
Received 25 February 2024, accepted 10 March 2024, date of publication 19 March 2024, date of current version 26 March 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3378512

Multi-Agent Collaborative Optimization of UAV
Trajectory and Latency-Aware DAG Task
Offloading in UAV-Assisted MEC
CHUNXIANG ZHENG 1, KAI PAN 2, JIADONG DONG 2, LIN CHEN2, QINGHU GUO2,
SHUNFENG WU2, HANYUN LUO1, AND XIAOLIN ZHANG1
1School of Computer and Information, Anqing Normal University, Anqing 246133, China
2School of Electronic Engineering and Intelligent Manufacturing, Anqing Normal University, Anqing 246133, China

Corresponding author: Jiadong Dong (djd@aqnu.edu.cn)

This work was supported in part by the National Natural Science Foundation of China under Grant 62205005.

ABSTRACT The domain of UAV-assisted Multi-Access Edge Computing (MEC) emerges as a novel
frontier, characterized by the seamless integration of edge computing capabilities with UAV to facilitate
advanced computational services for Terminal Devices (TDs). This research tackles two critical aspects
in UAV-assisted MEC frameworks: the strategic formulation of UAV flight paths and the refinement of
execution latency for Directed Acyclic Graph (DAG) tasks. We introduce an innovative solution employing
Deep Reinforcement Learning (DRL), coined as the Twin Delayed Deep Deterministic Policy Gradient for
UAV Trajectory Planning and Task Offloading (TD3-TT) algorithm. This algorithm harmonizes UAV flight
planning, DAG task delegation, and scheduling hierarchies, thereby enabling UAV to efficiently undertake
task offloading and processing concurrently along their designated optimal trajectories. Through this
approach, the latency within the computational network is significantly diminished. A thorough examination
of simulation outcomes reveals that the TD3-TT algorithm exhibits notable convergence and robustness,
surpassing conventional benchmarks and markedly reducing the execution latency of DAG tasks.

INDEX TERMS Deep reinforcement learning, directed acyclic graph, unmanned aerial vehicle, multi-access
edge computing.

I. INTRODUCTION
In the contemporary landscape, driven by the swift expan-
sion of the Internet of Things (IoT), a plethora of intel-
ligent devices, including sensors, cameras, and Virtual
Reality/Augmented Reality (VR/AR) systems, increasingly
proliferate, actively participating in data collection and pro-
cessing [1], [2], [3]. Nonetheless, these devices typically
harbor finite computational resources and energy provisions,
possibly confronting manifold constraints when dealing with
intricate computations. Concurrently, with the rapid surge of
large-scale artificial intelligence models, a multitude of com-
putationally intensive task, encompassing data prediction,
object recognition, and speech discernment, among others,

The associate editor coordinating the review of this manuscript and

approving it for publication was Cong Pu .

necessitate substantial computational resources for achiev-
ing efficient and accurate processing [4], [5]. Against this
backdrop, the advent of MEC is manifest [6], [7]. MEC,
by deploying computational capabilities proximate to data
sources, translocates the computational paradigm from the
conventional centralized cloud data centers to device edge,
thereby mitigating latency and bolstering computational
efficiency.

UAV-assisted MEC represents an innovative computing
paradigm that amalgamates the advantages of UAV and
MEC [9], [10], [11]. In traditional scenarios, computational
servers are stationed at the network periphery, such as base
stations (BS) or wireless access points (AP). This architecture
is restricted by the static nature of MEC server placement.
In contrast, UAV-assisted MEC possesses attributes that tran-
scend these limitations. By deploying MEC servers onto

VOLUME 12, 2024

 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ 42521

https://orcid.org/0009-0006-1370-1780
https://orcid.org/0009-0000-9433-0067
https://orcid.org/0009-0009-4718-2060
https://orcid.org/0000-0002-7952-0038

C. Zheng et al.: Multi-Agent Collaborative Optimization of UAV Trajectory and Latency-Aware DAG

UAV, the inherent attributes of UAV, such as high maneu-
verability, extensive coverage, and low latency, are fully
leveraged to provide wireless communication and compu-
tational services to remote or hard-to-reach TDs [13]. This
novel UAV-assisted MEC framework is widely applicable
across a diverse range of scenarios. It includes, but is not
limited to, providing temporary communication and com-
puting support to rescue teams during disaster recovery and
emergency response phases, supplying temporary network
and computational resources during periods of high traffic
at large-scale events, offering mobile communication and
computing services to researchers or residents in remote
areas, and reducing transmission latency through proximate
analysis in applications that necessitate real-time processing
of substantial data volumes.

In this study, the flight trajectories and communication
conditions of UAV are dynamic and subject to change over
time. DRL is commonly regarded as well-suited for address-
ing policy control issues within complex dynamic envi-
ronments [16]. When tackling trajectory planning and task
offloading challenges in UAV-assisted MEC, nondeterminis-
tic policy algorithms like DQN encounter the dimensionality
explosion problem due to rapid expansions in state and action
spaces. This work proposes a multi-agent collaborative com-
putation offloading algorithm, TD3-TT, based on the TD3
algorithm within the DRL framework, aimed at reducing the
complexity of the problem-solving process. By strategically
planning UAV flight trajectories, the algorithm ingeniously
integrates DAG task offloading decisions with scheduling
priorities, effectively minimizing task execution latency. The
primary contributions of this paper are as follows:

• Unified Optimization of UAV Trajectory and Task
Offloading: Our model uniquely addresses the joint
optimization of UAV trajectory planning and task
offloading, a comprehensive approach that distin-
guishes it from existing works focusing solely on one
aspect.

• TD3-TT Algorithm: The introduction of the TD3-
TT algorithm, based on deep reinforcement learning
for multi-agent collaboration, is a innovation. This
algorithm concurrently optimizes UAV trajectory and
task offloading decisions, minimizing overall system
latency.

• Unlike the partial offloading strategies in existing
UAV-assisted MEC research, this paper models the
computing task as a DAG graph, fully considers the
dependencies between child node tasks, and jointly
optimizes the offloading decisions and execution
priorities of node tasks in the designed algorithm
framework.

II. RELATED WORK
Despite endowing UAV systems with substantial potential,
MEC introduces a series of challenges in practical applica-
tion. The foremost challenge revolves around computation

task latency [19]. UAV necessitate real-time execution of
navigation, obstacle avoidance tasks, and concurrent process-
ing of user-submitted workloads. This necessitates a delicate
equilibrium between flight path planning and task offloading
strategies within the constraints of limited resources [22].
Furthermore, battery constraints emerge as a significant
limiting factor [23]. Since UAV rely exclusively on finite
battery capacity for power, their flight duration is inevitably
curtailed. To address these challenges, researchers have cat-
egorized offloading strategies into binary offloading and
partial offloading schemes based on the granularity of task
offloading.

