
Received 12 January 2024, accepted 12 March 2024, date of publication 19 March 2024, date of current version 25 March 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3378063

A Multi-Heuristic Algorithm for Multi-Container
3-D Bin Packing Problem Optimization
Using Real World Constraints
ANAN ASHRABI ANANNO AND LUIS RIBEIRO , (Senior Member, IEEE)
Department of Management and Engineering, Linköping University, 581 83 Linköping, Sweden

Corresponding author: Luis Ribeiro (luis.ribeiro@liu.se)

This work was supported by the Strategic Innovation Program Produktion2030, a joint venture between Vinnova, Formas, and the Swedish
Energy Agency under the scope of the project titled FLAP—Hållbar och flexibel automatisering av säsongsproduktion genom dynamisk
resurshantering under Grant 2021-01283.

ABSTRACT With the growing demand for sustainable and optimal packaging solutions, this study proposes
a novel two-stage algorithm for the multi-container three-dimensional bin packing problem. The research
addresses this problemwithin the context of a real-world industrial scenario and implements several practical
constraints including: full shipment, customer positioning requirements, and product geometric interlocking,
for increased stability and with the purpose of minimizing the use of plastic wrapping and/or additional
supporting surfaces. The main optimization target is to minimize the total number of containers used in
the palletization process of custom orders with varying degrees of complexity. The proposed algorithm
includes two stages/phases of processing. In the first phase, the algorithm uses constructive heuristics to
generate homogeneous product layers. The layers are then stacked to produce blocks, which are then placed
on individual containers or pallets. The second phase packs the leftover items using a genetic algorithm. The
performance of the proposed solution is benchmarked using real-world industrial data, as well as a more
classic academic benchmark. It is demonstrated, across a very large set of orders, that the algorithm always
achieves solutions for full palletization of the orders. The analysis shows that the approach is generic and the
quality of the solutions generated is relatively even for both small and large, homogeneous and heterogeneous
problem instances.

INDEX TERMS Multi-container 3D-PP, 3D bin packing problem, multi-heuristic algorithm, industrial
application, real world constraints.

I. INTRODUCTION
The growing trend in product customization affects not only
final products’ features but also their transportation and logis-
tics. Product customization is a reality across many different
industrial and commercial domains. A key challenge, with
considerable economic impact, is to optimally pack multiple
items with different weights and form factors on pallets or
in containers. Optimal packing can follow different criteria,
depending on the sector. However, maximizing the utilization
of space while fulfilling an arbitrary number of auxiliary
constraints is the main application line. The problem is

The associate editor coordinating the review of this manuscript and
approving it for publication was Claudio Zunino.

generally known as the three-dimensional packing problem
(3D-PP) [1]. A very important variation of the problem is
the multi-container three-dimensional bin packing problem,
which this paper directly addresses. Within such variation,
a number of items need to be fully packed into the least
number of containers. The problem can be easily solved if
the items to be packed have the same physical properties
(including but not limited to: dimensions, load capacity,
shape, etc.). In reality, however, there are many applications
where high numbers of extremely heterogeneous items must
be packed together.

Currently, palletization and container filling operations
for such heterogeneous cases are predominately done by
humans, sometimes with the support of machinery for

VOLUME 12, 2024

 2024 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License.

For more information, see https://creativecommons.org/licenses/by/4.0/ 42105

https://orcid.org/0000-0001-7148-037X
https://orcid.org/0000-0002-0248-8180

A. A. Ananno, L. Ribeiro: Multi-Heuristic Algorithm

the displacement of heavy items. There are economical,
efficiency and even safety aspects that are at stake when
manual operation is considered. First, the process needs to be
learned and often requires training, which results in training
costs and creates a ramp-up period for operators. The impact
of training cannot be discounted because many industries
will use temporary workers in such processes, who have
not necessarily been trained before in the specifics of a
particular system. After the ramp-up period, the efficiency
is still biased by the operators’ capacity to evaluate an
order and devise an adequate palletizing sequence. Finally,
an operator cannot easily provide guarantees about the
stability of the container being packed, which is a safety
concern in non-walled open containers such as pallets. Sub-
optimal geometric arrangements may also result in an excess
of containers being used, which incurs higher transportation
costs [2].

3D-PP algorithms can be used to help human operators cre-
ate more optimal arrangements while providing guarantees in
a multi-objective, multi-constrained 3D-PP. Such algorithms
can also be used for fully automated palletization. Here,
the human aspect becomes important again because manual
palletization is a type of work that many operators are not
motivated to carry out. It is considered to be a physically
intensive, repetitive and unfulfilling task.

Another advantage of an algorithmic approach to the
problem is that less obvious arrangements of items can be
considered and evaluated by the algorithm. Sustainability
aspects can be incorporated into that process. For example,
by creating geometric interlocks between the items it may be
possible to transport pallets without wrapping their contents
in plastic film, substantially reducing plastic consumption.
This is in addition to the volume optimization aspects
mentioned before.

Generally an algorithmic approach to the problem
improves efficiency by reducing human errors, optimizing
volume utilization and providing guarantees about key
quality aspects of the palletization process. Collectively,
the previous dimensions translate to cost reduction through
better utilization of resources. Finally, from a sustainability
perspective, doing away with plastic wrapping is of high
relevance. Moreover, transporting well-packed, compact and
stable arrangement of items will also reduce sub-optimal
transportation and displacement of goods.

In the literature, 3D-PPs belong to the class of cutting
and packing problems, which have been extensively studied
by the scientific community. According to [2], 3D-PPs
can be categorized (for items of relatively small size
compared to the container size) as input minimization or
output maximization problems. Input minimization consists
of packing all the items in the fewest possible containers,
while output maximization consists of attempting to pack as
many items as possible in a limited number of containers.

This contribution focuses on the first problem and assumes
that, upon receiving an order, a company wishes to ship
the products in the least number of containers required

FIGURE 1. Literature categorization of the 3D-PP in respect to its main
variables.

(but all the products must be packed). The proposed approach
also constrains the problem in the following ways: All the
containers are pallets and therefore do not have vertical
support walls that a product could be placed against. All
the pallets used in the palletization of a single order have
the same dimensions. The item’s shape is constrained to be
cuboid, with variable dimensions and orthogonal rotation
allowed along the Z-axis. The previous constraints are widely
realistic, as even large e-commerce stakeholders tend to opt
for cuboid packaging, sometimes even with further form
factor restrictions [3].

