1
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where f(x) represents the predicted SoC value for input x,
«; are the Lagrange multipliers obtained during training,
K(x,x;) is the kernel function, which computes the similarity
between input x and training data X, and b is the bias term.
SVMs use different kernel functions to map data into higher-
dimensional spaces, enabling the separation of non-linearly
distributed data. Common kernel functions include linear
kernel which is given below [93]:

K (x, x;) =xTxi. 2n

It can be seen that there is no explicit coefficient or
parameter. Kernel function K (x, x;) computes the dot product
between the input vectors x and Xx;, effectively measuring the
similarity between them in the original feature space. The
linear kernel is used when you assume that the data can be
separated by a linear hyperplane. It is appropriate when your
data is approximately linearly separable.

Another kernel function is RBF which is written as
below [41]:

K (r.3) = exp (= s = xll?) 22)

The coefficient y is a positive scalar parameter and it
controls the shape and flexibility of the decision boundary.
A smaller y makes the kernel more similar to the linear
kernel, while a larger y increases the influence of nearby
data points. Also, high values of y result in a more complex
decision boundary that can capture intricate patterns in the
data, potentially leading to overfitting if not properly tuned.

These coefficients play a significant role in shaping the ker-
nel functions and, consequently, the performance of SVMs.
The proper choice of coefficients depends on the specific
characteristics of your data and the problem you are trying
to solve. Adjusting these coefficients through techniques like
hyperparameter tuning and cross-validation is often neces-
sary to achieve the best SVM model performance.

1) ADVANTAGES OF SVMS IN SOC ESTIMATION

a: ROBUSTNESS TO NOISE

SVMs are known for their robustness to noisy data, making
them suitable for SoC estimation where input data may con-
tain uncertainties [99], [100].

b: HIGH-DIMENSIONAL DATA
SVMs can effectively handle high-dimensional input data,
which is common in battery management systems [97].

¢: GENERALIZATION CAPABILITY
SVMs have strong generalization capabilities, allowing them
to provide accurate SoC estimates across various driving
conditions and battery types [91].

d: SCALABILITY

SVMs can scale to large datasets and accommodate a wide
range of input features, making them adaptable to different
EV scenarios [100].
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D. ENSEMBLE LEARNING FOR SoC ESTIMATION
Ensemble Learning is a powerful technique that combines the
predictions of multiple machine learning models to improve
the accuracy and robustness of SoC estimation in EVs [101].
It leverages the wisdom of multiple models to make more
reliable predictions.

Ensemble Learning is a powerful technique that com-
bines the predictions of multiple machine learning models
to improve the accuracy and robustness of SoC estimation
in EVs [101]. It leverages the wisdom of multiple models to
make more reliable predictions.

1 N
Fo) =22 fi), (23)
i=1

where, F(x) represents the ensemble prediction for input x,
N is the number of decision trees in the ensemble, and fj(x)
is the prediction of the i-th decision tree.

Another ensemble method commonly used is GB. In the
context of SoC estimation, GBMs and variants like XGBoost
and LightGBM have demonstrated remarkable performance.
The mathematical formulation for GBMs involves creating an
ensemble of weak learners (usually decision trees) and itera-
tively improving predictions by minimizing a loss function.

a: ADVANTAGES OF ENSEMBLE LEARNING IN SOC
ESTIMATION
i Improved Accuracy: Ensemble methods combine mul-
tiple models, reducing the risk of overfitting and
improving overall prediction accuracy [102].

ii Robustness: Ensembles are robust to noise and outliers
in the data, making them suitable for SoC estimation
tasks that involve uncertain measurements [103].

iii Capturing Complex Patterns: Ensemble methods can
capture complex, non-linear relationships in SoC data,
enhancing the model’s ability to approximate the true
SoC values [104].

iv Reduced Bias: Ensembles can mitigate bias introduced
by individual models, resulting in more balanced pre-
dictions [103].

IV. PRACTICAL APPLICATIONS AND REAL-WORLD
IMPLICATIONS

A. FLEET MANAGEMENT

1) APPLICATION

Fleet management is a complex task that involves overseeing
and optimizing a group of vehicles, commonly found in
commercial and industrial settings. Machine learning-based
SoC estimation has significant applications in this domain:

a: ENERGY-EFFICIENT ROUTING

Accurate SoC estimation enables the planning of routes
that maximize energy efficiency and minimize the need for
recharging or refueling [102]. For example, in the realm
of delivery fleets, particularly in services such as postal
deliveries and online shopping transportation, accurate SoC
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estimation proves to be a critical factor in enhancing overall
operational efficiency. Consider a scenario where a postal
service operates a fleet of electric delivery vehicles [103].
With precise SoC estimation, the postal service can strategi-
cally plan delivery routes that optimize energy consumption
across various stops. This involves factoring in the energy
required for each delivery point and calculating the total
distance to be covered. By doing so, the fleet minimizes
the need for mid-route charging, ensuring timely deliveries
without unnecessary energy waste [104]. Similarly, for online
shopping delivery vans, accurate SoC estimation becomes
invaluable. Delivery companies managing a fleet of electric
vans can optimize routes based on the remaining battery
levels of each vehicle. This strategic planning minimizes the
risk of vehicles running out of charge mid-route, especially
in densely populated areas with numerous stops. The result
is an enhanced delivery process efficiency and improved
customer satisfaction. The significance of precise SoC esti-
mation extends to food delivery services employing electric
scooters or bikes [105]. By factoring in battery levels and
order delivery sequences, food delivery platforms can ensure
that each delivery is completed without interruptions. This
minimizes downtime associated with recharging and elevates
the overall efficiency of the food delivery service. Logistics
companies, dealing with freight transport between distribu-
tion centers and warehouses, also benefit significantly [106].
Accurate SoC estimation enables the planning of the most
energy-efficient routes for electric trucks that visit multiple
locations. By considering variables such as cargo weight,
traffic conditions, and charging station availability, logistics
companies optimize delivery schedules, minimizing the need
for frequent recharging and ensuring timely deliveries [107].

b: DYNAMIC CHARGING SCHEDULING

Development of charging depots for EV fleets often requires
network reinforcements. Therefore, fleet managers need
dynamically schedule charging times for EVs based on SoC
predictions, ensuring vehicles are ready for their next tasks
without unnecessary downtime [105].

c: LOAD BALANCING

SoC estimation aids in load balancing across the fleet,
optimizing vehicle assignments to ensure equitable energy
distribution among vehicles [106].

d: FLEET ELECTRIFICATION STRATEGY
Fleet managers can use SoC data to devise strategies for tran-
sitioning to electric and hybrid vehicles, reducing operational
costs and environmental impact [106].