A. BINARY OFFLOADING
In the context of UAV-assisted MEC, the binary offloading
strategies have garnered substantial attention in recent lit-
erature [24]. Addressing concerns pertinent to user energy
consumption and data queue stability within UAV-assisted
MEC systems, the authors of [25] artfully employs a
multi-stage stochastic optimization approach coupled with
Lyapunov optimization techniques. the study successfully
attains a reduction in energy consumption while concurrently
enhancing data queue stability. The authors of [26] formu-
lates the problem as a Markov Decision Process (MDP)
and employs a Multi-Agent Deep Reinforcement Learn-
ing (MADRL) framework to develop models capturing the
dynamics of TDs, UAV costs, and revenues. Through joint
optimization of power control and resource allocation, the
proposed MADRL approach effectively improves the overall
performance of the UAV-assisted wireless network. More-
over, the authors of [27] addresses the joint optimization
problem of computation offloading, spectrum resource allo-
cation, computing resource allocation, and UAV deployment
by formulating it as a mixed-integer nonlinear programming
problem. They propose a decomposition-based approximate
algorithm that divides the original problem into two sub-
problems solved sequentially. Simulation results demonstrate
that the proposed algorithm achieves superior performance
over baseline schemes. The authors of [28], the focus shifts
towards enhancing energy efficiency and task fairness in
UAV-assisted MEC. Through a synergistic integration of
UAV flight time, trajectory, TD offloading decisions, and
time allocation, a novel PDDQNLP algorithm is introduced.
This algorithm adeptly combines Continuous Action Space
Deep Deterministic Policy Gradient (DDPG) and Dueling
Deep Q-Network (DQN) algorithms, effectively addressing
the aforementioned challenges in the UAV-assisted MEC
landscape. In the context of multi-UAV-assisted MEC com-
munication scenarios, the authors of [29] delves into the
intricacies of resource allocation, aiming to minimize overall
system latency and energy consumption. Drawing upon the
principles of DRL, a novel Unified Mobile Aircraft Power
(UMAP) algorithm is introduced. This algorithm seamlessly
integrates aspects of UAV mobility control, mobile user
association, and mobile user power control. Demonstrating

42522 VOLUME 12, 2024

C. Zheng et al.: Multi-Agent Collaborative Optimization of UAV Trajectory and Latency-Aware DAG

impressive results, UMAP significantly reduces system
latency and energy consumption while concurrently enhanc-
ing coverage.

B. PARTIAL OFFLOADING
Regarding task partial offloading research [30], the authors
of [31], a study explores the concept of divisible task offload-
ing models and orthogonal/non-orthogonal multiple access
(OMA/NOMA) access modes. By employing a block alter-
nating descent approach, an alternating iterative algorithm
is devised. This algorithm jointly optimizes the alloca-
tion of computational resources and the trajectory of UAV,
effectively achieving the minimization of weighted energy
consumption for both UAV and TDs. The authors of [32]
introduces an optimal partial offloading scheme named
POSMU. This scheme optimizes the offloading ratio, local
computing frequency, transmission power, and MEC server
computing frequency for each TDs. By efficiently utiliz-
ing MEC server resources, the scheme aims to maximize
the number of offloaded tasks. The authors of [33], the
study focuses on resource-constrained scenarios and explores
the utilization of an improved metaheuristic optimization
algorithm called PGL (Particle SwarmOptimization based on
Genetic Learning). This approach combines the local search
capability of particle swarm optimization with the genetic
operations of genetic algorithms to optimize various aspects,
including task offloading, user association, CPU speed of
computing devices, transmission power, and resource alloca-
tion of base stations. The authors of [34], a computational
offloading algorithm based on DDPG is employed to obtain
optimal offloading strategies in unpredictable dynamic envi-
ronments. This approach optimizes user scheduling, task
offloading ratios, UAVflight angles, and flight speeds to min-
imize the maximum processing latency. The authors of [35],
a joint optimization approach for computational offload-
ing strategies and UAV trajectories is employed. This is
achieved by utilizing the Population Diversity-based Binary
Particle Swarm Optimization (PDPSO) algorithm and DDPG
algorithm to obtain optimal solutions. The aim is to enable
real-time communication between TDs and UAV, thereby
minimizing overall energy consumption and latency while
enhancing the quality of service (QoS) for users.

In the aforementioned literature, the binary offloading
mode entails completely offloading the entire task to the UAV
for processing. This approach leads to higher computational
latency, increased drone energy consumption, and reduced
flight endurance. The partial offloading mode divides the task
into two subtasks using an offloading ratio, which are then
allocated to different computational nodes for parallel pro-
cessing. This mode substantially reduces latency and energy
consumption. Nevertheless, in real-world applications, com-
putational tasks typically consist of multiple interdependent
subtasks. For instance, tasks like image recognition involve
various interconnected subtasks such as data loading, pre-
processing, feature extraction, classification, and regression.

These subtasks are interconnected, with the output of one
subtask serving as the input for another [36]. Additionally,
ensuring the interdependency and sequence of execution
among these subtasks significantly impacts the overall com-
putational efficiency of the task. It is worth noting that the
task offloading problem has been proven to be a complex NP-
HARD issue [37]. Hence, devising and implementing viable
offloading strategies remains a substantial challenge.

III. SYSTEM MODEL AND PROBLEM FORMULATION
In this work, we consider a UAV-assisted MEC system con-
sisting of N TDs and one UAV equipped with a MEC server.
The set of TDs is denoted by i ∈ N = {1, 2, 3, . . . ,N }.
We employ time division multiple access (TDMA) to par-
tition the continuous time into equal-length time slots, i.e.,
t ∈ T = {1, 2, 3, . . . ,T }. In each time slot t , by adjusting
its flying velocity ω(t) and orientation θ(t), the UAV reaches
the target location within the flying time Tfly to provide com-
munication and computation services to a specific TD i. The
other TDs need to wait for the next time slot to get serviced.

FIGURE 1. System network model.

In a three-dimensional Cartesian coordinate framework,
TDs are dispersed randomly within a specified rectangular
region, each side extending to a maximum distance of Dmax
meters. The location of a specific TD, referred to as TDi,
is marked by Li=(xi, yi, 0). An UAV operates at a constant
altitude H above this rectangular zone, with its dynamic
position at any time t given by

α (t) = α (t − 1)+ ω (t) ∗ Tfly∗ cos (θ (t)) (1)

β (t) = β (t − 1)+ ω (t) ∗ Tfly∗ sin (θ (t)) (2)

where ω (t) is the velocity, Tfly the flight duration, and θ (t)
the flight direction angle at time t . The conceptual framework
of the system is depicted in Figure 1.

A. TASK MODEL
To enable fine-grained task offloading, we model the
overall application task as a DAG, G = (V ,E). V
denotes the set of node tasks, where each node task vj∈V ,

VOLUME 12, 2024 42523

C. Zheng et al.: Multi-Agent Collaborative Optimization of UAV Trajectory and Latency-Aware DAG

j ∈ {0, 1, 2, 3, . . . ,M} constitutes the overall application
task. The directed edge set E = {e =

(
vj, vk

)
, k ∈

{1, 2, 3, . . . ,M}} represents the dependency between adja-
cent node tasks. We define in(vj) and out(vj) as the set of
immediate predecessor and successor tasks of node vj, respec-
tively. As shown in the DAG task in Fig. 1, the in-degree
set of node task v4 is in (v4) = {v1, v2, v3}, implying that
v4 can only start execution after all its predecessor tasks
v1, v2 and v3 finish execution. The data size of vj on TDi
is denoted by dj(t). In consideration of the DAG struc-
ture, characteristics of node tasks, system requirements, and
optimization objectives, an appropriate offloading decision
S(t) = (s1, s2, s3, . . . , sM) , is determined for each node
task. Here, sj∈ {0, 1} denotes whether vj is offloaded or not,
with sj = 1 indicating offloading and sj = 0 indicating
otherwise. FT localj (t) is defined as the completion time when
TDi locally executes vj within time slot t , FT upj (t) represents
the completion time when TDi uploads vj to theMEC through
a wireless link, FT calcj (t) corresponds to the completion time
of the computation of vj onMEC, and FT downj (t) signifies the
completion time when TDi downloads the output data of vj
from MEC.