A final consideration that is relevant for the definition
of the 3D-PP problem is the look-ahead window size with
respect to the items being placed in a container or pallet.
In some logistic scenarios, it is not possible to know, a priori,
all the items that should be packed into a container (they
are packed as they come to the packaging area). In other
scenarios, the entire composition of the order is known.
These two variations of the problem are known as online and
offline 3D-PP, respectively. The proposed approach considers
the offline 3D-PP problem.

Many alternative formulations of the 3D-PP problem are
possible and each formulation will be subject to specific
constraints and challenges, and each will have its particular
complications and use cases [2], [4]. Figure 1 summarizes
the main problem specifications, constraints and applicability
limitations/directions of the proposed approach.

After the aforementioned constraints are considered, the
overall complexity of the problem, considering real industrial
use cases, is still too large for exact approaches and solutions.
The general problem of deciding on the optimal palletization
sequence grows in a factorial fashion with the number of
items to be placed on a pallet. Such complexity can only be
tackled by resorting to heuristic methods.

The specialized literature provides a vast amount of
potential solutions. However, the authors note that many
of the proposed solutions resort to oversimplifications of
the problem that make them unviable in a real application
scenario. Some of the most common simplifications include

42106 VOLUME 12, 2024

A. A. Ananno, L. Ribeiro: Multi-Heuristic Algorithm

ignoring: the weight of the items, support conditions, pattern
complexity, customer item positioning constraints, etc.

There are important practical consequences to ignoring
the above. Ignoring the weight of the items often results in
solutions where the center of mass of the item aggregate
results in unstable pallets, which are hazardous and not
acceptable in real-life scenarios. Such solutions could also
theoretically allow lighter items to be overly compressed or
even deformed by heavier items. Ignoring support conditions
leads often to arrangements that are impossible (e.g., an item
is placed in simulation, but in reality, there is not enough
supporting area on the item to guarantee that the item
would not fall or deform). Pattern complexity is another
practical constraint of great importance. A fully automated
solution can rely on complex positioning patterns because,
at least theoretically, the mechanical part of the system
is equipment with appropriate sensors and actuators to
deliver such accurate positioning. However, in reality, many
companies rely on both human-based palletization and a
form of automated process, sometimes even in collaboration.
Algorithms suitable for the latter case require that the
devised positioning provide visual cues to the operator
so that the desired item alignment and placement can be
achieved. Finally, companies very often require products
of the same kind/brand/form factor to be packed together.
Many retailers will place the pallet directly on their shop
fronts, so there are aspects of item reachability, presentation
consistency and branding to be considered in the palletization
process.

In light of the previous discussion, the authors propose a
multi-heuristic-based solution for the palletization problem
that addresses many of the practical constraints mentioned.
Particularly, our proposed solutions focus, without loss of
generality, on the Food and Beverages (F&B) domain, where
the authors have several ongoing R&D efforts. For testing
and evaluation purposes, the work considers a real dataset
(called Dataset 1000), with roughly 1000 data points that
have been previously characterized and made available in [5].
Each data point corresponds to one anonymized customer
order.

The results show that the proposed algorithm can palletize
a wide assortment of real-world orders in an industry
acceptable way considering practical constraints. The authors
do, however, recognize some relevant and practical limita-
tions, particularly those related to the execution time of the
proposed approach in very large and strongly heterogeneous
orders.

Considering the above, the subsequent details are orga-
nized as follows: Section II provides a comprehensive
overview of the state of the art in 3D-PPs and offers a
comparative analysis of the discussed literature. Section III
provides a brief introduction to the characteristics of the
datasets used in this study, drawing the main differences
between real industry data and more academic datasets;
Section IV provides a technical description of the proposed
solution; Section V discusses the results obtained using the

proposed solution on the aforementioned datasets; finally,
Section VI offers the final thoughts, lessons learned and
immediate development directions that result from this
study.

II. LITERATURE REVIEW
As discussed in the introductory section, many variations of
the 3D-PP are possible. There are as many variations of the
problem as there are possible approaches to it. The latter
are generally influenced by two main factors: the size of the
problem and the amount of prior knowledge about it (online
or offline problem). Both of these aspects require a bit more
characterization to unveil their impact on potential solutions.

The dimension of the problem is directly related to the
number of items to be palletized/packed. However, the
sheer number of items does not tell the whole story.
Heterogeneity of form factors combined with a relatively
modest number of items will usually yield a problem of
higher complexity (as shown in Section V). Highly uniform
orders can be quickly palletized by resorting to geometric
patterns. Real use cases (see [5] and section III) will
denote a very ample variation in the number of items,
item types and form factors. For sufficiently heterogeneous
orders, size immediately limits exact solutions. These lim-
itations are purely of a computational nature, the number
of possible solutions becomes quickly computationally
intractable.

A priori knowledge also heavily conditions the approaches.
Exact solutions are impossible for online problems because
in real-world online scenarios algorithms have access to at
most the next 2 or 3 items to be palletized. Not surprisingly,
approaches using learning are therefore more frequent for
tackling online problems in comparison to offline problems.

For the general case, heuristic or hybrid solutions are
the only reasonable strategy. Only limited guarantees of
optimal solutions can be offered under the scope of such
solutions, and even the sub-optimal solutions will be
non-identical depending on the constraints that the algorithm
respects.

In the literature, there exists a myriad of methods for
solving 3D bin packing problems (see Tables 1, 2, 3, 4, which
provide an overview of the cases analyzed in this section).

With the previous inmind, this section analyses both online
and offline approaches and attempts to put them into context,
given the application scenarios considered in the different
contributions. Because of the many possible formulations
of the 3D-PP, a direct comparison between approaches is
virtually impossible. Different approaches will use different
quality evaluation metrics. Computational execution perfor-
mance metrics are also not comparable as they are sensitive
to the quality of the software and hardware used to execute
the different algorithms. The computational efficiency of the
algorithms could theoretically be investigated but oftentimes
algorithms are not sufficiently described to evaluate that
either. The analysis in this section is therefore of a more
qualitative nature and starts by defining the many different

VOLUME 12, 2024 42107

A. A. Ananno, L. Ribeiro: Multi-Heuristic Algorithm

practical constraints that are frequently considered in the
different solutions.