2) IMPLICATIONS

Enhanced fleet management through machine learning-based
SoC estimation leads to reduced operational costs, improved
energy efficiency, and a lower environmental foot-
print. Increased vehicle availability, reduced maintenance
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expenses, and improved customer service due to optimized
routing and scheduling [108].

3) MATHEMATICAL FORMULATION OF SOC ESTIMATION IN
FLEET MANAGEMENT

The mathematical formulation for SoC estimation in fleet
management follows the general equation mentioned earlier:

SOC;11 = f(SOC,, Input,) (24)

In the above equation, SoCi4 is the predicted SoC at time
t+1 for a specific vehicle in the fleet, SoC; is the SoC at
time t for the same vehicle, and Input; represents a range
of input parameters, including vehicle-specific data, weather
conditions, load information, and route details.

B. ENERGY EFFICIENCY

Energy efficiency is a critical consideration in the opera-
tion of EVs. Machine learning-based SoC estimation plays
a pivotal role in enhancing energy efficiency and optimizing
various aspects of EV performance.

1) APPLICATION
The quest for improved energy efficiency drives innovation
in SoC estimation for EVs:

a: OPTIMIZED POWERTRAIN CONTROL

Accurate SoC estimation enables fine-grained control of the
powertrain, including the management of engine and electric
motor operations [109].

b: REGENERATIVE BRAKING
SoC estimation guides regenerative braking, ensuring the

efficient capture and storage of energy during decelera-
tion [110].

¢: ENERGY HARVESTING

Machine learning-based SoC estimation aids in harnessing
energy from various sources, such as solar panels, for sup-
plementary power generation [111].

d: ENERGY STORAGE MANAGEMENT
SoC estimation is crucial for managing energy storage sys-
tems, optimizing the use of batteries and capacitors [112].

2) IMPLICATIONS

In the realm of automotive innovation, the profound impli-
cations of improved energy efficiency reverberate across the
landscape, promising a paradigm shift in the way we perceive
and engage with transportation [113]. Two pivotal outcomes
underscore this transformative journey: firstly, heightened
energy efficiency yields tangible benefits such as reduced fuel
consumption, extended battery life, and diminished emissions
in hybrid vehicles [111]. Secondly, the ripple effect extends
to the broader spectrum of vehicle dynamics, encompass-
ing enhanced overall performance and decreased operating
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costs, thereby propelling us towards a more sustainable and
eco-conscious transportation ecosystem [114].

C. BATTERY HEALTH MONITORING

Battery health monitoring is essential for ensuring the
longevity and performance of batteries in EVs. This is par-
ticularly critical for the second-hand EV market as battery
state of health determines the price of the vehicle. Machine
learning-based SoC estimation plays a critical role in assess-
ing and preserving battery health [115]. The related health
monitoring applications are presented below.

1) APPLICATIONS
Machine learning techniques are instrumental in monitoring
and maintaining battery health in EVs as discussed below.

a: STATE-OF-HEALTH (SOH) ESTIMATION

SOH estimation is a critical aspect of managing battery
systems, providing insights into the overall health and per-
formance of a battery over time. In the context of Li-ion,
such as those commonly used in electric vehicles, SoC
and SOH are interlinked parameters [110]. The estima-
tion of SOH often involves leveraging information from
SoC estimation, contributing to the identification of battery
degradation and capacity loss [113]. The process begins
with SoC estimation, which refers to determining the cur-
rent charge level of the battery as a percentage of its
total capacity [112]. This is typically achieved through a
combination of monitoring voltage, current, and tempera-
ture, along with sophisticated algorithms. SoC estimation
methods include Coulomb counting, voltage-based methods,
and Kalman filtering, among others [116]. Implementing
machine learning-based SOH estimation led to a 17.49%
improvement in accuracy compared to traditional methods,
ensuring a more precise assessment of battery health [113].

Once the SoC is estimated, it becomes a valuable input for
SOH estimation. SOH reflects the overall health and degrada-
tion status of the battery. By observing changes in SoC over
multiple charge and discharge cycles, algorithms can analyze
the battery’s behavior and identify patterns associated with
degradation [117].

Key indicators for SOH estimation may include capacity
fade, impedance growth, and variations in voltage profiles.
Capacity fade is a reduction in the battery’s ability to store
charge over time, while impedance growth refers to an
increase in internal resistance [118]. These factors are indica-
tive of wear and tear, chemical changes, and other degradation
mechanisms occurring within the battery [118].

b: CYCLIC BEHAVIOR ANALYSIS

Understanding the cyclic behavior inherent in EV driving
patterns is paramount to comprehending the dynamics of SoC
fluctuations. As EVs navigate diverse terrains and encounter
varied driving conditions, the battery’s SoC experiences
cyclical changes in harmony with the distinctive driving
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patterns exhibited by the vehicle [119]. Recognizing this
inherent cyclic behavior becomes the cornerstone for har-
nessing the power of machine learning models, which, when
applied to SoC data, unveil invaluable insights into the health
of the battery system. In this context, the exploration of abnor-
mal cyclic patterns emerges as a pivotal avenue, providing
a lens through which issues pertaining to battery health can
be discerned and addressed proactively, ushering in a new
era of efficiency and reliability in electric vehicle technol-
ogy [120], [121], [122]. Machine learning models analyzing
cyclic behavior demonstrated an 18.58% increase in anomaly
detection accuracy, showcasing their effectiveness in iden-
tifying abnormal patterns linked to potential battery health
issues [120].

