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ABSTRACT With the continuous improvement of Internet of Things technology, Internet of Things devices
are gradually popularized in people’s lives and work, bringing convenience to people, but also there are many
security risks. There are more and more types of attacks on IoT devices, and the security of their firmware
has become a focus of attention. Aiming at firmware vulnerabilities in devices, a firmware vulnerability
detection algorithm based on pattern-specific features and structural features is proposed in this study. The
algorithm uses the two-stage method to filter and match the functions precisely, so as to find the functions
matching the vulnerability functions. By reducing the local call graph from five layers to three layers, the
algorithm operation and detection efficiency are improved, and the accurate matching method of weighted
three-layer local call graph is implemented. The experimental results showed that the Top1 index value of
the five-layer local call graph ranges from 81.99 to 90.19. The indexes of control flow chart and attribute
control flow chart fluctuated greatly, ranging from 61.57 to 91.08 and 54.62 to 87.55, respectively. The Top1
index value of the weighted three-layer local call graph increased by 3.73%, and the average increased by
1.47%, indicating a significant improvement in the whole. It can be concluded that the firmware vulnerability
detection algorithm based on the matching of pattern-specific numerical features and structural features can
effectively find the function that actually matches the vulnerability function, and improve the efficiency of
firmware vulnerability detection.

INDEX TERMS Vulnerability detection, pattern-specific features, structural feature matching, firmware
security.

I. INTRODUCTION
The Internet of Things (IoT) has become an important tool in
daily life and employment due to the expansion and advance-
ment of the industrial revolution. It is widely used in various
fields, including medical applications [1]. The integration of
IoT technology has made life, work, and education more
convenient and efficient. However, it has also made it eas-
ier for network intruders to exploit device vulnerabilities
and spread malicious information throughout the network,
infecting healthy devices and creating botnets [2]. The IoT
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security scenario is getting worse as IoT technology con-
tinues to advance, and Firmware Security (FS) is becoming
more and more important [3]. It is crucial to identify and
maintain FS since firmware acts as the device’s fundamental
controller, enabling the IoT device to carry out the required
operations [4]. The known firmware vulnerability (FV) has
a more severe and pervasive impact on IoT devices than
the unknown FV because the majority of FS vulnerabilities
are located in common devices like switches, cameras, etc.
[5]. Therefore, in this study, a FV detection algorithm based
on pattern-specific numerical features and structural features
matching is proposed to detect the same origin vulnerabilities
in the firmware of another platform. The algorithm proposed
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in this study can detect the same-origin vulnerabilities in the
firmware of other platforms in the FVs of known platforms,
which not only reduces the risk of the device system, but also
improves the security of the system. Although firmware secu-
rity is gaining increasing attention in IoT security research,
effectively detecting and preventing FVs remains a challenge.
Especially for the detection of homologous vulnerabilities,
the existing research often lacks effective solutions. This
study fills the knowledge gap in this field and provides a new
vulnerability detection strategy. The research’s innovation
lies in the algorithm’s ability to efficiently detect same-origin
vulnerabilities, breaking through the limitations of firmware
platforms. This provides a new protection mechanism for the
firmware security of IoT devices. The goal of the research
is to reduce the risk of known vulnerabilities attacking IoT
devices and improve the security performance of the entire
IoT system. The aim is to enhance security measures for
IoT firmware and promote the development of IoT security
technology.

This study presents an algorithm that can detect homol-
ogous vulnerabilities in firmware of known platforms. The
algorithm reduces the risk of device systems and improves
system security. While firmware security is receiving atten-
tion in IoT security research, detecting and preventing FVs
remains a challenge. Existing research often lacks effec-
tive solutions for detecting homologous vulnerabilities. This
study addresses a gap in the current knowledge of the field
and presents a novel strategy for detecting vulnerabilities.

The study is broken into five main sections. The introduc-
tion provides an overview of the paper’s structure and covers
the present status of research on vulnerability detection (VD)
algorithms. The literature review, which is the second section,
gives an overview of the uses of the FS and VD approaches in
important sectors and the present state of academic research
on the two techniques.The FV problem in IoT devices is
examined in the third part, where it is suggested that the
FVD algorithm based on MSNC and SFM be investigated.
The first subsection examines the function filtering method
based on MSNC, the second subsection examines the FVD
algorithm based on MSNC with structural features, and the
third subsection examines the exact matching method based
on the weighted triple-layer local call graph. The effective-
ness of detecting actual FVs bymergingMSNC and weighted
three-layer local call graphs through comparative experimen-
tal studies is assessed in the fourth part. A summary and
overview of the research’s methodology and findings are
provided in the fifth part. To better illustrate the connections
between the research work, a flowchart for the content and
methods of this research has been established. Please refer to
Figure 1 for the framework of the research content.

