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ABSTRACT This paper implements a systematic methodological approach to review the evolution of
YOLO variants. Each variant is dissected by examining its internal architectural composition, providing
a thorough understanding of its structural components. Subsequently, the review highlights key architectural
innovations introduced in each variant, shedding light on the incremental refinements. The review includes
benchmarked performance metrics, offering a quantitative measure of each variant’s capabilities. The paper
further presents the performance of YOLO variants across a diverse range of domains, manifesting their
real-world impact. This structured approach ensures a comprehensive examination of YOLOs journey,
methodically communicating its internal advancements and benchmarked performance before delving into
domain applications. It is envisioned, the incorporation of concepts such as federated learning can introduce
a collaborative training paradigm, where YOLO models benefit from training across multiple edge devices,
enhancing privacy, adaptability, and generalisation.

INDEX TERMS Computer vision, YOLO, edge-computing, manufacturing, object detection, realtime.

I. INTRODUCTION
In the realm of computer vision [1], [2], [3], the imperative
task of object detection has undergone a paradigmatic
evolution [4], [5], [6], catalysed by the revolutionary advent
of the You Only Look Once (YOLO) architecture in 2016 [7].
YOLOs innovative approach diverged from the traditional
two-stage object detection architectures, proposing a unified
architecture with the ability to predict bounding boxes and
class probabilities concurrently, all within the exigencies of
real-time processing [8]. The prominence of YOLO rests
not merely in its single-stage approach but in its iterative
progression, evolving from its nascent version, YOLOv1,
to the present variant, YOLOv8. Each iteration manifested
a confluence of innovative architectural advancements,
affording YOLO an unprecedented adeptness and versatility
across a plethora of industrial applications. YOLOs ethos is
underscored by an intrinsic equilibrium between accuracy
and speed, making it a feasible proposition to the research
community and industry practitioners alike.

The associate editor coordinating the review of this manuscript and

approving it for publication was Bo Pu .

This article embarks aims to untangle the intricacies under-
pinning YOLOs variants, commencing with a meticulous
analysis of the architectural advancements from YOLOv1
to YOLOv8. Exploring the rationale behind these structural
adaptations, their mutual relationships, and their consequen-
tial impact on the efficacy of object detection forms the
bedrock of this paper. Transcending architectural intricacies,
the paper examines the core of YOLOs effectiveness, which
lies in its training methodologies. Through the amalgamation
of data augmentation, transfer learning principles, and strate-
gic implementation of internal architectural enhancements,
YOLO has fostered a robustness that extends beyond the
limitations of domain-specific peculiarities.

Diving deeper into the deployment realm, the paper exam-
ines the real-world impact of YOLO. Through specific exam-
ples where YOLO has showcased its efficacy, we present
insights into YOLOs evolution from a baseline architecture
to a transformative asset in real-world applications. However,
as YOLO ascends penetrates into new domains, it encounters
its own set of challenges. From navigating through occlusions
to efficiently managing scale variations and fine-grained
object detection scenarios [9], YOLO faces a myriad of
obstacles. By acknowledging these challenges, we initiate
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FIGURE 1. Visual structure of this review.

a dialogue on the future trajectory of research, outlining
potential pathways to strengthen YOLOs robustness in the
realm of object detection.

In summary, this article dives into the evolving YOLO
architectures, comprehensively evaluating their effectiveness,
and pondering over future prospects. The article unravels how
YOLOhas transformed over the epochs of time, how effective
it is now, and what the future of YOLO variants may be in the
domain of computer vision.

A. SURVEY OBJECTIVE
This article seeks to examine the factors fuelling the profound
adoption of the YOLO variants, with a focus on its evolution
from YOLOv1 to YOLOv8. Figure 1 presents the article
structure with the key components of the article highlighted
in green. These components form the key objectives of this
paper:

1) Architectural Evolution Analysis: Examine the
architectural innovations across YOLO variants, eluci-
dating motivations and impact on real-time industrial
applications.

2) Training Strategies Scrutiny:Analyse YOLO’s train-
ing methodologies, including data augmentation and
transfer learning, to understand its adaptability across
diverse domains.

3) Real-world Impact Assessment: Explore specific
domains where YOLO has manifested impressive
efficacy, showcasing its practical versatility.

4) Challenges and Future Directions Exploration:
Identify realtime challenges, such as occlusions and
scale variations, and propose future research directions
to fortify YOLO’s standing in object detection.

B. IMPORTANCE OF SURVEY
Although several papers have reviewed YOLO architectures,
they often exhibit limitations such as focusing on specific
YOLO variants [10], [11], or concentrating on particular
application domains [12]. However, this review distinguishes
itself as the first to provide an in-depth analysis ofmainstream
YOLO variants from YOLOv1 to YOLOv8. The analysis

delves into the innovations fueling the performance of each
variant, offering a comparative study that spans more than
20 domains.

Furthermore, beyond examining the strengths of YOLO
architectures, this comprehensive review sheds light on the
persistent challenges faced by the YOLO series. By outlining
current limitations and areas for improvement, the review
aims to present a nuanced understanding of the ongoing
hurdles.

Additionally, it anticipates future developments and
enhancements, providing insights into potential directions
for overcoming existing challenges. This forward-looking
approach positions the review as a valuable resource not only
for understanding the historical evolution of YOLO but also
for anticipating its trajectory in addressing emerging issues
and meeting the demands of diverse domains.

C. ORGANIZATION OF PAPER
This article is structured to succinctly examine the evolution
and inspiration fuelling the popularity of YOLO variants
in industrial applications. Beginning with an introduction
that lays the foundations, subsequent sections are intricately
structured. Section II presents an overview of object detec-
tion. Section III, delves into the motivations and implications
of architectural reforms across the variants, YOLOv1 to
YOLOv8.

Section IV, scrutinizes the versatility of YOLO variants
through an examination of training methodologies, including
data augmentation, transfer learning, and training datasets.
In Section V, a rigorous empirical assessment of YOLOv1-v8
is conducted, benchmarking against contemporaneous mod-
els to quantify performance with respect to Mean-Average
Precision (MAP), Frames Per Second (FPS) and internal
intricacies such as nature of loss functions deployed.

Section VI, explores wide-ranging industrial applications
where YOLO has demonstrated efficacy, showcasing its prac-
tical versatility. Section VII, identifies barriers like handling
occlusions, addressing biases, real-time edge deployment and
proposes future research directions.
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Finally, Section VIII, summarises key findings, highlight-
ing factors contributing towards YOLO’s popularity and its
significant implications for the field of object detection. This
organized structure ensures a coherent and insightful journey
through the multifaceted analysis of YOLO’s evolution and
impact in object detection and the wider field of computer
vision.

II. OBJECT DETECTION
Addressing the intricacies of object detection presents numer-
ous challenges. A key issue involves effectively managing
fluctuations in image resolutions and aspect ratios [13],
a task aggravated when the target objects manifest substantial
differences in spatial dimensions [14]. The presence of
class imbalance, particularly in scenarios where ascertain a
sufficient number of images for specific classes is challeng-
ing [15], can detrimentally impact architectural performance,
leading to biased predictions [16].

Furthermore, a noteworthy hurdle is the computational
complexity associated with object detection architectures,
demanding considerable computational resources in terms
of power, memory, and time [17], [18]. Figure 2, illustrates
object detection for both single and multiple objects in
an image, detectors with deep internal networks require
significant computational capabilities to process intricate
datasets and extract essential features.

Object detection can be bifurcated into two categories:
single- and two-stage detectors. The latter contains proposing
candidate regions within an image, followed by classification
and localization of proposed regions. Examples of two-stage
detectors include RCNN (Region-based Convolutional Neu-
ral Network) [19], Fast R-CNN [20], Faster R-CNN [21], and
FPN (Feature Pyramid Network) [22].

RCNN [19], proposed in 2014, deployed selective search
for candidate region proposals, utilising a convolutional
network for feature extraction. Fast R-CNN [20] facilitates
these concerns by proposingROI pooling, which significantly
reduces computations by extracting fixed-size feature maps
for each region from the original feature maps.

Faster R-CNN [21] enriched upon Fast R-CNN by
implementing the Region Proposal Network (RPN). This
innovation eradicated the need for a separate proposal stage
by directly generating region proposals from feature maps,
optimising both speed and accuracy.

FPN (Feature PyramidNetwork) [22] tackled the challenge
of detecting targets at multiple scales by generating a feature
pyramid. This pyramid fused feature maps of varying reso-
lutions from different network stages, empowering effective
detection of targets across different scales. Notwithstanding
their impressive accuracy, two-stage detectors, are limited by
their high computational demands.