A. CONSTRAINTS
Constraints are of extreme importance for solving
3D-PPs [6] as they cater to quality and safety aspects in
the packing process. Constraints also significantly influence
the performance of the 3D-PP algorithms by modifying the
space of possible solutions. They are used to filter out
invalid solutions and satisfy specific customer requirements
in real-world industrial scenarios.

Item shape is the most frequent constraint. The great
majority of the approaches consider cuboid items, occasion-
ally allowing other regular solids, for example, cylinders.
Packing of highly irregular items is uncommon in theoretical
and practical applications for several reasons: it is practically
impossible to precisely package irregular geometries while
guaranteeing or calculating all the forthcoming packaging
constraints. For reference, an example of irregular packaging
can be found in [7].

Theweight limit constraint is often used to ensure the total
weight of the packages is within the load-bearing capacity of
a container [8], [9], [10], [11], [12], [13]. By satisfying this
constraint, proper weight distribution of the packages can be
achieved [6].

The center of mass (COM) calculation is frequently used
to guarantee the stability of the container, thereby preventing
the risk of tipping. In the literature, this is usually referred to
as stability constraint in the literature, which can be divided
into static and dynamic stability. Static stability protects the
container from tipping over when the container is standing
still [8], [9], [10], [12], [14], [15], [16], [17], [18], [19], [20],
[21], [22], [23], [24], [25], [26], [27], [28], [29], [30], [31],
[32], [33], [34]. Dynamic stability (which can be further
classified into lateral and longitudinal stability) is used to
prevent packages from falling over when the container is
subjected to forces during displacement [10], [14], [16], [20],
[21], [22], [27], [30], [34], [35], [36].
Item orientation is another practical constraint. In real-

world scenarios, items can only be placed in a limited number
of orientations that guarantee the integrity of the products
during packaging, storage and transportation. Limiting the
orientation usually has a secondary beneficial effect on
the solution side, which is improving its computational
performance by greatly restricting the number of possible
packaging configurations that need to be evaluated. Due to
this, it is a frequently considered constraint across a wide
range of solutions (see Tables 1, 2, 3, 4). Transformations
in item orientation of cuboid-shaped items are usually
restricted to orthogonal rotations and are relatively common,
representing the majority of the cases analyzed in this
section. This ensures that the edges of items packed in
the container must be parallel to the container’s and other
items’ edges. A few solutions allow oblique rotation (
[16], [25]) and some forbid any form of rotation at all
[12], [37].

Stacking constraints limit the amount of column weight
that particular items can tolerate before enduring deformation
or damage. Bortfeldt et al. discussed four factors (i.e.,
condition of the transportation, content inside the item,
geometry of the item and material of the item) that determine
the maximum allowable pressure an item can handle before
failure [6]. In the literature, the general approach for
integrating this constraint is to decide an upper limit on the
weight an item can support for a given orientation [20], [21],
[22]. However, in many cases, the load limits are simply
not known and, even in real-world applications, the general
rule of not placing heavier items on top of lighter or fragile
ones, is usually used as an approximation to the stacking
constraint [11], [14], [27], [29], [38], [39].

Support constraints guarantee that items in a container,
or pallet, are appropriately supported and balanced [8], [40],
[41], [42]. Support is critical for the safety of operators
during loading and unloading of the items. Different support
criteria may be considered: requiring contact with specific
points and edges in the item, requiring a certain percentage
of the bottom face of the item to make contact with other
items, a combination of both, etc. Within the verification of
support constraints, it is sometimes included that items may
not protrude outside of a specific volume (usually determined
by the area of the container in connection to a maximum
admitted packing height). The majority of the examined
works seek to fulfill support constraints, with the exception
of [43], [44], and [45] where such constraints were not
considered.

Non-collision constraints guarantee that items are placed
such that they do not collide with each other. All the works
examined in this section guarantee non-colliding packing.

Other constraints - aside from the constraints examined
before, which are extremely frequent in the literature,
some authors introduce more niche or practical constraints.
Examples of such constraints include, but are not limited to:

• Complete shipment - all the items in the order must be
palletized/packed [16], [46].

• Suitability for robotized and/or operator-based packing
- the generated packing solution must be executable
by both machines and humans, which often implies
creating packing arrangement that include visual cues
for operators on where to place the items (overlapping
item corners or edges, color coding, etc.) [47], [48].

• No buffering - items cannot be buffered before packing,
which usually applies to online problems. Gener-
ally, buffering is relevant in both online and offline
approaches, but the majority of offline approaches
studied assume all the items are available at all times.
This is rarely the case in real-world applications where
a limited amount of items pertaining to the whole order
is always buffered for packaging [48], [49].

B. OFFLINE ALGORITHMS
A considerable amount of the packing algorithms surveyed
focus on off-line problems (Tables 1, 2, 3). Solutions to

42108 VOLUME 12, 2024

A. A. Ananno, L. Ribeiro: Multi-Heuristic Algorithm

offline problems can be loosely categorized into exact
(Table 1), heuristic (Table 2) and machine learning-based
(Table 3).

1) EXACT ALGORITHMS
Exact algorithms (Table 1) perform an exhaustive search
within the entire solution space and are guaranteed to find
an optimal solution. The application of exact solutions is
limited to problems of reduced complexity. As mentioned
before, reduced complexity usually means an order with
low heterogeneity and a relatively modest number of items
and practical constraints. These limitations are currently
imposed by the lack of sufficient computational power that
would enable an exact algorithm to directly tackle a real
order without further heuristics. While the direct and single
application of such algorithms, at the time of writing, could
be considered inadequate [2], they can be combined with
other heuristic approaches to improve their performance
[14], [19].

Common techniques used in exact solutions are based on
mixed-integer linear programming (MILP) [50] which can
largely be seen as the basis for other exact methods ([8],
[12], [40], [41]) including combinatorial branch-and-bound
algorithms [42].
Junqueira et al. showed that MILP can incorporate

practical constraints (i.e., load bearing, dynamic stability) and
solve medium-size problem instances (up to 100 items) [12].
The best exact algorithms can, at the time of writing, solve
problem instances with a maximum of 180 items, considering
load stability and complete shipment constraints, using the
dual bound approach [16].
Ocloo et al. developed a MILP formulation for solving a

single large object placement problem (SLOPP). The model
is capable of satisfying numerous practical constraints like
fragility, COM distribution, loading priorities, etc. [19]. Due
to the extreme computational load, their model produced
optimal solutions for small-size problems up to 16 boxes.
Nascimento et al, further proposed an exact algorithm
using integer linear programming (ILP) to solve the single
container loading problem [14]. Their algorithm approached
3D-PP with 12 practical constraints and solved medium-size
problem instances (maximum 110 items).