This paper describes the current state of VD technology
and its applications in related fields. It proposes and verifies
the FVD algorithm, which combines MSNC and SFM to
address the FV problem in the IoT. The algorithm includes
a precise matching method that utilizes the structural fea-
tures of MSNC and a weighted three-layer local call graph.

FIGURE 1. Pattern specific numerical feature filtering algorithm.

The proposed algorithm’s advantages in actual FV detection
have been verified, providing a clear reference for follow-up
research.

II. RELATED WORKS
Due to the increased use of IoT devices, vulnerabilities in the
firmware have emerged as a severe danger to the system’s
functionality. As a result, FS has gained more attention and
has developed into a popular area of study for many aca-
demics. Vitale et al. proposed the concept of conformance
testing to test firmware elements, i.e., intangible objects,
i.e., the network. According to the experimental findings,
version 3 of the test and test control notation took into
account both the benefits and drawbacks of a scalable and
adaptable network test environment [6]. Greis et al. proposed
two deep learning methods, cyclic network architecture and
convolutional network architecture, to improve the accuracy
of IoT device type identification. The results showed that
the accuracy of these two methods reaches 97% and 98%,
respectively, which is significantly better than the traditional
manual feature fingerprint recognition technology (accuracy
of 82%). In addition, they offered a three-order-of-magnitude
improvement in runtime performance over manual methods.
The study explained the effectiveness of two methods in pro-
cessing and analyzing traffic data flow through importance
indicators [7]. Fala et al. proposed a secure firmware update
framework for embedded systems that relies on hardware
primitives and encryption modules to ensure the security
of the update process in potentially insecure communica-
tion environments. The research results indicated that the
framework can effectively resist a variety of attack vectors.
Its adaptability and performance was verified by multiple
test cases on FPGA, achieving the ability to securely update
1183kB of firmware images within 1.73 seconds [8]. Li et al.
proposed a deep 3D blood vessel segmentation network based
on edge profiles. The network architecture included a shared
encoder and a dual decoder that jointly learns segmentation
maps and edge profiles. Additionally, a bidirectional convo-
lutional long short-termmemorymodule was used to enhance
3D context awareness. The results indicated that the proposed
method can significantly improve performance when training
data is limited. Additionally, the computational efficiency
of network reasoning was better than that of prior art [9].
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Qasem et al. proposed various analysis techniques, such
as static analysis, dynamic analysis, symbolic execution,
and hybrid methods, to detect security vulnerabilities in the
firmware of embedded systems in the IoT era. The results
demonstrated that these techniques have both quantitative
and qualitative advantages and disadvantages. Additionally,
the authors identified the limitations of existing methods and
discussed future research objectives [10].
There are many vulnerabilities in the device firmware,

which makes some viruses use the security holes in the
device firmware to spread and proliferate in the network,
causing great threats and losses to the device, and many
scholars have carried out many researches on FV. Cao et al.
proposed a VD method called BGNN4VD, which is based
on bidirectional graph neural networks. This method cap-
tures both syntactic and semantic information of code by
integrating abstract syntax tree, control flow graph, and data
flow graph. Then, it used the bidirectional edge enhanced
by graph neural network to learn the distinguishing features
of vulnerable and non-vulnerable code. Finally, it combines
convolutional neural network to identify vulnerabilities. The
study found that BGNN4VD significantly improved F1 mea-
surement, accuracy, and precision compared to the other four
advanced methods, with increases of 4.9%, 11.0%, and 8.4%,
respectively. The method achieved an accuracy of 45.1%
when dealing with the latest vulnerabilities in CVE reports,
confirming its effectiveness in real-world scenarios [11].
Mcdaid et al. monitored device signals in home IoT networks
using tools for interference analysis and wireless spectrum
monitoring. According to experimental findings, RF spec-
trum analysis was a useful technique for tracking network
activity using radio waves, but the level of expertise needed
to interpret these patterns is limited [12]. Based on static
or dynamic code analysis, Nong et al. weighed the bene-
fits and drawbacks of cutting-edge memory error VD. Five
cutting-edge memory error VD were empirically assessed
and contrasted, respectively, with a benchmark dataset of
C++ programme. Rational selection of the right tool with
various trade-offs in accuracy and recall was inevitable [13].
Alrabaee et al. proposed using binary fingerprint identifica-
tion for malware detection and vulnerability analysis. The
results demonstrate the effectiveness of this method in iden-
tifying the properties of functions, authors, and libraries used
in binary code. The limitations of the fingerprint recognition
process, existing method application environments, and cap-
tured information types are discussed. Additionally, future
research directions in this field are clarified [14].

