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ABSTRACT This study explores a novel approach to monitor the spectral emission of LEDs by estimating
the spectral power distribution from the spectral sensor responses during an accelerated aging experiment.
Two methods for reconstructing the actual LED spectra from sensor responses are presented and tested, one
solely requires sensor datasheet information and the other uses a full spectral characterization of the sensor’s
spectral sensitivities. The reconstruction results show that a spectral sensor can provide accurate spectral
estimates even after severe LED degradation. Only for an LED that suffered a phosphor crack, affecting its
spatial radiation characteristics, limited ability to estimate the true spectral power distribution without prior
assumptions about the spectral changes must be reported. Overall, the use of a spectral sensor, even without
detailed characterization of the sensor itself, allows for an accurate monitoring of the true emission of LEDs,
with a maximum radiometric error of 0.73%, a maximum colormetric error of 0.00171u′v′ and a maximum
spectral nRMSE error of 0.0097 compared to a spectroradiometric measurement. This advance holds great
promise for improving lighting technology, particularly in applications that require constant radiometric
output and stable color.

INDEX TERMS Sensor feedback, spectral sensing, LED degradation, spectral reconstruction, closed loop,
spectral power distribution, constant radiometric output, constant light output, stable lighting color, LED
maintenance.

I. INTRODUCTION
The research and development of light emitting diodes
(LEDs) is closely related to LED lifetime modelling and the
associated dependence on operating conditions [1], [2], [3],
[4]. Today, there are standardized and established approaches
described in the ANSI/IES TM-21 to approximate, model,
and extrapolate the radiant flux as a function of operating
time, temperature, and current [5]. However, modeling the
spectral characteristics is much more complex [6], [7], [8],
and significant luminous flux, colorimetric, and spectral
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errors between state of the art modelling approaches and real
degradation data can be observed [9], [10], [11], [12], [13],
[14], [15], [16], [17], [18], [19], showing heterogeneity even
within sample groups [20]. As a consequence, it is currently
unfeasible to use the modeled spectral degradation for proper
aging compensation in multi-channel LED systems.

While models could be or already have been developed
for the in-situ estimation of LED radiant flux decrease
from diode parameters on a chip level [21], [22] or
from the electrical and optical small-signal modulation
responses [23], there are currently limited possibilities to
determine the aging effects that occur in the package from
monitoring only the electrical parameters. However, with
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the improvements in crystal quality, device efficiency, and
thermal management, the lifetime limiting factors have
shifted from the semiconductor chip towards the package
elements of the LED system [3]. Defects that may occur on a
package level are e.g. delamination, encapsulant yellowing
and cracking, tarnishing of the silver reflector, phosphor
effects, or cracks [24]. In particular, operation at higher
temperatures and low wavelength radiation is known to be
associated with decreasing phosphor conversion efficiency
and degradation of polymer encapsulants [25].
This paper tackles the issue of LED degradation prediction

from a different perspective and addresses the question of
whether the actual spectral power distribution (SPD) of a
degrading LED can be estimated with sufficient spectral and
colorimetric accuracy for lighting applications from spectral
sensor responses.

The use of information captured with spectral sensors has
already been investigated for various lighting applications.
Most of the previous work found in the literature considered
RGB-like sensors for modeling and predicting trichromatic
responses and/or integral measures of lighting quality:
Trinh et al. [26] demonstrated the possibility to estimate
the circadian effectiveness of light sources in terms of the
circadian stimulus (CS) metric from an RGB color sensor.
Agudo et al. [27] developed a portable low-cost color-picking
device for non-self-luminous surfaces by combining an RGB
color sensor with an integrated high-power white LED.
Botero-Valencia et al. [28] proposed a method to estimate
the correlated color temperature (CCT) from RGB sensor
responses by using linear regression for the transformation
from RGB responses to CIE XYZ tristimulus values together
with McCamy’s CCT approximation method [29]. Later,
in order to classify artificial light sources into illuminant
categories and estimate color temperature and color rendition
measures, Botero-Valencia et al. [30] employed a k-nearest
neighbor algorithm and category-specific regression models.
Breniuc et al. [31] used the raw sensor readouts of an
RGBC (RGB + clear silicon channel) sensor to calculate
illuminance and CCT values for a tunable-white LED
luminaire. Chew et al. [32] and Maiti and Roy [33] both
used data from color sensors to model human trichromatic
responses directly in the feedback loop of a multi-luminaire
lighting system. Ashibe et al. [34] developed a lighting
control scheme for a room with 15 RGB luminaires based on
color-sensor feedback that allows for the realization of target
illuminances and chromaticities at different locations in the
room.

As an advancement from simple RGB color sensors,
multi-band (i.e., with considerably more than three spec-
tral channels) sensors emerged to fill the gap between
(trichromatic) color and spectral information, resolving
the spectral energy distribution in greater detail. Botero-
Valencia et al. [35] for example developed an alternative
to a spectrometer for low-cost spectral light measurements
using a multi-layer perceptron (artificial neural network)
for the relative SPD reconstruction from spectral sensor

responses. Amirazar et al. [36] applied this principle to
build a device for monitoring a person’s individual lighting
exposure from an 18-channel spectral sensor, again relying
on an artificial neural network for the SPD reconstruction.
Instead of an SPD reconstruction, Botero-Valencia et al. [37]
also investigated the feasibility of directly estimating certain
color rendition features, such as TM 30-18 Rf and Rg values
or the CIE Ra color rendering index, from spectral sensor
responses.

None of the published works so far have considered
to investigate in detail to which extent a spectral sensor
is able to resolve the spectral changes occurring with the
degradation of an LED over its lifetime. Such knowledge
including an adequate proof-of-concept would open the
door to the development of sensor-based multi-channel
luminaires that are capable of internally compensating for
age-related changes in individual LED channels. As a result,
these luminaires could achieve significantly improved color,
spectral, and radiant flux consistency over the lifetime of
the fixture for factory-calibrated light settings, such as
pre-calculated channel mixtures for various CCTs. Here, the
current work can be considered to lay the foundation for
achieving this goal, firstly, by subjecting four different LEDs
to accelerated aging operating conditions while the spectral
emission is monitored with a spectroradiometer and a spectral
sensor, secondly, by comparing the occurring radiometric,
colorimetric, and spectral changes in the LED spectra to
the corresponding sensor responses while analyzing poten-
tial relationships, and thirdly, by evaluating two different
methods for reconstructing the LED spectra from the sensor
responses differing in the level of required a priori knowledge
about the spectral sensitivities of the sensor. Based on these
contributions, the present work demonstrates for the first time
the potential in using spectral sensors for monitoring LED
degradation.

II. EXPERIMENTAL SETUP AND SAMPLES
A schematic overview of the experimental setup is shown
in Figure 1. The LEDs are surface mounted to individual
aluminum core printed circuit boards, which are in turn fixed
on a copper mounting plate backed by a Peltier element,
heat sink and fan. The solder point temperature of the
LED boards is sensed with a PT100 resistance temperature
sensor and controlled via a THORLABS (Newton, New
Jersey, United States) ITC4020 Laser Diode / Temperature
Controller. A Keithley (Solon, Ohio, United States) 2651A
High Power System SourceMeter is used to drive the LEDs.
A switching unit consisting of multiple relays is used
to connect the LEDs with the source meter: For optical
measurements the switching unit is configured to power
one LED at a time, while for the operation condition the
LEDs under test are driven in series with constant current.
Optical measurements are therefore performed iteratively
with only one LED powered in constant current mode by
the SourceMeter (switching unit configured to connect the
anode and cathode of a single LED to the SourceMeter),
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FIGURE 1. Hardware setup with the temperature-stabilized LEDs being oriented towards and aligned with the spectrometer measuring probe and the
spectral sensor, all shielded by a black housing. Outside the housing are the temperature controller, the spectrometer, the power source for operating the
LEDs and a unit for controlling the circuitry (serial/single) of the LEDs for measurements.

while for accelerated aging with constant stress current, the
switching unit is configured to create a series connection of
all LEDs under test with the anode of the first LED and
the cathode of the last LED connected to the SourceMeter.
Spectral measurements are performed with an Instrument
Systems (Munich, Germany) CAS 140D spectroradiometer
together with an EOP-120 optical probe. The optical probe
is facing the LED mounting plate with a distance of
45 cm. The spectral sensor AS7343 from ams-OSRAM AG
(Premstaetten, Austria) is mounted with a lateral offset of its
optical axis of 5.5 cm to the optical axis of the optical probe.