¢: PREDICTIVE MAINTENANCE

Even as EV manufacturers extend warranties safeguarding
battery health, the landscape of unforeseen challenges per-
sists. In the realm of EV technology, unexpected failures
occasionally materialize, stemming from factors such as the
use of defective materials during manufacturing phases or
other unforeseen issues. It is within this nuanced context that
the paradigm of SoC-based predictive maintenance schedules
assumes paramount significance [123]. By harnessing the
continuous stream of SoC data, a proactive approach to main-
tenance emerges, allowing for the development of predictive
schedules that preemptively address potential issues, averting
critical failures and fortifying the reliability of EVs against
the backdrop of real-world uncertainties [124].

d: BATTERY LIFE OPTIMIZATION

At the heart of a battery’s longevity lies the pivotal role
played by its charging and discharging patterns. The essence
of battery life is intricately intertwined with the nuanced
dance between energy input and output. Recognizing this
fundamental truth becomes the cornerstone for unlocking
the realm of Battery Life Optimization [125], [126]. Cen-
tral to this endeavor is the utilization of SoC and SOH
estimation, guiding sophisticated strategies that transcend
mere energy management. These strategies, informed by
cutting-edge research such as that by reference [127], hold
the promise of not just extending battery life but ushering
in an era where the very essence of energy storage is syn-
onymous with durability and efficiency. Strategies informed
by machine learning-driven SoC and SOH estimation, as per
research [127], showcases a 32.18% increase in overall bat-
tery lifespan, emphasizing the potential for durability and
efficiency enhancements [127].

2) IMPLICATIONS

Battery health monitoring, with its intricate ties to both eco-
nomic and environmental considerations, holds paramount
significance for end-users and society at large. This moni-
toring directly influences critical aspects such as EV sales
and the broader landscape of transportation electrification.
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The early detection of battery degradation stands out as a
pivotal component, enabling timely maintenance interven-
tions that effectively curb replacement costs and minimize
the disruptive impact of vehicle downtime [118], [119], [120],
[121]. This proactive approach not only safeguards economic
interests but also aligns seamlessly with sustainability objec-
tives [118].

Furthermore, the implications extend beyond immedi-
ate operational concerns. The prolonged life of batteries,
informed by effective health monitoring strategies, becomes
a linchpin in fostering sustainability and cost-effectiveness in
the day-to-day operation of EVs [122]. This holistic perspec-
tive underscores the interconnected nature of technological
advancements with economic prudence and environmental
stewardship. By synergizing early detection of battery degra-
dation with strategies for prolonged battery life, a harmonious
balance is struck, steering the trajectory of EV sales, shap-
ing transportation electrification initiatives, and contributing
to the collective vision of a more sustainable and efficient
future [128].

D. USER EXPERIENCE

User experience is a critical aspect of electric and hybrid
vehicles. Accurate SoC estimation significantly influences
the user’s perception and satisfaction with these vehicles.

1) APPLICATIONS
Machine learning-based SoC estimation enhances user expe-
rience in EVs in following ways:

a: RANGE ANXIETY MITIGATION
Accurate SoC prediction helps alleviate “‘range anxiety” by
providing drivers with reliable estimates of the remaining
driving range [129]. In [130], a sample of 100 EV users
participated in a simulated driving experience. The partici-
pants were provided with inaccurate range estimates in the
first phase and accurate estimates in the second phase. Their
anxiety levels, trust in EV technology, and overall user expe-
rience were measured through surveys. In the first phase,
participants reported an average anxiety level of 7.5 on a scale
of 1 to 10, with 65% experiencing a decrease in trust in EV
technology. Additionally, 60% rated their overall user experi-
ence as unsatisfactory. In the second phase, after accurate SoC
and SOH predictions were introduced, the average anxiety
level decreased significantly to 3.2.

Moreover, 90% of participants reported an increase in trust
in EV technology, and 85% rated their overall user experience
as highly satisfactory.

b: PREDICTIVE ENERGY MANAGEMENT

Predictive energy management, as elucidated by [131], refers
to a sophisticated approach that harnesses machine learning
models to enhance the allocation and consumption of energy
within a vehicle. This method, highlighted by the integra-
tion of predictive algorithms, guarantees optimal operational
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efficiency for the vehicle by strategically navigating diverse
driving conditions and maximizing electric mode opera-
tion [128]. The system dynamically adapts to factors like
terrain, traffic patterns, and driver behavior through advanced
predictive analytics, thereby elevating overall energy effi-
ciency and fostering a more sustainable and economical
operation of the vehicle.

¢: SMART CHARGING RECOMMENDATIONS

SoC-based recommendations guide users in determining
optimal recharging times, considering factors such as loca-
tion and type of charging infrastructure. By leveraging ML
algorithms, this system goes beyond mere charging recom-
mendations to intelligently assess the recharging needs of
the EV fleet. This includes optimizing charging schedules
to take advantage of off-peak rates, minimizing charging
costs, and strategically selecting charging locations based
on factors like traffic conditions and charging infrastructure
availability [132].

The role of machine learning in smart recharging needs
assessment involves more than just minimizing current-led
degradation on the battery. ML models analyze historical
charging patterns, user behavior, and real-time data such as
grid demand and pricing fluctuations [131]. By processing
this information, the system learns to generate personal-
ized recommendations that not only preserve battery health
but also consider user preferences, cost-effectiveness, and
environmental considerations. In essence, ML enhances the
intelligence of the recommendations, making them adaptable
to the evolving needs and conditions of both the EV user and
the power grid [133].

2) IMPLICATIONS

Manufacturers understand that a positive user experience is
vital for consumer adoption of electric vehicles. It’s not just
about the technology; it’s about how easily and comfortably
users can interact with and benefit from that technology.
Against this backdrop, the implications of enhanced user
experience in the context of electric and hybrid vehicles are
profound:

« Enhanced user experience leads to increased user con-
fidence in electric and hybrid vehicles, driving their
adoption [134].

o Reduced ‘“‘range anxiety” and optimized energy man-
agement contribute to greater satisfaction and accep-
tance of EVs [135].

V. CHALLENGES AND LIMITATION

Machine learning-based SoC management in EVs offers
promising solutions but is accompanied by a set of challenges
and limitations that require careful consideration:

A. DATA AVAILABILITY AND QUALITY
One of the foremost challenges in machine learning-based
SoC management for EVs is the availability and quality
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of data. Accurate SoC estimation heavily relies on robust
training datasets, and issues related to data can significantly
impact the reliability of SoC predictions.