In summary, as an important branch of IoT secu-
rity, FV detection research has become relatively mature.
Although early and current methods can widely detect FVs,
these detection methods are often limited to the functional
level of firmware code, and accuracy needs to be improved.
In response to this issue, research innovatively adopts static
detection methods, mainly focusing on FV scenarios on
the platform, and then combines numerical and structural

features that match specific patterns to detect functions
that actually match vulnerability functions. This method
has opened up new research directions and avenues for FV
detection.

III. FVD ALGORITHM BASED ON MSNC AND SFM
Most of the entry points of cyber-attacks are focused on
insecure IoT devices, and malicious attacks are carried out by
exploiting the hidden vulnerabilities in the device firmware
to achieve the purpose of destructive activities. Therefore,
it is important to ensure the safe operation of the device
system and to improve the security of the device firmware.
Although FS is a crucial component of IoT security, FV is
mostly present in firmware code functions, necessitating the
matching of function features in order to achieve FVD.

A. NUMERICAL FEATURE SCREENING METHOD FOR
FUNCTIONS BASED ON PATTERN SPECIFICITY
In the dynamic detection method, the VD of the firmware
needs to be implemented according to the specific operating
environment, but the cost of its implementation is too high
and it is not applicable to all detection scenarios. For the
consideration of factors such as algorithmic time cost and
scalability, a static detection method is more suitable for
FVD [15]. By extracting the relevant features of the function,
the vulnerabilities that may be contained in the firmware are
then detected. Based on the coarse-grained matching of the
numerical features of the functions, the functions matching
the VFs are filtered out. The Relief algorithm is used to calcu-
late the importance of each numerical feature, and the larger
the weight, the better the ability of the numerical feature to
distinguish between different functions. The specific flow
of the pattern-specific function numerical feature screening
algorithm is shown in Figure 2.

FIGURE 2. Pattern specific numerical feature filtering algorithm.

The algorithm for selecting numerical features specific
to a pattern begins with data pre-processing, including nor-
malization and denoising. Next, the F function set and G
function set are applied to extract features that are compatible
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with the algorithm and adaptable to it. The core of this
algorithm is feature selection. Using statistical principles and
machine learning techniques, this approach evaluates the dis-
crimination and information content of the features generated
by the F and G function sets. It then eliminates redundant
and irrelevant features, optimizing the feature set for model
training. This results in improved accuracy and efficiency
for specific pattern recognition. Cross platform correlation
analysis of numerical features, the numerical features should
have high similarity on different platforms, the Pearson cor-
relation coefficient is used for quantitative assessment, and
its calculation equation is shown in Equation (1).

corr(x, y) =

∑
(x − µx)(y− µy)√∑
(x − µx)2(y− µy)2

(1)

In Equation (1), x and y represent the original numerical
characteristics, and µy and µx represent the mean values
of y and x, respectively. Since the calculation of correlation
coefficient has a certain symmetry, the results of correlation
coefficient under correlation modes ‘‘ARM → MIPS’’ and
‘‘MIPS → ARM ’’ are also equivalent. The Relief algorithm
is used to determine the relative weights of various numerical
features in order to objectively examine how well different
functions can be differentiated from one another. The big-
ger the numerical feature weight, the better the effect of
differentiation on the various functions. The results of the
correlation coefficient calculation of each numerical feature
under different correlation modes are shown in Table 1.

TABLE 1. Cross platform correlation analysis of numerical features.

The correlation coefficient of a numerical feature indi-
cates its strength of correlation with the platform. A higher
coefficient implies a stronger correlation and better differenti-
ation ability. According to the table, numerical characteristics
with correlation coefficients higher than 0.8 are deemed
to be highly strongly correlated, and on the basis of this
threshold, numerical features with improved discriminative
abilities under various correlation modes are selected. The
Relief algorithm is used to derive the degree of importance of

different numerical features, which quantitatively describes
the size of the distinguishing ability of numerical features
under different functions. The larger the weight coefficient
of the numerical features, the better the discriminative effect
it produces. The numerical weight is measured by the dis-
tance of the vector, and its calculation formula is shown in
Equation (2).

cos(Vec(G1),Vec(G2)) =
Vec(G1) · Vec(G2)

∥Vec(G1)∥ ∥Vec(G2)∥
(2)

In Equation (2), Vec(G1) is the vector of ACFG1 and
Vec(G2) is the vector of ACFG2. Its loss function definition
Equation is shown in Equation (3).