Since both the sensor and the optical probe approximate
a cosine-corrected and diffused angular response (the sensor
uses a diffusion foil, the optical probe uses an integrated
cosine corrector and diffusion in its glass body), a lateral
offset between the sensor and the optical probe could
result in a difference in the registered irradiance at the
probe and at the sensor position. However, since both SPD
estimation methods compute their estimates relative to the
initial SPD and the initial sensor response, this difference
is already accounted for in the estimation process, making
the measurements from the optical probe and the estimates
computed from the sensor responses absolutely comparable.
This also applies for any color (change) over angle effects
of the LEDs. Only if the geometry or directional emission
of the LEDs were to change during the experiment would
this offset cause errors in the estimation results. The optical
components are placed in a matte black housing to shield
them from external irradiation.

Four commercially available high power LEDs (one green,
one warmwhite, two neutral white) are subjected to 2000 h of
accelerated aging under operating conditions of 1.1A stress
current and a case temperature Tc of 75 °C. Additionally,
a fifth LED is acting as a reference, being measured at the
same intervals as each of the other LEDs but not being
powered the rest of the time andmounted on a separate Peltier
element with Tc = 25 °C.

Table 1 gives the initial irradiance, illuminance, chromatic-
ity, CCT and Duv (distance of the light source chromaticity
to the Plankian locus), while Figure 2 depicts the initial
spectral power distributions of the different LEDswith 30mA

TABLE 1. Initial characteristics (irradiance, illuminance, chromaticity
coordinate, and where applicable CCT and Duv ) of the examined LEDs,
measured at 30 mA operating current and 30 °C case temperature Tc . The
spectral power distributions are given in Figure 2.

FIGURE 2. Spectral irradiance of the investigated LEDs for the 30 mA,
30 °C measurement condition. The parameters are listed in Table 1.

measurement current at 30 °C measurement temperature.
While data was also collected for higher measurement
currents, only the 30mA condition is investigated in this
paper, since the effects of defect associated chip-level LED
degradation are more pronounced for lower measurement
currents [22], [38], [39]. The lowest measurement current
is therefore the most challenging condition to test the
sensor based spectral monitoring of LED degradation. The
measurement cycles are performed in a pulsed manner, where
the measurement current is only applied for the duration of
the optical measurement defined by the time of collecting the
read-outs from both the spectrometer and the spectral sensor.
The impact of sensor temperature was disregarded for this
experiment, it is not expected to have a significant impact
due to relatively stable conditions (mean 30.15 °C and sample
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standard deviation 1.64 °C, which were measured using an
integrated temperature sensor on the spectral sensor’s PCB.
Additionally, the sensor was operated with an internal dark
current correction utilizing covered photodiodes.

III. SPD ESTIMATION FROM SPECTRAL SENSOR
RESPONSES
The electro-optical response of a multi-channel spectral
sensor can mathematically be described using Equation (1)
[40]. The output value ck of the kth sensor channel is
determined by a non-linear function F , which depends on
the sensor’s gain factor κ , on the integration time e, and
the response signal R. The response signal R is obtained by
integrating the product of the spectral irradiance φ(λ) and the
channel’s spectral sensitivity function rk (λ). Additionally, the
term nk in R represents the contribution of additive noise to
the response signal.

ck = F(κ, e,R),

R =
∫

φ(λ) · rk (λ) dλ+ nk . (1)

In this work, the AS7343 optical sensor from ams-OSRAM
AG (Premstaetten, Austria) with 11 spectral channels in
the visible range, an additional clear, and a near-infrared
(NIR) channel is used as the monitoring device for the LED
degradation. The available evaluation kit of the sensor comes
with a diffusion foil attached to the sensor’s circuit board.
Figure 3 shows the relative spectral sensitivities of the optical
sensor system. These sensitivities were determined using an
MSH 300 monochromator setup (Quantum Design GmbH,
Darmstadt, Germany) with a 300W xenon arc lamp from
370 nm to 780 nm in steps of1λ=1 nm, with probe stimuli of
approximately 3 nm full-width at half-maximum (FWHM),
see e.g. Myland et al. [41] or Trinh et al. [26] for further
details.

The sensor features multiple analog gain levels and an
adjustable integration time. For the experiment, the gain of

FIGURE 3. Relative sensor sensitivities of the used spectral sensor
(AS7343, ams-OSRAM AG). According to the datasheet, the maximum
sensitivities of the sensor channels are: 405 nm (actually 401 nm), 425 nm
(423 nm), 450 nm (451 nm), 475 nm (475 nm), 515 nm (516 nm), 550 nm
(544 nm), 555 nm (560 nm), 600 nm (594 nm), 640 nm (631 nm), 690 nm
(687 nm), 745 nm (746 nm). The actual sensitivities were measured on a
monochromator with 3 nm full-width at half-maximum (FWHM) and in
steps of 1 nm.

512x was used together with integration times that ensured a
sensor saturation of the clear channel of at least 20%. For the
30mAmeasurement current, this implied integration times in
the range of 6 s to 25 s depending on the specific LED under
test.

Only little preliminary work exist in the literature on
reconstructing SPDs from sensor responses and none of them
dealt with the reconstruction of spectral, age-related shifts
of LEDs. Botero et al. [35] used a multi-layer perceptron
(MLP) artificial neural network to reconstruct the SPD
of fluorescence, tungsten, and LED spectra mixtures from
simulated sensor responses (10 bands distributed in the
visible spectrum) to an SPD with a wavelength resolution
of 5 nm. The reconstructions are evaluated in terms of SSE
R-value, RMSE, NRMSE, CCT error, and multiple color
rendition metrics. In summary, NRMSE errors lower than
2% are reported. Amirazar et al. [36] also made use of an
MLP model to reconstruct the SPDs of different light sources
from 14 sensor responses to an SPD of 3.5 nm resolution in
the wavelength range between 410 nm and 760 nm. NRMSE
errors lower than 1% are reported on simulated sensor data,
but errors in a real world validation are considerably higher
ranging from 11 up to 40%. The authors attribute these
discrepancies to insufficient training data for the real world
application [36].

In a previous work, the authors of the present paper
demonstrated the in-field applicability of spectral sensors for
spectral reconstruction in real-world lighting scenarios [42],
where, on average, spectral deviations of less than 1.6% in
terms of nRMSE, colorimetric error smaller than 0.0011u′v′,
and illuminance errors below 2.7% could be achieved.

Nonetheless, all these preliminary works assume that
representative training data for sensor-based SPD estimation
are available. In a general illumination scenario, where
perfect reconstruction of individual LED spectra is not
crucial, but rather the overall satisfactory color and spectral
capture of mixtures is of importance, this assumption is
justifiable. However, this approach appears inadequate when
it comes to accurately reconstructing subtle degradation of
individual LEDs without prior knowledge of their aging
process for training purposes.

Therefore, a different approach is under evaluation in this
work: It basically exploits all the information available in the
initial state to enable accurate reconstruction of the specific
LED SPDs during operation, but does not include any a priori
knowledge about possible degradation of the LEDs. For this
purpose, two reconstruction variants should be compared, i.e.,
the estimation via a Wiener filter, which requires knowledge
of the spectral sensor sensitivities, and a minimal knowledge
approach that works only with key parameters taken from
the sensor’s datasheet and polynomial-based interpolation
between the sensor responses. Both reconstruction variants
use the knowledge of the initial SPD of each LED together
with the corresponding sensor response to estimate the
spectral changes between the initial state SPD and the
SPD after a certain number of operating hours under stress
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conditions. This drastically reduces the complexity of the
otherwise ill-posed reconstruction problem of the spectral
irradiance for wavelengths between 370 nm and 780 nm from
eleven sensor responses.

A. DIFFERENCE ESTIMATION WITH WIENER FILTER
The Wiener filter [43] approach is an established method
for reconstructing spectral reflectance from RGB camera
images, when the SPD of the illumination (possibly multiple
SPDs time-multiplexed to increase the dimensionality of the
captured information) and the camera channel sensitivities
are known [44], [45], [46], [47], [48], [49], [50], [51], [52].
Furthermore, the approach has been applied extensively in
the field of sensor sensitivity reconstruction from known
reflectances and SPDs [53]. In general, the Wiener filter is
based on a linear sensor model as described in Equation 2.

c = Rφ + n. (2)

The sensor response vector c results from the product of
the spectral irradiance φ = φ(λ) and the sensitivity matrix R
according to the sensor model from equation (1). n models
additive noise on the sensor responses. The estimation from
the Wiener filter is then given by

φ̂ =Wc, (3)

where the filter matrix W is computed from the covariance
matrix of the SPD to be reconstructed Kφφ = ⟨φφT

⟩, the
sensor sensitivity matrix R, and the system noise matrix
Knn = ⟨nnT

⟩ according to

W = KφφRT(RKφφRT
+Knn)−1. (4)

Since the Wiener Filter is a linear estimator, Equation 3
can also be formulated to estimate the spectral difference
1φ̂ from the sensor response difference 1c. This uses the
knowledge of the initial SPD φinit so that only the (compared
to the full spectral power distribution) much smaller spectral
differences have to be estimated from the sensor response,
as shown in Equation 5.

