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ABSTRACT With the continuous changes in socio-economic needs, traditional methods of power facility
inspection can no longer meet practical needs due to their low efficiency and lack of scalability. In response to
this challenge, this study delves into the integrated motion control technology of inspection robots equipped
with gimbal mechanisms, aiming to improve the convenience and efficiency of dynamic data collection.
A customized multi-source heterogeneous visual detection and recognition model based on the YOLOv3
framework has been proposed, and simultaneously using path aggregation networks to enhance information
processing capacity by fusing multi-scale features. Experimental analysis shows that as the robot’s movement
speed increases, the error rate correspondingly increases, indicating the direction of optimization. In the
target recognition experiment, the proposed model achieved an average accuracy of 94.26% in visible light
images and 68.05% in infrared images. In addition, Sub_ The YOLO algorithm demonstrates a fast detection
speed of 30 frames per second, with an average accuracy of over 80%, marking an important progress in
real-time object detection applications. In the linear motion test, the relative error of the robot’s motion
accuracy was 0.33% at a speed of 500 millimeters per second. However, when the speed was increased
to 1200 millimeters per second, the error increased to 2.45%, indicating a significant increase in slip. This
indicates that the linear motion accuracy of the robot is acceptable at low to medium speeds, but the accuracy
decreases significantly at high speeds.Overall, the research results confirm the synergistic effect of integrated
motion control between inspection robots and gimbals, as well as Sub_ The superiority of YOLO in target
recognition has improved the ability to use wheeled robots for electrical inspections, bringing substantial
technological progress to the field of autonomous inspection.

INDEX TERMS Integrated motion control, multi-source heterogeneous detection, Sub_YOLO, autonomous
power inspection, path aggregation network.

I. INTRODUCTION

In the current era of Industry 4.0, the power system, as an
indispensable and important component of modern society,
its operational efficiency and safety are of crucial significance
for social operation. With the progress of social economy,
the complexity and scale of power system facilities are con-
stantly increasing. The traditional inspection methods for
power facilities can no longer meet the demand. This is
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mainly manifested in low efficiency of manual inspections,
high risks, and insufficient detection of potential hazards [1],
[2], [3]. Therefore, how to effectively conduct power facility
inspections to ensure the stable operation of the power system
is a major challenge facing the current power industry. In this
context, the research on power inspection robots based on
advanced machine vision technology has emerged. Among
them, the multi-source machine vision pan tilt integrated
inspection robot for power inspection has led the new trend
of modern power inspection due to its stability and prac-
ticality [4], [5], [6]. It can integrate multiple sources of
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information. The machine vision technology is applied to
complete efficient target recognition. While ensuring inspec-
tion quality, it improves inspection efficiency, greatly reduces
the labor intensity and safety hazards of inspection personnel,
and provides strong technical support for the safe and stable
operation of the power system. However, the challenges faced
by the multi-source machine vision pan tilt integrated inspec-
tion robot are still considerable.For example, how to improve
the accuracy of target recognition. How to better handle
complex information from different sources. How to optimize
the operability of robots. Based on these issues, the research
on multi-source machine vision pan tilt integrated inspection
robots needs to be further deepened [7], [8], [9]. Therefore,
the integrated motion control technology of power inspection
robots and pan tiltis analyzed to provide a more effective
and safe new mode of power facility inspection. The first
part introduces the research purpose through recent research.
The second part designs a motion control and target recog-
nition strategy for a multi-source machine vision integrated
inspection robot. The third part verifies the effectiveness of
the strategy through simulation experiments. The fourth part
draws conclusions.

With the development of social economy and the increas-
ing complexity of the power system, the current power facility
inspection method relying on manual operation can no longer
meet the growing demand for inspection efficiency and accu-
racy. Traditional methods not only have low efficiency, but
also pose potential safety risks in high voltage working envi-
ronments. The main motivation of this study is to improve
work efficiency while avoiding security risks.

This study provides an advanced integrated control, multi-
source heterogeneous visual processing, and information
flow system, which improves the automation level of power
facility inspections and enhances the performance of robot
vision systems in real-world work environments.

The contributions are 1) to provide a more efficient and
improved monitoring algorithm for environments with small
targets and high occlusion, which enables intelligent detec-
tion of power facilities to maintain monitoring efficiency
in more complex environments; 2) to combine different
levels of information features, which can resultin a more
practical improvement method for multi-source heteroge-
neous machine vision technology, and further enhances the
accuracy of object detection; and 3) to combine multi-scale
feature integration technology and information flow technol-
ogy, which can promote the development of object detection
technology and verify the application value of this technology
combination.

There are still certain limitations in the practical applica-
tion of existing technologies. Firstly, existing machine vision
systems mainly face the problem of difficulty in accurately
identifying targets in complex environments, especially in
multi-source information processing. Ensuring effective syn-
chronization and integration of information from different
types of sensors remains a technical challenge. Secondly,
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image capture and processing in special environments (such
as harsh weather) are challenges faced by existing technolo-
gies, and harsh environments often require higher robustness
of machine vision systems. Finally, from the perspective of
operability and ease of use, existing inspection robot sys-
tems require highly skilled operators for monitoring and
control, and designing a more intuitive and automated oper-
ating interface is a potential requirement. The multi-source
machine vision gimbal integrated inspection robot proposed
in this study has certain gaps compared to existing technolo-
gies in the above aspects. The research attempts to improve
the accuracy of target recognition and adaptability to com-
plex environments by integrating machine vision information
from different sources. Enhance the autonomy of inspection
robots and the ease of use of operating interfaces to reduce
reliance on manual operations.