L = (Label − cos(Vec1,Vec2))2 (3)

According to Equation (3), the higher the similarity
between Vec(G1) and Vec(G2), the closer the cos similarity
value will be to 1, the smaller the loss value Lwill be, and vice
versa. However, in the pattern-specific function numerical
feature screening stage, kNN algorithm is used to filter the
detection function, and Z-Score standardization is adopted
to process the value of the function numerical feature. The
calculation formula is shown in Equation (4).

z =
x − µ

σ
(4)

In Equation (4), x denotes the original numerical feature,µ
denotes the overall mean of the numerical feature, and σ

denotes the overall standard deviation of the numerical fea-
ture. With Z-Score normalization, the numerical features of
the function are transformed into unitless Z-Score scores
in order to achieve the elimination of the variability in the
range of values of the numerical features [16]. The Euclidean
distance obtained between the function to be matched and the
numerical vector is calculated as its numerical characteristic
distance, and its calculation formula is shown in Equation (5).

d(f , g) =

√√√√ n∑
i=1

(xi − yi)2 (5)

In Equation (5), xi and yi denote the ith dimension nor-
malized numerical features of the functions f and g to be
matched, respectively, and n denotes the dimensions of the
function numerical feature vectors in that association mode
of the slot. The robustness analysis of the numerical features
of the function with the generated training dataset is used to
determine the numerical features under different association
modes. Through the robustness analysis of the numerical
features of the function, the numerical features under differ-
ent association modes are determined, so that the features
are screened in the face of the function to be detected. The
screening process is shown in Figure 3.

By analyzing the numerical features of the function in a
specific mode, the features that have a critical impact on
the analysis of a specific mode are effectively selected, thus
providing a higher quality input for the subsequent FV detec-
tion. On the basis of the completion of the numerical feature
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FIGURE 3. Function screening based on pattern specific numerical features.

FIGURE 4. Overall framework of two-stage firmware vulnerability detection algorithm.

screening, the numerical feature and the structural feature are
fully integrated to improve the accuracy and efficiency of FV
detection, and realize the comprehensive and effective evalu-
ation of firmware security. After obtaining the information
of the VF and the function to be detected, the association
pattern of the detection scenario can be determined. The
association pattern is then used as the basis for extracting the
dedicated numerical features of the VF and the function to
be detected in the current association pattern, in combination
with the numerical feature results of the function. TheMSNC
of the function to be matched is normalized using the Z-Score
standard method, and the Euclidean distance between the
numerical features of the function is calculated on the basis
of this feature vector. Finally, the kNN algorithm is used to
obtain the to-be-detected function as a candidate function.

B. FVD ALGORITHM BASED ON MSNC WITH STRUCTURAL
CHARACTERISATION
Representation of functions using numerical features of dif-
ferent association patterns can effectively eliminate functions
with low similarity to the VF and retain the functions to be
detected that match the VF [10]. However, just using the
numerical features of the function is not enough to com-
plete the FVD task, therefore, a two-stage FVD algorithm is
proposed. The detection process involves two steps. Firstly,
the numerical features of the pattern are used to filter the
functions to be detected, narrowing down the detection range
of the target function. Secondly, the local call graphs of
the functions are used to accurately match the candidate
functions, enabling the detection of the function that the VF

actually matches. The overall framework of this two-stage
FVD algorithm is shown in Figure4.

The two-stage FV detection algorithm uses the reverse
analysis tool to assemble the binary of the firmware, and the
obtained assembly code is used as the research object. The
numerical and structural features of firmware functions are
extracted by writing corresponding plug-ins. The numerical
feature is the statistical information generated under the anal-
ysis function syntax, while the structural feature is the local
call graph related to the function to be matched generated
from the call graph [17], [18]. Its numerical and structural
characteristics are obtained by analyzing the function, and its
calculation formula is shown in Equation (6).

ft = σ (Wf · [ht−1, xt ] + bf ) (6)

In Equation (6), [ht−1, xt ] denotes the splice of the output
vector of the previous moment and the current vector, Wf
denotes the matrix coefficients of the forgetting gate, bf
denotes the bias term and σ denotes the sigmoid function.
Finally for the current state Ct output to the output value ht ,
the portion of the output that is wanted is controlled by tanh,
which is calculated as shown in Equation (7).{

Ot = σ (Wo · [ht−1, xt ] + bo)
ht = Ot · tanh(Ct )

(7)

Equation (7) is controlled by executing a sigmoid layer and
in this way controlling its output. The basic block contains
the instruction semantic embedding vector and statistical
features, then the expression of the basic block is shown
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in Equation (8).