In contrast, single-stage detectors aim to detect objects in
a single pass, side-stepping the need for a separate region
proposal step. Notable single-stage detectors include SSD
(Single Shot Multibox Detector), YOLO variants (You Only

Look Once), RefineDet++, DSSD (Deconvolution Single
Shot Detector), and RetinaNet.

SSD [23] deploys manifold convolutional feature maps at
various scales to predict bounding boxes and class probability
scores, effectively detecting objects of various sizes and
shapes in a single forward pass.

RefineDet++ [24] optimises the original RefineDet archi-
tecture through iterative refinement of target proposals across
multiple stages, improving accuracy via enhanced feature
fusion mechanisms and refined target boundaries.

DSSD (Deconvolution Single Shot Detector) integrates
deconvolution layers to preserve spatial information lost
during feature pooling, enabling the model to capture
fine-grained details by maintaining spatial resolution.

RetinaNet [25] addresses class imbalance via Focal
Loss, attributing higher weights to misclassified samples,
enhancing the architecture’s ability to handle class imbalance
and improve detection performance.

Vision Transformer (ViT) was introduced in 2020 [26].
Based the encoder and decoder mechanism, ViT continues
the concept of tokens to visual data streams. As an
alternate to CNNs, ViT can be utilized for the backbone
feature extraction work. Selecting ResNet as a baseline,
Wu et al. [27], integrated ViTs by replacing the ultimate
convolutional layer. This enabled the preceding convolutional
layers to extract low-level features, which then segued into
the ViT, demonstrating the adaptability of the transformer
architecture in the territory of computer vision.

III. EVOLUTION OF YOLO ARCHITECTURE:
A. YOLOv1
Announced in 2016, YOLOv1 marked a profound leap in
single-shot object detection. Enthused by the GoogLeNet
architecture [28], YOLOv1 deployed a unique approach by
substituting GoogLeNet’s inception modules with (1 × 1)
convolution followed by (3 × 3) convolutional filters.
The architecture, benchmarked on the VOC Pascal Dataset

2007 and 2012 [29], exploited the Darknet framework for
training. Featuring 24 convolution layers, with only four
of which were followed by max-pooling layers, YOLOv1
embraced (1 × 1) convolutions and global average pooling
as standout features.

Initially trained on the ImageNet dataset [30], the model
was exposed to fine-tuning by adding four additional convo-
lutional layers and two fully connected layers with randomly
initialized weights. The activation function employed Leaky
Rectified Linear Unit (LReLU), except for the last layer with
a linear activation function. Despite its pioneering status,
YOLOv1 exhibited drawbacks, including large localization
errors and lower recall compared to two-stage object
detectors.

B. YOLOv2
YOLOv2 [31] was inspired by the once popular VGG
architecture, featuring the darknet-19 frameworkwith 19 con-
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FIGURE 2. Single and multiple objects in an image: Classification, Localization, Segmentation.

TABLE 1. YOLOv2 darknet-19 framework.

volutional layers and 5 max pooling layers as presented in
Table 1. Prominent features included the integration of 1 ×

1 convolutions for down sampling across the depth of the
input volume. YOLOv2 incorporated several data augmen-
tation techniques, such as random crops and rotations, for
enhanced training. However, YOLOv2 faced challenges in
detecting smaller-sized objects. The architecture introduced
new optimisation procedures, including Batch Normaliza-
tion, High Resolution Classifier, Convolution with Anchor
Boxes, Dimension Clusters, Direct Location Prediction, Fine-
Grained Features, andMulti-Scale Training. Key Innovations
in YOLOv2 included:

a: BATCH NORMALIZATION
Addressing the matter of Internal Covariate Shift during
the training of neural networks, YOLOv2 employed Batch
Normalization to normalize the outputs of all hidden layers,
guaranteeing consistent distribution ofweightmatrices across
different layers. This not only reduced superfluous shifts
in deeper hidden layers but also acted as a regularisation
technique. The use of Batch Normalization contributed to
an approximately 2% increase in mean Average Precision
(mAP).

b: HIGH RESOLUTION CLASSIFIER
In YOLOv2, the High Resolution Classifier was introduced to
train the model on 448 × 448 sized images for classification
before fine-tuning for object detection. This framework
improved the model’s ability to learn classification and adapt
to high-resolution inputs, resulting in an approximately 4%
increase in mAP.

c: CONVOLUTION WITH ANCHOR BOXES
Replacing the fully connected layer from the base variant,
YOLOv2 employed convolution with anchor boxes leading
to an approximately 7% increase in recall, albeit with a 0.3%
reduction in mAP.

d: DIMENSION CLUSTERS
Moving away from pre-defined anchor boxes, YOLOv2
extracted anchor boxes using KMEANS [32] clustering,
providing enhanced anchor boxes for optimised model
training and performance.

e: DIRECT LOCATION PREDICTION
To address issues with pre-defined priors and model insta-
bility during bounding box prediction, YOLOv2 predicted
location coordinates relative to grid-cell locations. This
feature contributed to a 5% increase in mAP.
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f: FINE-GRAINED FEATURES
Recognizing the challenge of effectively detecting smaller
objects, YOLOv2 introduced fine-grained features by con-
catenating higher resolution features with lower resolution
features via skip connections, resulting in a 1% increase in
mAP.

g: MULTI-SCALE TRAINING
With the omission of fully connected layers, YOLOv2
operated on dimensions ranging from 320 × 320 to 608 ×

608. The architecture randomly selected new dimensions,
multiples of 32, providing flexibility and contributing to the
model’s ability to predict on various dimensions.

C. YOLOv3
YOLOv3 [33], addressed the shortcomings observed in
its predecessors by concentrating on rectifying localisation
errors and optimising detection efficiency, particularly for
smaller objects. Benchmarked on the COCO dataset [34],
YOLOv3 presented improved performance in detecting
smaller objects, while encountering difficulties in achieving
precise results for medium and large-sized objects.

Constructed on the Darknet-53 framework, YOLOv3
employs a robust network comprising of 53 convolutional
layers, incorporating 3 × 3 and 1 × 1 convolutional filters
alongwith skip connections, as presented in Table 2. Conspic-
uously, the Darknet-53 framework, with its 53 convolutional
layers, achieved double the speed of ResNet-152 [35].

TABLE 2. YOLOv3 internal architecture.

YOLOv3 introduced a foundational generic architecture
inspired by the Feature Pyramid Network (FPN) [22], inte-
grating elements such as residual blocks, skip connections,
and up-sampling. Key attributes of YOLOv3 included:

a: DARKNET-53 BACKBONE
The architecture of YOLOv3 was based on the Darknet-53
framework, employing 3 × 3 and 1 × 1 convolutional filters
alongside shortcut connections. This architecture, consisted
of 53 convolutional layers, serving as a robust base for
efficient object detection.

b: FEATURE PYRAMID NETWORK (FPN) INSPIRED DESIGN
Drawing inspiration from FPN, YOLOv3 incorporated
heuristics such as residual blocks, skip connections, and
up-sampling into its internal architectural footprint. This
approach enhanced the network’s capacity to detect objects
efficiently across varying scales.

c: THREE-SCALE DETECTION MECHANISM
YOLOv3 generated feature maps at three distinct scales,
down-sampling the input at factors of 32, 16, and 8. Detection
was carried out on a 13 × 13 feature map after a series of
convolutions, followed by a 26 × 26 feature map obtained
via up-sampling and concatenation. Additionally, a 52 ×

52 feature map was involved in the detection process. This
three-scale mechanism enabled YOLOv3 to detect large,
medium, and small-sized objects using distinct feature maps.

D. YOLOv4
Authors of YOLOv4 [36], introduced a plethora of advanced
techniques and sophisticated methodologies, distinguishing
YOLOv4 as a faster and more accurate object detector
tailored for production systems compared to its predecessors.

YOLOv4 architecture was defined through a sequence
of pivotal components: initial image processing, feature
extraction utilising potent networks like VGG16 [37], Dark-
net53, and ResNet50, feature scaling with neck structures
like Feature Pyramid Network (FPN) and Path Aggregation
Network (PAN) [38], and the integration of single-stage and
two-stage detectors for prediction.