1c = c− cinit, (5)

1φ̂ =W1c, (6)

φ̂ = φinit +1φ̂. (7)

Assuming statistical independence of the noise in the
channels of the spectral sensor, Knn can be constructed
as a diagonal matrix with the variance of the sensor
responses on the diagonal. The covariance matrix Kφφ is
often calculated from a dataset - in case of the reflectance
estimation task a dataset of spectral reflectances [45], [49],
[52], [54]. The reconstruction quality depends on how well
the spectral quantity to be reconstructed can be described
by the covariance of the data set, therefore, methods were
proposed to weight or select the database entries before
reconstruction [55], [56], [57], [58], [59], [60].
Since it is unclear how a data set for a reconstruction

of the spectral degradation of an LED should be compiled

without already knowing the spectral degradation progres-
sion, a more general approach to the construction of the
matrix Kφφ is investigated in this paper. This makes use of
a matrix with Toeplitz structure according to equation (8)
[47], [51], [61], [62].

Kφφ =



1 ρ ρ2
· · · ρn−1

ρ 1 ρ · · · ρn−2

ρ2 ρ 1
...

...
...

. . . ρ

ρN−1 ρN−2 · · · ρ 1

 . (8)

The parameter ρ of the Toeplitz matrix can be understood
to set the expected correlation between the interpolation
points in the spectral distribution. Its optimum value depends
on the wavelength resolution and the smoothness of the
curves to be reconstructed [53]. In order to incorporate the
knowledge about the initial SPD’s covariance into theWiener
filter estimation, the matrix Kφφ can be transformed by
multiplication of the initial SPD from the left and right as
given by Equation (9). This approach equates to weighting
the covariance of different wavelengths with their respective
power in the initial SPD.

Kφφ,init = φinitKφφφT
init (9)

In the literature regarding the reflectance estimation with
a Toeplitz-structured estimation matrix, ρ is chosen without
further explanation to be 0.97 in two separate studies [47],
[51]. For the reconstruction of the spectral sensitivity of a
camera, on the other hand, ρ is chosen to be 0.99 [53], which
is justified by the smoothness of the expected sensitivity
curves of themonochrome sensor and the transmission curves
of the filters and by the highwavelength sampling rate of 1 nm
steps. In a pre-simulation of theWiener filter approach for the
reconstruction of spectral shifts using spectra composed of up
to two Gaussian functions (roughly simulating ‘‘white’’ and
monochromatic LEDs), practical values for ρ in the range of
0.79 to 0.91 could be determined (slightly depending on the
LED type to be reconstructed). Since LED spectra in general
show sharper peaks and, thus, are less smooth than camera
spectral sensitivities, such a reduction in optimal ρ values
compared to reflectance or sensitivity estimation could be
expected. Hence, for this study, ρ = 0.85 was used for further
computations.

The variances of the sensor response on the diagonal of
Knn are dominated by photon noise in regular operating
conditions of the sensor and, thus, depend on the signal
level of each channel [50]. The photon transfer curve
(i.e., the variance of the sensor response as a function of
the mean sensor response when considering a stable light
source) was determined in a separate measurement setup
for the given sensor and then used to compute the entries
of Knn based on the sensor response input to the Wiener
filter.
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B. DIFFERENCE ESTIMATION WITH SENSOR RESPONSE
INTERPOLATION
The aforementioned Wiener filter approach requires knowl-
edge of the spectral sensitivities of the sensor, which can
only be accurately determined through elaborated procedures
using expensive measurement techniques [41]. Although
there are methods in the literature, as mentioned earlier,
to estimate the sensitivities of a sensor from more practical
setups, it requires to carefully consider how the errors in
this sensitivity estimations would affect the reconstruction
quality. Therefore, as an alternative method to the Wiener
filter, an approach is being investigated that relies solely on
basic information about the sensor itself, i.e., the typical peak
wavelengths of the individual sensor channels obtained from
the manufacturer’s datasheet. This is, of course, an imprecise
piece of information. However, it is worth noting that the
sensor channels already have a certain spectral width that
is larger than the specified ranges of variation for the
peak wavelengths. Thus, using the information from the
datasheet, a rough estimation of the incident energy in
specific wavelength ranges can be made from the sensor
channels. Between these data points comprising the datasheet
peak wavelengths of the channels and the output sensor
values, a very rough estimation of the incident power
distribution can be obtained by interpolation. However, this
would result in an inaccurate estimate of the SPD which is
rather inadequate for further use in colorimetric applications.
A potential solution is to consider the interpolated sensor
responses relative to the initial state of the SPD and the
corresponding sensor responses. The spectral changes can be
determined as multiplicative factors relative to the initial state
by calculating the ratio between the initial interpolated sensor
response and any subsequent interpolated sensor response
as observed during the aging process. This spectral quotient
curve can then be applied to the initial SPD to get an
estimate of the SPD at a later time under stress conditions.
Even though this approach does not allow for resolving
narrowband changes in the power distribution, it still provides
a very intuitivemethod for capturing light output degradation,
which is capable of describing at least power redistributions
from one broader wavelength range to another, e.g., when
examining the excitation peak in relation to the phosphor
emission of phosphor-converted LEDs.

Mathematically, the approach can be summarized in a
few steps, as given by Algorithm 1. Firstly, interpolation
is performed between the eleven sensor responses cτ at a
given time τ to match the wavelengths of the spectrometer
measurements. Subsequently, the quotient tτ (λ) is calculated
between this interpolation c̃τ (λ) and the sensor response
interpolation of the initial state c̃0(λ) for each wavelength.
Finally, the initial spectrum φ0(λ) is multiplied with this
spectral ‘‘transmission’’ quotient to obtain the estimated
spectral power distribution φ̂τ (λ).

A plethora of interpolation methods could be employed
in step 1 of the algorithm. The classical Sprague interpo-
lation method (according to the CIE recommendation for

Algorithm 1 Estimation of Spectral Power Distribution
1: c̃τ (λ) ← Interpolate cτ to match wavelengths of φ0(λ),

with the peak channel sensitivity wavelength λk as the
assumed wavelength of each channel response ck

2: tτ (λ)←
c̃τ (λ)
c̃0(λ)

3: φ̂τ (λ)← φ0(λ) · tτ (λ)

interpolating spectral data [63]) is not suitable in this
case because it assumes that the independent variable is
equally spaced. The Sprague interpolation is based on a
spline interpolation using 5th-degree polynomials, where the
gradients and curvature are constrained to match the neigh-
boring points. Among the various other spline interpolation
methods available, the piecewise cubic hermite interpolating
polynomial (PCHIP) [64] appears advantageous. It preserves
monotonicity, ensuring that no new maxima or minima are
created during the interpolation process besides the known
data points. Figure 4 shows the described procedure on exam-
ple data. As can be seen in the caption of Figure 3 the sensor
used in this work shows some deviations from the typical
channel peak wavelengths given in the datasheet. The effects
of the assumed wavelengths and the applied interpolation
method are analyzed in the discussion section, showing that
the PCHIP interprolation with assumption of the datasheet
peak wavelengths is an adequate approach for a minimal
knowledge spectral reconstruction. The investigation of this
approach aims at determining the quality achievable in the
spectral reconstruction of LED degradation without specific
sensor characterization.

IV. RESULTS
First, the aging of the LEDs themselves and the associated
sensor responses in the raw state are considered. In particular,
the question arises as to whether the sensor is at all capable of
detecting changes in spectral emission with its significantly
reduced wavelength resolution. Figure 5 shows how the
photometric quantities irradiance, illuminance, chromaticity,
and RMSE of the normalized spectra (nRMSE) have changed
over 2000 h of operation under stress conditions for the
individual LEDs. In terms of irradiance and illuminance, the
curves are very similar. The green and NW2 LEDs show the
strongest degradation of up to 25% and 10%, respectively.
The other two LEDs under stress conditions, on the other
hand, degraded only in the lower single-digit percentage
range. Regarding the observed color and spectral deviations,
calculated by the distance 1u′v′ to the start condition in
the CIE 1976 UCS and the RMSE between normalized start
condition and relative SPDs at later times, there are again
similarities in terms of curvature shapes. While the reference
LED, as expected, has not undergone any visible changes, the
green LED and the warm white LED show slight color and
spectral shifts below 1u′v′ = 0.0015 and nRMSE = 0.006.
The NW1 LED exhibits a steep spectral change within the
first 100 h of operating time, which is then continuing with
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FIGURE 4. Computation steps for the estimation of spectral power distributions from interpolated spectral sensor responses. The interpolation is
performed between the sensor responses at a given time. Next, the spectral quotient between this interpolation and the sensor response
interpolation of the initial state is computed for each wavelength. Finally, the initial spectrum is multiplied with this spectral quotient to obtain the
estimated spectral power distribution.

a slower pace and reaches 1u′v′ = 0.0083 and nRMSE =
0.037 at 2000 h. The NW2 LED shows a steep increase in
the first hours, followed by decreasing color and spectral
deviations compared to the initial state, while rising steeply
again towards the end of the test reaching a high level of
1u′v′ = 0.0108 and nRMSE = 0.048 at 2000 h. This can
be explained by crack forming in the phosphor layer applied
to the LED chip.