The first section of the study proposes the research objec-
tives, and the second section designs an integrated motion
control scheme and a multi-source heterogeneous machine
vision target recognition model. The third section analyzes
the performance of the model and compares it with the
benchmark model. Finally, the fourth section draws research
conclusions

Il. RELATED WORK

At present, many scholars both domestically and internation-
ally have conducted research on hardware improvements and
technological upgrades of power inspection robots. Zhonglin
et al. studied a lightweight nuclear power plant inspection
robot. Static analysis is conducted on the key parts of the
robot. The stiffness and strength of the mechanical struc-
ture are determined to meet the requirements of lightweight
design. With the help of modal analysis, it has been proven
that there is no resonance during motor operation. A hierar-
chical control system is established on LabVIEW to simulate
walking control, proving that adaptive fuzzy PID control has
better performance than conventional PID control. Accurate
control of lifting mechanism position positioning is achieved
using the S-type acceleration and deceleration algorithm [10].
Liu et al. proposed a new type of motion balance adjustment
controller for power line inspection robots. Sliding mode
control is applied to complete motion balance adjustment
work. A sliding surface is designed using the Ackermann for-
mula. A universal type-2 fuzzy system is applied to improve
the anti-interference performance. It enhances the robot’s
anti-interference ability while achieving motion balance con-
trol [11]. Li et al. proposed a patrol robot equipped with
retractable double links in crawling performance analysis of
a power line inspection robot equipped with a retractable
double link controller. Through static analysis and dynamic
evaluation indicators, it is shown that the new inspection
robot has stronger performance in the crawling process.
The dynamic model demonstrates that this new robot has
a smaller driving torque when crawling. It can better cope
with different obstacles [12]. Huang et al. proposed a new
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ranging method for the robustness of obstacle distance mea-
surement under changing lighting conditions. By integrating
image enhancement and monocular vision, it can adapt to
various illumination conditions along the line. According to
the findings, the error of static distance measurement is less
than 3%. The error of dynamic distance measurement is less
than 5%. This method has made significant contributions to
the sustainable development of inspection robots [13]. Wang
et al. studied a new type of cable crawling robot. The robot
can control the ground station wirelessly. It is powered by a
built-in lithium battery. A static model of the robot during
obstacle negotiation is established. The relationship between
driving force, resistance, and obstacle height is analyzed to
determine the robot’s obstacle negotiation ability. The exper-
iment has verified that the robot can climb any inclined cable.
It can overcome obstacles with a height of 2.42mm and a load
of 5kg [1].

The robot target recognition in power inspection has also
received widespread attention. Liu et al. explored the issue of
using radar and camera information fusion for target recog-
nition and tracking of self driving vehicles under adverse
weather conditions. The fusion scheme is based on a frame-
work with radar as the main hardware and cameras as
auxiliary hardware. The Markov distance is applied to match
the observed values of the target sequence. The test results
of sensor data collected by actual vehicles indicate that the
fusion algorithm of radar and camera has better environ-
mental perception performance than a single sensor in harsh
weather. It can effectively reduce the missed detection rate of
self driving on environmental perception in adverse weather
conditions [14]. Shi et al. proposed the synthetic aperture
radar (SAR) image target recognition algorithm based on
attention mechanism. The model extracts information in two
stages. Firstly, the noise is reduced. Then mixed attention is
added to gradually extract advanced features. On the MSTAR
dataset, compared to advanced algorithms, it can signifi-
cantly reduce the parameters and complexity [15]. Du et al.
proposed a practical deceptive interference method based
on fragile position perception for adversarial attacks. It is
used for radar high-resolution range profile (HRRP) target
recognition. It learns fragile distance units from HRRP sam-
ples. Several interference pulses with specific amplitudes are
injected into these distance units. This interference signal is
easy to generate. It can achieve high prediction of incorrect
target categories [16]. Wang et al. proposed a dense capsule
network for SAR automatic target recognition. Their main
contributions are twofold. Firstly, the original convolutional
layer is replaced with dense blocks to increase the depth of the
network. Secondly, the fully connected layer is replaced with
a deconvolution layer to construct a reconstructed network.
On the MSTAR dataset, dense capsule network outperforms
other methods on limited data [17].

Diwan et al. compared the performance and application
of single-stage and two-stage detectors, and pointed out the
advantages and disadvantages of YOLO algorithm and its
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evolutionary version in terms of speed and accuracy. The
YOLO algorithm has significant advantages in computational
speed and slightly inferior accuracy compared to traditional
two-stage object detectors [18]. Liu et al. proposed a new
framework called Image Adaptive YOLO (IA-YOLO), which
improves YOLOvV3 in an end-to-end manner to adapt to
various climate conditions through a differentiated image
processing module and a small CNN network [19]. In order
to improve the target detection rate and reduce false alarms in
infrared images, Li et al. optimized the YOLOVS algorithm
and designed an improved network called YOLO-FIRI.
By expanding the modules in the feature extraction network,
introducing an improved attention mechanism, and adding
multi-scale detection, the detection accuracy of small targets
has been significantly improved, and further performance
improvements have been achieved on multiple datasets com-
pared to existing optimal methods [20].

In the relevant research and commercial applications, sub-
station inspection robots have made significant progress in
both theory and practice. Among them, autonomous wheeled
robots have become the main development direction due to
the high transmission efficiency, flexible movement, and sim-
ple control methods. However, there are still some issues with
these robots in motion control accuracy, navigation and posi-
tioning performance, and flexibility in scheduling inspection
tasks. Further optimization and improvement are needed in
robustness and intelligence. Therefore, an integrated motion
control technology for dynamic acquisition of inspection data
is proposed to improve the performance of power inspection
robots and meet practical application requirements.

Ill. TARGET RECOGNITION OF MULTI-SOURCE MACHINE
VISION PAN TILT INTEGRATED INSPECTION ROBOT FOR
POWER INSPECTION

The integrated motion control technology of inspection
robots and pan tilt is studied. Kinematic analysis is con-
ducted on the robot and the platform. An integrated kinematic
model of the robot and platform is established, achiev-
ing visual servo control for dynamic acquisition of image
data. At the same time, multi-source heterogeneous machine
vision detection and object recognition technologies are stud-
ied. YOLOV3 is used to construct a universal detection
model for multi-source heterogeneous vision. Integrating
path aggregation networks and deep separable convolutions,
high-performance multi-source heterogeneous visual detec-
tion and target recognition are achieved. A software system
suitable for robot inspection is developed based on the
design of wheeled autonomous mobile robots and platform
hardware.

The main challenge in establishing an accurate kine-
matic model for inspection robots is to interpret and analyze
their motion states in complex electrical environments. For
example, robots are affected by non holonomic constraints,
control system dynamics, environmental uncertainty, and
other issues. To overcome these issues, this study adopted
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FIGURE 1. Robot inspection coordinate system.

the differential drive assumption to simplify the model into
a planar three degree of freedom motion model, where the
robot can translate along the X and Y axes and rotate around
the Z axis. In addition, the study simplifies nonlinear models
into linear models and adopts methods suitable for linear
systems when designing control algorithms. This approach
greatly improves the feasibility and practicality of the model,
enabling effective robot positioning and path planning under
limited computing resources.