1) DATA AVAILABILITY

Data availability is a pivotal factor in the successful imple-
mentation of machine learning-based SoC management for
EVs. Understanding the sources and methodologies behind
existing datasets is crucial for effective SoC estimation.
This section delves into various data acquisition techniques,
emphasizing their role in shaping the quality of predictions
and the models’ ability to generalize. Reference [136] under-
score the critical role of diverse and comprehensive datasets
in SoC estimation accuracy. It highlights the significance of
cell-level battery testing as a foundational source of data.
By examining individual cell behavior, this approach pro-
vides granular insights that contribute to the robustness of
SoC models. Additionally, reference [137] elaborate on the
importance of measurements obtained from EVs through on-
board diagnostics. These real-world data points capture the
dynamic interplay between the vehicle and its environment,
enhancing the models’ adaptability to diverse driving condi-
tions. In tackling data availability challenges, reference [138]
advocates a data-driven approach and propose techniques
such as data augmentation and synthesis. While emphasizing
the need for diverse datasets, they specifically address the
value of incorporating measurements from on-board diagnos-
tics. By enriching training datasets through these methods,
SoC estimation models become more resilient and adaptable.
Reference [139] extends the discussion by advocating col-
laborative efforts, data sharing initiatives, and advancements
in data collection technologies. They highlight the synergy
between industry and academia in addressing data availability
challenges. The incorporation of cell-level battery testing and
on-board diagnostics measurements is seen as a promising
avenue. Moreover, Kim et al. emphasize the potential benefits
of leveraging advanced data collection technologies, such as
sensors and the 10T to create more extensive and diverse
datasets for SoC estimation.

Data availability is a pivotal factor in the successful imple-
mentation of machine learning-based SoC management for
EVs. It not only dictates the quality of predictions but also
influences the models’ ability to generalize across diverse
driving conditions and vehicle types. Reference [140] under-
lines the critical role of diverse and comprehensive datasets in
SoC estimation accuracy. They emphasize that a lack of data
diversity can hinder model generalization and lead to subop-
timal SoC predictions. Reference [141] takes a data-driven
approach to tackle data availability challenges. They pro-
pose data augmentation and synthesis techniques, shedding
light on how these methods can enrich training datasets and
enhance the robustness of SoC estimation models. Advocate
collaborative efforts, data sharing initiatives, and advance-
ments in data collection technologies as promising avenues
to address data availability challenges [142]. Their insights
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underscore the significance of industry-academia collabora-
tion and the potential benefits of leveraging advanced data
collection technologies, such as sensors and the 10T, to create
more extensive and diverse datasets for SoC estimation.

2) DATA QUALITY

Achieving accurate SoC estimation in EVs heavily relies
on the quality of training data. Data Quality challenges can
introduce errors and biases that impact the reliability of SoC
predictions. Reference [143] focus on data quality assessment
and enhancement in machine learning-based SoC estima-
tion for electric vehicles. Their work delves into strategies
for identifying and mitigating data inaccuracies and noise,
ultimately improving the accuracy of SoC models. Refer-
ence [144] shed light on model explain ability as a facet
of data quality. Complex machine learning models can be
challenging to interpret, impacting trust and acceptance. The
authors discuss techniques for enhancing model transparency,
making it easier to understand and trust SoC predictions.
Li and his team [145] delve into the broader issue of data
scarcity, which often relates to data quality challenges. They
provide insights into strategies for addressing data gaps
and improving the richness of training datasets, ultimately
enhancing the reliability of SoC estimation models.

3) MATHEMATICAL FORMULATION AND DATA
AUGMENTATION

Addressing data-related challenges often involves mathemat-
ical models and data augmentation approaches that can help
mitigate data scarcity by generating synthetic data points
from existing ones. For SoC estimation, data augmentation
methods can simulate variations in driving conditions, tem-
perature, and battery aging, providing a more comprehensive
training set [139]:

SyntheticData = OriginalData + RandomNoise,  (25)

where Synthetic Data represents the augmented data, Original
Data is the existing training data, and Random Noise intro-
duces controlled variations to simulate real-world conditions.

In addressing these data availability challenges, it is crucial
to acknowledge the current research limitations, including
potential biases in existing datasets and the need for continu-
ous efforts to expand data sources.

B. MODEL COMPLEXITY AND RESOURCE REQUIREMENTS
Complexity in machine learning models and their resource
demands pose significant challenges in the context of SoC
management for EVs. Here, we delve into these challenges
and explore mitigation strategies:

1) CHALLENGES IN MODEL COMPLEXITY

One of the greatest challenges is related to the increasing
complexity of machine learning models, especially deep neu-
ral networks, demands substantial computational resources,
making them impractical for resource-constrained embedded
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systems [146]. This is mainly because complex models can
require extensive memory and processing power, rendering
them unsuitable for real-time SoC estimation. This chal-
lenge is particularly pertinent in the automotive sector, where
resource-efficient solutions are crucial [147].

2) RESOURCE REQUIREMENTS MITIGATION STRATEGIES

In order to mitigate model complexity, model optimization
could be used which aims to simplify deep neural networks
while retaining predictive accuracy can reduce computa-
tional demands [148]. Model simplification can be achieved
through techniques like model pruning and quantization,
where the original complex model is transformed into a
more lightweight representation while minimizing the loss in
predictive performance. For instance, consider the following
optimization problem.

While exploring mitigation strategies for model complex-
ity, it is essential to acknowledge the trade-off between model
simplification and predictive accuracy, considering the limi-
tations imposed by resource constraints.

C. REAL-TIME IMPLEMENTATION

Achieving real-time SoC estimation is vital for optimiz-
ing energy management in EVs. However, this goal can be
challenging, especially when dealing with computationally
intensive machine learning models. Below, we explore the
intricacies of real-time implementation and strategies to over-
come associated challenges:

1) CHALLENGES IN ACHIEVING REAL-TIME SOC ESTIMATION
To achieve real-time SoC estimation for EVs, a notable chal-
lenge arises from the intricate nature of machine learning
models, as highlighted by [128]. The complexity inherent
in these models can introduce significant latency into the
estimation process, hindering the timely nature required for
effective decision-making in the context of EV operations.
The potential delays in SoC estimation carry implications
for vehicle control and energy management, with the risk
of leading to suboptimal performance [137]. Particularly in
applications where real-time decisions are critical, the need to
minimize latency becomes a critical consideration for ensur-
ing optimal EV functionality and responsiveness.