The recorded relationship between these spectral changes
and the sensor responses of the spectral sensor is visualized
in the next three figures. For the sake of clarity, only the
LEDs with the greatest aging are depicted: Green, NW1, and
NW2. For the green LED, in addition to the differences in
spectra and the differences in sensor responses as compared
to its initial state, the relative changes given by the actual
state divided by the initial state are also shown in Figure 6.
As could be seen in Figure 5, aging mainly affects this LED
in the form of a decrease in radiant flux. When comparing
the differences in spectra to the differences in sensor values,
it is clear that this decrease is also detected by the sensor.
The relative observation of the spectral changes then shows
a minimal shift of the spectral emission towards longer
wavelengths, which can also be recognized in the sensor
responses. However, it already becomes clear here that the
correct interpretation of the sensor data alone (without the
knowledge of the causing spectrum) is not trivial. Although
the relative changes in the spectra roughly match the relative
changes in the sensor responses in terms of their shape, the
wavelength range apparently affected by the sensor seems
much larger than the SPD changes actually are. This is mainly

due to the width of (some) sensor channels (see Figure 3).
Nevertheless, the detectable, apparent correlations between
measured SPDs and observed sensor responses suggest
great potential for reconstructing the spectral degradation
dynamics of the green LED.

For the NW1 LED the ratio changes between the light
component of the blue excitation chip and the orange
component re-emitted by the phosphor over 2000 h of
operation. As can be seen from Figure 7, the blue peak of
the SPD actually increases with increasing operating time,
while the emission of the phosphor in the longer wavelength
range decreases. This behavior is also captured by the spectral
sensor, which again suggests that the spectral aging process
can successfully be reconstructed from the sensor data.

The NW2 LED shows the biggest spectral variations.
Essentially, the curves can be divided into two phases:
First, the blue part of the spectrum decreases in relation to
the phosphor-converted part, until blue light is increasingly
emitted directly from the chip of the LED due to crack
formation in the phosphor. This is accompanied by a decrease
of the phosphor emission, so that after 2000 h more blue
and, at the same time, less yellow light than in the initial
state make up the total emission. These two aging phases can
also be recognized in the differences of the sensor responses
with respect to the start condition. However, the crack-related
elevation of the blue peak in the second phase of aging as
detected by the spectrometer is not reflected in the sensor
data. This can be explained by the fact that the strong spectral
change of the emission due to the crack in the phosphor may
also be accompanied by a change in the spatial radiation
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FIGURE 5. Overview over radiometric, photometric, color difference and
nRMSE development between the initial measurement at the start of the
experiment and later times. The green and NW2 LEDs show the strongest
radiometric degradation with up to 25 % and 10 % respectively. The
reference LED has not undergone any visible changes, the green LED and
the warm white LED show slight, the NW1 LED big color and spectral
shifts. The NW2 LED shows a very dynamic curve of color and spectral
deviations.

characteristics. During a test run of the final state of the
LED, a clear directional dependence of the light color of
the emission could be observed. It is therefore reasonable
to assume that the observed discrepancy in the detection of
the spectral change between the spectrometer and the sensor
is partly due to the spatial distance (5.5 cm, see section II)
between the receiver surface of the spectrometer head and
the sensor, as the sensor was quite capable of detecting such
changes in the blue peak for the NW1 LED. In addition,
the changes of the peak at NW2 concern an even narrower
wavelength range and are surrounded on both sides by
negative spectral differences, which additionally complicates
the correct resolving with regard to the already mentioned
width of the sensor channels. The NW2 LED therefore is a
challenging case for the spectral reconstruction approaches

FIGURE 6. Spectral power distributions and corresponding sensor
responses for the green LED over the course of the 2000 h stress
operation. Also visualized are the differences in spectra and the
differences in the sensor responses compared to the initial LED emission
at 0 h. A correlation with potential for reconstruction is evident between
the sensor responses and the observed spectral behavior.

presented in this work, since a very drastic change in the SPD
occurred during the experiment. At the same time, most of the
spectral degradation is actually captured in the sensor data
suggesting that, even in this case, much of the spectral aging
process can be successfully reconstructed from the sensor
responses.

After presenting the raw data of the aging experiment, the
following subsections are dedicated to the analysis of the
spectral differences reconstructed from the sensor data with
the different methods and their errors.

42302 VOLUME 12, 2024



P. Myland et al.: LED Degradation Monitoring Using a Multi-Channel Spectral Sensor

FIGURE 7. Spectral power distributions and corresponding sensor
responses for the NW1 LED over the course of the 2000 h stress
operation. Also visualized are the differences in spectra and the
differences in the sensor responses compared to the initial LED emission
at 0 h. A correlation with potential for reconstruction is evident between
the sensor responses and the observed spectral behavior.

A. ESTIMATES OF SPECTRAL DIFFERENCES: GREEN LED
For the green LED, the upper left graph of Figure 9 shows
the deviations from the initial spectrum as calculated from
the spectrometer measurements. The following graphs in the
left column illustrate the reconstruction results using the
Wiener filter with a simple Toeplitz matrix Kφφ , the Wiener
filter with the covariance matrix adjusted via Equation 9, and
the PCHIP interpolation approach, which operates without
a measurement of the spectral sensitivities of the sensor.
It can be seen directly that the generic Wiener filter approach
(which knows the spectral sensitivities of the sensor, but apart
from the covariance matrix with Toeplitz structure and ρ =

0.85 nothing about the difference spectra to be reconstructed)
can only estimate the spectral shape of the differences very
roughly. Both, the width of the affected area and the position
of the actual maximum are reconstructed with considerable
errors, as shown in the corresponding residual error graphs
depicted in the right column of Figure 9. In contrast, the
reconstruction results from both the Wiener filter adjusted
to the start spectrum and the PCHIP interpolation are
much closer to the ground truth of the true difference
spectra. However, neither method can fully track the minimal
sideways motion of the emission maximum. This limitation

FIGURE 8. Spectral power distributions and corresponding sensor
responses for the NW2 LED over the course of the 2000 h stress
operation. Also visualized are the differences in spectra and the
differences in the sensor responses compared to the initial LED emission
at 0 h. Two aging phases can be identified from the differences in the
sensor responses and spectra compared to the initial LED state. However,
the elevation of the blue peak in the second phase of aging as detected
by the spectrometer is not reflected in the sensor data.

can also be found in the relative ratios of the sensor responses
(see Figure 6). The most distinct component of the aging
process of the green LED in the form of a decrease in optical
power is estimated from the sensor data with little observable
error.

The overall performances of the various spectral recon-
struction approaches discussed above are visualized in
Figure 10 using suitable error metrics. In addition, the
error evolution between the initial SPD and the degraded
SPDs is given for reference. This basically reflects the
current state of most commercial luminaires where no aging
compensation from sensor feedback or predetermined by
the manufacturer is used. With a similar behavior being
observed for radiometric vs. photometric degradation and
colorimetric vs. spectral degradation, as shown by Figure 5,
the following analysis focuses on irradiance and colorimetric
errors only. With regard to the irradiance calculated from
the reconstructions, the distance to the initial state (shown
in red) increases with time, where after the 2000 h of stress
condition the optical power of the green LED actually
decreased by approx. 31%. With the generic Wiener filter,
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FIGURE 9. Differences to the initial spectrum for the green LED shown
together with the spectral reconstruction results for the different
reconstruction methods in the left column. The right column shows the
spectral errors of the reconstructions compared to the spectrometer
measurements at each time. While the generic Wiener filter with the
synthetic Toeplitz covariance matrix can only give a rough estimate of the
spectral shapes, the spectral errors of the PCHIP approach and the
customized Wiener filter are small.

an underestimation of the optical power of up to 19% (shown
in blue) is observed. In contrast, the irradiance error for the
adjusted Wiener filter (shown in orange) and the PCHIP
interpolation (shown in green) are much closer to zero. The
maximum estimation error in |1Er| of the adjusted Wiener
filter is 0.6%, while for the PCHIP interpolation a maximum
error of 0.73% is observed.