A. INTEGRATED MOTION CONTROL TECHNOLOGY OF
POWER INSPECTION ROBOT AND PAN TILT

In three-dimensional space, the position of any point can be
represented by the position vector of 3 x 1. It also indicates
which coordinate system the point is located on. For example,
in the {A} coordinate system, the position vector of P can
be represented by 4P. A represents the reference coordinate
system {A}. To determine the pose changes, a Cartesian coor-
dinate system {B} can be established that is fixedly connected
to object K. It is used to describe the pose of object K
relative to coordinate system {A}. The principal axis vector of
coordinate system {B} is used to construct a rotation matrix
of 3 x 3. This matrix is called the rotation matrix relative to
the reference coordinate system {A}. Before conducting kine-
matic modeling of the substation robot inspection system, the
associated coordinate system is introduced. The relationship
between each coordinate system is shown in Figure 1.

The camera model is applied to describe the mapping rela-
tionship between spatial 3D points and planar 2D pixel points.
The most commonly used camera model is the monocular
pinhole camera model. It is based on the principle of small
hole imaging, describing a set of linear transformation rela-
tionships. The model includes two parts, internal and external
parameters. The internal parameters include information such
as focal length f and the optical center coordinate (cx, cy)
of the image. The external parameters represent the pose
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transformation relationship between the world coordinate
system {W} and the camera coordinate system {C}. Through
these internal and external parameters, the camera model
can map the 3D point P in space to the 2D pixel P’ on
the physical imaging plane. In practical applications, due to
factors such as camera manufacturing process and internal
lens assembly, nonlinear distortion can occur in the image
imaging process. This distortion is mainly divided into radial
distortion and tangential distortion. To accurately describe the
correspondence between the target and the camera image,
camera calibration is necessary to determine the linear and
nonlinear parameters of the camera.

Kinematic modeling is conducted on the inspection robot.
The inspection robot has non holonomic constraints. More-
over, establishing an accurate kinematic model is relatively
difficult. The study adopts differential drive. According to
the assumption, it is simplified as a planar three degree of
freedom motion model, which involves translation along the
X and Y directions and deflection around the Z axis. Figure 2
illustrates the kinematic model of the inspection robot.

The coordinate of the robot relative to the world coordinate
system {W} is (x,y). The yaw angle is 6. b is the general
value of the left and right wheel spacing. b is the radius of
the wheel. v; is the linear speed of each wheel. v and w are
the movement speed and angular velocity of the inspection
robot, respectively. R is the instantaneous turning radius of the
inspection robot. The state variable ¢ = [x y 6]7 represents
the pose of the inspection robot. The robot pose is described
in equation (1).

X cos 6 sinf 0 Vy
y|=] —sin6 cos® O Vy (1)
0 0 0 1 10)

The substation inspection robot moves from (X;, ¥;, 6;) to
(Xt+1, Y41, 0r+1) during the time interval 7. Its motion tra-
jectory is a small arc. A6 = 6,41 — 6;. If the position of
the inspection robot at ¢ is known as (X;, Y7, 6;), then the
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FIGURE 2. Robot motion model and pose changes.

position information (X;41, Y41, 6:41) at ¢ 4+ 1 is known as
equation (2).
X;11 =X, + Ax; cos6, — Ay, sin6;
Yt+] = Yl + Axt Sin 9; — A)’t COoS 91‘
9;+1 = 9[ + wAt

(@)

Pan tilt is a device used to support fixed detection devices,
widely used in scenes that require moving object detection
and tracking. As a two degree of freedom robotic arm, the
pan tilt can be kinematic described using the D-H method.
The D-H method uses four parameters (a;—1, «j—1, d;, 6;) to
represent the transformation relationship between adjacent
connecting rods. a;—1 and «;_1 represent the distance and
angle between the joint axes at both ends of the connecting
rod. d; and 6; represent the positional relationship between
adjacent connecting rods. The pose transformation matrix
A is commonly used to describe the pose transformation
relationship between two linkage coordinate systems. If Aj
and A, are the pose matrices of the corresponding coordinate
systems of different mechanisms, then the pose of the second
mechanism in the base coordinate system {0} is displayed in
equation (3).

T, =AAy 3)

The D-H is used to establish the coordinate system of the
robotic arm link. Firstly, a coordinate system is established
based on a few point coordinate system. The i-th coordinate
system is {i}. The coordinate axis is determined. The expected
motion plane of the z; axis of the rotating joint is perpen-
dicular. The expected motion direction of the z; axis of the
sliding joint coincides. The x;-axis is perpendicular to the
z-axis of the two connecting rods. The y-axis is determined
according to the right-hand rule. Then the D-H parameters
are determined. The coordinate system {O;_1} is rotated 6;
around the z;_;-axis and translated d; along the axis, so that
the two connecting rods’ x-axis are collinear and coincident.
The coordinate system {O;_1} shifts x;_; along the x;_ axis
and rotates «;_1 around the axis, so that the two coordi-
nate systems completely coincide. The transformation matrix
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(b) Robot pose change diagram

is multiplied sequentially to obtain the pose transformation
matrix between the linkage coordinate systems {i — 1} and {i}.
According to this method, a two degree of freedom linkage
coordinate system is established for the pan tilt. The origin of
the pan tilt coordinate system {Y} is in the center of the pan tilt
horizontal rotation base. The origin of the pitch rotation joint
is fixed at the corresponding geometric center. The joint axis
is taken as the Z-axis. The end load is the camera coordinate
system {C}. The two degree of freedom pan tilt is shown in
Figure 3.

The Jacobian matrix describes the differential motion rela-
tionship of feature points. If the robotic arm has N joint
angles, then the Jacobian matrix is a 6xN dimensional
matrix. According to the principle of velocity transfer matrix,
the Jacobian matrix is divided into two parts: translation and
rotation, as shown in equation (4).

dX; = J(q) - dp; “

In equation (4), p is the position matrix p [x y z]" of
any point on the i-th coordinate system. The translational
Jacobian matrix in the base coordinate system is shown in

equation (5).

ap 0 0

J 1= _P _P _p .0 (5)

01 00 00;
The Jacobian matrix of the rotating part is the differential of
the Euler angle with respect to the rotation angles of each
joint, as shown in equation (6).