In their experimentation with architectures, authors com-
pared CSPResNeXt50, CSPDarknet53, and EfficientNetB3,
ultimately selecting CSPDarknet53 as the backbone. CSP-
Darknet53, featured 29 convolution layers with 3 × 3 fil-
ters and around 27.6 million parameters, incorporating
Cross-stage partial connections (CSP) to enhance gradient
combination efficiency with minimal computational cost.
Key architectural components included:

a: SPATIAL PYRAMID POOLING (SPP)
To accommodate various input dimensions without resizing
or reshaping, YOLOv4 integrated Spatial Pyramid Pooling
(SPP) [35]. Sandwiched between a convolutional blocks and
fully connected layers, SPP mapped any input size to a fixed-
size output, facilitating object detection for images of varying
sizes.
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FIGURE 3. YOLOv4 path aggregation (a) Addition (b) Concatenation.

b: PATH AGGREGATION NETWORK (PAN)
In the traditional PANet, neighbouring layers were usually
added together for mask predictions, employing adaptive fea-
ture pooling, as shown in Figure 3 (a). However, in YOLOv4,
PANet directs a concatenation operation, combining the
feature maps from different layers along a specific axis,
creating a new feature map that contains information from
both layers, as shown in Figure 3 (b). This modification aims
to capture intricate details and context across multiple scales,
enhancing the accuracy of predictions.

E. YOLOv5
YOLOv5 [39] epitomizes a paradigm shift as it transitions
from theDarknet framework to PyTorch. The authors retained
many improvements introduced in YOLOv4, in addition
to notable changes. The architecture initiated a strided
convolution layer with a large window size, aimed at reducing
memory and computational costs. Subsequent convolutional
layers extract pertinent features from the input image. The
SPPF (spatial pyramid pooling fast) layer and subsequent
convolution layers processed features at various scales,
while up sample layers enhanced the resolution of feature
maps. The SPPF layer accelerated computation by pooling
features of different scales into a fixed-size feature map.
Each convolutional layer was paired with batch normalization
(BN) [40] and SiLU activation.

a: NECK AND HEAD — SPPF AND MODIFIED CSP-PAN
The neck of YOLOv5 implemented SPPF and a modified
CSP-PAN, while the head structure resembled that of
YOLOv3.

b: AUGMENTATIONS AND IMPROVED GRID SENSITIVITY
YOLOv5 introduced several augmentations, including
Mosaic, copy-paste, random affine, MixUp, HSV augmen-
tation, and random horizontal flip, along with augmentations
from the albumentations package. The model also enhanced
grid sensitivity for stability against runaway gradients.

c: MODEL VARIANTS
YOLOv5 is manifested in five variants to accommodate for
various applications and hardware requirements: YOLOv5n
(nano), YOLOv5s (small), YOLOv5m (medium), YOLOv5l
(large), and YOLOv5x (extra-large). Each variant varies in
the width and depth of the convolution modules. For instance,

TABLE 3. YOLOv5 internal variant comparison.

YOLOv5n and YOLOv5s are lightweight models suitable for
low-resource devices, while YOLOv5x is optimized for high
performance, albeit at the expense of speed.

d: PERFORMANCE AND VERSIONS
Benchmarked on the MS COCO dataset test-dev 2017,
YOLOv5x achieved an AP of 66.9% compromising of
86.7 Million parameters. Whilst, YOLOv5s, at the other end
of the spectrum, achieved an AP of 55.8% compromising of
7.5 Million parameters, as presented in Table 3.

e: OPEN SOURCE AND ACCESSIBILITY
YOLOv5 is open source and actively maintained by Ultralyt-
ics, boasting over 250 contributors and frequent updates. The
model is known for its ease of use, training, and deployment.
Ultralytics provides a mobile version for iOS and Android,
along with various integrations for labelling, training, and
deployment.

F. YOLOv6
Meituan Vision AI Department [41] introduced YOLOv6 in
September 2022 [42], boasting several innovative features
claiming to enhance both efficiency and accuracy. The
architectural footprint, incorporated an efficient backbone
featuring RepVGG/CSPStackRep blocks, a PAN (Path
Aggregation Network) topology neck, and an efficient
decoupled head with a hybrid-channel strategy [43].
Conspicuously, the paper introduced sophisticated quan-

tisation strategies, implementing post-training quantisation
and channel-wise distillation, resulting in detectors that are
not only faster but also more accurate. YOLOv6 builds
upon the successes of its predecessors, notably YOLOv5,
surpassing previous state-of-the-art models in terms of
accuracy and speed. Key Features include:

a: EFFICIENT BACKBONE — EfficientRep AND ENHANCED
NECK
YOLOv6 introduced a new backbone called EfficientRep,
based on RepVGG, which leveraged higher parallelism
compared to previous YOLO backbones. The neck of
the network utilised PAN enhanced with RepBlocks or
CSPStackRep Blocks for larger models. The redesigned
backbone and neck contributed to improved efficiency and
adaptability.

b: TASK ALIGNMENT LEARNING APPROACH FOR LABEL
ASSIGNMENT
The architecture adopts the Task Alignment Learn-
ing approach, enhancing label assignment. Additionally,
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FIGURE 4. PANet configuration [2].

YOLOv6 incorporated new classification and regression
losses, employing a classification VariFocal loss and an
SIoU/GIoU regression loss.

c: SELF-DISTILLATION STRATEGY
YOLOv6 implemented a self-distillation strategy for both
regression and classification tasks. This strategy assisted
the model distill knowledge from its own predictions,
contributing to improved performance and generalisation.

d: QUANTIZATION SCHEME WITH RepOptimiser AND
CHANNEL-WISE DISTILLATION
The authors introduced a quantisation scheme for detection
using RepOptimiser and channel-wise distillation. This
scheme not only assisted in achieving a faster detector but
also ensured that quantisation did not compromise accuracy.

e: BIDIRECTIONAL CONCATENATION (BiC) MODULE
YOLOv6 introduced a BiCmodule in the neck of the detector,
enhancing localisation signals and delivering performance
gains with negligible speed degradation.

f: ANCHOR-AIDED TRAINING (AAT) STRATEGY
AAT caters for both anchor-based and anchor-free paradigms
without compromising inference efficiency.

g: ENHANCED BACKBONE AND NECK DESIGN
By deepening YOLOv6 to include another stage in the
backbone and neck, the architecture achieved state-of-the-art
performance on the COCO dataset at high-resolution input.

h: SELF-DISTILLATION STRATEGY
A new self-distillation strategy is implemented to boost the
performance of smaller models of YOLOv6, enhancing the
auxiliary regression branch during training and removing it
at inference to avoid a marked speed decline.

i: MODEL VARIANTS AND PERFORMANCE
The authors provide eight scaled variants, ranging from
YOLOv6-N to YOLOv6-L6, catering to different application

requirements. Benchmarked on the MS COCO dataset test-
dev 2017, the largest variant achieved an impressive AP of
57.2% while maintaining a speed of around 29 FPS on an
NVIDIA Tesla T4.

G. YOLOv7
YOLOv7, released in 2022, represents an innovative advance-
ment in the realm of object detection [43]. At the time of
its release, it outperformed many present object detectors,
ranging from 5 FPS to an impressive 160 FPS.

Notably, YOLOv7 was trained on the MS COCO dataset
without leveraging pre-trained backbones, showcasing its
ability to achieve remarkable results through its unique
training approach. Architectural advents include:

a: EXTENDED EFFICIENT LAYER AGGREGATION NETWORK
(E-ELAN)
YOLOv7 proposed an extended version of the efficient layer
aggregation network (ELAN) [44], termed E-ELAN. ELAN
is a strategic mechanism facilitating efficient learning and
convergence in deep models by controlling the shortest
longest gradient path. E-ELAN optimises this concept
for models with unlimited stacked computational blocks.
It achieves this by shuffling and merging cardinality features,
thus augmenting the network’s learning capabilities without
compromising the original gradient path.

b: MODEL SCALING FOR CONCATENATION-BASED MODELS
YOLOv7 adopted a concatenation-based architecture, and
to generate models of varying sizes, it introduced a novel
mechanism for model scaling. Unlike standard scaling
techniques, such as depth scaling, YOLOv7 ensured the
depth and width of the block are scaled proportionally. This
maintained the optimal structure of the model, preventing
unwanted distortions in the hardware usage of the model.

c: PLANNED RE-PARAMETERIZED CONVOLUTION
(RepConvN)
Inspired by re-parameterized convolutions (RepConv) from
YOLOv6, YOLOv7 introduced RepConvN. In contrast to
RepConv, RepConvN eradicates the identity connection,
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TABLE 4. Key features and architectural evolution.

addressing issues related to residual destruction in ResNet
and concatenation in DenseNet.

d: COARSE AND FINE LABEL ASSIGNMENT
YOLOv7 employed a strategy of coarse label assignment for
the auxiliary head and fine label assignment for the lead head.
While the lead head is responsible for the final output, the
auxiliary head assists with training, as presented in Figure 4.

e: BATCH NORMALIZATION IN CONV-BN-ACTIVATION
The integration of batch normalisation into conv-bn-
activation involved incorporating the mean and variance
of batch normalisation into the bias and weight of the
convolutional layer during the inference stage.