The green LED undergoes only minimal color changes
during this aging experiment so that a maximum error of
0.00121u′v′ is made when neglecting the LED degradation.
The generic Wiener filter continuously estimates the actual
spectrum of the green LED with a larger colorimetric error
of 0.00231u′v′ at its maximum. The colorimetric error of
the adjusted Wiener filter reconstruction, on the other hand,
is slightly smaller compared to neglecting the degradation.
Here, a maximum of 0.0011u′v′ is observed. Finally, the
PCHIP interpolation achieves the best reconstruction result
in terms of residual colorimetric errors showing a maximum
of only 0.00061u′v′.
For the intuitive analysis of aging processes, a represen-

tation of the color coordinates over time as illustrated in
Figure 11 is useful [65]. The color coordinates are depicted in

FIGURE 10. Evaluation of the different spectral reconstruction methods
compared to neglecting the degradation over the course of the
experiment for the green LED. The radiometric error for the adjusted
Wiener filter (shown in orange) and the PCHIP interpolation (shown in
green) are close to zero at all times. The PCHIP interpolation achieves the
best reconstruction result with respect to color deviations.

CIE 1976 u′v′ color space, where the results of the different
reconstruction methods, demarcated by color and marker
type, are compared to the spectrometer measurements. The
time component is visualized by an increasing marker size
representing increasing test time. In addition, a scale marker
is inserted in the lower left corner with its edge lengths
measuring exactly 0.0011u′v′ to ensure an easy visual
assessment of the color distances in the diagram.

As expected from the analysis of the spectral data, the color
coordinates of the green LEDmove roughly on a straight line
due to the slight shift of the peak wavelength in the course of
the aging experiment. All reconstruction methods correctly
estimate the direction of the color changes, but extend
towards this direction to different degrees. While the PCHIP
approach does not fully track the color shift, the Wiener
filters overestimate the shift by indicating higher u′ values.
Looking at the distance ratios between the starting color
coordinates, the final color coordinates, and the estimated
color coordinates of all reconstruction methods raises the
question of whether an increasingly larger estimation error
would be expected with an increasing shift of the LED over
time for times beyond 2000 h, where a divergence of the
estimates occurs. This question should be investigated as part
of future work and can be probed using e.g. a reconstruction
experiment looking into current-induced shifts of several nm
for a monochromatic LED.

B. ESTIMATES OF SPECTRAL DIFFERENCES: NW1 LED
For the NW1 LED, the spectral reconstruction results and
estimation errors are given in Figure 12. The generic Wiener
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FIGURE 11. The color coordinates of the green LED over the course of the
aging experiment. The slight shift of the peak wavelength visible in
Figure 6 causes a move of the color coordinates roughly along a straight
line towards the direction of orange. All reconstruction methods correctly
estimate the direction of the color change. However, the PCHIP approach
does not fully track the color shift, whereas the Wiener filters
overestimate the shift by indicating higher u′ values.

filter again provides only a very inaccurate estimate of the
spectral differences, with significant over- and underestima-
tions especially with regard to the width of the blue peak
and its changes. The adjusted Wiener filter shows very small
spectral errors in its estimation of the difference spectra,
but the largest deviations occur around the maximum of the
blue peak. Apart from the blue spectral region, the PCHIP
interpolation offers a comparably good reconstruction of
the difference spectra, however, the sensor data representing
the behavior of the blue peak are interpreted less accurate
compared to the adjusted Wiener filter.

The evaluation of the error metrics for the spectral
reconstruction of the aging of the NW1 LED is visualized
in Figure 13. From the error curves resulting from simply
neglecting the degradation it can be seen (similar to Figure 5)
that the optical power initially increases slightly and only in
the middle progression of the aging experiment a decrease of
the optical power occurs.

By neglecting the degradation, maximum relative irradi-
ance errors of 1.65% are made. Note that the curve shape
suggests a further degradation and, thus, increasing errors by
neglecting the degradation of the LED for operating times
beyond 2000 h. The reconstruction results obtained by using
the genericWiener filter suffers from an overestimation of the
optical power in terms of irradiance by a maximum of 1.27%

FIGURE 12. Differences to the initial spectrum for the NW1 LED shown
together with the spectral reconstruction results for the different
reconstruction methods in the left column. The right column shows the
spectral errors of the reconstructions compared to the spectrometer
measurements at each time. While the generic Wiener filter with the
synthetic Toeplitz covariance matrix only achieves a rough estimate of the
spectral shapes, the spectral errors of both the PCHIP and the customized
Wiener filter approach are much smaller and mainly located around the
blue peak, where the latter exhibits the least overall spectral errors.

over large parts of the aging experiment. Both the adjusted
Wiener filter and the PCHIP interpolation yield considerably
better reconstruction results with a maximum deviation in
relative Er values of 0.55% for the adjusted Wiener filter and
a slightly smaller maximum deviation of 0.4% for the PCHIP
approach. The corresponding relative Er error curves exhibit
a similar behavior and virtually lie on top of each other. Thus,
the reconstruction estimates obtained for both the adapted
Wiener filter and the PCHIP interpolation approach show
much smaller errors than those of neglecting the degradation.

Concerning the colorimetric errors, the latter in com-
parison to the various sensor-based approaches also yields
significantly larger deviations of up to1u′v′ = 0.0083. Here,
even the generic Wiener filter is capable of providing smaller
colorimetric errors with a maximum 1u′v′ = 0.046. The
error curves for the reconstruction via PCHIP interpolation
are even lower, here maximum colorimetric errors of1u′v′ =
0.0017 are achieved. By far the lowest colorimetric and
spectral errors are observed for the adapted Wiener filter
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FIGURE 13. Evaluation of the different spectral reconstruction methods
compared to neglecting the degradation for the NW1 LED. The irradiance
error for the adjusted Wiener filter and the PCHIP interpolation are
between 0 and 1 % for all times. The adjusted Wiener filter achieves a
spectral reconstruction result with almost no colorimetric errors
compared to a spectroradiometer measurement. The observed
phenomenon of an increase in irradiance compared to the initial state
during the first 1750 h of the experiment is possibly related to the
activation of Mg acceptors in the p-region of the diode [39].

approach, where a maximum deviation of only 1u′v′ =
0.0004 can be reported.

Again, the color shifts of the NW1 LED follow an
approximately straight line oriented towards the blue part
of the color space. As can be seen from Figure 14, all
reconstruction methods correctly predict this shift direction.
However, the generic Wiener filter overestimates the color
coordinates of the LED as being further shifted towards blue
than they actually are. The PCHIP reconstruction, on the
other hand, again remains a little bit too conservative in its
shift estimates, whereas the adjustedWiener filter follows the
course of the spectrometermeasurements very closelywith an
average 1u′v′ ≪ 0.001.

C. ESTIMATES OF SPECTRAL DIFFERENCES: NW2 LED
For the NW2 LED, it can be seen from Figure 15 that,
as expected, all methods have difficulties in capturing
the dynamics of the blue peak in the difference spectra.
In addition, the generic Wiener filter also exhibits difficulties
in correctly reconstructing the spectral changes of the
phosphor-converted light component from the sensor data.
Again, the main difference between the adapted Wiener filter
and the PCHIP interpolation is in the area of the blue peak.
As a result, larger over- and underestimations can be observed
for the PCHIP approach when compared to the adjusted
Wiener filter.

FIGURE 14. The color coordinates of the NW1 LED as a function of time
over the course of the aging experiment. The changing ratio between the
blue chip emission and the phosphor fluorescence moves the color
coordinates towards the direction of blue. All reconstruction methods
correctly estimate the direction of the color change. While the PCHIP
approach slightly underestimates the color shift, the adjusted Wiener
filter tracks it accurately.

The erratic nature of the degradation of the NW2 LED
is also reflected in the error curves of the different recon-
struction methods shown in Figure 16. When considering
the Er errors, neglecting the degradation first leads to an
underestimation and later, from about hour 250 onward, to an
overestimation of the irradiance with an error of 11.41%.
Again, the generic Wiener filter is unsuitable for determining
irradiance with appreciably smaller errors than neglecting the
degradation. Here, the reconstruction results of the adjusted
Wiener filter and PCHIP interpolation likewise show a
transition between the low error start of the experiment and a
fairly constant error towards the end of approx. 2%,where the
transition between the two phases can probably be attributed
to the cracking of the phosphor.

With regard to the color errors, high variability can be
observed. In the initial phase (up to about 250 h), the errors
of the reconstruction methods behave in a similar manner as
for LED NW1. At this point, the first serious damage to the
phosphor appears to set in. Colorwise, the emission of the
NW2 LED then consolidates towards the initial state (up to
approx. hour 600) and, finally, drifts away with continuously
increasing errors. The maximum deviations between the
initial and final state amount to 1u′v′ = 0.0108. PCHIP
reconstruction and adjustedWiener filter show a quite similar
behavior, where the adjusted Wiener filter reconstructs with
smaller errors. In the final state, the color difference between
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FIGURE 15. Differences to the initial spectrum for the NW2 LED shown
together with the spectral reconstruction results for the different
reconstruction methods in the left column. The right column shows the
spectral errors of the reconstructions compared to the spectrometer
measurements at each time. None of the reconstruction methods are
capable of delivering an estimate of the later SPDs without notable
spectral errors. While the errors of the PCHIP and adjusted Wiener filter
approach are mainly around the blue peak of the LED emission due to
underestimation, the generic Wiener filter shows spectral errors
distributed over the whole wavelength range of emission.

reconstruction and spectrometer measurement is 1u′v′ =
0.0062 and 1u′v′ = 0.0049 for the PCHIP interpolation and
the adjusted Wiener filter, respectively.