2) HEURISTIC ALGORITHMS
Due to the complexity of real-world 3D-PP problems, heuris-
tic algorithms, sometimes hybridized with exact approaches,
are practically the main solution. The majority of heuristics
considered attempts to reduce or simplify the vast solution
space bymaking assumptions about potentially working/non-
working solutions, by solving multiple sub-optimization
problems and aggregating the results, exploiting specific
problem characteristics, etc. A common line pursued in
the works examined includes using a so-called constructive
approach comprising three steps:

• Loading Pattern Generation - defines item aggregates of
some kind (sets of the box in blocks or layers) and/or

defines the allowed volumes where such aggregates may
be placed.

• Packing Sequence Generation - determines the order and
position of the item aggregates satisfying an arbitrary
number of constraints.

• Solution Evaluation and Iteration - evaluates the quality
of one solution, possibly combining different solu-
tions with each other and re-iterating the algorithm
until a certain set of quality parameters’ values are
met.

In order to generate loading patterns for the items a
placement strategy needs to be developed. In the literature,
placement strategies are classified into the following major
types: horizontal layer building [11], [12], [13], [21], [26],
[29], [30], [31], [35], [36], [39], [51], [52], [53], block
building [7], [18], [20], [23], [32], [34], [53], [54], stack
building [22], guillotine cutting [8], wall building [33], [55],
[56] and cuboid building [14]. Different loading patterns
will manage the usable packing volume in slightly different
ways (prioritizing a certain packing orientation and direction
over others, restricting the placement to specific areas,
enforcing certain contact points between the packed items,
etc.). Additionally, loading strategies aim at simplifying
the solution space by creating larger item aggregates with
geometries that facilitate packing. The general idea is to
create a set of aggregates according to one of the loading
patterns and subsequently optimize the placement of these
aggregates.

Layer building refers to a loading pattern where items
are placed horizontally or vertically (wall building) layer-
by-layer. This loading pattern first places items on the
floor/container base to create the first layer. The subsequent
layers are placed on top of, or next to, the previous layer
until no more layers can fit inside the container. There are
many different strategies for creating layers regardless of their
placement. Layers can be constructed using identical items
only [26], [29], [36], [39], [52], [53]. Other authors allow
items of different types to be included in the same layer, their
process consists of first creating a simple layer of same-type
objects and then merging these layers vertically together
resulting in a heterogeneous layer [13]. Another possible
strategy includes creating layers of items of the same height,
not necessarily of the same type, and distributing them to
ensure that the COMof a layer is close to the geometric center
of the container [31]. Load-bearing limit and item weight
have been used as criteria for creating heterogeneous layers
in [21]. In a different problem type, the customer provides the
construction design of layers and the authors used a heuristic
approach to stack the layers [30], [35]. Some variations of
the problem consider multi-compartment containers. In this
case, the algorithm considers the geometric dimensions of
all the compartments in order to generate the layers. A layer
can be composed of either identical items or residual items
only [22]. When items of different types are combined, the
packing density of the layers is usually considered a metric

VOLUME 12, 2024 42109

A. A. Ananno, L. Ribeiro: Multi-Heuristic Algorithm

TABLE 1. Analysis of offline 3D-PP literature based on exact approaches and improvement strategies.

of layer quality [51]. Another strategy for wall building is
reported in [55] where the problem is modeled as a single
knapsack problem where strips of boxes need to be formed
and grouped into vertical layers.

Stack building is another strategy for simplifying the
3D-PP whereby items are arranged in vertical columns
(stacks) first, and then the stacks are placed on the container
floor by solving a more computationally tractable 2D-PP
problem [11].

Another way to solve the 3D-PPs is to use the ‘‘block build-
ing’’ approach. This approach creates cuboid-shaped blocks
of items and then loads them into the container. A block may
be homogeneous (items of the same type) or heterogeneous
(different types). An example of homogeneous block creation
can be found in [32] where a probabilistic method is used
to reduce the size of the blocks and optimize their fitting
into the available volume in the container. Heterogeneous
blocking is reported in [34] and [54] where tree search is
used to load the blocks into the container’s available volume.
A hybrid strategy is reported in [23] where blocks are first
created using the work described in [34] and then loaded into
the container using an exact method. A similar approach is
described in [18], however, instead of using an exact method
for the placement of the blocks, a meta-heuristic framework
using simulated annealing is considered. An approach with
close affinity to block building consists of a three-step process
whereby similar items are optimally packed into cartons, and
cartons are then packed into crates, which are subsequently
loaded into a container using a multi-search heuristic
algorithm [7].

The sequence generation and solution evaluation parts of
the constructive heuristic approaches tend to have a very
high impact on the performance of the different algorithms.
Different approaches are possible and fall into two main
categories: static or dynamic sequences [57]. Static sequences
are defined before the packing process is attempted by the
algorithm, and they do not change [56]. Dynamic sequences

are flexible and can be adjusted during the process based on
the problem’s state [20], [36], [53].

3) MACHINE LEARNING ALGORITHMS
Heuristic-based and hybrid approaches improve upon exact
approaches by allowing a much larger portion of the
solution space to be explored. This, however, comes at a
computational performance cost. Recently, machine learning
(ML)-based approaches have started to emerge as a potential
alternative to heuristic approaches in some selected use
cases. The general idea is to induce neural classifiers using
existing examples of successfully pre-palletized/packed pal-
lets/containers. The work with these solutions is widely
experimental, and there is an important general distinction
to be considered between exact and heuristic approaches and
ML-based approaches. The first can guarantee that all the
considered constraints are fulfilled for all devised solutions,
while the latter can not directly provide such guarantees.
On the other hand, the advantage of ML-based approaches
is that a potentially feasible solution can be obtained in a
fraction of the time it takes to compute an exact or heuristic-
based solution.