Bfea = Wb1Bemb +Wb2Bsta (8)

In Equation (8), Bemb and Bsta denote the instruction
semantics of the basic block, and Wb1 and Wb2 denote
the instruction semantics embedding vectors of the basic
block and the weight matrices of the statistical features,
respectively. Using the local call graph to analyze and cal-
culate the distance on function structure and features, the
function that actually matches the VF is derived on the basis
of the structural distance between functions. Then, the main
operating process of the FV detection algorithm is realized
through the vulnerability function, as shown in Figure 5.

FIGURE 5. The main operation process of FV detection algorithm.

In the process of VD algorithm, firstly, the information of
VD function f and function set G to be detected is obtained
by using reverse analysis tool to determine the corresponding
association pattern. Secondly, the dedicated numerical fea-
tures of the association pattern are determined based on the
numerical feature results of the functions, and the dedicated
numerical features of the to-be-matched functions f and g A
are extracted. Additionally, the normalized MSNC is used to
calculate the numerical feature distance between the VF and
the function to be detected, and the k functions that are closest
to the VF are screened as candidate functions using the kNN
algorithm. By solving the minimum power matching between
two node sets in order to calculate the distance between the
node sets, the equation for node set distance is shown in
Equation (9).

d(s1, s2) =
bm(s1, s2)

max(bm(s1, ϕ1), bm(s2, ϕ2))
(9)

In Equation (9), bm(s1, s2) denotes the minimum match
between node sets s1 and s2 derived under the bipartite graph
matching algorithm, ϕ1 denotes the node set with the same
number of nodes as the node set s1 and the node numerical
features are all zero, and ϕ2 denotes the node set with the same
number of nodes as the node set s2 and the node numerical
features are all zero. The structural feature distance between
the VF and the candidate function is computed using the
local call graphs of the two functions. Finally by finding
the candidate function with the smallest structural feature
distance from the VF as the final matching result.

C. FEATURE MATCHING BASED ON THREE-LAYER LOCAL
CALL GRAPHS
The FV detection algorithm improves the accuracy and effi-
ciency of VD by deeply integrating numerical and structural
features. However, relying on these characteristics alone does
not meet the full needs of complex VD. Therefore, a feature
matching method based on three-layer local call graph is
further proposed to effectively capture complex interaction
behaviors between functions by constructing a fine call rela-
tionship graph, so as to improve the depth and breadth of VD
and achieve more accurate security assessment. The candi-
date functions obtained from the screening using five-layer
local call graph exact matching, although the exact matching
method of this local call graph has a high accuracy rate,
it requires too much time cost [19]. Therefore, this study
proposes a weighted three-layer local call graph to reduce
the time required for function structure feature distance com-
putation. However, reducing the number of local call graph
layers reduces the information on function structure features
as well, affecting the accuracy of function SFM [20], [21].
To compensate for the loss of information on the function
features, the information on the frequency of calls between
functions in the three-layer local call graph is extracted to
generate a weighted three-layer local call graph of functions.
To achieve a better balance between the time efficiency and
accuracy of the algorithm, the tuning scheme of the function
exact matching method is shown in Figure 6.

FIGURE 6. The main operation process of firmware vulnerability
detection algorithm.

The algorithm reduces the number of layers of function
local calls in order to speed up the computation time of the
function to be matched in the exact matching phase, which
leads to a decrease in the accuracy of exact matching of
functions. For the information loss due to the reduction in
the number of layers of structural features, the approach is
to obtain the call frequency information in the function local
call graph and generate a weighted local call graph on the
basis of this information [10], [22]. For attribute control flow
graph embedding will compute new vectors for each basic
block, Gemini by training the interaction between the nodes,
the equation is shown in Equation (10).

µ(t)
v = tanh(σ (

∑
u∈N (v)

)µ(t−1)
u +W1xv) (10)

In Equation (10), xv denotes the feature vector of the basic
block, µu denotes the vector representation of the embedded
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network node u, and N(v) denotes the collocated node of the
basic block v. Using the complex aggregation function in
order to effectively represent the directionality of the graph,
this fusion is spliced and its fusion equation is shown in
Equation (11).