H. YOLOv8
Ultralytics introduced YOLOv8 in January 2023 [45],
signifying a significant evolution in the YOLO series by
providing users with a comprehensive range of enhancements
and versatile capabilities.

YOLOv8 introduces five scaled versions, catering to differ-
ent application needs: YOLOv8n (nano), YOLOv8s (small),
YOLOv8m (medium), YOLOv8l (large), and YOLOv8x
(extra large). Key Features include:

a: BACKBONE SIMILARITY TO YOLOv5 WITH C2F MODULE
YOLOv8 preserves a backbone architecture similar to
YOLOv5, with profound adjustments in the CSPLayer,
now referred to as the C2f module. This module, standing
for ‘‘cross-stage partial bottleneck with two convolutions,’’
effectively combines high-level features with contextual
information, contributing to enhanced detection accuracy.

b: SEMANTIC SEGMENTATION MODEL — YOLOv8-SEG
YOLOv8 extends its capabilities with a semantic segmen-
tation model known as YOLOv8-Seg. It compromises of a
CSPDarknet53 feature extractor followed by a C2F module,
diverging from the conventional YOLO neck architecture.
YOLOv8-Seg includes two segmentation heads responsible
for predicting semantic segmentation masks for input images.
YOLOv8 achieves state-of-the-art results in object detection
and semantic segmentation benchmarks while maintaining
efficiency.

TABLE 5. Training and optimization.

c: PERFORMANCE METRICS AND SPEED
Benchmarked on the MS COCO dataset test-dev 2017,
YOLOv8x achieved an impressive AP of 53.9% with an
image size of 640 pixels, outperforming YOLOv5. YOLOv8
achieves a remarkable speed of 280 FPS on an NVIDIA
A100 with TensorRT, emphasizing its efficiency in real-time
applications.

With its advancements in architecture, loss functions, and
segmentation capabilities, YOLOv8 stands as a powerful tool
for a wide range of applications. Table 4 presents the key
architectural innovations for the Yolo variants discussed in
the preceding section.

Surveying the interconnections among the YOLO variants
exposes a clear pattern, as shown in Table 4. The majority
of YOLO variants reveal a connection to the Darknet
framework, with later iterations progressing towards more
sophisticated versions like CSPDarknet, as the underlying
framework. Furthermore, Table 5 emphasizes a consistent
trend, indicating that the COCO dataset serves as a key
benchmark dataset for the majority of YOLO variants, com-
prising 80 object categories. These categories compromise of
common objects like cars, bicycles, and animals, as well as
more specific items such as umbrellas, handbags, and sports
equipment, enabling a challenging benchmarking front. This
shared framework and well recognised dataset benchmarking
underscore the robust evolution and continuity in YOLOs
development, providing a common foundation for testing and
benchmarking across different architectural innovations.

IV. TRAINING STRATEGIES AND DATASET DIVERSITY
A. DATA AUGMENTATION TECHNIQUES
Within the fabric of YOLO’s training strategy, data augmen-
tation emerges as a dynamic and profound mechanism. The
intricate orchestration of diverse transformations, including
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TABLE 6. Comparative Study of YOLO variants.

but not limited to random scaling, rotation, translation,
illumination, and the popular Mosaic (YOLOv5) serves as a
cornerstone for enhancing the variant robustness.

By exposing variants to a myriad of augmented instances
during training, YOLO becomes adept at handling the
inherent variations and complexities present in real-world
scenarios. This augmentation strategy embebeddedwithin the
algorithmic pipeline not only mitigates the risk of overfitting
but also fosters a model that generalizes effectively across
diverse object appearances, orientations, and environmental
conditions.

B. DYNAMIC TRAINING MECHANISMS
The training methodologies deployed across different vari-
ants of YOLO as presented in Table 5 underscore a continual
evolution in optimizing object detection models. YOLOv1
initiated the journey with a grid-based approach leveraging
the Darknet framework for training on the Pascal dataset.

Subsequent variants, like YOLOv2 and YOLOv3,
expanded their horizons by incorporating hierarchical
classification and adopting the Darknet-53 backbone, along
with introducing innovative techniques such as the FPN.

YOLOv4 further enhanced the training process through
techniques like enhanced quantization, PAN, and RepVGG.
YOLOv5 marked a transition to PyTorch, embracing
AutoAnchor, Mosaic and MixUp for improved performance.

YOLOv6 introduced advancements like RepVGG, PAN,
and EfficientRep, while YOLOv7 continued to innovate with
ELAN and model scaling. YOLOv8, developed in PyTorch,
stands out with its C2f module, EfficientRep, CIoU, and DFL
for robust and efficient training.

This iterative refinement in training techniques across
YOLO versions showcases a commitment to optimizing
object detection models through a diverse range of method-
ologies, each tailored to address the specific challenges and
opportunities presented by evolving datasets.

V. YOLO VERSIONS: A COMPARATIVE ANALYSIS
This section provides a comparative analysis of the reviewed
YOLO variants from YOLOv1 to YOLOv8, across a wide
range of metrics, as presented in Table 6.

YOLOv1: Pioneer in Object Detection (2015) The
inaugural version of YOLO, YOLOv1, introduced the
groundbreaking concept of real-time object detection using
a single-stage architecture with anchor boxes. Deploying
the Darknet24 framework, it achieved a remarkable Mean
Average Precision (mAP) of 63.4% while maintaining a
processing speed of 45 frames per second (FPS).

YOLOv2: Refinements andAnchor Boxes (2016)Build-
ing upon the success of YOLOv1, YOLOv2 continued
the utilization of anchor boxes for improved localization
accuracy. Implemented within the Darknet24 framework,
it achieved a notable increase in mAP, reaching 69.0%, and
maintained real-time processing capabilities with 52 FPS.

YOLOv3: Multi-scale Features and Loss Functions
(2018) YOLOv3 marked a balanced approach by adopting
a multi-scale feature extraction architecture and introducing
novel loss functions such as CIoU, GIoU, and BCE. Utilizing
the Darknet53 framework, it achieved a mAP of 57.9% and
demonstrated the ability to handle object detection across
various scales at 34 FPS.

YOLOv4: Advanced Loss Functions (2020) With the
adoption of the CSPDarknet53 framework, YOLOv4 empha-
sized advanced loss functions, including CIoU, DFL, and
BCE, aiming to enhance bounding box accuracy while
sustaining real-time processing. Despite a decrease in mAP
to 44.3%, it exhibited a high FPS of 65.

YOLOv5: Leap in Accuracy and Efficiency (2020)
A significant leap in accuracy and efficiency, YOLOv5,
implemented the Modified CSP v7 architecture in PyTorch.
With a single-stage detection mechanism and novel loss
functions (CIoU, DFL, BCE), it achieved a mAP of 50.7%
and a substantial increase in FPS to 200, showcasing its
efficiency in real-time applications.

YOLOv6 to YOLOv8: Iterative Improvements (2022-
2023) The subsequent iterations, YOLOv6, YOLOv7, and
YOLOv8, demonstrate a commitment to iterative improve-
ments. YOLOv6, utilizing the EfficientRep architecture,
improved accuracy to 52.5%, while YOLOv7, based on
the RepConvN, achieved a mAP of 56.8%. YOLOv8,
introducing an anchor-free model, maintained a high
accuracy of 53.9% with an impressive processing speed
of 280 FPS.
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TABLE 7. Diverse applications of YOLO.
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TABLE 7. (Continued.) Diverse applications of YOLO.
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TABLE 7. (Continued.) Diverse applications of YOLO.
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TABLE 7. (Continued.) Diverse applications of YOLO.
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TABLE 7. (Continued.) Diverse applications of YOLO.

VI. REAL-WORLD APPLICATIONS AND IMPACT
A. SURVEILLANCE SYSTEMS AND PUBLIC SAFETY
YOLO’s real-time processing capabilities make it invaluable
in surveillance systems, enhancing public safety through the
efficient monitoring of public spaces [46].

B. AUTONOMOUS VEHICLES AND TRAFFIC
MANAGEMENT
In the realm of autonomous vehicles, YOLO plays a
crucial role in object detection for obstacle avoidance and
navigation [47]. Its rapid identification and classification
of objects contribute to the safe and efficient operation
of autonomous vehicles [48]. YOLO also supports traffic
management systems by providing real-time information on
road conditions [49].

C. INDUSTRIAL AUTOMATION AND QUALITY CONTROL
YOLOfinds applications in industrial settings for automation
and quality control [50]. In manufacturing, it can detect and
inspect defects in products, ensuring adherence to quality
standards [51]. The real-time nature of YOLO facilitates swift
decision-making [52] in automated processes, contributing to
increased efficiency [53] and reduced errors [54], in areas
such as defect detection.