Examples of ML approaches include [60] where Deep
Reinforcement Learning (DRL) is used in connection with
a heuristic method to pack items in a space while minimizing
surface area using real data. The DRL method optimizes the
order of items, and the heuristic chooses the best position
and orientation for each item. In [44] the authors claim to
have improved the algorithm discussed in [60] by using
a multi-task selected learning approach, which combines
reinforcement learning and supervised learning, to decide
the order and orientation of items at the same time. In [17]
another neural optimization model based on reinforcement
learning is discussed to find an optimal sequence/order and
orientation of block selections. The approach assumes a set of
pre-blocked items and concentrates on devising the packing
sequence only. In [61] a deep neural network is used to

42110 VOLUME 12, 2024

A. A. Ananno, L. Ribeiro: Multi-Heuristic Algorithm

TABLE 2. Analysis of offline 3D-PP literature based on heuristic approaches and improvement strategies.

VOLUME 12, 2024 42111

A. A. Ananno, L. Ribeiro: Multi-Heuristic Algorithm

TABLE 3. Analysis of offline 3D-PP literature based on machine learning approaches and improvement strategies.

TABLE 4. Analysis of online 3D-PP literature based on their solution approaches and improvement strategies.

estimate a placement policy and a Monte Carlo tree search
is used to improve said policy. The previous approaches are,
at large, aligned with the tendency to use hyper-heuristics
where problem-specific heuristics are automatically created
or selected [62], [63].

C. ONLINE ALGORITHMS
Solutions for the online 3D-PP (Table 4) are much more
contemporary than the solutions for the offline variations of
the problem. Online problems also have a closer affinity to
recent automated bin packing problems, made possible by
the latest advances in artificial vision systems, which will not
be revised in this paper. Exact optimization solutions are not
possible for the online problem since there is no optimization
scope, every item needs to be immediately packed and
therefore global optimal guarantees are not possible.

1) HEURISTIC ALGORITHMS
Online 3D-PPs are different from offline 3D-PPs, the
majority of the search-based methods for the latter are not
suitable for the former. Therefore, several other heuristic
methods have been developed to solve online 3D-PPs. One of
the most popular and simple heuristics is the Deep-Bottom-
Left (DBL) heuristic, which was introduced in [45] and [48].

This heuristic tries to place the item as deep, bottom and left
as possible in the container.

In [24] the Height Map Minimization method is proposed,
which aims to minimize the increase in volume occupied by
the items counting from the loading direction [24].
Heuristic approaches for the online problem tend to

perform poorly from an optimization point of view and can
at best guarantee that some limited constraints are fulfilled.
In very heterogeneous orders, such heuristics would either
create an excess of containers or violate certain constraints
(e.g., column load, stability, etc.) when compared to offline
heuristics.

2) MACHINE LEARNING ALGORITHMS
The limitations of heuristic approaches in the online variation
of the problem render ML-based learning very interesting.
ML has the advantage of using previous knowledge to
estimate which local decision generally tends to work
better for the general case (the algorithm applies a kind of
knowledge-based intuition for deciding on the placement of
the item).

A DRL-based framework to solve an online 2D-PP that
can also work for online 3D-PPs is discussed in [43]. The
framework takes an image of the bin as input and outputs

42112 VOLUME 12, 2024

A. A. Ananno, L. Ribeiro: Multi-Heuristic Algorithm

a pixel location where the next item should go. The reward
function of the algorithm tries to pack the next item next
to the already packed items to maximize the free space
for the remaining items. A two-step approach is discussed
in [47]. In the first step, the number of possible positions
and orientations is reduced by only considering the ones
that are likely to be optimal, such as the corners of the
container or the edges of the packed items. In the second step,
DRL is used to learn good packing strategies and select one
position-orientation combination from the candidates.

The online 3D-PP can also be modeled using a constrained
Markov decision process and solved utilizing the DRL
approach [15]. The authors of that work have used the
actor-critic framework to improve the DRL strategy, which
combines value function learning and policy search and
optimizes the policy based on action feasibility predictions.
They used a feasibility predictor to estimate if the placement
actions are feasible and adjust the action probabilities of
output by the actor during training.

D. SUMMARY AND ANALYSIS
The literature review clearly shows the diversity of problem
variations and possible solutions. It also shows that there
are concrete scalability limits with respect to the maximum
problem size that can be reasonably tackled by the majority
of the approaches. Exact techniques peak at 180 items,
while heuristic approaches have been tested up to much
higher values. All approaches have shown that they are
somehow efficient in optimizing towards the most common
optimization goal: improving area/volume utilization. The
number and quality of the constraints considered, as well
as the ability to handle very heterogeneous orders, become
the differentiating aspects. Complete shipment constraints
are not always considered, which biases the obtained results.
Additionally, many of the approaches trying to pack a large
number of items are also packing very homogeneous items,
which indirectly benefits the solution. The authors’ experi-
ence and observations from evaluating the literature suggest
that the most performance-taxing part of all algorithms is the
one that handles the heterogeneity of a specific order. Heavily
heterogeneous orders generally defeat all the layer-building
and block-building approaches, which rely on the unifor-
mity of item dimensions to reduce the problem/solution
space.

ML-based approaches are emerging as candidates for
solving many of the performance issues of heuristics and
exact solutions in the many variations of the 3D-PP. However,
ML solutions require well-curated data, which can only come
from two sources: companies’ records of previously packed
items, which usually do not exist, or artificially generated
solutions created by heuristics and exact solutions. One
general problem is that realistic datasets for the evaluation
of 3D-PP solutions are not available. Previous research
carried out by the authors shows that a great majority of
the specialized literature refers to 19 different datasets [5]

out of which only [4] is publicly available. The orders
in the said dataset, compared to the orders’ profiles of
real companies, are relatively limited in both size and
item variety. Some of the works analyzed also claim to
have done testing on real-world datasets. However, these
datasets are not made public most likely because they contain
sensitive data. It is therefore not clear how many of the
reviewed approaches would perform with real-world data.
This creates additional difficulties in comparing the merits of
the different approaches. In addition to that, to the best of the
author’s knowledge, there are no publicly available realistic
datasets for training ML solutions, which complicates future
developments.

III. A REALISTIC DATASET FOR EVALUATING 3D-PP
SOLUTIONS
The previous section clearly shows the diversity of problem
variations and possible solutions. It also shows that the
lack of realistic testing data sometimes undermines the
correct evaluation of existing and new approaches in real-
world scenarios. To mitigate this effect the authors test
their proposed approach against the dataset described in [4],
to enable a comparison with previous works using that
dataset. More importantly, the authors test their approach
against the dataset detailed in [5] which is publicly available
and based on anonymized real industry data. The distribution
of data points in the two datasets is depicted in Figures 2
and 3. Each point in the figure represents an order in the
corresponding datasets as a function of the number of items
in each order, the number of different products in them and
an entropy measurement of the order. The entropy of the
orders was calculated in the following way [5]: the dataset
was grouped by order and product, and the quantity of each
product was summed for each group. The Shannon index was
then calculated and normalized for each order. The function
entropy from the python scipy. stats._entropy package was
used for calculating the index. Normalization of values
between 0 and 1 was carried out by subtracting the minimum
entropy value from the calculated index and then dividing by
the difference between the maximum and minimum entropy
values. This results in a value where the higher the entropy,
the higher the uncertainty in the distribution of the number of
items per product type.