Z = Concat(ZF , αZSin, βZSout ) (11)

In Equation (11), α and β denote the different weights
of in-degree convolution and out-degree convolution, and
ZF , ZSin and ZSout can obtain rich first-order and second-
order neighborhood feature information. Compared with the
five-layer local call graph, the weighted local call graph not
only subtracts the indirect call relationship of the function to
be matched, but also adds the call frequency information in
the direct call relationship [10]. The call frequency informa-
tion between functions is extracted, and then the weighted
three-layer local call graph is generated from the call fre-
quency information, and the weighted three-layer local call
graph of its to-be-matched functions to f and g is shown in
Figure 7.
In the three-layer local call graph, layer 0 represents the

layer where the function to be matched resides, and the
weighted three-layer local call graph can be calculated by
the distance between node sets to obtain the nodes that match
each other with minimum matching costs [23], [24]. The cal-
culation method of the weighted structural distance is shown
in Equation (12).

d(s1, s2)

=

∑m
i=1 (cos t(ai, bi) ∗ min(t(ai), t(bi))) +

∑n
j=m t(bj)∑m

i=1max(t(ai), t(bi)) +
∑n

j=m t(bj)

(12)

In Equation (12), s1 and s2 denote two node sets on a partic-
ular layer of the weighted three-layer local call graph, where
s1 = {a1, a2, . . . , am}, s2 = {b1, b2, . . . , bn}, where t( )
denotes the frequency of calls between the function of the
current node and the to-be function of the acquisition, and
cos t( ) denotes the matching cost of the acquisition of the
node. In this paper, the weighted three-layer local call graph
is used to calculate the distance between node sets, and the
matching cost of matching nodes is weighted and summed
according to the call frequency information. Finally, it is used
as the final distance between node sets, so as to obtain more
information of function structure characteristics to a certain
extent.

IV. PERFORMANCE TEST OF FVD ALGORITHM BASED ON
MSNC AND SFM
This study selects a dedicated set of numerical features based
on different association patterns to be tested for function
screening. In order to determine the effects of various com-
binations of numerical features on the screening effect of
functions, this study performs comparative experiments on
the screening effect of functions on the test set [25]. Three
function sets are obtained by compiling the generated binary

files on three separate target platforms, namely ARM, MIPS,
and x86, and are utilized as the test sets for the experiments
in order to confirm the efficacy and validity of the tests.
The numerical features of each function in the test set are
extracted and their screening effects are compared to verify
the effectiveness of MSNC [26]. For the completeness of the
experimental tasks in different stages, the same experimental
environment is set up, and its environmental parameters are
shown in Table 2.

TABLE 2. Experimental environment for reverse analysis and function
matching.

In Table 2, arm-linux-gcc is used to complete the com-
pilation work on ARM platform, mip-linux-gcc is used to
complete the compilation work on MIPS platform, and gcc
is used to complete the compilation work on x86 platform.
In order to assess the effectiveness of function screening,
the evaluation index of recall is introduced, the higher the
recall of function screening, the higher the probability that
the function that actually matches with the VF is identified
as a candidate function. The distance between the func-
tion’s numerical feature vectors and the candidate function’s
average screening time are both used to determine how
comparable the VF and the function to be detected are.
Whereas the similarity is inversely correlated with distance
between the function to be identified and the VF, and vice
versa. The average screening time refers to the average time
for a function to obtain the set of functions through screen-
ing, thus reflecting the efficiency of the function screening
method in screening the set of functions to be detected. Since
the combination of numerical features used in the screening
effect comparison experiments of this study includes G and
S, the corresponding function screening methods are labeled
as kNN-G and kNN-S. The average comparison of the results
after 50 experiments is shown in Table 3.
In Table 3, the overall performance of the kNN-S method

is better than that of the kNN-G method under the six dif-
ferent association modes. kNN-S method under the kNN-S
method improves the recall by an average of 5.17% relative
to the kNN-G method, and the range of the enhancement
is 2.11%∼7.72%. In the evaluation index of average Rank
value, the kNN-S method reduces 13.98 on average com-
pared with the kNN-G method, with a range of 3.57-22.53.
This MSNC set screening method has a high probability of
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FIGURE 7. Weighted three layer local call graph of matched functions for f and g.

TABLE 3. Comparison of the average results of 50 experiments on NN-G
and kNN-S50.

filtering the target function into the candidate function set,
which is very suitable for rapid screening of the function
set to be detected. It can be seen that the function screening
efficiency of the kNN-G method and the kNN-S method is
basically the same, which is due to the fact that the func-
tion to be detected is obtained by the Euclidean distance
between the numerical feature vectors of the function, and
if the numerical feature dimensions do not change much, the
efficiency of the function screening method is more or less
the same. In order to describe the matching accuracy in the
precise matching stage, TopK indicator is used, the larger
the value of this indicator, the better the correlation effect
of the function in the precise matching stage, and the higher
the precise matching accuracy. The accuracy of the exact
matching method is measured as Top1, Top10 and Top100.
The legend contains control flow graphs (CFG), attributed
control flow graphs (ACFG) and local call graphs (LCG).
Among them, the comparison experimental results of Top1
metrics for the three structural features are shown in Figure 8.