D. HEALTHCARE IMAGING AND DIAGNOSIS
In medical imaging, YOLO demonstrates efficacy in detect-
ing and localizing abnormalities, aiding medical profes-
sionals in timely and accurate diagnoses in areas such as
cancer and exudate detection for early diagnosis of deiabetic
retinopathy [55]. YOLO’s real-time processing is particularly
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valuable in scenarios where quick decisions are critical for
patient care.

E. ENVIRONMENTAL MONITORING AND WILDLIFE
CONSERVATION
YOLO’s adaptability extends to environmental monitoring,
supporting wildlife conservation, biodiversity studies and
renewable energy. It can detect and track animals in their
natural habitats, aiding researchers in population monitoring
and protection efforts. YOLO’s real-time capabilities enhance
the efficiency of conservation initiatives.

F. RETAIL AND CUSTOMER EXPERIENCE
In the retail domain, YOLO variants have been implemented
to enhancing customer experiences and optimise several
aspects of the supply chain. By leveraging its efficient
object detection and tracking effeciency, YOLO variants can
significantly contribute to automated inventory management,
offering retailers real-time analysis of their stock levels and
product availability [56] and [57].
To further illustrate YOLO’s impact, Table 7 provides

an overview of diverse applications and research studies
leveraging YOLO. Each entry in the table highlights the
reference, detection type, YOLO model used, key character-
istics of the application, and performance metrics achieved.
Notably, multiple applications have optimised the selected
YOLO architecture for diverse purposes. While the majority
of works presented, prioritised attaining high accuracy across
metrics such as MAP, precision, and recall, certain works,
driven by limitations in hardware resources or domain
restrictions, directed efforts toward optimising Frames Per
Second (FPS) for expedited inferencing, highlighting YOLOs
versatility in adapting to the specific needs of different
applications.

Another notable observation showcased in Table 7 is that
most variants implemented are v3 onwards. This preference
can be attributed to the crucial role played by YOLO-
v3 as the initial variant addressing the challenge of small
object detection. YOLO-v3 introduced multi-scale detection
mechanisms with subsequent variants i.e., PANet (YOLOv4),
building on this concept, thereby unlocking applicability in
scenarios where the detection of small targets was essential.

VII. CHALLENGES
Despite its remarkable success, YOLO faces certain chal-
lenges and areas for improvement. This section critically
examines the limitations of the YOLO framework, proposes
potential avenues for future research to address these
challenges, and explores the integration of YOLO with edge
deployment and federated learning for enhanced privacy and
adaptability:

A. HANDLING OCCLUSIONS AND CLUTTER
One persistent challenge for YOLO is effectively handling
occluded objects and scenes with high clutter. In scenarios
where objects overlap or are partially obscured [87], YOLO

may struggle to accurately detect and delineate individual
instances. Future research could explore novel approaches,
such as improved feature representations or context-aware
models, to enhance YOLO’s ability to cope with occlusions
and cluttered scenes [88].

B. SCALE VARIATIONS AND FINE-GRAINED OBJECT
DETECTION
The robust detection of objects at varying scales and the
identification of fine-grained details remain areas where
YOLO can be refined [89]. Adapting the architecture to
better handle small or distant objects, potentially through
multi-scale feature fusion strategies, could elevate YOLO’s
performance in scenarios demanding fine-grained object
detection. The integration of federated learning can con-
tribute to the enhancement of YOLO’s adaptability across
diverse scales by leveraging collaborative learning from edge
devices.

C. DOMAIN ADAPTATION AND GENERALIZATION
While YOLO has showcased versatility across domains,
there is room for improvement in domain adaptation [90].
Ensuring robust performance when transitioning from one
environment to another [4], especially in scenarios with
significant domain shifts, is a challenge. The integration
of federated learning introduces a collaborative approach
to domain adaptation, allowing YOLO models to adapt to
diverse edge environments through decentralized learning.

D. EXPLAINABILITY AND INTERPRETABILITY
As with any machine learning system, addressing biases
in training data and ensuring ethical considerations are
paramount [91]. YOLO, like other object detection models,
may exhibit biases that mirror the biases present in the data it
was trained on. The integration of federated [92] learning can
contribute to addressing biases by ensuring a more diverse
and representative dataset across edge devices, enhancing the
fairness and interpretability [93]of YOLO models.

E. ADDRESSING BIASES AND ETHICAL CONSIDERATIONS
As YOLO evolves, considerations for privacy preservation
become increasingly important. The integration of YOLO
with federated learning aligns with privacy-preserving objec-
tives by allowing models to be trained collaboratively
across edge devices without centralizing sensitive data [94].
This integration addresses ethical considerations related to
data privacy in various applications, from surveillance to
healthcare.

F. REAL-TIME PROCESSING OPTIMIZATION
While YOLO is renowned for its real-time processing
capabilities, continuous optimization in this aspect is essen-
tial [95]. Future research may explore innovative techniques
for further improving inference speed without compromising
accuracy. The integration of edge deployment and federated
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learning introduces a decentralized approach to real-time
processing, where models are trained collaboratively on edge
devices, contributing to enhanced efficiency.

G. EDGE DEPLOYMENT AND FEDERATED LEARNING
The deployment of YOLO at the edge and the integration with
federated learning present exciting opportunities [96]. Edge
devices benefit from YOLO’s efficiency, enabling on-device
object detection without relying heavily on centralized
servers [97]. Federated learning introduces a collaborative
training paradigm where YOLO models are trained across
multiple edge devices [98], enhancing privacy, adaptability,
and generalization [99]. This integration aligns with the
evolving landscape of decentralized and privacy-preserving
machine learning.

VIII. CONCLUSION
As we conclude this comprehensive exploration of YOLOs
evolution, challenges, and integrations, it becomes evident
that YOLO has not only shaped the landscape of object
detection but continues to evolve dynamically, staying at
the forefront of advancements in computer vision. From
the pioneering YOLOv1 to the sophisticated YOLOv8,
the architectural innovations and training strategies have
propelled YOLO into the limelight, making it a go-to choice
for real-time object detection.

Reviewing the first objective of this review, it is evident
that YOLO variants have endured significant architectural
innovations during evolution. This progression includes
highlights such as the introduction of Feature Pyramid
Networks (FPN) in YOLOv3 and the incorporation of
ELAN mechanisms in YOLOv7. Notably, the later variants
have acknowledged the requirement for versatility to meet
the diverse demands of industrial deployments. To address
this, researchers have proposed several sub-variants of
each architecture, such as v5s/m/l/x, each with varying
internal architectural configurations. This approach enables
developers to select a base architecture based on their specific
requirements for accuracy and detection rate requirements.
The resulting versatility has permitted YOLO variants to
successfully penetrate various applications in the industry as
evident from Table 7.
The second objective of the paper, which scrutinizes the

training strategies for performance optimisation, reveals a
comprehensive analysis of training methodologies across
YOLOvariants. As presented in Table 5, each variant not only
endured testing on key benchmark datasets but also engaged
in in-depth tuning of internal architectures. YOLOv4, for
instance, transitioned from Darknet53 to CSPDarknet53,
demonstrating a shift in architectural choices for enhanced
performance. In the case of YOLOv6, the focus moved
towards training optimisation through EfficientRep, followed
by RepConvN (YOLOv7), indicating a deliberate effort to
incorporate incremental training boosters.

These refined training strategies have bestowed devel-
opers with a rich selection pool, enabling them to select

methodologies based on their specific domain requirements.
This diversity is evident in the extensive range of domains
presented in the third objective, highlighting YOLO variant
deployments across various industries. The incremental
advances in training strategies contribute significantly to the
adaptability and performance optimization of YOLO variants
in real-world applications.

In considering future challenges, it is envisioned that
YOLO variants will continue to address and improve perfor-
mance on small object targets, especially as they penetrate
into more specialized areas such as precision manufacturing.
This trajectory suggests a necessity for advancements in
lightweight architectures that balance high accuracy with
stringent FPS requirements. As YOLO progresses, meeting
the demands of niche applications will likely drive further
innovation in architectural design and optimisation, ensuring
its continued relevance in domains with stringent require-
ments for precision and efficiency.

REFERENCES
[1] M. Hussain and R. Hill, ‘‘Custom lightweight convolutional neural

network architecture for automated detection of damaged pallet rack-
ing in warehousing & distribution centers,’’ IEEE Access, vol. 11,
pp. 58879–58889, 2023.

[2] M. Hussain, ‘‘YOLO-v5 variant selection algorithm coupled with
representative augmentations for modelling production-based variance
in automated lightweight pallet racking inspection,’’ Big Data Cognit.
Comput., vol. 7, no. 2, p. 120, Jun. 2023.