Comparing both datasets side by side shows that the
variation of order composition in Figure 3 is much higher and
more unpredictable than in Figure 2. Themain differences are
in volume of items, product variety but also distribution of
product variety. These variations pose additional performance
challenges to most algorithms, particularly for high volume
high entropy orders, where the authors note the very high
number of orders with more than 400 items that simultane-
ously exceed 20 varieties of products. These numbers are
the upper complexity limits of the dataset detailed in [4]
and visible in Figure 2. Furthermore, it is important to
mention that, the dataset from 2, used with some frequency

VOLUME 12, 2024 42113

A. A. Ananno, L. Ribeiro: Multi-Heuristic Algorithm

FIGURE 2. Distribution of orders in the dataset from [4].

FIGURE 3. Distribution of orders in the dataset from [5].

in the literature, does not include information regarding the
weight of the items. The latter is a limitation because item
weight largely influences the palletizing patterns in real-
world scenarios.

IV. PROPOSED SOLUTION
3D-PP is a well-known combinatorial optimization problem
and is also well-known to be NP-Hard. The algorithm
described in this section focuses on the off-line multi-
container 3D bin packing variation of the problem and
considers several practically relevant industrial constraints.
These are frequently considered in other algorithms described
in the literature but very rarely combined into a single
algorithm.

A. PROBLEM DESCRIPTION
In the context of warehouse logistics, and in a very simplified
way, customers place purchasing orders with a variety of
product compositions that need to be palletized and shipped
using containers/pallets. Each order consists of I set of
items, of cuboid shape, and each item (i ∈ I) is represented
as [li, wi, hi, mi, vi, qi], that is length, width, height,
weight, volume, and quantity, respectively. These items then
need to be palletized using fixed-size containers/pallets. The

FIGURE 4. Frame of reference for placing items inside a pallet.

pallets are defined as a function of their dimensions as in
[L, W, H], representing their length, width and height. In the
present case, but without loss of generality, the Euro pallet
format [1200 mm, 800 mm, 1400 mm] is considered. The
problem is treated as unbounded to satisfy the full-shipment
constraint. This means that the algorithm has the capability of
adding additional pallets to the problem in order to achieve a
solution.

The palletization process, pallet dimensions, item repre-
sentation and placement will always occur, by convention,
in the first quadrant of the XY plane. The origin of the 3D
coordinate system considered in the palletization process is
therefore, also by convention, placed at the left-bottom corner
of the pallet. The x-axis points along the length of the pallet
and the y-axis points along the width of the pallet.

The position of an item i is defined by one point in the
above-mentioned coordinate system and is represented as a
tuple of integer values [xi, yi, zi]. Such a point is also the
origin of the coordinate system of the item, which has the
same default orientation as the coordinate system previously
defined for the pallet (see Figure 4).
The total quantity of items of type i is denoted as qi, and

hence the total number of items in an order is
∑m

i=1qi.
The proposed algorithm therefore finds one packing

sequence as well as the positions of the items within that
sequence for all the items in one order. The proposed solution
attempts to minimize the number of pallets used, maximize
the compactness (i.e., maximize the contact area between
all the faces of items) of the packed items, and minimize
the heterogeneity of item types in each pallet. It does so by
combining several heuristics in a two-phased process detailed
later.

While doing so, the solution simultaneously satisfies
eight different constraints: item orientation, non-collision,
stability, support, pattern complexity, complete shipment,
customer positioning, layer interlocking.

According to the literature review in Section II-A
and to the best of the authors’ knowledge, existing
well-documented methods do not simultaneously address
all the above-mentioned eight constraints. The authors
cannot exclude, however, the hypothesis that there may
be commercial solutions that address them. However, one

42114 VOLUME 12, 2024

A. A. Ananno, L. Ribeiro: Multi-Heuristic Algorithm

should stress that the selection of the 8 constraints, detailed
above, for inclusion in the proposed solution resulted from a
requirements elicitation exercise coupled with an industrial
research project, whereby companies mentioned that they
had not found an immediate solution that would cover the
specifics of their palletization problems.

Of the constraints selected, the first six are hard constraints.
A solution will not be considered valid if one of those
constraints is violated. The latter two are soft constraints.
The algorithm tries to fulfill them; however, it will not reject
infringing solutions to achieve fulfillment of such constraints.
The majority of the constraints described next have been
presented before. Therefore, in this section, only the problem
specific details and interpretation of said constraints are
discussed.
Constraint 1: The item orientation constraint is used

to restrict orthogonal rotation to the z-axis. This is a
common constraint in many sectors but also something
very characteristic of the F&B domain, where this work
is grounded. Many food products require a specific side
of the package to be facing up and disallow the products
from being placed on their sides or upside-down. The
current algorithm, therefore, only allows two orientations.
The default orientation of the box and its 90 degree rotation
along the box’s z-axis. The default orientation of the item
must guarantee that its edges are parallel to the edges of the
pallet so that the permitted rotation will also fulfill the same
requirement.
Constraint 2: Non-collision guarantees that all the items

in the pallet do not occupy overlapping volume envelopes.
The algorithm uses axis-aligned bounding boxes to support
the detection of collisions. Overlapping bounding boxes are
therefore interpreted as colliding.
Constraint 3: The stability constraint is evaluated for

each pallet in the solution. To that end, the COM of the
pallet with the packed items is calculated. The position of the
COM is restricted to an area contained on the XY plane and
surrounding the geometric center of the pallet.

Tipping conditions are subsequently checked. If the packed
pallet passes the tipping test, it is then checked for relevant
offsets of its COM on the XY plane relative to the geometric
center of the pallet in the same plane. The amount of accepted
deviation is configurable. Stability and support constraints
(defined next) directly address safety requirements and
regulations.
Constraint 4: Support constraints are satisfied if the

following conditions are true:
• at least 40% of the base of an item and its 4 base vertices
are supported by other items, or by the pallet or,

• a minimum of 50% of the base area is supported as well
as 3 base vertices or,

• 75% or more of the base area of the item and 2 base
vertices are supported.