Even though the generic Wiener filter reconstructs the
SPDs of the NW2 LED with the largest errors of all
reconstruction methods for the first 250 h, the situation
reverses for longer operation and the generic filter achieves
very good error metrics at 2000 h. The largest spectral
changes were observed with the NW2 LED, which are also
reflected in the largest color shifts among the test LEDs
as seen from Figure 17. The color coordinates obtained
from the spectrometer measurements initially run towards
the direction of yellow before taking an almost 180° turn
leading to a steady movement towards the direction of blue
until the end of the experiment while almost intersecting with
the starting color coordinates. This course fits the observed
splitting of the phosphor. As already analyzed spectrally
and ranked accordingly, the generic Wiener filter delivers
the smallest color distances for the later aging phase, while

FIGURE 16. Evaluation of the different spectral reconstruction methods
compared to neglecting the degradation for the NW2 LED. The radiometric
errors of the adjusted Wiener filter and the PCHIP interpolation are
between 0 and 2 % for all times. In general, the adjusted Wiener filter and
the PCHIP approach achieve a spectral reconstruction result with at least
half the colorimetric error compared to neglecting the degradation, but
the asymptotic color distance is greater than the human perception
threshold of 3 standard deviation of color matching (SDCM) often applied
in LED binning (corresponding to a distance of about 0.003 in u′v ′). The
generic Wiener filter appears to outperform the other reconstruction
approaches in terms of color estimation error for the later times.

the other reconstruction methods perform better before the
observed U-turn in color coordinates.

D. ESTIMATES OF SPECTRAL DIFFERENCES: REFERENCE
LED
The reference LED shows no noticeable color shifts
(1u′v′ ≪ 0.001) over the 2000 h experiment, as can
be observed from Figure 18. The PCHIP results are very
narrowly scattered around the spectrometer measurements.
The adjusted Wiener filter shows minimal deviations from
the LED chromaticity coordinates, while the generic Wiener
filter shows 1u′v′ errors of about 0.001.

E. ESTIMATES OF SPECTRAL DIFFERENCES: WW LED
The WW LED follows a right-hand curve in the u′v′ color
space, see Figure 19, by first drifting towards blue and then
turning towards yellow. All applied methods are capable of
reconstructing this course, where, however, an increasing
distance of the PCHIP estimates from the true chromaticity
coordinates as well as from the chromaticity coordinates of
the Wiener filter estimates can be observed.

F. RESULT OVERVIEW
The numerical results for all examined LEDs are presented
in Table 2. As expected, only smallest changes, which can be

VOLUME 12, 2024 42307



P. Myland et al.: LED Degradation Monitoring Using a Multi-Channel Spectral Sensor

FIGURE 17. The color coordinates of the NW2 LED over the course of the
aging experiment. The changing ratio between chip and phosphor as well
as a crack in the phosphor cause a dynamic movement of the color
coordinates. The color locations initially run towards the direction of
yellow, then take a sharp U-turn to move towards the direction of blue.
While the other reconstruction methods perform better before this
U-turn, the generic Wiener filter delivers the closest color estimates to
ground truth for the later aging phase.

interpreted as measurement uncertainties of the spectrometer,
occur with the reference LED. Maximal deviations in Er
of 0.38% and a maximum 1u′v′ = 0.000132 can be
reported. The reconstructions of the reference LED sensor
data provide almost identical results with the generic Wiener
filter showing the largest errors (1u′v′ = 0.0011). The
WW LED also exhibits only small aging effects, where the
maximum deviations from the initial state are 2.18% for Er
and 1u′v′ = 0.0013 in color coordinates. Nonetheless, all
reconstruction methods provide considerably more accurate
reconstruction estimates than assuming the initial state to be
constant (neglecting degradation). Here, a similar pattern as
already observed for the other LEDs can be noticed: The
generic Wiener filter gives the worst results, the PCHIP
interpolation yields the smallest errors with respect to Er
and Ev and the adapted Wiener filter provides the smallest
colorimetric and spectral errors.

For lighting applications with a perspective of compen-
sating for the LED aging that occurs for example in a
multi-channel LED system, it is rather relevant which errors
the reconstruction methods cause or by how much the
reconstruction estimates deviate from the ground truth in the
worst case. Therefore, for the evaluation of the reconstruction
results, the maximum errors are discussed. Comparing with

FIGURE 18. The color coordinates of the reference LED over the 2000 h of
the experiment. The spectrometer measurements scatter within a very
small area (deviations ≪ 0.001 in u′ or v ′). The corresponding
reconstructions of the PCHIP approach show only a marginally bigger
spread. The adjusted Wiener filter shows minimal deviations of the LED
chromaticity coordinates, while the generic Wiener filter experiences
larger deviations in the same directions as the adjusted one.

the results obtained for the other LEDs from this experiment,
the very good color and spectral performance of the generic
Wiener filter for the NW2 LED seems to be a coincidence
here, which will be reasoned in the discussion section.

V. DISCUSSION
The reconstruction results from the previous section provide
room for discussion. For the results of the green LED the
generic Wiener filter is limited in its ability to estimate
the spectral degradation because a covariance matrix with
Toeplitz structure and constant correlation parameter ρ over
the whole wavelength range is assumed. This is a severe
disadvantage, because the actual LED emission is situated
in a very narrow wavelength range, and the spectral changes
resulting from the degradation are also very narrow. On the
other hand, there is a wide sensor channel (peak approx.
555 nm, FWHM approximately 100 nm) and neighboring
channels whose sensitivities only intersect at the edges with
the emission of the green LED. The generic filter is therefore
set up (from the Toeplitz-covariance matrix) in such a way
that the changes in the sensor responses from the initial
measurement, are estimated to happen over the entire range
of sensitivities of the sensor channels registering the LED
emission, which leads to the overshoots and undershoots in
the estimated difference spectra in Figure 9 for the generic
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FIGURE 19. The color coordinates of the WW LED over the course of the
aging experiment. The color coordinates first move towards blue and then
turn towards yellow. All applied methods are capable of reconstructing
this course, but the PCHIP results show an increasing distance to the
spectrometer measurement after the turn.

Wiener filter. The generic filter simply lacks the information
to provide a better estimate: The spectral changes to be
reconstructed are too narrow compared to the width and
number of sensor channels observing these changes, and
the unadjusted (generic) covariance matrix does not help
to narrow down where in the spectral range the spectral
changes are located. The adjusted (covariance) Wiener filter
in comparison is mathematically constructed to estimate the
spectral changes to occur in regions where the initial SPD
had the most power, which in the case of the green LED
reduces the estimation errors for the Wiener filter greatly.
The even still slightly better performance of the PCHIP
approach for the green LED can be reasoned by the fact that
almost no spectral (sideways) shifts occur, and that the simple
interpolation of sensor responses introduces smaller errors
than an ill posed (eleven sensor channels to 401 wavelengths)
Wiener estimation for this case. Nevertheless, the latter two
reconstructionmethods show a very good spectral traceability
of the aging of the green LED via the output values of the
spectral sensor.

In the case of the NW1 LED, the adapted Wiener filter
approach can show its benefits from knowledge of the
spectral sensitivity curves of the sensor and, thus, in addition
to low errors with regard to Er and Ev, also achieves an
excellent spectral estimation of the actual SPD of the LED
after severe aging. The results of the PCHIP interpolation,

TABLE 2. Maximum errors of irradiance, illuminance, color and spectral
distribution between a sensor-based reconstruction and a spectrometer
measurement, broken down by method and LED type.

on the other hand, are also still in a very good range, i.e.,
≪ 2 SDCM,whichwould be classified as a barely perceptible
difference in the context of LED binning.