B. COMMUNICATION MODEL
Channel State Information (CSI) is a crucial metric for assess-
ing the quality of the communication link between UAV and
ground TDs, encompassing key wireless channel attributes
such as signal attenuation, multipath effects, and signal
interference. In our UAV-assisted MEC system, to simplify
problem handling and focus on the core issues, we adopted a
Line-Of-Sight (LOS) communication model to estimate the
channel gain, thereby calculating the CSI. The channel gain
of the LOS link between the UAV and TD i can be expressed
as:

g (t) =
µ

duu
(3)

where µ denotes the channel gain at the reference distance
of 1 m, and duu = ∥Li − U (t)∥ represents the Euclidean
distance between the UAV and the corresponding TD i in
time slot t . As the UAV moves, duu is updated in real-time,
thereby dynamically adjusting the value of CSI. Our assump-
tion of equal uplink and downlink transmission rates is made
to simplify the model and facilitate problem handling [38].
According to the Shannon formula, the uplink and downlink
transmission data rates between the TD and the MEC server
are given by:

r (t) = Blog2

(
1+

pig (t)
σ 2

)
(4)

where B represents the channel bandwidth, pi denotes the
transmission power, σ 2 is the Gaussian white noise power.

C. LOCAL COMPUTING MODEL
When the offloading decision sj(t) = 0 for vj, it indicates that
vj is computed locally. The prerequisite for vj to start local

execution is that all its predecessor tasks in
(
vj

)
have finished

execution. Thus, the starting time for local computation of vj
is given by:

ST localj (t) = max
{
max

{
FT localk (t) ,FT downk (t)

}}
,

vk ∈ in
(
vj

)
(5)

vj local execution completion time FT localj (t) is:

FT localj (t) = ST localj (t)+
dj (t)Ctd

fi
(6)

where Ctd represents the number of CPU cycles required
to process one byte of data at the TD, and fi denotes the
computational capability of TD i.

D. COMPUTING OFFLOADING MODEL
When the offloading decision sj(t) = 1 for vj, it indicates that
vj will be offloaded to theMEC server for computation. Thus,
the starting time for computation of the offloaded vj is:

ST offloadj (t) = max
{
max

{
FT localk (t) ,FT calck (t)

}}
,

vk ∈ in
(
vj

)
(7)

Similar to the local computation model, the prerequisite for
vj to start execution after offloading is that all its predecessor
tasks in

(
vj

)
have finished execution. However, unlike local

computation, the maximum finish time of the predecessor
tasks is given by max

{
FT localk (t) ,FT calck (t)

}
, without con-

sidering the result downloading time. The latency of the
offloading process consists of the uplink transmission latency,
computation latency, and downlink transmission latency.
Specifically, the uplink transmission latency of vj is:

T upj (t) =
dj (t)
r (t)

(8)

Calculation latency of vj:

T calcj (t) =
dj (t)Cuav

F
(9)

where Cuav represents the number of CPU cycles required
to process one byte of data at the UAV, and F denotes
the computational capability of MEC server. Assuming the
output data size is the same as the input data size for the
offloaded task, and the wireless channel is symmetric with
equal achievable uplink and downlink transmission rates, the
result downloading latency of vj is:

T downj (t) =
dj (t)
r (t)

(10)

The completion instance of vj offloaded execution, denoted
as FT offloadj , can be formulated as follows:

FT offloadj (t) = ST offloadj (t)+ T upj (t)

+ T calcj (t)+ T downj (t) (11)

42524 VOLUME 12, 2024

C. Zheng et al.: Multi-Agent Collaborative Optimization of UAV Trajectory and Latency-Aware DAG

E. NODE SCHEDULING PRIORITY
Scheduling priorities of nodes determine the relative execu-
tion order of tasks during the task execution, significantly
impacting the system’s performance and efficiency. Themod-
eling process for node task scheduling priorities is as follows:
Firstly, for each node task vj, belonging to the i-th layer,
denoted as Layer

(
vj

)
= i, we obtain the node set Li for the

i-th layer through topological sorting:

Li =
{
vj ∈ V |Layer

(
vj

)
= i

}
(12)

Secondly, to establish the scheduling priority model, we sort
according to each layer node’s value P

(
vj

)
, defining the

sorted result SortedByLayer as:

SortedByLayer = Sort
({(

vj,P
(
vj

))
| vj ∈ V

}
,

key = Layer
(
vj

))
(13)

where P
(
vj

)
represents the scheduling priority value output

by the neural network for node task vj, and the key is set to
the node’s layer index, ensuring sorting based on the node’s
layer. Finally, we define the ultimate scheduling priority
set Pnode, sorting within each layer based on the neural net-
work’s output values:

Pnode = Sort
(
SortedByLayer, key = P

(
vj

))
(14)

where the key is set to the scheduling priority of the node task,
ensuring sorting based on the neural network’s output values
within each layer.

F. PROBLEM FORMULATION
Building upon the aforementioned modeling framework, this
study formulates an optimization problem that encompasses
the joint optimization of TDs scheduling priority Ptd , UAV
flight velocity ω, flight angle θ , DAG task offloading deci-
sion S, and node scheduling priority Pnode. The primary
objective is to minimize the maximum processing latency of
each TD within every time slot. This optimization problem is
defined as follows:

min
T∑
t=1

(
Tfly + max

(
FT localM (t) ,FT offloadM (t)

))
Ptd , ω, θ, S,Pnode

s.t. C1 : 0 <θ (t) ≤ 2π, ∀t ∈ T
C2 :sj (t) = {0, 1}, ∀t ∈ T
C3 : 0 ≤α (t)≤Dmax , ∀t ∈ T
C4 : 0 ≤β (t)≤Dmax , ∀t ∈ T
C5 : 0 ≤xi≤Dmax , ∀i ∈ N
C6 : 0 ≤ yi ≤ Dmax , ∀i ∈ N (15)

In the above formulation, the maximum processing latency
of a TD in each time slot consists of the fixed flying latency
of the UAV and the finish time of the last node task vM in
the DAG. Constraint C1 represents the horizontal orientation
angle limits of the UAV. Constraint C2 enforces the offload-
ing decision variables. Constraints C3 and C4 restrict the

UAV to fly within the predefined area. Constraints C5 and
C6 confine the randomly generated locations of the TDs.

IV. DRL BASED OPTIMIZATION ALGORITHM
In this section, we formulate the optimization problem as a
MDP to minimize the overall system latency. First, we intro-
duce the TD3 algorithm that supports continuous action
spaces. Then, we propose a TD3-TT algorithm based on
TD3 by defining the states, actions, and reward function in
the MDP to realize multi-agent collaborative optimization of
UAV trajectory planning and task offloading.

A. TD3 ALGORITHM FRAMEWORK
DRL is an amalgamation of deep learning and reinforcement
learning techniques designed to tackle intricate tasks charac-
terized by high-dimensional state and action spaces. Within
this realm, the TD3 emerges as a cutting-edge algorithm
within the Actor-Critic framework of DRL. It comprises six
neural networks (NNs): an Actor policy network denoted as
µφ , two Critic value networks represented by Qθ1 and Qθ2 ,
along with their corresponding Target Actor target policy
network,µφ′ , and Target Critic target value networks,Qθ ′1

and
Qθ ′2

. Refer to Fig. 2 for an illustration.