The algorithm does not actually test the real vertices of
the cuboid but rather a set of four points, corresponding
to the XY translation of the cuboid base vertices inwards

and toward the center of the base. The value of the XY
inward translation is configurable. Support constraints are
important from a practical perspective. Not all items can
be supported in the same way. The proposed solution uses,
therefore, a combination of supported corner points with the
percentage of an item’s bottom area that is supported. These
two previous re-configurable constraints cover the following
cases:

• items that bend under axial weight - in this case,
requiring corner support is not enough, a minimum
amount of bottom area must be supported, in addition
to a specific number of corners, to adequately support
such items;

• items with a very rigid bottom section - in this case,
requiring the support of 3 or 4 corners may be enough
for as long a small base area is also supported;

• any variations between the two cases described above
may be adequately configured.

Constraint 5: The customer pattern complexity con-
straint is a customer-specific constraint. Different algorithms
will create different packing patterns. In the context of this
work, it is important that the algorithm generate solutions
that can be palletized in manual, semi-automated and fully
automated modes. The item placement strategy considered
ensures that any placed item has at least one vertex and
two edges aligned with either the pallet or some other item
adjacent to it. The previous provides easy visual cues for
manual packing in a real-world industrial scenario. This is
opposed to fully automated packing strategies, which may
place items in positions that are only possible with precise
mechatronic placement. However, it is practically impossible
for human operators (e.g., place an item aligning one of
its edges with the line on the second fifth of the length of
another item). The customer pattern complexity constraint
is important to guarantee that packing solutions can be
efficiently and safely implemented by human operators.
Constraint 6: The complete shipment constraint requires

all the items in an order to be packed. Many academic
contributions disregard this constraint, particularly when
solving single-container problems. In real-world applica-
tions, shipment is performed using the least number of
containers required but the entire order needs to be shipped.
Constraint 7: Customer positioning constraints are very

frequent in palletizing operations. In this case, the constraint
specifies that, as much as possible, equal items must be
packed as close as possible, ideally creating complete layers
of products. The rationale behind such a constraint is that,
in the context studied, the majority of the pallets are shipped
to retailers that wish to de-palletize a shipment directly
to their shelves. In that context, products should not be
mixed. For example, in a real-world scenario, a retailer may
want to de-palletize several layers of milk packages directly
onto its shelves without having to sort out other items in
a geometrically complicated mix. It is worth mentioning,
however, that complex orders do not always palletize into
regular arrangements of layers of the same product. In this

VOLUME 12, 2024 42115

A. A. Ananno, L. Ribeiro: Multi-Heuristic Algorithm

case, it is not possible to always fulfil such a constraint,
and a few leftovers of certain products will be mixed, in a
less organized way, with other products. When this occurs,
the algorithm prioritizes the minimization of the number of
pallets used over the hard fulfillment of this constraint.
Constraint 8: The layer interlocking constraint can be

seen as another customer constraint, and it is used to ensure
interlocking among the items between two layers stacked
on top of each other. This constraint is of high practical
relevance since well-interlocked items increase item stability
under pallet displacement. Therefore, packing companies can
dispense the plastic wrapping of the items during shipment.
Reduced plastic usage is desirable due to sustainability
aspects.

B. PROPOSED ALGORITHM
The proposed algorithm operates in two distinct phases. In the
first phase, constructive heuristics are used to generate layers
and blocks of items. The second phase deals with the residual
items that cannot be incorporated into layers and blocks; and
it uses a genetic algorithm to place them on top of existing
blocks or empty pallets. The algorithm therefore assumes a
certain repetition of items of the same kind in a certain order
(this is corroborated by the data discussed in Section III).
A fully heterogeneous order, where each item is of a different
kind and a different form factor, invalidates the usage of the
first phase, and in those cases, the algorithm proceeds with
only using the second phase to generate a solution. In the
forthcoming text, an overview of the algorithm is presented,
after which the full details of the two phases are provided and
discussed.

1) ALGORITHM OVERVIEW
An overview of the algorithm can be found in Figure 5. The
algorithm starts by evaluating a complete order and deciding
if both phases can be enabled. If so, items are merged into
full, half and quarter layers, depending on their quantity and
dimensions. The dimensions of the layers are determined by
the area of the pallet. A full layer has the same area as the
pallet, and a half layer has half of the length of the full pallet
and the same width, finally, a quarter layer has half of the
length and width of a full layer. Initially, the algorithm will
only form layers of the same item type.

Quarter layers of different products but of the same height
are subsequently combined into half layers. Half layers of
the same height are then combined into full layers. At this
point, there may be layers of just one item type but also layers
combining up to four item types. The latter happens in the
rare cases where four quarter layers were first merged into
two half layers, which were subsequently merged into one
full layer. Such layers are of course guaranteed to have the
same height.

When no more layers can be merged, they are merged into
blocks. At this point, there may be residual items (i.e., items
that did not make into layers), these are dealt with at a later
stage. Blocks are created by combining layers in a way that

FIGURE 5. Overview of the proposed algorithm.

fulfils the constraints earlier specified. The general approach
is as follows:

42116 VOLUME 12, 2024

A. A. Ananno, L. Ribeiro: Multi-Heuristic Algorithm

FIGURE 6. Generation of blocks using multiple full layers, half layers and
quarter layers.

The algorithm starts from an empty pallet and sorts all
the full layers hierarchically by: occupied area, weight and
item type. The previous results in layers with the best area
coverage, higher weight and with only items of the same type
to be on the top of the list of layers. These are placed first
and on top of each other. If a placement violates one of the
hard constraints earlier specified, or if the maximum packing
height is exceeded, a new pallet is created and the layer is
placed there. From this point on, the algorithm has more
than one pallet available where it can continue to develop
the blocks. Before it places any additional layers, the existing
blocks are sorted by remaining available packing height in
ascending order, and the process repeats. This maximizes the
use of the available volume per pallet.

When all the full layers are developed into blocks. The
algorithm proceeds with merging half-layers into the existing
blocks. The block developing rules are the same and,
additionally, the algorithm will balance the height of the
blocks by ensuring that a half layer that does not violate any
hard constraints is preferably placed in the lowest half of a
block.