0

Jzz[(l)rzzrz~~-9vr20~-~0] (6)
The Jacobian matrix is shown in equation (7).
ad 0 a
o Py 0
J=10d6, 06, 90 )
1"z grz ?vrz 0 0

Considering the motion constraints of the inspection robot,
the overall Jacobian matrix of the substation robot inspection
is shown in equation (8).

Jan = |:

O3xn
03><N

Vi
V2

®
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FIGURE 4. Motion control block diagram for dynamic acquisition of inspection data.

The pose of the target point and the robot in the {W} is
represented by vectors W Py and W P;. The origin of {C} is
Rp, in robot coordinate system {R}. The pose of the target
point in the {C} is € P3. From this, the geometric relationship
equation between each vector can be obtained, as shown in
equation (9).

VPo="Pi+"Py+"Pys="Pi + {RP, + Y RER°P;
®

In equation (9), ;aVR is the pose transformation matrix from
{R} to {W}. IéR is the pose transformation matrix from {C}
to {R}.

An integrated motion control technology for dynamic
acquisition of inspection data is proposed. By combin-
ing visual features with robot motion, the challenges of
large-scale scanning and image acquisition are solved. This
technology includes a robot visual servo system consisting of
a mobile robot, a pan head, and a camera, and a control strat-
egy consisting of two inner and outer loops. The outer ring is
responsible for image acquisition and feature extraction. The
inner ring is used for the positioning and scanning motion of
the robot. Figure 4 displays the motion control block diagram.

At present, visual servo control systems often use PID
algorithm. Its principle is simple and easy to imple-
ment. The feedback information of the image loop is the
two-dimensional pixel deviation of the target, which is
adjusted to converge to 0. However, when the deviation is
small, it is prone to regulatory oscillations. To solve this
problem, a PID control with dead zone is studied. A threshold
is set to eliminate the controller’s jitter in the near steady state.
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When the target is within the circular threshold range of the
camera’s view center, the motor is controlled to maintain the
camera’s current pose. The threshold is set to 10 pixel values.

PID control with dead zone plays a regulatory role in visual
servo systems. In the case of small deviations, traditional PID
algorithms are prone to causing control signal jitter, which
affects the stability of the system. To solve this problem, the
concept of dead zone is introduced, which means that when
the deviation between the target and the center of the field of
view is within a certain range, the system does not respond
and maintains its current state. This significantly reduces
frequent adjustments caused by minor positional changes,
avoiding excessive system response. In the application of this
study, the dead zone threshold was set to 10 pixel values.
When the center point of the prediction box aligns with the
center point of the field of view box within this range, the
robot will stop moving until it detects the next target tracking.
Under the action of PID control with dead zone, the robot
can smoothly and accurately complete inspection tasks, and
still maintain high detection ability when encountering small
range target position changes.

When the target position deviates from the center of the
view, the camera position is adjusted to align the center point
of the prediction box with the center point of the view box,
as shown in equation (10).

X—WY—H
22 L (10)
xc:Wc+EaYC=hc+§

In equation (10), the size of the captured image is W x H. The
center point is (X¢, Y¢). The prediction box size is w x h. The
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coordinate is (x¢, y.). The coordinate of the top left corner of
the prediction box is (w¢, h.). According to the relationship
between the proportion of the current prediction box and the
view area and the ideal proportion, the zoom factor of the
camera is adjusted, as shown in equation (11).

P =+q-52/51 (11)

In equation (11), S; is the area of the instrument prediction
box. S is the area of the captured image. ¢ is the ratio of the
predicted box area to the view area under ideal conditions.

The integrated motion control technology proposed in this
study utilizes advanced visual servo systems to effectively
solve the challenges of scanning and image acquisition in
large-scale power facility inspections. The core of the tech-
nology lies in a dual loop control strategy, with the outer
loop responsible for automatic image acquisition and feature
extraction, capturing high-quality images by dynamically
adjusting camera parameters. The inner loop controls the pre-
cise positioning and scanning motion of the robot, ensuring
coverage of all inspection points by precisely controlling the
movement of the gimbal and robot. This method not only
improves inspection efficiency and coverage, but also reduces
human errors and missed detection during the inspection
process through automatic calibration and optimization of the
image acquisition process.

B. MULTI SOURCE HETEROGENEOUS MACHINE VISION
DETECTION AND OBJECT RECOGNITION TECHNOLOGY
Visual detection and object recognition locate the position of
substation equipment targets in the image and determine the
category of the targets by processing the collected images.
However, single source visual inspection cannot meet the
detection needs of various equipment characteristics in sub-
stations. There are various types of substation equipment, and
there are significant differences within the categories. There-
fore, traditional detection algorithms require customized
research and development for each category. When the size
and position of the device image change, the parameters need
to be readjusted. Its adaptive ability is poor. Therefore, multi-
source heterogeneous machine vision detection and object
recognition technologies are analyzed.

The research is based on the YOLOvV3 network frame-
work for improvement. A multi-source heterogeneous visual
detection and recognition model Sub_YOLO is designed.
The YOLO network framework is a typical single stage
algorithm with the characteristics of fast computation and
high-precision detection, making it very suitable for substa-
tion equipment detection. The YOLOv3 network has three
parts, a backbone network layer, a feature fusion layer, and a
universal detection layer. The backbone network layer adopts
deep convolutional neural networks to aggregate multiple fea-
tures on images of different dimensions. The feature fusion
layer integrates multiple feature layers generated by the back-
bone network layer, integrating features from different levels.
The universal detection layer classifies and regresses the
fused image features. Different strategies are used to generate
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prediction boxes and label categories. The general architec-
ture of YOLOv3 is shown in Figure 5.

The backbone network layer adopts the Darknet53 struc-
ture. Each residual block consists of two convolutional layers
and a skip connection, which can alleviate the network degra-
dation problem caused by deep convolution. The feature
fusion layer is located in the middle, middle, and bottom lay-
ers of the backbone network, extracting three feature layers
for object detection. After processing the feature layers, they
are fused with other feature layers through deconvolution and
output to the detection layer. K-means clustering is used to
form anchor boxes. The feature fusion layer outputs feature
layers for multi-scale prediction, obtaining regression results
for classification and position.