Unfortunately, concerning the results of theNW2LED, it is
not possible to determine from the data of the experiment by
how much the phosphor crack affects the spatial radiation
characteristics of the LED. Thus, in addition to the error
stemming from the applied reconstruction method itself,
an unclear impact of potentially different irradiances on the
spectrometer head and the spectral sensor is to be expected.
The observation that the reported errors for the illuminance
estimates are small and almost without any visible impact
from the phases of the phosphor crack can be explained by
the fact that the reconstruction errors in Figure 15 are found
to especially occur in the blue region, which basically has not
much relevance for the V (λ) weighted illuminance.
Regarding the results of the NW2 LED, the surprisingly

good performance of the generic Wiener filter approach
in terms of color and spectral errors demands for further
discussion: The good performance of the generic Wiener
filter for the NW2 LED appears to be a coincidence, because
for all other LEDs this method offers by far the worst
estimation results. Even for the NW2 LED, looking at the
residual spectral errors (Figure 15), it is not apparent that the
generic Wiener filter provides a better spectral reconstruction
(compared to the other methods). Only when the colorimetric
integrals are evaluated in terms of 1u′v′ the generic wiener
filter pulls clearly ahead. This can be explained from the
trichromaticity of human color perception, where color is
assumed to be describable by a relation between radiation in
the short (around 450 nm), medium (around 555 nm) and long
(around 600 nm) regions in the visible spectrum. Comparing
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the different spectral residual errors between the estimation
methods in Figure 15 it becomes apparent, that the error of
the generic Wiener filter is distributed over the whole visible
region, while the errors of the adjusted Wiener filter and
PCHIP approach are concentrated in a sharp peak around
460 nm. The generic Wiener filter clearly overestimates
the changes in the yellow-orange light component as the
estimated spectral differences in Figure 15 are clearly more
negative than calculated from the measured ground truth
or from the other reconstruction methods. These different
error distributions lead to a smaller colorimetric error for
the generic Wiener filter compared to the other methods,
because the ratio between the three tristimulus values is
less effected from the more evenly distributed spectral error
of the generic Wiener filter. Comparing this performance
with the performance on the other LEDs it is clear that
the generic Wiener filter is generally more imprecise in it’s
spectral reconstruction than the other methods (broader error
distributions). Only for the NW2 LED this coincidentally
results in a smaller colorimetric error, that is accompanied by
a large radiometric error. In principle, however, it is of course
possible that the generic approach provides better results for
LED changes that cannot be described with the covariance
matrix adjusted to the initial state. Further investigations with
other LEDs and scenarios are required in a follow-up to this
work to reveal whether the more unspecific reconstruction of
the unadjusted Wiener filter can actually be an advantage in
certain cases.

The comparison of the results from both Wiener filter
variants frequently shows similar directions in terms of
deviations, possibly caused by inaccuracies in the spectral
characterization which are manifested here. This represents
a reopening of an old topic, as the spectral characterization
of cameras has been the subject of extensive research in
numerous publications in the past [66], [67], [68], [69].
Simultaneously, spectral sensors for spectral reconstruction
significantly raise the bar for required characterization
accuracy.When considering camera sensitivities, there can be
a general assumption of a certain smoothness in the spectral
sensitivities, as the sensitivities of different channels are
realized through pigments or dyes, rather than nano-optical
interference filters, as it is the case for most spectral sensors.
Moreover, the spectral sensor sensitivities exhibit much
steeper slopes compared to most RGB cameras. At this point,
it is very convenient for the practical application that the
PCHIP approach based only on the datasheet properties of the
sensor was already able to reconstruct the degraded spectral
emission of all LEDs in this experiment very well.

To analyze the impact of deviations in real channel peak
wavelengths from the datasheet on the accuracy of the
minimal knowledge approach (PCHIP) the assumed peak
wavelengths are varied in 5 nm steps within ±10 nm of the
typical value for all sensor channels in the NW1 LED’s
radiation range, resulting in 390625 combinations of peak
wavelengths. The resulting errors of different assumptions
of peak sensitivity wavelengths are given in table Table 3.

Assuming different peak locations can lead to smaller
or larger errors in individual metrics compared to using
measured peak wavelengths or typical values from the
datasheet, while no peak wavelength assumption minimizes
all evaluation metrics at the same time. The datasheet values
provide a performance close to the median of all possible
combinations; for the actual sensor used in this experiment,
there is no observable benefit in using the laboriously
measured true peak locations. The PCHIP approach is
therefore limited by the width and number of the sensor
channels, the (in)correct assumption of the datasheet channel
peak sensitivity wavelengths only has a minor influence on
the performance of the PCHIP approach for the given sensor.
The assumption of the typical peak sensitivity wavelengths
(datasheet) offer close to median performance of all possible
assumptions.

TABLE 3. Monitoring result variations caused by assumption of different
channel peak wavelengths for the PCHIP approach in reconstructing the
NW1 LED after 2000 h stress operation. Given are the minimal, median
and maximum resulting error in comparison to the results of using the
datasheet peak locations and the measured peak locations of the actual
sensor (Figure 3).

The impact of the interpolation method can be discussed
on the basis of Table 4, where the mean and maximum value
for the evaluation metrics are shown for minimal knowledge
spectral reconstructions from senor data of all LEDs under
stress conditions after 2000 h using different algorithms for
the interpolation step. A simple form of interpolation can
be achieved through polynomial regression from the sensor
responses as dependent variables and the assumed peak
channel sensitivities as independents. The evaluation metrics
for using such a polynomial interpolation of order 1, 3, 7 and
11 are given in the table.

As introduced in the methods section of this work, the CIE
recommendation for interpolating spectral data [63]) is based
on spline interpolation, so for comparison of interpolation
methods for sensor responses, linear, quadratic, and cubic
spline interpolation are evaluated here. While both PCHIP
and cubic spline interpolation use cubic polynomials for
interpolation, the key difference lies therein that PCHIP is
preserving monotonicity. PCHIP can therefore be understood
as a conservative choice for interpolation of spectral sensor
data, since no new maxima or minima are created during the
interpolation process besides the sensor data points. In view
of the curves (number of minima/maxima/saddle points)
in the difference spectra to be estimated (Figure 6 - 8),
it is clear why the simple 1st and 3rd order polynomials
cannot keep up with the other methods, which perform very
close to each other; depending on the metric considered,
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TABLE 4. Result variations caused by using different interpolation algorithms in reconstructing the LEDs under stress after 2000 h operation with the
minimal knowledge approach (without knowing the exact spectral sensitivities). Given are the mean and maximum resulting error metrics to compare the
performance of the used interpolation method (polynomial and spline interpolations of varying order, piecewise cubic hermite interpolating polynomial).

the ranking of the interpolation methods changes only
slightly. The higher order polynomials provide slightly better
radiometric or photometric results, although this is at the
expense of colorimetric and spectral accuracy. The piecewise
interpolation methods provide practically equivalent results.
Therefore, the preservation of monotonicity by the PCHIP
method does not provide clear advantages for the monitoring
of the tested LEDs, degradation processes and the sensor
used, but it is also not inferior to other methods.

From the data of the experiment presented here, a con-
clusion can be drawn to the question which method is best
suited for monitoring LEDs with different aging properties:
For LEDs that only loose flux without major spectral shifts,
the PCHIP approach is predestined, as it does not require
any complex sensor calibration and still shows excellent
reconstruction results for these LEDs. For LEDs that are
expected to have spectral shifts at wavelengths where there
are also high radiation components in the initial spectrum,
the Wiener filter adapted to the initial state provides the
best reconstruction results. As long as these spectral shifts
are wide enough, i.e., in the order of magnitude of the
sensor channel width, the reconstruction results of the PCHIP
approach are still suitable for application. For LEDs whose
age-related spectral changes do not occur where there is a lot
of radiant power in the initial spectrum or where anomalies,
such as phosphor cracks, are observed, the conclusion is more
difficult. Although the use of a spectral sensor provides an
estimate of the actual LED emission that provides at least a
halving of the color and a reduction of the relative radiometric
error by at least 87% compared to neglecting the degradation,
the limit of this methodology for the reconstruction of color
and spectral information from sensor data is reached.

The projection from SPD to sensor response that occurs
inside a spectral sensor is a drastic reduction in dimension
and information (401 wavelengths to a few sensor channels).
Each sensor channel has a spectral width of its sensitivity,
so the output of a sensor channel not only corresponds to
the SPD at the peak wavelength, but it is a weighted (with
the channel sensitivity) integral of the SPD. This introduces
the problem of sensor metamerism: Different SPDs can
cause the same sensor response, and therefore the inverse
projection (sensor response to SPD) is not unique. Given

a sensor response, accurate reconstruction of the original
SPD (interpretation of the sensor response) therefore requires
additional (a priori) information about the SPD, even if
the sensor channel sensitivities are known. The task of
extracting this a priori information and incorporating it into
the reconstruction, but keeping the degree of estimation
freedom large enough to have generalization and not create
an overfit to the observed data (data used for modeling /
information extraction) is not trivial. The only solution to
make interpretation / reconstruction from sensor data less
challenging is to reduce the dimensionality mismatch of the
inversion task. There are two evident possibilities: Increasing
the spectral resolution of the sensor (more channels, reduced
width of channels) or reducing the dimensionality of the
SPD (possibly through parametric modeling of LED spectra)
without loss of information. However, this would require
SPD models capable of describing individual spectral LED
degradation with a few unambiguous parameters and without
noticeable errors. Unfortunately, such models do not exist
today.