2) LATENCY REDUCTION STRATEGIES

Addressing the challenge of latency in real-time SoC estima-
tion for EVs, a potential mitigation involves the integration of
real-time optimization algorithms. Reference [149] exempli-
fies this approach, advocating the use of the Kalman filter as
a common tool for furnishing real-time SoC estimates. The
Kalman filter operates by amalgamating predictions derived
from a dynamic model with actual measurements, facilitating
an iterative process that continually refines the state estimate.
This mathematical formulation underscores the effectiveness
of the Kalman filter in minimizing latency, providing a practi-
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cal solution to enhance the responsiveness of SoC estimation
in dynamic EV scenarios [150].

o Prediction Step: Xxjk—1 = AXk—1jk—1 + Bu

o Measurement Update Step: Xxjx = Xkjk—1 + Kr-(zx —

H Xgjk-1)

In the first equation, Xxx—1 is the predicted state at time
k given observations up to k—1, Xxx is the updated state
estimate at time k given observations up to k, A and B are
matrices describing the system dynamics, uy is the control
input, zy is the measurement, H is the measurement matrix,
and Ky is the Kalman gain.

Addressing these real-time implementation challenges
requires a careful consideration of model architecture
and algorithmic efficiency, acknowledging the limitations
imposed by computational constraints in embedded systems.

D. GENERALIZATION TO DIVERSE CONDITIONS
Generalization, or the ability of SoC estimation models to
perform well under various driving conditions, is essential for
practical applications in EVs. Achieving robust generaliza-
tion can be challenging due to the dynamic nature of driving
scenarios. Here, we explore these challenges and strategies
for enhancing generalization:

1) CHALLENGES IN GENERALIZATION TO DIVERSE
CONDITIONS

Navigating the landscape of EV operations involves a sig-
nificant challenge related to the generalization of models to
diverse conditions. As highlighted by [151], EVs contend
with a broad spectrum of conditions, encompassing distinct
driving styles, temperature variations, and diverse terrains.
The adaptability of models becomes paramount in ensur-
ing accurate SoC estimates. Failure to effectively generalize
across this array of scenarios poses a risk of SoC estimation
errors, with potential repercussions on energy management
decisions and overall vehicle performance [152]. Meeting
this challenge requires a nuanced approach that fosters the
model’s versatility and robustness across the multifaceted
conditions under which EVs operate.

2) GENERALIZATION ENHANCEMENT STRATEGIES

In the pursuit of bolstering the generalization capabilities of
models in the context of EV’s SoC estimation, an effective
strategy involves the incorporation of transfer learning tech-
niques. As advocated by [149], transfer learning operates on
the principle of leveraging knowledge acquired in one domain
to enhance performance in another, facilitating the adaptation
of models to a spectrum of diverse conditions. Typically, this
approach involves the fine-tuning of a pre-trained model—
let’s denote it as M for a model trained on a source domain,
and M for the target model intended for training on a different
domain [147]. The process of fine-tuning can be mathe-
matically formulated to refine the model’s parameters and
features, thereby optimizing its performance in the target
domain. This strategic utilization of transfer learning offers a
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systematic means to augment the generalization capabilities
of models, contributing to their adaptability across varied
conditions inherent in EV operations. Fine-tuning can be
formulated as [148]:

miny, = (My) + ADg (Ps ||P;) (26)

That, (M;) represents the loss of the target model, A is
a trade-off parameter. Dy (P |[P) is the Kullback-Leibler
divergence between the source and target domain distribu-
tions.

While discussing strategies for generalization enhance-
ment, it is important to acknowledge the inherent limitations
in achieving perfect adaptability to every conceivable driving
condition, emphasizing the ongoing efforts to improve model
versatility.

E. MODEL EXPLAINABILITY AND TRUST

The interpretability and trustworthiness of SoC estimation
models are crucial, especially in safety-critical applications.
Here, we explore the challenges related to model explain
ability and strategies to enhance trust in SoC estimation:

1) CHALLENGES IN MODEL EXPLAIN ABILITY AND TRUST
The EV operations introduce a notable challenge concerning
the interpretability and trustworthiness of complex machine
learning models, as underscored by [145]. While these mod-
els often exhibit high accuracy, their intricate nature can
pose difficulties in terms of interpretation, raising concerns
about their reliability—particularly in critical applications
like EVs. The importance of not only achieving accuracy
but also ensuring interpretability in SoC estimation models
cannot be overstated [147]. This dual consideration is pivotal
for garnering user acceptance and bolstering safety in the
context of EV applications, where transparency and trust in
the decision-making process are paramount.

2) EXPLAIN ABILITY ENHANCEMENT STRATEGIES

To address the challenge of interpretability and trust in the
context of EV applications, an effective strategy involves the
incorporation of interpretable machine learning techniques,
as advocated by [153]. This mitigation approach entails utiliz-
ing interpretable models, such as decision trees or rule-based
models, in conjunction with complex machine learning mod-
els. Decision trees, as an example, establish a hierarchical
structure of if-else rules to facilitate predictions, represented
mathematically as f(x) in the context of the decision tree
model. This combined approach seeks to enhance the inter-
pretability of the overall model, providing insights into the
decision-making process, and fostering a clearer understand-
ing of the results generated by SoC estimation models.
By integrating interpretable techniques alongside complex
models, this strategy aims to strike a balance between accu-
racy and transparency, addressing concerns related to model
explain ability and promoting trustin critical EV applications.
Let f(x) represent the decision tree model [154]:
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FIGURE 9. Simple circuit for battery.
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« Decision Tree Prediction: f (x) = > ¢;.l (x € R)),
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where, N is the number of leaf nodes in the tree, c; is the
predicted value associated with leaf node i, R; is the region
defined by the conditions of leaf node I, and I(x€R;) is an
indicator function that equals 1 if x falls into region R;, and
0 otherwise.

In addressing the challenges of model explainabil-
ity, it is essential to recognize the trade-off between
model complexity and interpretability, acknowledging
the need for transparent models in safety-critical EV
applications.

F. MATHEMATICAL MODELLING AND MITIGATION
STRATEGIES

In SoC estimation, the precision of mathematical formulation
and effective mitigation strategies are fundamental to ensur-
ing accurate and reliable results. This section delves into the
significance of mathematical formulations and strategies for
mitigating SoC estimation challenges.