The Intersection Over Union (IOU) of the prediction box
represents the overlap degree between the prediction box
generated by the detection model and the actual box. The
ratio of the intersection and union of two rectangular boxes is
shown in equation (12).

PreNGT
"~ PreUGT
In equation (12), Pre is the prediction box. GT is the real box.
When the loss is 1, IOU is the difference in the intersection
and union ratio between the predicted box A and the actual
box B, as shown in equation (13).

Lioy =1—-10U (A, B) (13)

IoU (12)

From a geometric perspective, [OU can measure the overlap
degree between two rectangular boxes by calculating the ratio
of the intersection area to the union area. However, IOU
cannot fully reflect the inclusion and complete non overlap-
ping situations in the loss function. When the size of the
predicted box is different from the actual box, the center point
is misaligned, and the distance relationship does not match,
10U cannot be accurately reflected. A series of improved loss
function methods are proposed to address the non overlapping
and inclusion relationships between prediction boxes and real
boxes. Among them, CIOU (Complete IoU) considers factors
such as the distance, overlap rate, and scale between the
target box and the prediction box. The penalty factors are
used to describe the aspect ratio relationship between the two,
thereby providing more stable regression prediction results.
The calculation of CIOU is shown in equation (14).

p? (b, b*')
)

In equation (14), P> (b, b8! ) is the Euclidean distance

between the predicted box and the real box. ¢ stands for the

diagonal distance between the smallest rectangle containing

the predicted box and the actual box. The definitions of & and
v are shown in equation (15).

CIOU = I0U — —av (14)

*=a IOVU ¥
- Y
4 wé! w\> (15)
V= ; (arctan ﬁ — arctan E)
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Feature fusion layer

Batch data input Convolutional block 5x1287
(416x416x3) (52x52x128) J
Convolutional block 32x3x3
416x416x32

Residual block 8x256
(52x52%256)

Convolutional
block+deconvolution
upsampling
(26x26x256)

+

Residual block 8x512
(26x26%x512)

block+deconvolution

Convolutional

A 4
Convolutional block 3x3+1x1
upsampling (52x52x75)

Convolutional block 5x256 Convolutional block 3x3+1x1 N Feature
(26%x26%256) (26x26x75) decoding

Residual block 4x1024 ! 1 /Convolutional block 5x1024
(13x13x1024) o (13x13x1024) J
|

Image

Validate
sample set

|

|

|

|

|

| (Convolutional block 3x3+1x1
: (13x13x75)
| A

|

|

t

|

Sample validation

Model training Result evaluation

preprocessing

FIGURE 7. Target detection and recognition process.

In equation (15), a and v introduce aspect ratios to optimize
the difference in width and height between the predicted box
and the actual box. The corresponding loss function is shown
in equation (16).

p? (b, b*)
Lcioy =1 —IOU+C—2+O[V (16)
A series of methods are adopted in target detection to improve
the performance. The network structure of PANet is shown in
Figure 6.

Firstly, data augmentation and fusion paths are per-
formed to enhance the data during training. Subsequently,
a multi-source heterogeneous sensor detection and recogni-
tion network for internal substations is designed. Finally, the
path aggregation network PANet is introduced to accelerate
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Category+
Location

Result output

information flow and integrate features from different levels
to more accurately locate pixels. PANet adopts a bottom-up
path enhancement structure, which takes the previous layer
feature mapping as input and processes it. Then it integrates
with the same layer features of FPN to enhance the prop-
agation of underlying features. At the same time, adaptive
feature pooling is used to aggregate candidate regions and all
features, avoiding arbitrary allocation of candidate regions.
Finally, the fully connected layer integrates dual branches
for more accurate pixel segmentation and improves detection
performance.

The network model and training process are implemented
using PyTorch and trained on the VoC2007 dataset. PyTorch
is a simple and widely used framework for building and
training neural networks, which can quickly build and debug
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different detection frameworks. During the training process,
transfer learning methods are adopted. Starting from zero
to train the model requires a lot of time and data. How-
ever, the image dataset of substation equipment is relatively
small, which cannot fully support the training of the network
framework. Therefore, optimization can be achieved through
transfer learning. Transfer learning utilizes the already trained
old model as a pre-trained model, freezes some layers for
fine-tuning, and generates a new model suitable for substa-
tion equipment detection. The training process is shown in
Figure 7.

A software system suitable for substation robot inspec-
tion is developed based on wheeled autonomous mobile
robots and pan tilt hardware. This software system runs on
the Ubuntu 16.04 LTS. The robot operating system ROS
is used for development, mainly using C++ and Python
programming languages. ROS is an operating system suit-
able for robot development, providing hardware abstraction,
low-level device control, message synchronization, and other
functions. It has high reusability and rich community ecol-
ogy, which can improve the efficiency of robot development.
Based on the ROS framework, the substation robot inspection
system software consists of a system management module,
a positioning and navigation module, a visualization mod-
ule, and a visual detection and tracking module. In order
to meet the needs of real-time image processing, the study
sets the input image to 416 x 416 pixels. The network uses
3 x 3 and 1 x A l-size kernel with a step size of 1 or
2. The activation function of the network is Leaky ReLU,
which increases the network’s ability to process nonlinear
features.The flowchart of the substation robot inspection soft-
ware is shown in Figure 8.

In the proposed model, the loss function is a key fac-
tor in the optimization process, used to fine tune network
parameters to improve object detection performance. Our loss
function consists of three parts: localization loss, confidence
loss, and classification loss, each part tailored to the different
task characteristics of the detection task. The localization
loss is responsible for narrowing the difference between the
predicted box and the true box, and the study uses CIOU
loss as a localization loss tool. The confidence loss is used
to distinguish between foreground objects and background,
ensuring that the model only assigns high confidence to areas
where the target exists. Classification loss is used to detect
inconsistencies between predicted class labels and actual
labels.