FIGURE 8. Comparison results of Top1 indicators for three structural
features.

In Figure 8, the Top1 indicator of LCG5 achieves better
results under all the association modes in this study, and is
overall better than the two structural features of CFG and
ACFG. Among them, the Top1 indicator value of LCG5
shows a better trend under the six correlation modes, and
its indicator value is roughly around 85%, with the highest
value of 90.19 and the lowest value of 81.99. The indicator
of CFG is only second to the Top1 indicator value of LCG5,
and it shows a larger fluctuation, with the highest value of
91.08 and the lowest value of 61.57. The indicator of ACFG
also shows a large fluctuation, and is one of the three struc-
tural features of the study. The indicator of ACFG also shows
large fluctuations and is the lowest among the three structural
features, with the highest value of 87.55 and the lowest value
of 54.62. It can be concluded that the accuracy matching
method of LCG5 is more stable under the six association
modes, which not only has a high matching accuracy, but
also has the smallest change in the matching accuracy under
the six association modes. And the comparison experimental
results of the Top10 indicators of the three structural features
are shown in Figure9.

In Figure 9, the Top10 indicators of LCG5 have achieved
better results under all the association modes in this study,
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FIGURE 9. Comparison results of Top10 indicators for three structural
features.

and are overall better than the two structural features of CFG
and ACFG. Among them, LCG5’s Top10 indicator values
under the six correlation modes show a better trend, and its
indicator values are roughly around 87%, with a maximum
of 97.88 and a minimum of 94.33. CFG’s indicator is second
only to LCG5’s Top10 indicator values, and it shows larger
fluctuations, with a maximum of 95.79 and a minimum of
82.48. ACFG’s indicator also presents The indicator of ACFG
also shows large fluctuations and is the lowest among the
three structural features, with the highest value of 97.96 and
the lowest value of 93.57. Thus, it is evident that the accuracy
matching method of LCG5 is more stable in the function
matching effect under the six association modes [27]. This
method not only achieves high matching accuracy but also
exhibits the least variation in matching accuracy across the
six association modes. In addition, the Top100 metrics of the
three structural features are compared and experimented, and
in order to verify the efficiency of the algorithm’s precision
matching phase, the average time of structural feature dis-
tance calculation is used to evaluate it, and the results are
shown in Figure 10.

FIGURE 10. Comparison of Top100 index results and matching efficiency
of three structural features.

In Figure 10, the Top100 indicators of LCG5 all achieved
better results under the correlation modes in this study

and were overall better than the two structural features of
CFG and ACFG. LCG5’s Top100 indicators show a better
trend under the six correlation modes, with indicator values
around 84%, ranging from a maximum of 99.63 to a mini-
mum of 98.08. CFG’s indicators are second only to LCG5’s
Top100 indicators, but they exhibit larger fluctuations, with
a maximum of 99%. The indicators for ACFG also show
fluctuations, but they are lower than the other two structural
features. The maximum value is 98.46 and the minimum
value is 98.65. In the comparison of the matching efficiency
of the three structural features, LCG5 has the highest match-
ing efficiency, with a matching time of 2.37ms, while CFG
uses an average matching time of 0.43ms and ACFG uses
an average matching time of 0.41ms. It can be seen that the
accuracy matching method of LCG5 is more stable in the
function matching effect under the six correlation modes, not
only has a high matching accuracy, and in the six correlation
modes under the minimum change in the matching accuracy.
To assess the algorithm’s effectiveness at all stages, we must
consider its overall performance in the real FV. Therefore,
in this chapter, we compare the algorithm to existing related
work such as discovRE and Diff. Its experimental results are
shown in Figure 11.

FIGURE 11. Comparative experimental results of vulnerability detection
using different algorithms.