1) EXPERIENCE GENERATION
The agent computes the output action from the policy network
µφ based on the current state s (t) at each timeslot t .

a (t) = µφ (s (t))+ ε, ε∼N (0,σ) (16)

where φ represents the parameters of the actor network, and
ε is Gaussian noise. The addition of noise can help avoid get-
ting stuck in local optima and improve exploration efficiency.
The agent interacts with the environment using the noisy
action a(t) and obtains the reward r(t) and next state s′(t),
constituting a state transition sample (s (t) , a (t) , r (t) , s′(t))
stored in the experience replay buffer as the training dataset
for the online networks.

2) TRAINING AND UPDATING THE NETWORK
When the number of state transition samples in the experience
replay buffer exceeds the predetermined capacity, a batch of
state transition samples (bs, bs, br, bs′) is randomly drawn
from it for training the online network. Differing from the
DDPG algorithm, the TD3 algorithm introduces a regulariza-
tion strategy by incorporating truncated Gaussian noise onto
the output actions µθ2 (bs

′) of the Target Actor network. This
is formulated as follows:

bs′ = µφ2

(
bs′

)
+ ε′, ε′ ∼ clip

(
N

(
0,σ 2

)
,−c, c

)
(17)

The parameter φ2 corresponds to the Target Actor network.
The introduction of truncated Gaussian noise serves to ren
der the output Q-values of the two Target Critic networks
smoother, thus mitigating the occurrence of overfitting. Addi-
tionally, recognizing the need to alleviate excessive bias in
Q-function estimates, the TD3 algorithm incorporates dual

VOLUME 12, 2024 42525

C. Zheng et al.: Multi-Agent Collaborative Optimization of UAV Trajectory and Latency-Aware DAG

FIGURE 2. TD3 Network Architecture and Algorithm Flow.

Q-functions, denoted asQθ ′1
(·) andQθ ′1

(·). During the gradient
descent process, the smaller Q-value from the outputs is
selected, and the TD target is computed based on the Bellman
expectation equation of the state-action value function:

Qtar = br + γmin(Qθ ′1
(bs′, ba′),Qθ ′2

(bs′, ba′)) (18)

γ represents the discount factor, while θ ′1 and θ2
′ stand as

the parameters of the two Target Critic networks. With the
intention to enhance the estimated Q-values towards the tar-
get Q-values, the calculation of the TD error is undertaken.
This process establishes two Mean Squared Error (MSE)
loss functions for the purpose of gradient descent, facilitating
the update of the Critic networks’ parameters. The update
equations are as follows:

L (θi) =
1
b

∑ (
Qθi (bs, ba)− Qtar

)2
; i = 1, 2 (19)

θi← θi − lCri∇θiL(θi); i = 1, 2 (20)

Qθ1,2(bs, ba) represent the estimated Q-values output by the
two Critic value networks, with θ1 and θ2 denoting their
respective parameters, and lCri signifying the learning rate.
In the context of RL, the agent’s objective is to maximize
cumulative rewards, where Q-values can gauge the long-term
cumulative rewards of taking specific actions in the current
state. Throughout the training process, the aspiration is for the
Actor network to yield actionsµφ(·) that maximize Q-values,
thereby maximizing cumulative rewards. Consequently, the
loss function and parameter update equation for the Actor
network are formulated as follows:

J (φ) = −
1
b

∑
Qθ1 (bs, µφ(bs)) (21)

φ← φ − lAct∇φJ (φ) (22)

Finally, the parameters φ of the Actor network and the param-
eters θ1 and θ2 of the two Critic networks are synchronized
with the corresponding target networks using soft updates as
follows:

θ ′i ← τθi + (1− τ)θ ′i , i = 1, 2 (23)

φ′← φ + (1− τ)φ′ (24)

where τ is the soft update coefficient,φ′ represents the param-
eters of the Target Actor policy network, and θ ′1, θ

′

2 denote the
parameters of the two Target Critic networks.

B. TD3-TT ALGORITHM DESIGN AND IMPLEMENTATION
In this paper, we innovatively propose the TD3-TT algorithm
based on TD3 that achieves efficient task offloading through
the collaboration of three intelligent agents. First, Agent

FIGURE 3. Cooperative Optimization for Multi-Agent.

42526 VOLUME 12, 2024

C. Zheng et al.: Multi-Agent Collaborative Optimization of UAV Trajectory and Latency-Aware DAG

1 accurately determines the scheduling priority of TDs based
on their location distribution and task requirements. Second,
following the scheduling priority of TDs, Agent 2 controls the
velocity and orientation of the UAV to plan its flying trajec-
tory. Finally, Agent 3 formulates the offloading decisions and
scheduling priorities for the DAG tasks, as depicted in Fig. 3.

The entire task offloading process can be modeled as a
MDP. Below we define the state space, action space, and
reward function for each of the three agents.

1) STATE SPACE
The location distribution of TDs is crucial for determining
the offloading sequence. By observing the global informa-
tion, Agent 1 comprehends the location details between the
UAV and TDs, including coordinates, relative positions, and
distances, to identify the TDs at critical locations that require
prioritized processing. Thus, the state input for Agent 1 is
defined as:

ob1(t) = {L1, . . . ,LN ,U (t)} (25)

In contrast, Agent 2 focuses on local information. The state
input for Agent 2 consists of the location Li of TD i, the
location U (t) of the UAV in the current time slot t , as well
as the number Rnum of remaining TDs to be processed:

ob2(t) = {Li,U (t) ,Rnum} (26)

In order to facilitate a comprehensive understanding by
Agent 3 of the interdependencies and structure existing
between the vj and vk within the DAG, the state input of Agent
3 is composed of a binary M×M adjacency matrix A, along
with the node count Nlayer per layer within the DAG and the
node task size dj(t):

ob3(t) =

A =
 A00 · · · A0M

...
. . .

...

AM0 · · · AMM

 ,Nlayer , d ij (t)

Ajk =

{
1,

(
vj, vk

)
∈E

0,
(
vj, vk

)
/∈E

(27)

where Ajk denotes the connectivity between the current
vjandvk , when a connection exists, the matrix element is set
to 1, otherwise it remains 0.

2) ACTION SPACE
The action space of Agent 1 is the scheduling priority Ptd for
all TDs. A reasonable scheduling priority order can enable
the UAV to more intelligently plan its flight path and avoid
unnecessary flight distance and repetitive routes:

ac1(t) = {Ptd } (28)

The action space of the Agent 2 consists of the UAV’s flight
speed ω (t) and Angle θ (t):

ac2(t) = {ω (t) , θ (t)} (29)

The action space of Agent 3 is the offloading decision S (t)
and scheduling priority Pnode (t) of node tasks:

ac3(t) = {S (t) ,Pnode (t)} (30)

By incorporating the TANH activation function into the out-
put layer of Agent 3’s policy network, the output values
are constrained within the range of -1 and 1, with a dimen-
sionality of 2M . The first M dimensions are binarized to
0 and 1, serving as the offloading decisions for each node
task. The latter M dimensions are employed to establish the
offloading priority sequence of node tasks based on the DAG
layer node count Nlayer and their dependency relationships,
as depicted in Fig. 4. This design ensures that the priority of
any vi is always lower than any of its predecessor tasks in(vi).
It comprehensively considers the relationship between S (t)
and Pnode (t) to enable efficient parallel computation, thereby
minimizing execution latency.

FIGURE 4. Action mapping.