In the selection of hyperparameters, the study sets the
initial learning rate to 0.001 to ensure fast convergence during
early training. When the performance on the validation set
does not significantly improve within several consecutive
epochs, the learning rate is halved to prevent oscillations and
the model is fine tuned for better performance. Considering
both model complexity and memory limitations, the batch
size is set to 32. Find a balance between avoiding over-fitting
and ensuring computational efficiency. In addition, to sup-
press over-fitting of the model during training, a smaller
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weight attenuation coefficient was introduced, set to le-4.
The study chose the Adam optimizer as the main optimizer,
with a momentum value set to 0.9 to prevent getting stuck in
local minima.

IV. EXPERIMENTAL ANALYSIS OF TARGET RECOGNITION
FOR MULTI-SOURCE MACHINE VISION PAN TILT
INTEGRATED INSPECTION ROBOT

The developed wheeled mobile robot system for power
inspection is used for integrated motion control experiments
of inspection robots and pan tilt. Machine vision detection
and target recognition experiments are conducted to compare
the performance.

A. INTEGRATED MOTION CONTROL EXPERIMENT OF
INSPECTION ROBOT AND PAN TILT

The experimental platform is based on the powerful Ubuntu
16.04 LTS operating system and is equipped with a wide
range of Robot Operating System (ROS) middleware. ROS
supports multi-sensor integration, data fusion, and advanced
task execution, ensuring a fast and efficient development
cycle. In terms of dataset, a dataset containing 300 categories
of high-definition visible light images and 150 categories
of high-resolution infrared images was constructed, covering
the situations of various power equipment under different
working conditions. The dataset includes 12000 visible light
images and 5000 infrared images, all of which have been
adjusted to a uniform resolution of 1920 x 1080 pixels
to ensure that the images input into our visual system are
standardized.

The key to conducting experiments on wheeled mobile
robot systems is to verify the applicability and effective-
ness of the algorithm and control technology in this study
under practical physical constraints, such as non holonomic
constraints, friction, and robot dynamics. Especially when
considering linear motion and free rotation radius, this exper-
iment can verify whether the robot can move along the
expected path, further confirming the accuracy of target
recognition in the robot’s motion state. In addition, the
experiment also emphasized the importance of dealing with
uncertainty in actual motion processes, such as the model’s
ability to handle changes in road conditions and battery power
consumption in special environments.

The robot system designed in the research combines
machine vision technology with platform motion technology.
According to the motion model designed in the research,
the robot can move from three angles: X-axis, Y-axis, and
Z-axis, with the Z-axis being a rotational motion. These three
modes of motion essentially provide possibilities for robot
obstacle avoidance. In linear motion, the robot moves along a
predetermined path, and machine vision recognition matches
the identified target with the predetermined target during
this process. During the rotation process, multiple angles can
be taken for shooting. The detection of the power of both
can effectively verify the power performance of the robot in
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FIGURE 8. Electrical inspection robot inspection software diagram.

TABLE 1. Experimental results of robot linear motion testing in indoor
environment.

Speed Movement Actual Actual Relative
(mm/s) time (s) distance speed error (%)
(mm) (mm/s) °
20 9632
500 30 14616 498.2 0.33
10 8485
1000 20 18572 1008.7 0.84
5 3636
1200 10 9782 1229.5 2.45

different motion states, which plays a significant role in the
overall performance detection of the robot.

Indoor linear motion experiments are conducted. The robot
performs linear motion in an indoor environment paved with
ceramic tiles at speeds of 0.5m/s, 1.0m/s, and 1.2m/s under a
10kg load. The mass of the robot is relatively large, and there
is a certain acceleration process. Therefore, the same process
is repeated at the same time. To eliminate the impact of
acceleration and deceleration processes on the experimental
results, two different sets of exercise times are set. Each
group of experiments is independently repeated twice. Table 1
displays the results.

According to Table 1, when the robot moves in a straight
line, the error basically shows an increasing trend as the
motion speed increases. However, when the speed reaches
1m/s, the average error is only 0.84%. When the speed
reaches 1.2m/s, the error increases 2.45%. At this point, the
robot experiences significant slipping while parking. The
experiment shows that the robot can ensure good accuracy
in indoor linear motion under medium to low speed working
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conditions. However, the robot may experience slight tire
deformation or slipping during operation, as well as acceler-
ation and deceleration stages and control delays. Therefore,
the actual distance of movement may deviate from the set
value. The motion error increases with the increase of motion
speed.In this linear motion experiment, control system error
and external environmental interference are the main factors
that cause the observed errors. Among them, the control
system error mainly includes the response of the actuator
and the delay of the control signal. When the motion speed
increases, the inertia and dynamic characteristics of the robot
change, and the response speed and signal of the control
system cannot be synchronized, increasing the motion error.
The external environmental interference is mainly ground
friction. Due to changes in the ground friction coefficient
and possible unevenness, the area and shape of the tire in
contact with the ground may change, leading to directional
deviation or drift of the robot during linear motion, and may
lose stability, unable to maintain accurate direction and speed,
resulting in errors.

The experiment of measuring the accuracy of radius free
rotation is conducted. Robots perform radius free rotational
motion in indoor environments at different angular veloci-
ties (0.5rad/s and 1.0rad/s). The actual angle of rotation is
recorded. To eliminate the impact of acceleration and decel-
eration on the experimental results, two sets of time are set
for each angular velocity. Table 2 illustrates the experimental
results.

According to Table 2, the error of robot rotation increases
with the increase of angular velocity. At the maximum angu-
lar velocity in the experiment, the maximum average error
is 1.41%. The possible reasons for the error are as follows.
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FIGURE 9. Curve chart of angular velocity variation of pan tilt.
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FIGURE 11. Substation equipment dataset and training loss curve.

On the one hand, there is an error between the center distance
of the two wheels in the kinematic model and the actual
value, resulting in a systematic error in the rotational speed.
On the other hand, the position and pose errors of the two
wheel installation may cause the center point of the robot to
gradually shift during rotation.

In the accuracy testing of pan tilt angular velocity, the
control of pan tilt angular velocity is carried out according
to levels 1-100. The horizontal and pitch angular velocities of
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the pan tilt are tested at levels 20 and 50. The sampling time is
300 ms, and the actual rotation angle is recorded. The average
velocity during the sampling time period is calculated using
the angle difference as the instantaneous velocity, as shown
in Figure 9.