In Figure 11, two Rank values are recorded for each ele-
ment, and the two Rank values are separated by a comma. The
first Rank value indicates the Rank value of the corresponding
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TABLE 4. Comparison of matching accuracy of three local call graph features.

target function when VD is performed with the current VF
as the target. And the second Rank value records the Rank
value of a non-target function that is similar to the current
VF. The smaller the two Rank values in the table, the better
the VD effect of the algorithm, so (1,2) is the best detection
result, which indicates that the target function corresponding
to the VF can be accurately detected. In Figure 10(a), when
the TLS function is used as the target for VD, the worst VD
result is (1,4) under x86→MIPS, while the αDiffx function
has better VD results under 86→ARM, x86→MIPS and
ARM→MIPS, and the rest of the VD results are the best.
In Figure 10(b), whenVD is performedwith the TLS function
as the target, the worst VD result is (1,3) under x86→MIPS,
while the αDiffx function has a better VD under 86→ARM,
x86→MIPS andARM→MIPS, and the rest of the VD results
are the best. It can be observed that this research algorithm
can effectively detect the VF, and the detection effect is also
the best, thematching effect under all six associationmodes is
more stable, and has a high matching accuracy rate. It shows
that the algorithm in this paper has better scalability and can
be better adapted to different association modes. In order to
evaluate the effectiveness of the weighted three-layer local
call graph, the five-layer call graph is recorded as LCG5,
the three-layer local call graph is recorded as LCG3, and the
weighted three-layer local call graph is recorded as wLCG3,
where LCG denotes the local call graph, the number after
LCG denotes the number of layers of the local call graph,
and w denotes the weighting. The results of their comparison
experiments are shown in Table 4.

In Table 4, among the Top1 metrics, the matching accuracy
of LCG5 is better than that of the other two local call graphs
in all the six association modes. WLCG3’s Top1 metrics
value is between LCG3 and LCG5, and its overall has a great
improvement to a certain extent with respect to LCG3. The
Top1 metric value of wLCG3 has improved by 3.73% at the
most and by 1.47% on average. As for the Top10 metrics, the
experimental results of LCG5 are closer, and the matching
accuracy of wLCG3 is better than that of LCG3. However,
on the Top100 metrics, the differences in the matching accu-
racy of all the three kinds of local call graphs are small,
and their reference significance is not significant. Combin-
ing MSNC with different local call graphs, the algorithm

based on MSNC with five-layer local call graphs (N-LCG5),
the algorithm based on MSNC with three-layer local call
graphs (N-LCG3), and the algorithm based on MSNC with
weighted three-layer local call graphs (N-wLCG3) are pre-
sented respectively, with N denoting the numerical features.
The results are shown in Figure 12.

FIGURE 12. Comparative experimental results of vulnerability detection
using different algorithms.

In Figure 12, Figure10(a) and Figure 10(b) both when
VD is performed with structural features, the three algo-
rithms have consistently good VD results under 86→ARM,
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x86→MIPS and ARM→MIPS, and their VD values are
(1,2). As can be observed, this study algorithm has a high
matching accuracy rate, a more stable matching effect under
the six association modes, and the best detecting effect when
it comes to VF detection. It shows that the target function
corresponding to the VF can be accurately detected, and the
similar non-target function of the vulnerability can also obtain
the similarity ranking second only to the target function.
The comparison shows that the accuracy of the weighted
three-layer local call graph matching method is similar to
that of the five-layer method, with only a small difference in
efficiency. This achieves a better balance between accuracy
and efficiency.

V. CONCLUSION
With the rapid development of IoT technology, IoT devices
are promoted and popularized. However, when more and
more devices are connected to the Internet, the security
problems of their devices become increasingly significant.
In order to improve device security, it is very important
to detect and repair FVs in time. This study proposes an
innovative method for detecting FVs. The method combines
pattern-specific numerical features and structural feature
matching to reduce the risks associated with FVs and improve
overall system security. The effectiveness of the FV detection
method is verified through a comparison experiment. The
experimental results showed that compared to the kNN-G
method, the recall rate of the kNN-S method increased
by an average of 5.17%, with an improvement range of
2.11% to 7.72%. In the average rank evaluation index, the
kNN-S method showed an average decrease of 13.98, with a
decrease range of 3.57-22.53. The effectiveness of the pro-
posed screening method in accurately screening the objective
function to the candidate function set and quickly completing
the screening work of the function set to be detected was
demonstrated. Additionally, the exact matching method using
a weighted three-layer local call graph was nearly as accurate
as the exact matching method of a five-layer local call graph.
This method achieved a good balance between efficiency
and accuracy. However, due to the rapid development of
technology and the widespread application, FV detection still
faces more challenges and problems.

Further improvement of detection algorithms is still needed
in future research. Firstly, optimizing the accuracy of the
algorithm requires a more in-depth study of numerical and
structural features, as well as their impact on FV identifi-
cation. Secondly, improve the efficiency of the algorithm to
quickly identify potential vulnerabilities in a large number
of IoT devices. In addition, increasing the universality of FV
detection algorithms can adapt to a wider range of device
types and firmware structures, providing stronger security for
IoT devices.
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