1) MATHEMATICAL FORMULATION FOR SOC ESTIMATION
Accurate SoC estimation hinges on mathematical mod-
els that encapsulate the intricate dynamics of EV batter-
ies [155]. These models incorporate various parameters,
including current, voltage, temperature, and internal resis-
tance, to provide a comprehensive understanding of battery
behavior.

One widely adopted mathematical model for SoC esti-
mation is the ECM. The ECM represents the battery
as a combination of resistors, capacitors, and voltage
sources. According to figure (9), the ECM equations
relate the SoC (SoC;) to current (Iy) and voltage (Vi)
measurements [156]:

V, = OCV, — Ril, Q7
S0C; =f (V) (28)

Here, OCV, denotes the open-circuit voltage at time t, R;
is the internal resistance, and U, represents the overpotential.
The SoC is a function of the real time cell voltage and
charging/discharging current which can be calculated using
basic Kirchhoff’s equations.
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2) MITIGATION STRATEGIES FOR SOC ESTIMATION
CHALLENGES

To effectively address the challenges inherent in SoC esti-
mation, a strategic approach involves the integration of
data-driven machine learning models with physics-based
models, as suggested by [157]. This fusion is designed
to strike a delicate balance between the precision of the
model and the efficiency of computational processes. The
mathematical formulation (Equation 29) illustrates this inte-
gration, wherein SoC; denotes the state of charge at time t,
o is a weighting factor determining the influence of each
model, fy, represents the machine learning model, and fpg
represents the physics-based model. This formulation encap-
sulates a dynamic collaboration between machine learning
adaptability and the foundational understanding provided by
physics-based principles.

SOC: = afur (I, Vi) + (1 — ) fpp(:, Vi) (29)

The rationale behind the effectiveness of this integrated
strategy lies in harnessing the complementary strengths of
both machine learning and physics-based models. Machine
learning models excel at capturing intricate patterns and
nuances within data, adapting to diverse conditions, and offer-
ing predictive capabilities [156]. On the other hand, physics-
based models draw insights from the fundamental principles
governing the underlying system, providing a structured
understanding of the physical processes involved [158].
By combining these strengths, the integrated model becomes
a robust solution that navigates the challenges of SoC esti-
mation. It not only benefits from the adaptability and pattern
recognition of machine learning but also gains interpretability
and foundational accuracy from the physics-based compo-
nent [159].

VI. CURRENT STATE OF RESEARCH

A. REVIEW OF EXISTING LITERATURE

The current state of research in the field of SoC management
for EVs is marked by continuous advancements and a grow-
ing body of knowledge. This section provides an overview
of recent developments, emerging trends, and key findings
in SoC estimation, with a strong focus on the integration of
machine learning techniques.

In recent years, researchers have been increasingly drawn
to the potential of machine learning algorithms in enhancing
SoC management in EVs. These algorithms have proven
instrumental in addressing the challenges associated with
SoC estimation, improving prediction accuracy, and optimiz-
ing battery performance.

1) MACHINE LEARNING FOR SOC ESTIMATION

a: TCNs

Reference [160] demonstrated the efficacy of TCNs in SoC
prediction with impressive results. Their model achieved an
accuracy rate of 95.67% in predicting SoC values over various
driving scenarios and environmental conditions. Addition-

VOLUME 12, 2024

ally, the TCN architecture showed a 20.78% improvement in
computational efficiency compared to traditional methods.

b: DECENTRALIZED SOC MANAGEMENT

In exploring decentralized SoC management through fed-
erated learning, [161] achieved notable outcomes. Their
federated learning framework led to a 15.17% increase in SoC
prediction accuracy, showcasing the potential of distributed
models in improving the overall efficiency of autonomous EV
fleets. Moreover, their approach successfully addressed data
privacy concerns, ensuring secure SoC management across
the fleet.

¢: HYBRID MODELS

The synergistic integration of machine learning and physics-
based models, as championed by [162], exhibits great
promise in enhancing the precision of SoC estimation.
Through their innovative approach, reference [163] har-
nessed the strengths of both modeling paradigms, achieving
a substantial improvement in the accuracy of SoC pre-
dictions. The hybrid model, combining the adaptability of
machine learning with the foundational understanding of
physics-based models, demonstrated a marked advancement
in capturing the intricate dynamics inherent in EV sys-
tems [164]. This integration is poised to contribute to more
reliable and nuanced SoC estimations across diverse opera-
tional conditions, offering a comprehensive solution to the
challenges posed by the complex nature of electric vehicle
dynamics.

d: GRAPH NEURAL NETWORKS (GNNs)

Reference [165] leveraged GNNS to capture spatial-temporal
dependencies, offering valuable insights into SoC dynamics.

2) UNCERTAINTY QUANTIFICATION AND ROBUSTNESS

a: UNCERTAINTY QUANTIFICATION

Reference [161] undertook a pivotal exploration into the
critical realm of uncertainty quantification in SoC estima-
tion, contributing significantly to the enhancement of trust
in machine learning-based predictions. In the context of SoC
estimation, uncertainty refers to the lack of absolute certainty
or precision in predicting the current or future state of an EV’s
battery.

Uncertainty in SoC estimation is a substantial concern
due to its potential repercussions on EV performance, safety,
and energy management. Accurate SoC information is cru-
cial for optimizing the use of battery capacity, preventing
premature battery degradation, and ensuring reliable oper-
ation of the vehicle [156]. Inaccuracies in SoC predictions
can lead to suboptimal energy utilization, affecting driv-
ing range estimations, and potentially causing unexpected
disruptions if the battery depletes earlier or later than
predicted [158].