[3] M. F. Talu, K. Hanbay, and M. H. Varjovi, ‘‘CNN-based fabric defect
detection system on loom fabric inspection,’’ Tekstil Konfeksiyon, vol. 32,
no. 3, pp. 208–219, Sep. 2022.

[4] B. A. Aydin, M. Hussain, R. Hill, and H. Al-Aqrabi, ‘‘Domain modelling
for a lightweight convolutional network focused on automated exudate
detection in retinal fundus images,’’ in Proc. 9th Int. Conf. Inf. Technol.
Trends (ITT), May 2023, pp. 145–150.

[5] M. A. Ansari, A. Crampton, and S. Parkinson, ‘‘A layer-wise surface
deformation defect detection by convolutional neural networks in laser
powder-bed fusion images,’’Materials, vol. 15, no. 20, p. 7166, Oct. 2022.

[6] P. Lala Mehta and A. Kumar, ‘‘Livai: A novel resource-efficient real-time
facial emotion recognition system based on a custom deep CNN model,’’
SSRN Electron. J., Feb. 2022.

[7] M. Hussain, ‘‘YOLO-v1 to YOLO-v8, the rise of YOLO and its
complementary nature toward digital manufacturing and industrial defect
detection,’’Machines, vol. 11, no. 7, p. 677, Jun. 2023.

[8] A. Koubaa, A. Ammar, A. Kanhouch, and Y. AlHabashi, ‘‘Cloud versus
edge deployment strategies of real-time face recognition inference,’’ IEEE
Trans. Netw. Sci. Eng., vol. 9, no. 1, pp. 143–160, Jan. 2022.

[9] Z. Zou, K. Chen, Z. Shi, Y. Guo, and J. Ye, ‘‘Object detection in 20 years:
A survey,’’ Proc. IEEE, vol. 111, no. 3, pp. 257–276, Mar. 2023.

[10] P. Jiang, D. Ergu, F. Liu, Y. Cai, and B. Ma, ‘‘A review of YOLO algorithm
developments,’’ Proc. Comput. Sci., vol. 199, pp. 1066–1073, Jan. 2022.

[11] P. P. Khaire, R. D. Shelke, D. Hiran, and M. Patil, ‘‘Comparative study
of a computer vision technique for locating instances of objects in images
usingYOLOversions: A review,’’ inProc. Int. Conf. Inf. Commun. Technol.
Intell. Syst., Springer, 2023, pp. 349–359.

[12] C. Chen, Z. Zheng, T. Xu, S. Guo, S. Feng, W. Yao, and Y. Lan, ‘‘YOLO-
based UAV technology: A review of the research and its applications,’’
Drones, vol. 7, no. 3, p. 190, Mar. 2023.

[13] X. Qian, B. Wu, G. Cheng, X. Yao, W. Wang, and J. Han, ‘‘Building a
bridge of bounding box regression between oriented and horizontal object
detection in remote sensing images,’’ IEEE Trans. Geosci. Remote Sens.,
vol. 61, 2023.

[14] X. Qian, Y. Huo, G. Cheng, C. Gao, X. Yao, and W. Wang, ‘‘Mining high-
quality pseudoinstance soft labels for weakly supervised object detection
in remote sensing images,’’ IEEE Trans. Geosci. Remote Sens., vol. 61,
2023.

VOLUME 12, 2024 42831



M. Hussain: YOLOv1 to v8: Unveiling Each Variant—A Comprehensive Review of YOLO

[15] L. Li, X. Yao, X. Wang, D. Hong, G. Cheng, and J. Han, ‘‘Robust few-
shot aerial image object detection via unbiased proposals filtration,’’ IEEE
Trans. Geosci. Remote Sens., vol. 61, 2023.

[16] S. Agarwal, J. O. D. Terrail, and F. Jurie, ‘‘Recent advances in object
detection in the age of deep convolutional neural networks,’’ 2019,
arXiv:1809.03193.

[17] L. Liu, W. Ouyang, X. Wang, P. Fieguth, J. Chen, X. Liu, and
M. Pietikäinen, ‘‘Deep learning for generic object detection: A survey,’’
2018, arXiv:1809.02165.

[18] C.-Y. Wang, H.-Y. M. Liao, Y.-H. Wu, P.-Y. Chen, J.-W. Hsieh, and
I.-H. Yeh, ‘‘CSPNet: A new backbone that can enhance learning capability
of CNN,’’ 2020, arXiv:1911.11929.

[19] X. Xie, G. Cheng, J. Wang, X. Yao, and J. Han, ‘‘Oriented R-CNN for
object detection,’’ in Proc. IEEE/CVF Int. Conf. Comput. Vis. (ICCV),
Oct. 2021, pp. 3500–3509.

[20] R. Girshick, ‘‘Fast R-CNN,’’ in Proc. IEEE Int. Conf. Comput. Vis. (ICCV),
Dec. 2015, pp. 1440–1448.

[21] S. Ren, K. He, R. Girshick, and J. Sun, ‘‘Faster R-CNN: Towards real-
time object detection with region proposal networks,’’ IEEE Trans. Pattern
Anal. Mach. Intell., vol. 39, no. 6, pp. 1137–1149, Jun. 2017.

[22] T.-Y. Lin, P. Dollár, R. Girshick, K. He, B. Hariharan, and S. Belongie,
‘‘Feature pyramid networks for object detection,’’ in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit. (CVPR), Jul. 2017, pp. 936–944.

[23] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, and
A. C. Berg, ‘‘SSD: Single shot MultiBox detector,’’ in Proc. Eur. Conf.
Comput. Vis., 2016, pp. 21–37.

[24] C. Sun, Y. Ai, S. Wang, and W. Zhang, ‘‘Dense-RefineDet for traffic sign
detection and classification,’’ Sensors, vol. 20, no. 22, p. 6570, Nov. 2020.

[25] T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollár, ‘‘Focal loss for dense
object detection,’’ 2017, arXiv:1708.02002.

[26] D. Wu, S. Lv, M. Jiang, and H. Song, ‘‘Using channel pruning-based
YOLO v4 deep learning algorithm for the real-time and accurate detection
of apple flowers in natural environments,’’ Comput. Electron. Agricult.,
vol. 178, Nov. 2020, Art. no. 105742.

[27] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai,
T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly,
J. Uszkoreit, and N. Houlsby, ‘‘An image is worth 16 × 16 words:
Transformers for image recognition at scale,’’ 2020, arXiv:2010.11929.

[28] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke, and A. Rabinovich, ‘‘Going deeper with convolutions,’’
in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2015,
pp. 1–9.

[29] M. Everingham, L. van Gool, C. K. I.Williams, J.Winn, and A. Zisserman,
‘‘The Pascal visual object classes (VOC) challenge,’’ Int. J. Comput. Vis.,
vol. 88, no. 2, pp. 303–338, Jun. 2010.

[30] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, ‘‘ImageNet:
A large-scale hierarchical image database,’’ in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit., Jun. 2009, pp. 248–255.

[31] J. Redmon and A. Ali, ‘‘YOLO9000: Better, faster, stronger,’’ in
Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2017,
pp. 7263–7271.

[32] T.-Y. Lin, M. Maire, S. Belongie, L. Bourdev, R. Girshick, J. Hays,
P. Perona, D. Ramanan, C. L. Zitnick, and P. Dollár, ‘‘Microsoft COCO:
Common objects in context,’’ 2014, arXiv:1405.0312.

[33] J. Redmon and A. Ali, ‘‘YOLOv3: An incremental improvement,’’ 2018,
arXiv:1804.02767.

[34] T. Y. Lin, M.Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár,
and C. L. Zitnick, ‘‘Microsoft COCO: Common objects in context,’’ in
Proc. Eur. Conf. Comput. Vis., 2014, pp. 740–755.

[35] K. He, X. Zhang, S. Ren, and J. Sun, ‘‘Deep residual learning for image
recognition,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR),
Jun. 2016, pp. 770–778.

[36] A. Bochkovskiy, C.-Y. Wang, and H.-Y. M. Liao, ‘‘YOLOv4: Optimal
speed and accuracy of object detection,’’ 2020, arXiv:2004.10934.

[37] K. Simonyan and A. Zisserman, ‘‘Very deep convolutional networks for
large-scale image recognition,’’ 2014, arXiv:1409.1556.

[38] Z. Ma, M. Li, and Y. Wang, ‘‘PAN: Path integral based convolution for
deep graph neural networks,’’ 2019, arXiv:1904.10996.

[39] G. Jocher et al., (2020), ‘‘ultralytics/yolov5:v3.0,’’ Zenodo, doi:
10.5281/zenodo.3983579.