From Figure 9, the average angular velocities of depression
and elevation at level 20 are 18.1°/s and 10.05°/s respectively
when the pan tilt is moving. The average angular velocity of
level 50 is 45.7°/s and 25.2°/s. The error of angular velocity
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FIGURE 12. Comparison of object detection and recognition models mAP.

TABLE 2. Experimental results of robot radius free rotation test in indoor
environment.

Angular Actual
v el(g;cit Motion Actual angular Relative
(rad/s)y time (s) angle (°) velocity error (%)
(rad/s)
10 285
0.5 %0 i 0.497 0.82
5 274
! 10 562 1.015 1.41

increases with the increase of rotational speed. The higher
the rotational speed, the more unstable the operation of the
pan tilt. In the same gear, the pitch angular velocity is lower
than the horizontal angular velocity, and the error is small.
The speed regulation performance of the pan tilt meets the
technical requirements. The medium to low speed working
performance is stable.

In the accuracy test of pan tilt angle positioning, the angle
is measured according to the preset position of the pan tilt.
When the angular velocity level is 10, the preset position 1
is set to 0°, and the preset position 2 is set to 30°. The
sampling time is set to 300ms. The sampling angle value
is recorded. The PID parameters of the integrated motion
control of the inspection robot and the pan tilt are debugged
based on engineering experience. The horizontal axis and
pitch axis are respectively input with a deviation signal of
100 pixels for data detection. The response curve of the pan
tilt control is displayed in Figure 10.

In Figure 10 (a), at a 10 level angular velocity, the horizon-
tal starting angle of the pan head is 0.27°, the starting angle
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is —0.1°, the final angle is 30.27°, the starting angle is 29.98°,
and the angular displacement accuracy reaches +0.1°. During
operation, when a preset angle value is reached, there is a
decrease in speed. After analysis, this is determined by the
speed curve of the motor. By adjusting the program, the accel-
eration and deceleration of the corresponding speed curve can
be achieved. In Figure 10 (b), the visual servo controller of the
inspection robot can quickly reach a stable state. There is a
certain degree of overshoot in the horizontal attitude adjust-
ment. In the later stage of movement, there is interference.
The pitch pose adjustment is stable and smooth, with good
control performance. Overall, it takes 900ms for an increase
and 500ms for a decrease. This method has low coupling in
both horizontal and pitch positions, which can be controlled
separately. Moreover, it meets the system requirements in
stability, real-time performance, and other aspects.

B. MULTI SOURCE HETEROGENEOUS VISUAL DETECTION
AND OBJECT RECOGNITION EXPERIMENT

The visible and infrared image data of the substation equip-
ment is expanded. Among these two types of images, there are
3815 visible light images in 11 categories and 613 infrared
images in 6 categories. The ratio of training set to test set
is 9:1. The former is applied for model training, while the
latter is used for model performance verification. Compared
with the existing YOLO series representative algorithms
YOLO 3 and YOLOV4, the sub_ The YOLO object detection
and recognition algorithm is validated. On the basis of the
substation equipment dataset, unified network training and
model validation work is carried out. The function loss with
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TABLE 3. Comparison of object detection and recognition model
performance.

Serial Number Model size mAP FPS
YOLOvV3 236MB 83.80 16
YOLOV3-tiny 33.2MB 70.22 32
YOL Ov4 245MB 86.86 11
YOLOv4-tiny 23MB 73.47 32
Sub_ YOLO 54MB 84.44 31

significant fluctuations in the early iteration training is elimi-
nated. The loss values of 200 to 12000 iterations are taken.
The loss values of each model in 200 to 12000 iterations
are plotted into curves. The substation equipment dataset and
training loss curve are shown in Figure 11.

From Figure 11, as the iterations increase, the loss function
curves of the three algorithms gradually converge. When
the convergence frequency reaches around 40000 times, the
trend of the loss function curve has stabilized. Among them,
YOLOV4 algorithm has the strongest convergence strength.
The test set is imported into the trained model for model
accuracy testing. After verification, the training loss of the
study was 0.03, the training accuracy was 98%, the testing
loss was 0.10, and the testing accuracy was 95%.The results
are shown in Figure 12.

In Figure 12, YOLOV4 has the best detection accuracy, fol-
lowed by sub_ YOLO, finally YOLOV3. The average model
accuracy of visible light images reaches 94.26%, while the
average accuracy of infrared images reaches 68.05%. There
are significant differences in resolution, clarity, and contrast
between infrared and visible light images. At the same time,
obtaining infrared images has become more difficult. The
samples are also smaller than that of visible light images.
The model has poor fitting ability. The difficulty of image
acquisition for power equipment is high, and the cost of
manual annotation is high. It relies on continuous learning
of hardware and time such as GPU. Therefore, by expanding
the sample set and optimizing the training, the accuracy can
be improved.

To verify the universality and real-time performance,
a performance comparison is conducted with representative
YOLO series algorithms, as displayed in Table 3.

From Table 3, the current camera sampling frame rate
is 30 FPS. Sub_ YoLo is an algorithm that can achieve a
detection speed of 30 FPS with an accuracy greater than 80%
mAP. This method can effectively reduce the cost of edge
computing and storage under the premise of ensuring accu-
racy and real-time, achieving the research goal. This detection
framework can detect and identify information from different
sources, types, and types of devices. It can learn new types of
debugging data, so as to expand the types of debugging data.
It overcomes the defects of the previous single mode, which
has better universality and simpler advantages. Sub_ YoLo
network detection results are shown in Figure 13.