One constraint in the application of the spectral sensor
used in this work is that the resolving power is closely
related to the integration time. For very small emission
changes of a very low-light LED, very long integration
times are needed to achieve a usable signal-to-noise ratio.
During this time, the luminaire emission and, if applicable,
the ambient lighting must not change. Another limitation
becomes relevant when several LED channels in a luminaire
are to be monitored. The approaches presented in this paper
assume that the sensor responses to each LED are acquired
individually. In an application with multiple LED channels,
sequential acquisition of the individual channels would
therefore be necessary. Alternatively, each LED channel
could be captured via its own sensor or hardware-based
solutions could be developed that ensure that iteratively only
the light of a specific LED channel falls onto the sensor.
A software solution is also conceivable that can determine the
proportions of the individual LED channels from a detected
light mixture, e.g., over several measurements with slight
variations.

Ambient light, which may enter the luminaire from outside
falling onto the sensor, poses no hard limitation as long as
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the signal to be measured is not completely overpowered
by the ambient light. Either the ambient and luminaire
measurements can be directly offset against each other
(e.g., ambient measurement with the luminaire switched off,
subtracting from the sum measurement) or spectral unmixing
algorithms could be developed to determine the ambient light
contributions to the sensor response for subtraction before the
estimation of the LED SPD.

VI. CONCLUSION
One key area of LED research is modeling the lifetime
under different operating conditions. While standardized
approaches exist for estimating the radiant flux as a
function of time, temperature, and current, the modeling
of spectral emission as a function of these influencing
variables is complex and, according to the current state of
research, subject to large errors compared to real degradation.
It is therefore currently not practicable to use modeled
spectral degradation for aging compensation in multi-channel
LED systems. Such compensations, however, could achieve
significantly improved color and radiant flux consistency
increasing the lifetime of the fixture for factory-calibrated
light settings (e.g., pre-calculated channel mixtures for
various correlated color temperatures). This work, in contrast
to a priori modeling, thus investigated a different approach:
The estimation of the actual spectral power distribution of a
degrading LED from spectral sensor responses.

Four different LEDs were subjected to accelerated aging
operating conditions and the spectral emission was measured
with a spectroradiometer and simultaneously captured with
a spectral sensor. The comparison of degradation spectra
and sensor responses showed that most of the spectral
degradation is actually captured in the sensor data, even
though the spectral resolution of the sensor is much lower
than that of the spectroradiometer. Over the four LEDs
(green, warm white, and two neutral white) under stress
conditions (2000 h, 1.1A, 75°) the maximum radiometric
error of neglecting the appearing degradation would have
been 7.2% and 20.5% at the end of the experiment,
respectively. The mean and maximum colorimetric (spectral)
error from that same comparison were 0.00284 (0.0126) and
0.01080 (0.0484) in terms of 1u′v′ (nRMSE). Two methods
for reconstruction of the actual LED spectra from the sensor
responses were presented and tested on the collected data.
While the adjusted Wiener filter approach, which makes use
of spectral characterization of the sensor sensitivities, was
able to basically reconstruct the degraded SPDswith a smaller
colorimetric error, the PCHIP approach, only making use
of datasheet information about peak sensitivity wavelengths
of the sensor channels, resulted in only minimally larger
colorimetric estimation errors but also excellent radiometric
estimates. Even without spectral characterization of the
sensor the PCHIP approach could thus provide estimates of
the same SPDs with a maximum radiometric error (compared
to a spectroradiometer measurement) of 1.4%, maximum
colorimetric error of 0.0062 1u′v′, and maximum nRMSE

of 0.0310. Knowledge of specific sensor sensitivities used
in an adjusted Wiener filter for reconstruction resulted in a
maximum radiometric error of 2.0%, maximum colorimetric
error of 0.00486 1u′v′, and maximum nRMSE of 0.0177.
In all cases, the estimation errors were smaller than

neglecting the degradation. These results demonstrate that
a spectral sensor is capable of providing spectral estimates
after heavy degradation with very little errors compared to
measurements of a spectroradiometer. The highest errors
here are caused by a single LED developing a phosphor
crack which influenced the spatial radiation characteristics as
well as the spectral emission. While being easily identifiable
from the sensor responses (e.g. for a damage warning to
the user) such an unforeseeable event limits the ability to
estimate the actual SPD from the sensor responses without
the a priori knowledge of the causing spectral changes. If this
event, which is certainly unlikely in practical applications
with safely designed operating parameters, is not taken into
account, the adjusted Wiener filter (the PCHIP approach)
achieves a maximum radiometric error of 0.6% (0.73%),
a maximum colorimetric error of 0.001 (0.0017) 1u′v′,
and a maximum spectral nRMSE error of 0.0071 (0.0097)
compared to the spectroradiometric ground truth monitoring
of the LED degradation. In summary, it can be stated
that by using a spectral sensor, even without a detailed
characterization of the sensor itself, the actual condition of
LEDs can be monitored more accurately than what human
perception would be able to differentiate.

Subsequent work should investigate more closely howwell
spectrally narrow changes can in particular be estimated
via a sensor, for example using different (beyond green)
monochromatic, non-phosphor-converted LEDs. In addition,
the question must be answered how a spectral sensor should
be used in practical applications to best record the emission
that actually leaves the luminaire, especially when it comes
to devices that do not have a mixing chamber but create
a highly directional emission. In this context, the findings
from the bursting of the phosphor in LED NW2 and the
associated change in the spatial radiation characteristics
must be taken into account. At the same time, when
developing a commercial luminaire, the operating conditions
would be specified in such a way that such drastic damage
should not be possible. However, an integrated spectral
sensor provides important information in any case that the
spectral emission has changed drastically. Depending on the
application, this is useful even if no perfect reconstruction
of the degraded spectral emission (and thus only limited
compensation by other LED channels in a multi-channel
system) is possible, e.g. for automated maintenance warnings
or anomaly detection.

It is also interesting to consider the use case of having a
sensor in the luminaire while carrying out long-term tests
in the factory. This approach would allow manufacturers
to develop specific solutions (such as Wiener filters) that
could be programmed as firmware updates in case of
unexpected degradation. These custom solutions could be
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used to remotely calibrate luminaires that exhibit similar
behavior in terms of the temporal response of the sensors in
the field, thereby resolving any issues that may arise.

While no sensor drift was observed in this experiment,
which clearly demonstrated the feasibility and potential of
spectral sensor feedback to track spectral emission during
the degradation of an LED, dedicated tests should explicitly
focus on the optical stability of the sensors. Ideally, these
new aging tests should be carried out on complete light
engines with an integrated sensor, in order to be able to
take into account all possible interactions (e.g. chemical
reactions, humidity, temperature, spatial dislocations, etc.) of
the components under the stress conditions.

Compared to competing technologies for compensation
of aging phenomena of LEDs, spectral sensors offer big
advantages. The so-called constant light output (CLO),
which some electronic ballasts offer as an option, does
not take into account the actual LED condition (LED
emission) but uses a pre-programmed curve to compensate
for the expected decrease in luminous flux depending on
the LED operating time. Because field data is generally
not available and laboratory degradation data (most notably
LM-80 reports, where measurements are made with LEDs
operating continuously in a controlled and stable temperature
environment [70]) is in contrast to typical real-world usage
patterns that include degradation accelerated by thermal
cycling [71], any predictions based on LM-80 (laboratory)
data may differ from real-world performance [70]. This
translates to the possibility of open-loop compensation
(CLO)models greatly over- or under-compensating the actual
LED degradation. Integrated spectral sensors could not only
collect these field data for modelling, but could also be used
directly for requirement-oriented re-adjustment (closed loop
compensation).

A single photodiode (e.g. luminance sensor) can only
detect an integral quantity and cannot deal with spectral
shifts, i.e., as soon as the sensor is not perfectly matched
in terms of sensitivity (radiometric or photometric), spectral
shifts also cause radiometric or photometric errors. This
problem does not affect a spectral sensor, because due to
the multiple spectral channels an estimation of the integral
quantity can be achieved with small errors (below 2% even
for extreme degradation events such as phosphor cracks).

Finally, the initially formulated goal should of course
be pursued further in subsequent work: The compensation
of spectral and colorimetric errors in mixtures of several
LED channels, when the SPDs of the individual channels
in the current operating state are estimated by spectral
sensor feedback. Such a self-monitoring (and possibly self-
calibrating) multi-LED channel light engine could be of
great use in all applications where constant radiometric
output and color (spectral) quality is required, for example
in museums, film sets, sample lighting, and automated color
inspection. In museums, accurate color representation of
artifacts and exhibits is critical. On film sets, maintaining
consistent lighting during shooting is essential for seamless

color correction and visual effects in post-production.
Automated color inspection systems would greatly benefit
from such a self-monitoring and self-calibrating light engine.
These systems require precise and consistent illumination
to ensure accurate and reliable color measurements in
industries such as printing, textiles, and product quality
control. In conclusion, the further pursuit of LED monitoring
using multi-channel spectral sensors could significantly
advance lighting technology, offering innovative solutions
for applications requiring consistent radiometric output and
impeccable color quality.
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