3) REWARD
The optimization objective studied in this paper is the sys-
tem latency throughout the offloading process. In RL, the
reward function should be negatively correlated with the
objective function to ensureminimizing the optimization goal
while maximizing the cumulative discounted reward. The
UAV’s flight distance affects its energy consumption, while
the LOS distance duu(t) between the UAV and TD impacts
the data transmission rate, thereby influencing the execution
latency. Under the premise of a relatively short flight distance,
by maximizing the reduction of the LOS distance between
the UAV and TD and considering both factors synthetically,
we define the reward functions for Agent 1 and Agent 2 as:

re1,2(t) = −
(
ϕ1

(
ε(t)Tfly

)
+ ϕ2 (duu(t)−H)

)
(31)

where ω(t)Tfly denotes the flight distance in time slot t , and
duu(t)−H represents the difference between the distance from
the UAV to TD and the flight altitude of the UAV. ϕ1 and
ϕ2 are respective weight coefficients. By precisely tuning the
weight coefficients, the goal is to enable the UAV to select
the optimal flight trajectory to maximize reduction of the
LOS distance between the UAV and TD, thereby effectively
minimizing the flight distance and flight energy consumption.
During offloading, the finish time of the tail node task vM
determines the execution latency of the DAG task. Thus,

VOLUME 12, 2024 42527

C. Zheng et al.: Multi-Agent Collaborative Optimization of UAV Trajectory and Latency-Aware DAG

according to Equations (4) and (9), the reward function for
Agent 3 is set as:

re3(t) = −max
(
FT localM (t) ,FT offloadM (t)

)
(32)

The detailed process of TD3-TT is shown in Algorithm 1.

Algorithm 1 TD3-TT
Input: L1, . . . ,LN ,U (t) ,Li,Rnum,A,Nlayer , d j (t)
Output: Ptd , ω (t) , θ (t) , S (t) ,Pnode (t)
1: Initialize the network parameters for agents 1,2,3.
2: Set the capacity of experience buffer, and specify the batch
size for training.

3: for episode = 1, 2, . . . , Max_Episode do
4: Resetting the global environment to obtain the initial

ob1 (t) : L1, . . . ,LN ,U (t).
5: Input ob1(t) to the actor network µ1

φ of agent 1 to
obtain the ac1 (t) : Ptd .

6: for t = 1, 2, . . ., T do
7: Obtain states ob2 (t) , ob3 (t) for agents2,3 based on Ptd
8: Use µ2

φ for Agent 2 with input ω (t) , θ (t) to get ac2(t)
9: Useµ3

φ for Agent 3 with input S (t) ,Pnode (t) to get ac3(t)
10: Calculate reward re1,2 (t) , re3(t) using formulas (29,30)
11: Store the (ob2(t), ac2(t), re1,2(t), ob2(t + 1)) in the

replay buffer of agent 2.
12: Store the (ob3(t), ac3(t), re3(t), ob3(t + 1)) in

the replay buffer of agent 3.
13: if batch size < the current capacity of buffer Then
14: for agent i = 2, 3 do
15: Sample a batch of experiences randomly.
16: Calculate critic loss Qiθ1,2 using equation (19)
17: Update critic parameters θ1, θ2 using equation (20)
18: Calculate actor loss of µiφ using equation (21).
19: Update actor parameter φ using the equation (22).
20: Update target parameters according to (23,24)
21: Store the (ob1(t), ac1(t), re1,2(t), ob1(t + 1)) in the replay

buffer of agent 1.
22: if batch size < the current capacity of buffer Then
23: Train and update the actor parameters for agent 1.

V. SIMULATION EXPERIMENT
In this section, we commence by providing an elaborate expo-
sition of the simulated environment for experimentation and
the hyperparameter configuration of the TD3-TT algorithm.
Subsequently, we conduct an in-depth exploration of the UAV
flight trajectory optimization strategy based on the TD3-TT
algorithm. Building upon this foundation, we devise vari-
ous benchmark schemes and comprehensively compare them
with the TD3-TT unloading strategy.

A. EXPERIMENTAL SETTINGS
We utilized the Python 3.8 development environment and the
PyTorch deep learning framework as the simulation software
platform for our experiments, with the hardware platform
consisting of an Intel Xeon Gold 6148 processor and a
3090 graphics card. Experiment parameters and the hyperpa-
rameter settings for the TD3-TT algorithm were established

based on experimental requirements, as illustrated in Table 1
and Table 2.

TABLE 1. Experiment parameter settings.

TABLE 2. Hyperparameter settings for TD3-TT.

In the TD3-TT algorithm, three Agents are employed to
accomplish UAV trajectory optimization, node task offload-
ing decisions, and scheduling priority optimization. The
training process of eachAgent consists of twoActor networks
and four Critic networks. The structural parameters of these
Actor and Critic networks are depicted in Table 3.

B. TRAJECTORY OPTIMIZATION FOR UAV FLIGHT
The UAV departs from its initial position at (10, 20, 100)
and gradually approaches the vicinity of the TDs to pro-
vide computational services. Fig. 5 shows the process of
training Agents 1 and 2 under three different learning rates
to optimize the UAV flight trajectory. Typically, the learn-
ing rate for Critic networks is set higher than that for
Actor networks, ensuring a more accurate estimation of the
value of state-action pairs and providing reliable feedback

42528 VOLUME 12, 2024

C. Zheng et al.: Multi-Agent Collaborative Optimization of UAV Trajectory and Latency-Aware DAG

FIGURE 5. Convergence Curves of Agents 1 and 2 training under different learning rates.

TABLE 3. Network Structure for DA-TD3.

to guide policy updates for Actor networks. We designed
three sets of learning rates with varying magnitudes, con-
sistently maintaining the Critic network’s learning rate one
order of magnitude higher than that of the Actor network.
The findings illustrate that with learning rates set to lra =
0.01 and lrc = 0.1, the algorithm converges rapidly to
a local optimum within around 30 episodes, attributed to
the excessive learning rate. On the other hand, the use of
learning rates lra = 0.00001 and lrc = 0.0001 proves to be
too conservative. The model updates at a slow pace during
the learning process, hindering its ability to swiftly adapt
to dynamic environmental changes, consequently affecting
overall performance enhancement.

When the learning rate is set as lra = 0.0001 and lrc =
0.001, the convergence curve achieves the optimal result

with the highest reward value. As can be seen from Fig. 6a,
during the initial 100 episodes of training, Agents 1 and 2
mainly conduct random exploration to search for the optimal
actions, thus the optimization effect is limited. As the training
episodes increase to around 400 (Fig. 6b), the direct distance
between the UAV and TDs reduces compared to the initial
stages, gradually bringing the UAV closer to the center of
the dense TD region. Around 800 training rounds (Fig. 6c),
as evident from the planar view in Fig. 6d, the Ptd for UAV
to provide computation services to TDs are [2,3,0,1,4]. Due
to the influence of the distance optimization term in the
reward functions re1,2(t), the UAV flies to the vicinity above
each TD in an optimal trajectory every time slot, rather than
directly above the TDs, thereby reducing the flight distance.
Additionally, to ensure thorough exploration of the action
space by the Agents, we introduce progressively diminish-
ing normal distribution noise into the action outputs of the
Actor networks during the training process. This introduces
significant fluctuations in the initial stages of training, but
as training experience accumulates, the agents increasingly
rely on existing experiences to make decisions, leading to a
smoother curve.