[40] Z. Yao, Y. Cao, S. Zheng, G. Huang, and S. Lin, ‘‘Cross-iteration batch
normalization,’’ 2021, arXiv:2002.05712.

[41] C.-Y. Wang, A. Bochkovskiy, and H.-Y. Liao. (2022). YOLOv6. GitHub.
[Online]. Available: https://github.com/meituan/YOLOv6

[42] C. Li, L. Li, H. Jiang, K. Weng, Y. Geng, L. Li, Z. Ke, Q. Li, M. Cheng,
W. Nie, Y. Li, B. Zhang, Y. Liang, L. Zhou, X. Xu, X. Chu, X. Wei,
and X. Wei, ‘‘YOLOv6: A single-stage object detection framework for
industrial applications,’’ 2022, arXiv:2209.02976.

[43] C.-Y. Wang, A. Bochkovskiy, and H.-Y. Liao, ‘‘YOLOv7: Trainable bag-
of-freebies sets new state-of-the-art for real-time object detectors,’’ 2022,
arXiv:2207.02696.

[44] X. Ding, X. Zhang, N.Ma, J. Han, G. Ding, and J. Sun, ‘‘RepVGG:Making
VGG-style ConvNets great again,’’ 2021, arXiv:2101.03697.

[45] J. Solawetz, ‘‘What is YOLOv8? The ultimate guide,’’ Tech. Rep.,
Jan. 2023.

[46] D. Beymer, ‘‘Person counting using stereo,’’ in Proc. Workshop Human
Motion, Dec. 2000, pp. 127–133.

[47] M. Nagy and G. Lăzăroiu, ‘‘Computer vision algorithms, remote sensing
data fusion techniques, and mapping and navigation tools in the Industry
4.0-based Slovak automotive sector,’’ Mathematics, vol. 10, no. 19,
p. 3543, Sep. 2022.

[48] S. Battiato, S. Conoci, R. Leotta, A. Ortis, F. Rundo, and F. Trenta,
‘‘Benchmarking of computer vision algorithms for driver monitoring on
automotive-grade devices,’’ in Proc. AEIT Int. Conf. Electr. Electron.
Technol. Automot. (AEIT AUTOMOTIVE), Nov. 2020, pp. 1–6.

[49] J. Barthélemy, N. Verstaevel, H. Forehead, and P. Perez, ‘‘Edge-computing
video analytics for real-time traffic monitoring in a smart city,’’ Sensors,
vol. 19, no. 9, p. 2048, May 2019.

[50] L. Scime and J. Beuth, ‘‘Anomaly detection and classification in a laser
powder bed additive manufacturing process using a trained computer
vision algorithm,’’ Additive Manuf., vol. 19, pp. 114–126, Jan. 2018.

[51] N. Lyons, ‘‘Deep learning-based computer vision algorithms, immersive
analytics and simulation software, and virtual reality modeling tools
in digital twin-driven smart manufacturing,’’ Econ., Manage., Financial
Markets, vol. 17, no. 2, pp. 67–81, 2022.

[52] K. Li, E. D. Miller, M. Chen, T. Kanade, L. E. Weiss, and P. G. Campbell,
‘‘Computer vision tracking of stemness,’’ in Proc. 5th IEEE Int. Symp.
Biomed. Imag., Nano Macro, May 2008, pp. 847–850.

[53] Q.-J. Zhao, P. Cao, and D.-W. Tu, ‘‘Toward intelligent manufacturing:
Label characters marking and recognition method for steel products with
machine vision,’’ Adv. Manuf., vol. 2, no. 1, pp. 3–12, Mar. 2014.

[54] S. Paneru and I. Jeelani, ‘‘Computer vision applications in construction:
Current state, opportunities & challenges,’’ Autom. Construct., vol. 132,
Dec. 2021, Art. no. 103940.

[55] M. Hussain, H. Al-Aqrabi, M. Munawar, R. Hill, and S. Parkinson,
‘‘Exudate regeneration for automated exudate detection in retinal fundus
images,’’ IEEE Access, vol. 11, pp. 83934–83945, 2022.

[56] P. Cortez, L.M.Matos, P. J. Pereira, N. Santos, andD. Duque, ‘‘Forecasting
store foot traffic using facial recognition, time series and support vector
machines,’’ in Proc. Int. Joint Conf. Cham, Switzerland: Springer, 2017,
pp. 267–276.

[57] N. James, ‘‘Automated checkout for stores: A computer vision approach,’’
Revista Gestão Inovação Tecnologias, vol. 11, no. 3, pp. 1830–1841,
Jun. 2021.

[58] W. Lan, J. Dang, Y. Wang, and S. Wang, ‘‘Pedestrian detection based on
YOLO network model,’’ in Proc. IEEE Int. Conf. Mechatronics Autom.
(ICMA), Aug. 2018, pp. 1547–1551.

[59] W.-Y. Hsu and W.-Y. Lin, ‘‘Adaptive fusion of multi-scale YOLO for
pedestrian detection,’’ IEEE Access, vol. 9, pp. 110063–110073, 2021.

[60] S. Shinde, A. Kothari, and V. Gupta, ‘‘YOLO based human action
recognition and localization,’’ Proc. Comput. Sci., vol. 133, pp. 831–838,
Jan. 2018.

[61] P. Maski and A. Thondiyath, ‘‘Plant disease detection using advanced deep
learning algorithms: A case study of papaya ring spot disease,’’ in Proc. 6th
Int. Conf. Image, Vis. Comput. (ICIVC), Jul. 2021, pp. 49–54.

[62] M. Lippi, N. Bonucci, R. F. Carpio, M. Contarini, S. Speranza,
and A. Gasparri, ‘‘A YOLO-based pest detection system for precision
agriculture,’’ in Proc. 29th Medit. Conf. Control Autom. (MED), Jun. 2021,
pp. 342–347.

[63] W. Yang and Z. Jiachun, ‘‘Real-time face detection based on YOLO,’’
in Proc. 1st IEEE Int. Conf. Knowl. Innov. Invention (ICKII), Jul. 2018,
pp. 221–224.

[64] W. Chen, H. Huang, S. Peng, C. Zhou, and C. Zhang, ‘‘YOLO-Face: A real-
time face detector,’’ Vis. Comput., vol. 37, no. 4, pp. 805–813, Mar. 2020.

42832 VOLUME 12, 2024

http://dx.doi.org/10.5281/zenodo.3983579


M. Hussain: YOLOv1 to v8: Unveiling Each Variant—A Comprehensive Review of YOLO

[65] M. A. Al-masni, M. A. Al-antari, J.-M. Park, G. Gi, T.-Y. Kim, P. Rivera,
E. Valarezo, M.-T. Choi, S.-M. Han, and T.-S. Kim, ‘‘Simultaneous
detection and classification of breast masses in digital mammograms via
a deep learning YOLO-based CAD system,’’ Comput. Methods Programs
Biomed., vol. 157, pp. 85–94, Apr. 2018.

[66] Y. Nie, P. Sommella, M. O’Nils, C. Liguori, and J. Lundgren, ‘‘Automatic
detection of melanoma with YOLO deep convolutional neural networks,’’
in Proc. E-Health Bioeng. Conf. (EHB), Nov. 2019, pp. 1–4.

[67] H. M. Ünver and E. Ayan, ‘‘Skin lesion segmentation in dermoscopic
images with combination of YOLO and GrabCut algorithm,’’Diagnostics,
vol. 9, no. 3, p. 72, Jul. 2019.

[68] L. Tan, T. Huangfu, L.Wu, andW. Chen, ‘‘Comparison of RetinaNet, SSD,
andYOLOv3 for real-time pill identification,’’BMCMed. Informat. Decis.
Making, vol. 21, no. 1, Nov. 2021.

[69] N. Bordoloi, A. K. Talukdar, and K. K. Sarma, ‘‘Suspicious activity
detection from videos using YOLOv3,’’ in Proc. IEEE 17th India Council
Int. Conf. (INDICON), Dec. 2020, pp. 1–5.

[70] K. Bhambani, T. Jain, and K. A. Sultanpure, ‘‘Real-time face mask and
social distancing violation detection system using YOLO,’’ in Proc. IEEE
Bengaluru Humanitarian Technol. Conf. (B-HTC), Oct. 2020, pp. 1–6.

[71] Hendry and R.-C. Chen, ‘‘Automatic license plate recognition via sliding-
window darknet-YOLO deep learning,’’ Image Vis. Comput., vol. 87,
pp. 47–56, Jul. 2019.