ML plays a pivotal role in addressing and mitigating uncer-
tainty in SoC estimation. Unlike traditional deterministic
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approaches that provide a single point estimate, ML models
can offer probabilistic predictions, quantifying the uncer-
tainty associated with each estimation. This capability stems
from ML models’ ability to learn complex patterns and
relationships from data, capturing the inherent variability
in driving conditions, temperature fluctuations, and battery
characteristics [162]. ML models can provide not only a pre-
dicted SoC value but also a confidence interval or probability
distribution around the estimate. This additional information
offers a more nuanced understanding of the potential variabil-
ity in SoC values, allowing users and control systems to make
more informed decisions [163]. ML models excel in adapting
to changing and diverse conditions. As uncertainties arise
from variations in real-world scenarios, ML models can con-
tinuously learn from new data, improving their predictions
over time and enhancing their adaptability to dynamic oper-
ating conditions. The non-linear and complex relationships
within EV systems, influenced by factors like battery aging
and varying driving patterns, contribute to uncertainty [164].
ML models are well-suited to capture these intricate patterns,
providing more accurate SoC predictions even in the presence
of non-linear dependencies [165].

b: SEMI-SUPERVISED LEARNING
A semi-supervised learning methods for SoC prediction, har-
nessing both labeled and unlabeled data to enhance accuracy
has been investigated in [142].

c) Adversarial Training: Reference [148] proposed adver-
sarial training techniques to enhance the robustness of SoC
estimation models.

3) BROAD APPLICATIONS AND ADAPTATIONS

a: BATTERY HEALTH MONITORING

Reference [152] explored the application of machine learning
in predicting battery aging, shedding light on the holistic
management of EV batteries.

b: ENERGY EFFICIENCY

The integration of energy harvesting systems and machine
learning for improved SoC management in EVs has been
investigated by [163].

c: Al-BASED FAULT DETECTION

Reference [94] presented Al-driven fault detection methods
that contribute to enhanced SoC management by identifying
abnormal battery behavior.

4) PRACTICAL IMPLEMENTATIONS AND REAL-WORLD
IMPACT
a: FLEET MANAGEMENT

Reference [108] proposed adaptive SoC management strate-
gies that consider dynamic driving conditions and user
preferences, optimizing battery life.
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b: ENERGY EFFICIENCY

A machine learning has been applied in [127] to battery
thermal management systems, optimizing SoC estimation in
varying temperature environments.

c: BATTERY HEALTH MONITORING

Reference [162] investigated the use of machine learning
for comprehensive battery health monitoring, contributing to
enhanced SoC management.

5) CHALLENGES AND LIMITATIONS

a: DATA AVAILABILITY

Addressing data availability challenges is crucial for accurate
SoC estimation, as highlighted by [163].

b: MODEL COMPLEXITY
Managing the complexity of machine learning models is a
key consideration, as discussed in [156].

¢: REAL-TIME IMPLEMENTATION
Real-time implementation of machine learning algorithms for
SoC management is essential, as emphasized by [158].

d: GENERALIZATION TO DIVERSE CONDITIONS
Adapting SoC estimation models to diverse driving condi-
tions is a continuing challenge, as explored by [161].

e: MODEL EXPLAIN ABILITY AND TRUST
Ensuring the interpretability and trustworthiness of SoC esti-
mation models is a growing concern, as highlighted by [162].

6) MATHEMATICAL FORMULATION AND MITIGATION
STRATEGIES

a: KERNEL FUNCTIONS IN SVMs

The choice of kernel functions, including Linear, RBF, and
Polynomial kernels, plays a crucial role in SoC estimation
using SVMs.

7) FUTURE DIRECTIONS

The future of SoC management in EVs holds significant
promise. Researchers are exploring various avenues for
further innovation and development, with an emphasis on
real-time adaptability, enhanced interpretability, and broader
integration with vehicle systems. Next section provides some
of the key findings which sheds light on future developments.

B. KEY FINDINGS AND RECENT DEVELOPMENTS

Recent research has underscored several key findings and
developments that are shaping the landscape of SoC manage-
ment in EVs:

1) HYBRID MODELS
There is a growing trend toward hybrid models that
combine the strengths of physics-based and data-driven
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approaches [149], [150], [151], [152], [153], [154], [155],
[156], [157]. These models aim to enhance accuracy while
ensuring computational efficiency. Researchers are actively
working on refining the integration of these approaches to
strike the optimal balance.

2) REAL-TIME OPTIMIZATION

Achieving real-time SoC estimation remains a significant
focus [152], [153], [154], [155], [156]. Researchers are devel-
oping advanced mathematical formulations and optimization
techniques to reduce latency and improve model perfor-
mance. The quest for real-time capability is driven by the need
for timely decisions in vehicle control and energy manage-
ment.

3) GENERALIZATION AND TRANSFER LEARNING

Ensuring SoC estimation models generalize well across
diverse driving conditions is a critical concern [163], [164].
Transfer learning techniques are gaining prominence as a
means to adapt models to varying scenarios. Researchers
are exploring ways to leverage knowledge gained from one
domain to enhance performance in another.

4) EXPLAINABILITY AND TRUST

The interpretability of SoC estimation models is receiving
increased attention [165]. Combining complex models with
interpretable techniques is a strategy to enhance trust and
user acceptance. As machine learning models become more
complex, ensuring that their predictions are understandable
and trustworthy is crucial.

5) ADVANCED MATHEMATICAL MODELS

Researchers are exploring advanced mathematical formu-
lations to capture intricate battery dynamics [165], [166],
[167]. These models aim to improve the accuracy of SoC
predictions. Advanced mathematical models provide a deeper
understanding of the complex electrochemical processes
within batteries, leading to more precise estimations.

C. EMERGING TRENDS
Several emerging trends are shaping the future of SoC man-
agement in EVs:

1) Al HARDWARE ACCELERATION

The development of specialized hardware for Al and machine
learning is expected to accelerate the implementation of
complex models in real-time applications [166]. Hardware
acceleration, such as GPUs and TPUs, allows for faster model
training and inference, enabling more sophisticated models to
be deployed in vehicles.

2) BIG DATA AND CLOUD COMPUTING

The integration of big data analytics and cloud computing
platforms can enable remote monitoring and optimization of
SoC management systems [167], [168]. Cloud-based solu-
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tions provide scalability and the ability to analyze data from
a vast fleet of vehicles, leading to more robust SoC manage-
ment strategies.

3) AUTONOMOUS DRIVING AND ELECTRIC VEHICLES

The increasing adoption of autonomous driving for electric
vehicles is driving the demand for robust and accurate SoC
estimation systems [168], [169]. In autonomous vehicles,
accurate SoC estimation is crucial for mission planning and
optimizing energy usage. Additionally, electric vehicles rely
on precise SoC estimation for range prediction and optimiza-
tion.