In the UAV trajectory optimization experiment, we exam-
ined the impact of different batch sizes and memory sizes
on the model’s convergence performance. As depicted
in Figure 7, we observed poorer convergence when the
batch size and memory size were set to smaller values
(64 and 100). This could be attributed to an insufficient
number of samples, making it challenging for the network
to capture the complex features of the environment. Con-
versely, setting excessively large batch sizes and memory
sizes (512 and 100000) resulted in better final convergence
but came at a significantly increased training cost with limited

VOLUME 12, 2024 42529

C. Zheng et al.: Multi-Agent Collaborative Optimization of UAV Trajectory and Latency-Aware DAG

FIGURE 6. UAV Trajectory Optimization Process.

FIGURE 7. Convergence Curves of Agent 1,2 with Varying Memory and
Batch Sizes.

performance improvement. Considering factors such as con-
vergence speed, stability, and computational costs, a balanced

choice was made with a batch size of 256 and a memory size
of 10000.

C. COMPARISON OF DAG TASK OFFLOADING SCHEMES
Fig. 8 shows the training process of Agent 3 under different
learning rate settings. It can be observed from the results
that the curve converges optimally when the learning rates
are lra = 0.0001 and lrc = 0.001. Unlike the continuous
variables of ω and θ in UAV trajectory optimization, the state
input of Agent 3 consists of discrete variables including S
and Pnode. This leads to a discrete optimal value for the
corresponding reward function. Therefore, there is consid-
erable noise and instability in the convergence curve during
early training. However, after approximately 800 episodes of
training, the curve eventually becomes smooth and stable.

In the study of DAG task offloading optimization, we also
analyzed the impact of different batch sizes and memory
sizes on the model’s convergence performance. As depicted
in Figure 9, the hyperparameter combination of batch size 256

42530 VOLUME 12, 2024

C. Zheng et al.: Multi-Agent Collaborative Optimization of UAV Trajectory and Latency-Aware DAG

FIGURE 8. Convergence Curves of Agents 3 training under different
learning rates.

FIGURE 9. Convergence Curves of Agent 3 with Varying Memory and
Batch Sizes.

and memory size 10,000 was chosen, and it exhibited the best
convergence performance.

To further investigate the significant advantages of
TD3-TT in reducing task execution latency, based on the
optimal trajectory strategies for the UAV generated by
Agent 1 and 2, we designed the following four baseline
schemes for comprehensive comparison and analysis of the
execution latency performance:

• Random Offloading Recursion Priority (RORP): In
this scheme, the S for vj is randomly generated, while
the head and tail node tasks must be executed locally to
ensure data transmission integrity. The Pnode is recur-
sively generated based on the offloading latency cost
using the following equation:

P
(
vj

)
= max (P (vk))+ T

up
j + T

calc
j + T downj ,

vk ∈ out
(
vj

)
(33)

The termination condition of recursion is:

P
(
vj

)
= T upj + T

calc
j + T downj , j = M (34)

P
(
vj

)
can be regarded as the critical path cost from node

task vj to the exit task. By sorting P
(
vj

)
, the Pnode can

be obtained. This priority definition first ensures that the
priority of any node task vj is always higher than any of
its successor tasks vk . It also reinforces that among peer
tasks, the priority of the task with higher execution cost
is strengthened.

• ALL Offloading Recursion Priority (AORP): In this
scheme, all node tasks except the head and tail tasks are
fully offloaded to the MEC server for execution. The
Pnode is the same as the RORP scheme.

• ALL Local Recursion Priority (ALRP):In this
scheme, all node tasks are executed locally, and thePnode
is the same as the RORP scheme.

• DDPG-TT: In this scheme, the TD3 network architec-
ture in TD3-TT is replacedwith aDDPGnetwork, where
the actor network generates the S and Pnode.

FIGURE 10. DAG task.

Fig. 10 illustrates a DAG task comprising 10 nodes and
validates the effectiveness of the TD3-TT algorithm using
the proposed offloading scheme. In Fig. 11a, the RORP is
applied, resulting in S = [0,1,0,1,1,1,0,0,0,0] and Pnode =
[0,1,2,6,5,3,4,8,7,9]. Below is an analysis of the entire
offloading process:When the v0 completes local computation
in 0.23s, its outdegree nodes v1 and v2 transition from blocked
to ready states. Following S, they simultaneously compute
locally and on the MEC server. As out (v1) = {v5, v6} and
out (v2) = {v3, v4} enter the ready state, only one node
task can be involved in uploading, computation, and result
transmission at a given time. Accordingly, based on Pnode, v6
completes its upload task at 0.8s, after which v5 commences
uploading. Similar principles are followed for computation
and result transmission. v7, v8 and v9 are scheduled for local
execution, with v8’s execution starting at 1.41s based on the
maximum completion time of its in(v8). Finally, v7 and v9
are computed locally in sequence. The entire task duration
is 2.08s.

In Fig. 11b, the AORP is employed. Here, after the initial
local computation of the v0, v1 to v8 are offloaded to the
MEC server for computation based on S and Pnode. The total
completion time in this case is 2.22s. In contrast to the RORP,
the ALRP entirely disregards the MEC server computational

VOLUME 12, 2024 42531

C. Zheng et al.: Multi-Agent Collaborative Optimization of UAV Trajectory and Latency-Aware DAG

FIGURE 11. System latency of Different Offloading Schemes.

resources, resulting in a execution time of 2.24s. Fig. 11c
and 9d depict the offloading scheduling schemes utilizing
the DDPG-TT and TD3-TT algorithms, respectively. It is
evident from these figures that their computation task latency
is 1.54s and 1.58s, both of which are lower than the other
schemes. This reduction in latency is due to the collaborative
optimization of S and Pnode by Agent 3, which efficiently
utilizes both local and MEC server computational resources
for parallel computation.

To evaluate the performance of the TD3-TT under vary-
ing TD counts, we conducted tests with various offloading
schemes using a consistent random seed. The results from
Fig. 12 clearly indicate that as the number of TD increases,
the performance advantage of the TD3-TT becomes more
pronounced compared to other benchmark schemes. Consid-
ering that the MEC server’s computing capability directly
affects the task execution latency, we adjust the MEC server’s
computing resource frequency while keeping the number of
TDs unchanged at 5, to observe its impact on the execu-
tion latency, as shown in Fig. 13. When the computational
resource frequency is set at 1GHz, it can be observed that the
execution latency of both TD3-TT and DDPG-TT are close to
the ALRP. This behavior arises from the inclination of Agent
1 to offload tasks locally when the offloading cost exceeds the
local computation cost. As theF increases gradually, TD3-TT

FIGURE 12. System Latency under Different N .

FIGURE 13. System Latency under Different F .

reasonably offloads tasks to the local device or MEC server
based on their size, achieving the maximum degree of parallel
computing to reduce task execution latency.

Considering that all the experimental task node quantities
M=10 remain fixed, to investigate the impact of task node
quantities on execution latency, Fig. 14 demonstrates the
adaptability of the TD3-TT scheme under varying types of
DAG tasks. By altering the DAG’s node quantity M within
the simulation environment and accordingly adjusting the
dimensions of the Actor network’s outputs, we compare the
execution latency of different offloading schemes for varying
node quantities in the DAG tasks. From the observation of
the graph, it is evident that with the increase in the quan-
tity of node tasks within a single time slot, the execution
latency for all schemes also increase. TD3-TT demonstrates
its capacity to adapt to diverse types of DAG tasks by
analyzing the dependency relationships and scales of node
tasks, thereby optimizing the outputs of the Actor network
to achieve the optimal S and Pnode. In comparison to RORP,
TD3-TT showcases an average reduction in execution latency

42532 VOLUME 12, 2024

C. Zheng et al.: Multi-Agent Collaborative Optimization of UAV Trajectory and Latency-Aware DAG

FIGURE 14. System Latency under Different Number of DAG Node Tasks.

of around 19%. In comparison to AORP, this reduction is
approximately 27%, around 30% when compared to ALRP,
and also a 4% decrease compared to DDPG-TT.