[72] C. Dewi, R.-C. Chen, X. Jiang, and H. Yu, ‘‘Deep convolutional neural
network for enhancing traffic sign recognition developed on YOLO v4,’’
Multimedia Tools Appl., vol. 81, no. 26, pp. 37821–37845, Apr. 2022.

[73] A. M. Roy, J. Bhaduri, T. Kumar, and K. Raj, ‘‘WilDect-YOLO:
An efficient and robust computer vision-based accurate object localization
model for automated endangered wildlife detection,’’ Ecolog. Informat.,
vol. 75, Jul. 2023, Art. no. 101919.

[74] D. H. Dos Reis, D. Welfer, M. A. D. S. L. Cuadros, and D. F. T. Gamarra,
‘‘Mobile robot navigation using an object recognition software with RGBD
images and the YOLO algorithm,’’ Appl. Artif. Intell., vol. 33, no. 14,
pp. 1290–1305, Nov. 2019.

[75] A. Ye, B. Pang, Y. Jin, and J. Cui, ‘‘A YOLO-based neural network with
VAE for intelligent garbage detection and classification,’’ in Proc. 3rd Int.
Conf. Algorithms, Comput. Artif. Intell., Dec. 2020.

[76] J. Li, J. Gu, Z. Huang, and J. Wen, ‘‘Application research of improved
YOLO v3 algorithm in PCB electronic component detection,’’ Appl. Sci.,
vol. 9, no. 18, p. 3750, Sep. 2019.

[77] J. Jiang, X. Fu, R. Qin, X. Wang, and Z. Ma, ‘‘High-speed lightweight
ship detection algorithm based on YOLO-V4 for three-channels RGB SAR
image,’’ Remote Sens., vol. 13, no. 10, p. 1909, May 2021.

[78] B. Chen and X. Miao, ‘‘Distribution line pole detection and counting based
on YOLO using UAV inspection line video,’’ J. Electr. Eng. Technol.,
vol. 15, no. 1, pp. 441–448, Jul. 2019.

[79] S. R. Vrajesh, A. N. Amudhan, A. Lijiya, and A. P. Sudheer, ‘‘Shuttlecock
detection and fall point prediction using neural networks,’’ in Proc. Int.
Conf. Emerg. Technol. (INCET), Jun. 2020, pp. 1–6.

[80] H. Wu, Y. Hu, W. Wang, X. Mei, and J. Xian, ‘‘Ship fire detection based
on an improved YOLO algorithm with a lightweight convolutional neural
network model,’’ Sensors, vol. 22, no. 19, p. 7420, Sep. 2022.

[81] K. Chen, H. Li, C. Li, X. Zhao, S.Wu,Y.Duan, and J.Wang, ‘‘An automatic
defect detection system for petrochemical pipeline based on cycle-GAN
and YOLO v5,’’ Sensors, vol. 22, no. 20, p. 7907, Oct. 2022.

[82] R. Zhang and C. Wen, ‘‘SOD-YOLO: A small target defect detection
algorithm for wind turbine blades based on improved YOLOv5,’’ Adv.
Theory Simulations, vol. 5, no. 7, Jul. 2022, Art. no. 2100631.

[83] I. Khokhlov, E. Davydenko, I. Osokin, I. Ryakin, A. Babaev, V. Litvinenko,
and R. Gorbachev, ‘‘Tiny-YOLO object detection supplemented with
geometrical data,’’ in Proc. IEEE 91st Veh. Technol. Conf. (VTC-Spring),
May 2020, pp. 1–5.

[84] Y. A. Khan, S. Imaduddin, A. Ahmad, and Y. Rafat, ‘‘Image-based foreign
object detection using YOLO v7 algorithm for electric vehicle wireless
charging applications,’’ in Proc. 5th Int. Conf. Power, Control Embedded
Syst. (ICPCES), Jan. 2023, pp. 1–6.

[85] E. S. T. K. Reddy and V. Rajaram, ‘‘Pothole detection using CNN and
YOLO v7 algorithm,’’ in Proc. 6th Int. Conf. Electron., Commun. Aerosp.
Technol., Dec. 2022, pp. 1255–1260.

[86] A. Munin, A. Folarin, A. Munin-Doce, L. Alonso-Garcia, V. Diaz-Casas,
S. Ferreno-Gonzalez, and J. M. Ciriano-Palacios, ‘‘Real time vessel
detection model using deep learning algorithms for controlling a barrier
system,’’ J. SSRN, Apr. 2023.

[87] M. Ghafoor and A. Mahmood, ‘‘Quantification of occlusion handling
capability of 3D human pose estimation framework,’’ IEEE Trans.
Multimedia, 2022.

[88] M. F. Aslan, A. Durdu, K. Sabanci, and M. A. Mutluer, ‘‘CNN and
HOG based comparison study for complete occlusion handling in human
tracking,’’Measurement, vol. 158, Jul. 2020, Art. no. 107704.

[89] H. T. Mustafa, J. Yang, and M. Zareapoor, ‘‘Multi-scale convolutional
neural network for multi-focus image fusion,’’ Image Vis. Comput., vol. 85,
pp. 26–35, May 2019.

[90] A. Zahid, M. Hussain, R. Hill, and H. Al-Aqrabi, ‘‘Lightweight
convolutional network for automated photovoltaic defect detection,’’ in
Proc. 9th Int. Conf. Inf. Technol. Trends (ITT), May 2023, pp. 133–138.

[91] D. S. Char, N. H. Shah, and D. Magnus, ‘‘Implementing machine learning
in health care—Addressing ethical challenges,’’ New England J. Med.,
vol. 378, no. 11, pp. 981–983, Mar. 2018.

[92] A. Lakhan, M. A. Mohammed, K. H. Abdulkareem, H. Hamouda, and
S. Alyahya, ‘‘Autism spectrum disorder detection framework for children
based on federated learning integrated CNN-LSTM,’’ Comput. Biol. Med.,
vol. 166, Nov. 2023, Art. no. 107539.

[93] H. Younes, H. L. Blevec, M. Léonardon, and V. Gripon, ‘‘Inter-
operability of compression techniques for efficient deployment of CNNs
on microcontrollers,’’ in Proc. Int. Conf. Syst.-Integr. Intell., Springer,
2022, pp. 543–552.

[94] N. Rane, S. Choudhary, and J. Rane, ‘‘YOLO and faster R-CNN
object detection in architecture, engineering and construction (AEC):
Applications, challenges, and future prospects,’’ Eng. Construction, Appl.,
Challenges, Future Prospects, Oct. 2023.

[95] B.-G. Han, J.-G. Lee, K.-T. Lim, and D.-H. Choi, ‘‘Design of a scalable and
fast YOLO for edge-computing devices,’’ Sensors, vol. 20, no. 23, p. 6779,
Nov. 2020.

[96] G. Plastiras, M. Terzi, C. Kyrkou, and T. Theocharidcs, ‘‘Edge intel-
ligence: Challenges and opportunities of near-sensor machine learning
applications,’’ in Proc. IEEE 29th Int. Conf. Application-specific Syst.,
Architectures Processors (ASAP), Jul. 2018, pp. 1–7.

[97] M. P. Véstias, ‘‘A survey of convolutional neural networks on edge with
reconfigurable computing,’’ Algorithms, vol. 12, no. 8, p. 154, Jul. 2019.

[98] Q.Wang, Q. Li, K.Wang, H.Wang, and P. Zeng, ‘‘Efficient federated learn-
ing for fault diagnosis in industrial cloud-edge computing,’’ Computing,
vol. 103, no. 10, pp. 2319–2337, Oct. 2021.

[99] C. He, M. Annavaram, and S. Avestimehr, ‘‘Group knowledge transfer:
Federated learning of large CNNs at the edge,’’ in Proc. Adv. Neural Inf.
Process. Syst., vol. 33, 2020, pp. 14068–14080.

MUHAMMAD HUSSAIN received the B.Eng.
degree in electrical and electronic engineering
and the M.S. degree in Internet of Things from
the University of Huddersfield, in 2019, and the
Ph.D. degree in artificial intelligence for defect
identification. He is an accomplished Researcher
hailing in Dewsbury, U.K. His work contributes to
optimizing PV systems’ efficiency and reliability.
He is equally passionate about machine vision,
focusing on lightweight architectures for edge

device deployment in real-world production settings. Beyond fault detection,
he explores AI interpretability, concentrating on developing explainable
AI for medical and healthcare applications. His interdisciplinary approach
underscores his commitment to ethical and impactful AI solutions. With
his diverse expertise spanning AI, fault detection, machine vision, and
interpretability, he aims to leave his mark on shaping the future of technology
and its positive influence on society. His research interests include fault
detection, particularly microcracks on photovoltaic (PV) cells due to
mechanical and thermal stress.

VOLUME 12, 2024 42833