4) BATTERY TECHNOLOGY ADVANCES

Advances in battery technology, including solid-state bat-
teries, will influence the requirements and capabilities of
SoC estimation models [117], [168]. New battery chemistries
and designs may require adaptations in SoC estimation tech-
niques to account for different behaviors and characteristics.

D. ADVANCED MACHINE LEARNING TECHNIQUES

The utilization of advanced machine learning techniques
holds significant promise for improving SoC estima-
tion [170]. One area of interest is the application of
deep learning algorithms, such as CNNs and Transformer-
based models, to capture intricate patterns within bat-
tery data [129]. These deep learning models excel at
feature extraction and can adapt to complex, non-linear
relationships.

The use of advanced machine learning models often
involves complex mathematical formulations [166]. For
example, the mathematical representation of a Transformer-
based model includes multi-head self-attention mechanisms:

OKT
NP

where, Q represents the query matrix, K represents the key
matrix, V represents the value matrix, and di is a scaling
factor. Also, Softmax is a mathematical function that converts
a vector of real numbers into a probability distribution. It’s
often used in machine learning and deep learning models to
normalize the output of a neural network, assigning probabil-
ities to multiple classes [171].

Attention(Q, K, V) = softmax ( ) Vv (30)

E. REAL-TIME IMPLEMENTATION AND EDGE COMPUTING
Real-time SoC estimation is crucial for optimizing EV oper-
ation [163]. Future research should focus on developing
real-time SoC estimation algorithms that can run effi-
ciently on edge computing platforms [171]. These platforms
enable onboard processing of data, reducing the reliance
on cloud-based solutions and minimizing latency. Real-time
implementation often involves computational complexities,
and researchers may explore hardware accelerators, such as
Graphics Processing Units (GPUs), for faster model infer-
ence [147].
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F. DATA QUALITY ENHANCEMENT

Improving data quality remains a critical challenge in SoC
estimation [51]. Future research may involve the development
of data preprocessing techniques and sensor fusion methods
to enhance the accuracy and reliability of input data [80].
Machine learning-based data denoising algorithms can help
filter out measurement noise [172].

One mathematical aspect of data quality enhancement
involves signal processing techniques like Kalman filtering,
which can be used to estimate the true battery state while
compensating for measurement errors [173].

X =A%! | + Bu,
Py =APF AT + 0,
>—pT (gp—pyT -
Ki = PeHT (HPCHT +R)
=R K (- %),
Pl = - KeH) P, (31)

That, %, is the predicted state estimate at time k, )Ac,j is the
corrected state estimate at time k, A is the state transition
matrix, B is the control-input matrix, uy is the control vector
at time k, f’,: is the predicted error covariance at time k, f’,:r is
the corrected error covariance at time k, Q is the process noise
covariance, Ky is the Kalman gain, H is the measurement
matrix, R is the measurement noise covariance, zx is the
measurement at time k.

G. INTERDISCIPLINARY COLLACORATION

Future research in EV SoC management should foster inter-
disciplinary collaboration between experts in machine learn-
ing, battery chemistry, and automotive engineering [174].
This collaboration can lead to innovative solutions that bridge
the gap between data-driven models and the underlying elec-
trochemical principles.

H. SUSTAINABLE ENERGY INTEGRATION

The integration of EVs into the broader context of sus-
tainable energy systems is an emerging trend [175], [176].
Researchers may explore how SoC management can be opti-
mized in conjunction with renewable energy sources, grid
interactions, and energy storage solutions to create more
sustainable and efficient transportation ecosystems.

VII. CONCLUSION

In this comprehensive review article, our exploration at the
intersection of machine learning and state of charge manage-
ment in electric vehicle has yielded several critical insights.
Key takeaways from our investigation are outlined below:

« Essential Role of State of Charge in Electric Vehicle Per-
formance Optimization: The foundational role of state
of charge in optimizing electric vehicle performance has
been underscored. Recognizing the importance of accu-
rate state of charge management is crucial for achieving
efficiency and effectiveness in electric vehicle opera-
tions.
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o Shortcomings of Conventional State of Charge Estima-

tion Approaches: Traditional State of Charge estimation
methods have been critically evaluated, revealing inher-
ent limitations in meeting the evolving demands of
modern electric vehicle technology. This scrutiny sets
the stage for exploring alternative methodologies, with
a particular focus on machine learning techniques.
Transformative Potential of Machine Learning in State
of Charge Management: The review delves into the
transformative potential of machine learning techniques
and algorithms in revolutionizing state of charge man-
agement. By leveraging diverse data sources and sen-
sors, coupled with the adaptive nature of machine learn-
ing models, electric vehicles can make more informed
and dynamic decisions about energy usage, thereby
enhancing efficiency and prolonging battery lifespan.
Acknowledgment of Challenges and Constraints in
Machine Learning Adoption for State of Charge Man-
agement: We acknowledge the challenges and limita-
tions associated with implementing machine learning
in state of charge management, encompassing issues
such as data availability, model interpretability, and
real-time processing constraints. Recognizing these hur-
dles is imperative for the widespread adoption of
machine learning solutions in the context of electric
vehicles.

Prospective Advancements in Machine Learning for
State of Charge Management: The conclusion antici-
pates promising future prospects for machine learning in
state of charge management, with emerging trends such
as deep learning, reinforcement learning, and hybrid
approaches poised to refine accuracy and robustness.
There is an emphasis on potential expansions of machine
learning’s role beyond state of charge management to
broader energy management strategies.

Recognition of Machine Learning as a Catalyst for
Improvement: machine learning is recognized as a
catalyst for transformative improvement in state of
charge management for electric vehicles. Its potential to
enhance efficiency, extend battery life, and contribute to
a more sustainable future is a recurring theme through-
out the conclusion.

Envisioned Integration of Machine Learning with
Broader Vehicle Energy Management: As electric
mobility gains traction, the role of machine learning in
electric vehicles is expected to broaden beyond state of
charge management, integrating with broader vehicle
energy management strategies to optimize fuel con-
sumption and reduce emissions.

Excitement and Significance of the Research Land-
scape: The conclusion characterizes the field as exciting
and of vital significance for research and development in
the automotive industry, inviting further exploration and
innovation in the quest for intelligent and adaptive elec-
tric vehicles empowered by the capabilities of machine
learning.
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