VI. CONCLUSION
This paper concentrates on optimizing UAV trajectories and
the execution latency of DAG tasks in UAV-assisted MEC
systems. It innovatively introduces the TD3-TT algorithm,
which leverages multiple agents to collaboratively optimize
the scheduling priorities for TDs, UAV flight speed, direc-
tion angles, offloading decisions, and scheduling priorities
for DAG tasks. Within this algorithm, Agents 1 and 2 uti-
lize heterogeneous reward functions, enabling the UAV to
select optimal flight paths that not only minimize the line-
of-sight distance to TDs but also effectively reduce the
flight distance. Moreover, the algorithm ingeniously maps
the network output of Agent 3 to the offloading decisions
and scheduling priorities of DAG tasks. Extensive numerical
simulation results demonstrate that, compared to other bench-
mark schemes, the TD3-TT algorithm exhibits remarkable
adaptability across different types of DAG tasks, signifi-
cantly reducing task execution latency. However, this paper
focuses solely on latency optimization. Future work will
need to extend to joint optimization of latency and energy
consumption and collaborative planning in complex flight
environments with obstacles, as well as cooperation among
multiple UAVs.

REFERENCES
[1] Y. Mao, C. You, J. Zhang, K. Huang, and K. B. Letaief, ‘‘A survey on

mobile edge computing: The communication perspective,’’ IEEECommun.
Surveys Tuts., vol. 19, no. 4, pp. 2322–2358, 4th Quart., 2017.

[2] L. Chettri and R. Bera, ‘‘A comprehensive survey on Internet of Things
(IoT) toward 5G wireless systems,’’ IEEE Internet Things J., vol. 7, no. 1,
pp. 16–32, Jan. 2020.

[3] M. A. Jamshed, K. Ali, Q. H. Abbasi, M. A. Imran, and M. Ur-Rehman,
‘‘Challenges, applications, and future of wireless sensors in Internet of
Things: A review,’’ IEEE Sensors J., vol. 22, no. 6, pp. 5482–5494,
Mar. 2022.

[4] C. Zhang and Y. Lu, ‘‘Study on artificial intelligence: The state of
the art and future prospects,’’ J. Ind. Inf. Integr., vol. 23, Sep. 2021,
Art. no. 100224.

[5] P. McEnroe, S. Wang, and M. Liyanage, ‘‘A survey on the convergence of
edge computing and AI for UAVs: Opportunities and challenges,’’ IEEE
Internet Things J., vol. 9, no. 17, pp. 15435–15459, Sep. 2022.

[6] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, ‘‘Edge computing: Vision and
challenges,’’ IEEE Internet Things J., vol. 3, no. 5, pp. 637–646, Oct. 2016.

[7] K. Cao, Y. Liu, G. Meng, and Q. Sun, ‘‘An overview on edge computing
research,’’ IEEE Access, vol. 8, pp. 85714–85728, 2020.

[8] B. Gao, Z. Zhou, F. Liu, F. Xu, and B. Li, ‘‘An online framework for joint
network selection and service placement in mobile edge computing,’’ IEEE
Trans. Mobile Comput., vol. 21, no. 11, pp. 3836–3851, Nov. 2022.

[9] M. Abrar, U. Ajmal, Z. M. Almohaimeed, X. Gui, R. Akram, and
R. Masroor, ‘‘Energy efficient UAV-enabled mobile edge computing for
IoT devices: A review,’’ IEEE Access, vol. 9, pp. 127779–127798, 2021.

[10] Y. Nie, J. Zhao, F. Gao, and F. R. Yu, ‘‘Semi-distributed resource
management in UAV-aided MEC systems: A multi-agent federated rein-
forcement learning approach,’’ IEEE Trans. Veh. Technol., vol. 70, no. 12,
pp. 13162–13173, Dec. 2021.

[11] W. Lu, Y. Ding, Y. Gao, Y. Chen, N. Zhao, Z. Ding, and A. Nallanathan,
‘‘Secure NOMA-based UAV-MEC network towards a flying eavesdrop-
per,’’ IEEE Trans. Commun., vol. 70, no. 5, pp. 3364–3376, May 2022.

[12] A. Mohammed, H. Nahom, A. Tewodros, Y. Habtamu, and G. Hayelom,
‘‘Deep reinforcement learning for computation offloading and resource
allocation in blockchain-based multi-UAV-enabled mobile edge comput-
ing,’’ in Proc. 17th Int. Comput. Conf. Wavelet Act. Media Technol. Inf.
Process. (ICCWAMTIP), Chengdu, China, Dec. 2020, pp. 295–299.

[13] S. M. A. Huda and S. Moh, ‘‘Survey on computation offloading in
UAV-enabled mobile edge computing,’’ J. Netw. Comput. Appl., vol. 201,
May 2022, Art. no. 103341.

[14] A.M. Seid, J. Lu, H. N. Abishu, and T. A. Ayall, ‘‘Blockchain-enabled task
offloading with energy harvesting in multi-UAV-assisted IoT networks:
A multi-agent DRL approach,’’ IEEE J. Sel. Areas Commun., vol. 40,
no. 12, pp. 3517–3532, Dec. 2022.

[15] A. M. Seid, G. O. Boateng, B. Mareri, G. Sun, and W. Jiang, ‘‘Multi-agent
DRL for task offloading and resource allocation in multi-UAV enabled
IoT edge network,’’ IEEE Trans. Netw. Service Manage., vol. 18, no. 4,
pp. 4531–4547, Dec. 2021.

[16] J. Chen, H. Xing, Z. Xiao, L. Xu, and T. Tao, ‘‘A DRL agent for jointly
optimizing computation offloading and resource allocation inMEC,’’ IEEE
Internet Things J., vol. 8, no. 24, pp. 17508–17524, Dec. 2021.

[17] J. Wu, L. Wang, Q. Jin, and F. Liu, ‘‘Graft: Efficient inference serving for
hybrid deep learning with SLO guarantees via DNN re-alignment,’’ IEEE
Trans. Parallel Distrib. Syst., vol. 35, no. 2, pp. 280–296, Feb. 2024.

[18] J. Wu, L. Wang, Q. Pei, X. Cui, F. Liu, and T. Yang, ‘‘HiTDL: High-
throughput deep learning inference at the hybrid mobile edge,’’ IEEE
Trans. Parallel Distrib. Syst., vol. 33, no. 12, pp. 4499–4514, Dec. 2022.

[19] Q.Wu and R. Zhang, ‘‘Common throughput maximization in UAV-enabled
OFDMA systems with delay consideration,’’ IEEE Trans. Commun.,
vol. 66, no. 12, pp. 6614–6627, Dec. 2018.

[20] Q. Chen, Z. Zheng, C. Hu, D.Wang, and F. Liu, ‘‘On-edgemulti-task trans-
fer learning: Model and practice with data-driven task allocation,’’ IEEE
Trans. Parallel Distrib. Syst., vol. 31, no. 6, pp. 1357–1371, Jun. 2020.

[21] S. Chen, L. Wang, and F. Liu, ‘‘Optimal admission control mecha-
nism design for time-sensitive services in edge computing,’’ in Proc.
IEEE Conf. Comput. Commun. (INFOCOM), London, U.K., May 2022,
pp. 1169–1178.