Sub_ The contribution of YOLO algorithm to the entire
target recognition experiment lies in providing a reliable,
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FIGURE 13. Sub_ YoLo network detection results.

efficient, and easily adaptable machine vision detection
method to diverse detection environments. On the one hand,
Sub_ The YOLO algorithm can better handle input data
from different sources with different characteristics, while
maintaining the fast calculation speed and high-precision
detection characteristics of YOLOV3 itself, it enhances the
recognition and processing ability of substation equipment
diversity. On the other hand, Sub_ The combination of YOLO
algorithm and software systems developed based on ROS
improves the efficiency of detection tasks and reduces human
errors and omissions. Its advantage lies in strengthening
the processing ability of multi-source heterogeneous data,
improving network structure and loss function to achieve
more accurate detection, and possessing the ability to quickly
adapt to new environments through transfer learning.,

The results of this study indicate that as the operating
speed of the gimbal increases, the error generally shows an
upward trend. However, the speed adjustment performance
of the current robot gimbal has met the technical require-
ments, and its working performance is stable at medium and
low speeds. For future development, technical challenges
and potential improvement suggestions mainly include four
points. Firstly, in response to the industry barriers and dif-
ficulties in the data collection process of iron towers, future
work should strengthen the convenience of data acquisition
and reduce labor costs; Secondly, considering the insufficient
performance of the algorithm in small object detection and
occlusion situations, it is necessary to improve the detec-
tion algorithm in complex scenes to reduce missed and
false detections; The development of potential applications
in multi-spectral image fusion is still a challenge, as it can
enhance the system’s ability to process diverse visual data;
Finally, increasing the optimization of the performance of
deep learning algorithms in limited edge computing resources
is still a challenge, and further research can be conducted to
achieve more efficient real-time processing and recognition.

In Table 4, in terms of complexity, the model designed
for research has the lowest complexity, only 130 million
FLOPs, which means that the model can complete necessary
detection tasks with less computational complexity, superior
to other models, and especially suitable for resource con-
strained situations. In terms of mAP, the model designed in
the study leads with 84.4% accuracy, indicating a very high

45705



IEEE Access

M. Zhu et al.: Target Recognition of Multi Source Machine Vision Pan Tilt Integrated Inspection Robot

TABLE 4. Model performance comparison.

MAP Inference
Model name FLOPs (%) time (ms)
EfficientDet-D0 254 million 82 45
EfficientDet-D1 6'.1 0. 84 63
million
CenterNet ! 40 80 50
million
Research Design 1.30
Model milion 4 30
TABLE 5. Comparison of benchmark models.
Model Name MAP (%) FPS
RetinaNet 81.6 40
Mask R-CNN 83.2 25
RefineDet 82.4 33
Research Design
Model 88.4 52

accuracy in object detection, which is a crucial advantage.
Although the FLOPs of CenterNet are relatively low, the
mAP is 80.0%, which is the lowest among the four models,
which may be slightly insufficient in some scenarios that
require extremely high accuracy. In terms of inference time,
the research designed model only takes 30 milliseconds, far
exceeding other models, demonstrating its significant advan-
tage in detection speed, which is extremely important for
applications that require real-time processing.

In Table 5, the model designed in the study has an mAP
of 88.4%, indicating excellent performance in object detec-
tion accuracy. In terms of frames per second (FPS), the
research designed model performs best at a speed of 52 FPS,
which means that the model can handle high frame rate
video streams and is very suitable for real-time application
scenarios.

Through comprehensive data comparison, it can be seen
that the model designed in the study performs excellently in
multiple key performance indicators. Whether it is compu-
tational complexity, detection accuracy, or inference speed,
it has demonstrated its practicality and leading position in
object detection tasks, especially in real-time analysis and
low-power devices, with huge advantages. In addition, this
performance advantage also means that the research model
can have stronger adaptability, robustness, and flexibility in
different environments.

V. CONCLUSION

An integrated motion control technology for dynamic acqui-
sition of inspection data is proposed. Based on the YOLOv3
network framework, an improved multi-source heteroge-
neous visual detection and recognition model is designed.
A path aggregation network is introduced to accelerate
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information flow and integrate features at different levels.
According to the results, as the motion speed increases, the
error basically shows an increasing trend. In the angular
velocity accuracy test and angular positioning accuracy test
of the pan tilt, the speed regulation performance of the pan
tilt meets the technical requirements. The working perfor-
mance at medium and low speeds is stable. In the target
recognition experiment, by expanding the visible and infrared
images of substation equipment, the sub_YOLO object detec-
tion and recognition algorithm is validated. The YOLOv4
has the best detection accuracy, followed by sub_YOLO,
finally YOLOV3. The average model accuracy of visible
light images reaches 94.26%, while the average accuracy of
infrared images reaches 68.05%. In addition, Sub_YoLo is
an algorithm that can achieve 30 FPS detection speed when
the accuracy is more than 80% mAP, effectively reducing the
cost of edge computing and storage, etc. Through in-depth
research on the motion control and target recognition strate-
gies of power inspection robots, as well as the development
of software systems suitable for substation robot inspection,
important theoretical and practical support are provided for
the practical application of power inspection robots. The
experiment verifies the feasibility and accuracy of integrated
motion control between the inspection robot and the pan tilt,
as well as the effectiveness of multi-source heterogeneous
visual detection and target recognition. It provides important
technical support for the wheeled mobile robot system of
power inspection. However, there are certain difficulties and
industry barriers in collecting substation data, which require
a lot of time and manpower. In addition, the detection per-
formance of existing algorithms in small targets, occlusion,
and other situations is not ideal, which is prone to missed
and false detections. Therefore, in future work, emphasis
should be placed on how to produce high-quality datasets and
improve the performance of detection algorithms for multiple
scenarios in substations.

In summary, this study compared the performance of multi-
ple variants based on the YOLO algorithm in object detection
tasks and found that YOLOv4 performed the best among
various indicators, while Sub_ The YOLO algorithm ensures
good real-time performance while maintaining high detection
accuracy. Sub_ The YOLO algorithm can achieve an average
accuracy of over 80% while maintaining an image processing
rate of 30 frames per second, which surpasses most current
models designed for such applications. The research has suc-
cessfully demonstrated that high-precision and high-speed
object detection can still be achieved through algorithm opti-
mization in environments with limited computing resources,
which is necessary for research in this field. At the same
time, the research results provide important support for future
intelligent power inspection systems, especially in terms of
algorithm stability and accuracy, enhancing the system’s
application ability in extreme environments, and providing
new possibilities for industrial automation and intelligence.

Although the model designed for research has superior
performance, current research mainly focuses on standard
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detection environments. However, in practical applications,
the detection environment is likely to be variable and affected
by special environments. Under diverse and unknown exter-
nal influences, the detection performance of the model may
be affected to a certain extent. Therefore, in the future,
research will focus on adaptive optimization for special and
ever-changing work environments, enhancing the robustness
of algorithms under external influencing factors. Further-
more, a more intelligent power system detection scheme
will be developed to improve power supply safety and
efficiency.
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