[22] X. Zhou, L. Huang, T. Ye, and W. Sun, ‘‘Computation bits maximization
in UAV-assisted MEC networks with fairness constraint,’’ IEEE Internet
Things J., vol. 9, no. 21, pp. 20997–21009, Nov. 2022.

[23] Z. Xie, X. Song, J. Cao, and W. Qiu, ‘‘Providing aerial MEC service
in areas without infrastructure: A tethered-UAV-based energy-efficient
task scheduling framework,’’ IEEE Internet Things J., vol. 9, no. 24,
pp. 25223–25236, Dec. 2022.

[24] L. Huang, X. Feng, C. Zhang, L. Qian, and Y. Wu, ‘‘Deep reinforce-
ment learning-based joint task offloading and bandwidth allocation for
multi-user mobile edge computing,’’ Digit. Commun. Netw., vol. 5, no. 1,
pp. 10–17, Feb. 2019.

[25] Z. Yang, S. Bi, and Y. A. Zhang, ‘‘Online trajectory and resource opti-
mization for stochastic UAV-enabledMEC systems,’’ IEEE Trans.Wireless
Commun., vol. 21, no. 7, pp. 5629–5643, Jul. 2022.

[26] J. Xue, Q. Wu, and H. Zhang, ‘‘Cost optimization of UAV-MEC network
calculation offloading: A multi-agent reinforcement learning method,’’ Ad
Hoc Netw., vol. 136, Nov. 2022, Art. no. 102981.

[27] L. Zhang and N. Ansari, ‘‘Optimizing the operation cost for UAV-aided
mobile edge computing,’’ IEEE Trans. Veh. Technol., vol. 70, no. 6,
pp. 6085–6093, Jun. 2021.

VOLUME 12, 2024 42533

C. Zheng et al.: Multi-Agent Collaborative Optimization of UAV Trajectory and Latency-Aware DAG

[28] N. Lin, H. Tang, L. Zhao, S. Wan, A. Hawbani, and M. Guizani,
‘‘A PDDQNLP algorithm for energy efficient computation offloading in
UAV-assisted MEC,’’ IEEE Trans. Wireless Commun., vol. 22, no. 12,
pp. 8876–8890, Dec. 2023.

[29] J. Chen, X. Cao, P. Yang, M. Xiao, S. Ren, Z. Zhao, and D. O. Wu, ‘‘Deep
reinforcement learning based resource allocation inmulti-UAV-aidedMEC
networks,’’ IEEE Trans. Commun., vol. 71, no. 1, pp. 296–309, Jan. 2023.

[30] V. D. Tuong, T. P. Truong, T.-V. Nguyen, W. Noh, and S. Cho, ‘‘Partial
computation offloading in NOMA-assisted mobile-edge computing sys-
tems using deep reinforcement learning,’’ IEEE Internet Things J., vol. 8,
no. 17, pp. 13196–13208, Sep. 2021.

[31] J. Ji, K. Zhu, C. Yi, and D. Niyato, ‘‘Energy consumption minimization
in UAV-assisted mobile-edge computing systems: Joint resource allo-
cation and trajectory design,’’ IEEE Internet Things J., vol. 8, no. 10,
pp. 8570–8584, May 2021.

[32] Q. Tang, L. Chang, K. Yang, K. Wang, J. Wang, and P. K. Sharma,
‘‘Task number maximization offloading strategy seamlessly adapted to
UAV scenario,’’ Comput. Commun., vol. 151, pp. 19–30, Feb. 2020.

[33] J. Bi, H. Yuan, K. Zhang, and M. Zhou, ‘‘Energy-minimized partial
computation offloading for delay-sensitive applications in heterogeneous
edge networks,’’ IEEE Trans. Emerg. Topics Comput., vol. 10, no. 4,
pp. 1941–1954, Oct. 2022.

[34] Y. Wang, W. Fang, Y. Ding, and N. Xiong, ‘‘Computation offloading opti-
mization for UAV-assisted mobile edge computing: A deep deterministic
policy gradient approach,’’ Wireless Netw., vol. 27, no. 4, pp. 2991–3006,
May 2021.

[35] Y. Gan and Y. He, ‘‘Trajectory optimization and computing offloading
strategy in UAV-assisted MEC system,’’ in Proc. Comput., Commun. IoT
Appl. (ComComAp), Shenzhen, China, Nov. 2021, pp. 132–137.

[36] J. Liang, K. Li, C. Liu, and K. Li, ‘‘Joint offloading and scheduling deci-
sions for DAG applications in mobile edge computing,’’ Neurocomputing,
vol. 424, pp. 160–171, Feb. 2021.

[37] J. Wang, J. Hu, G. Min, W. Zhan, Q. Ni, and N. Georgalas, ‘‘Computation
offloading in multi-access edge computing using a deep sequential model
based on reinforcement learning,’’ IEEE Commun. Mag., vol. 57, no. 5,
pp. 64–69, May 2019.

[38] T. Q. Dinh, J. Tang, Q. D. La, and T. Q. S. Quek, ‘‘Offloading in mobile
edge computing: Task allocation and computational frequency scaling,’’
IEEE Trans. Commun., vol. 65, no. 8, pp. 3571–3584, Aug. 2017.

CHUNXIANG ZHENG received the master’s
degree in computer application.

She is a Professor with Anqing Normal Univer-
sity, with a strong background in the specialized
field of computer science. Her research inter-
ests include edge computing, deep learning, and
reinforcement learning. Her current research is
dedicated to seamlessly integrating deep learn-
ing and reinforcement learning methodologies,
aiming to provide innovative solutions for the
optimization of communication resources.

KAI PAN is currently a Graduate Student majoring
in information and communication engineering
with Anqing Normal University. He has con-
tributed to internationally recognized journals with
published academic papers and actively engaged
in numerous well-known academic conferences
and professional practices. His research interests
include artificial intelligence, deep reinforcement
learning, edge computing, and machine vision.

JIADONG DONG received the Ph.D. degree in
mechanical design and theory. He is a Distin-
guished Professor with AnqingNormal University,
possesses a robust professional background in
the field of mechanical engineering. His pri-
mary research interests include industrial internet,
industrial edge computing, and machine learning.
He serves as a Valuable Member for the Indus-
trial Internet Expert Advisory Committee of Anhui
Province.

LIN CHEN is currently a Graduate Student major-
ing in information and communication engineer-
ing with Anqing Normal University. She has pub-
lished academic articles in well-known national
journals and has participated in many academic
conferences during her graduate studies. Her main
research interests include industrial internet and
edge computing.

QINGHU GUO is a Graduate Student withAnqing
Normal University. His research interests include
industrial internet, intelligent manufacturing, and
machine vision.

SHUNFENG WU received the master’s degree
in information and communication engineering.
He has a strong professional background in wire-
less communications. He is currently an Assistant
Professor with the School of Electronic Engineer-
ing and IntelligentManufacturing, AnqingNormal
University. His research interests include artificial
intelligence, machine learning, and wireless com-
munications.

HANYUN LUO received the master’s degree in
computer application. He is a Professor with
Anqing Normal University. His main research
interests include edge computing, data mining, and
network security.

XIAOLIN ZHANG received the master’s degree in
computer application. He is anAssociate Professor
with AnqingNormal University. Hismain research
interests include edge computing, data mining, and
network security.

42534 VOLUME 12, 2024