Finally, the process repeats for quarter layers. The only
difference is that, in this final case, the algorithm will balance
the height of the block’s four quadrants, instead of halves.
An example of this block creation procedure can be found in
Figure 6 where cuboids of different colours denote items of
different types in the same order.

At this stage, all the layers have been developed into blocks
and occupy one or more pallets.

The algorithm now proceeds to handle the residual items.
These are preferably packed into the existing blocks. The
algorithm will therefore pre-check if the remaining usable
packing volume on the existing blocks is theoretically
sufficient to accommodate the total volume of the residuals.
If the check fails, the algorithm spans a new pallet. In either
case, the algorithm now starts phase 2 and a Genetic
Algorithm (GA) is used to determine the packing sequence
and the position of the residual items on the available blocks

and pallets. The same constraints specified earlier need to be
fulfilled. If the GA is not able to find a solution, a new pallet
is spawned and the GA is re-ran. The choice of a GA, among
other alternative heuristics approaches, is due to the ease
and efficiency of GAs in allowing and processing potential
solutions that use permutation encoding. This is the case in
the present problem, where the authors wish to find the best
sequence for placing items in a pallet.

2) PHASE 1: LAYER AND BLOCK BUILDING
The first phase of the algorithm consists of constructing as
many layers as possible and developing them into blocks. The
main advantage of pursuing such a constructive approach is
that the packing solution for the bulk of a large volume order
can be very quickly devised.

At the same time, it becomes very easy to incorporate
all the constraints of interest detailed before while directly
addressing Constraints 1, 5 and 8.

There are many different ways of creating layers. Con-
straint 1 limits the orientation of the items but still many
packing patterns are possible. Here, the approach leans on
simplicity while trying to accommodate Constraint 5. Items
with different form factors will fill in a layer differently and
use more or less layer area. In the ideal case, the dimensions
of an item are such that in a certain quantity the items
completely fill the whole area of the layer. In such idealized
cases the layer also offers full support for the next layer.
However, the previous is hardly ever the case. Therefore, for
every item type eligible to form layers, the algorithm:

1) tests the placement of the items in one orientation;
2) evaluates the unused area and;
3) attempts to place therein additional items in the second

orientation.

After testing both starting orientations, the algorithm
selects the pattern that packs more items into the layer. If both
alternatives allow the same number of items in the pallet, the
algorithm selects the one that has more items in the default
orientation. An example of a layer constructed following this
procedure can be seen in Figure 7.

Figure 7 shows two possible layering patterns for the same
set of items. All the items are of the same type and the colors
are only used to facilitate distinguishing between items. Both
layers in the figure satisfy the constraints and pack the same
amount of items, so they can be both used. In this case,
the algorithm will prefer whatever solution has more items
in the default orientation. The reason for using the default
orientation is a practical one. Packages are usually designed
such that the main aesthetic elements are depicted along the
most visible faces within the default orientation of the item.
For a layer to be accepted by the algorithm, the items on it
must cover a minimum amount of the available base area (fill
rate). Such value is a configurable input for the algorithm.
The authors have found empirically that 85%, 90% and 90%
of minimum fill rate values for quarter, half and full layers
respectively, tend to produce the best results.

VOLUME 12, 2024 42117

A. A. Ananno, L. Ribeiro: Multi-Heuristic Algorithm

FIGURE 7. Two alternative configurations of the same layer (i.e., the same
number of homogeneous items) based on the dynamic shifting approach.

Figure 7 shows another important behavior of the
algorithm. After selecting the best layer pattern, the remain-
ing unused space is distributed along the center lines of
the pallet. This has the effect of pushing the items to the
extremities of the pallet. After studying and evaluating many
layering patterns, the authors have empirically found that
this simple placing heuristic improves: the stability of the
pallet, support for subsequent layers and layer interlocking
prospects (Constraint 8).

The creation of layers is computationally very efficient
because it does not need to verify for support and eliminates
item collisions by design. At the same time, it utilizes the
preferred item orientation and fulfills the constraint 5.

Building blocks using layers is therefore a matter of
testing for pallet stability and item support between the
layers, as well as improving layer interlock and fulfilling the
customer positioning constraint.

The heuristic considered for improving the interlocking
between layers is based on the calculation of the Hausdorff
distance between the top vertices of the items in the bottom
layer and the bottom vertices of the items in the top layer.
The Hausdorff distance is higher, the higher the distance
between the vertices on the bottom layer and the top layer.
In the present case, the distance reflects the misalignment of
the vertices of the items. The more misaligned, the higher
the distance, and the better the interlocking between the
layers.

To maximize the Hausforff distance, the algorithm consid-
ers 4 different variations of one layer: the original pattern, the

pattern with horizontal symmetry, the pattern with vertical
symmetry and the pattern with both horizontal and vertical
symmetry. The version with a higher distance is selected.
Note that this does not change the layer composition. The
heuristic is therefore more efficient when the layer is least
symmetric. Figures 8(a) and 8(b) show the interlock between
two identical layers seen from the top, and the interlock
between multiple heterogeneous layers seen from the side of
a block, respectively.

This procedure applies to all layer types (full, half and
quarter). As mentioned before, block construction prioritizes
the placement of the larger full layers first, followed by half
and quarter layers.

The first half layer is always placed on top of the first half
of the last full layer on the block or on the first half of the
pallet (if that half layer is the first layer in the block). From
that point on, the subsequent layers are always placed on the
lowest half of the block.

A similar procedure is considered for the quarter layers
with the exception that the first quarter layer is always placed
in the lowest quadrant of the block. The only exception
is when the quarter layer starts on an empty pallet and is
effectively the first layer in the block. In that case, it is always
placed in the first quadrant. For reference, the block’s halves
and quadrants are depicted in Figure 9.

At the end of the block building procedure, the bulk of
the order has been already packed into blocks (see Figure 10
where a large heterogeneous order has been organized into
blocks), and what is left is to handle residual items that do
not conform to layers or blocks (residuals).

3) PHASE 2: PACKING RESIDUALS
Residual packing represents the second phase of the
algorithm. At this stage, the algorithm must pack a usually
very heterogeneous set of items with respect to quantities and
form factors that do not conform to layers and that do not
easily fit together. Two problems need to be solved at this
stage: decide where to place the items and evaluate different
placing sequences. This is indeed the part of the algorithm
where complexity substantially impacts its computational
performance and solution quality.

The creation, evaluation and improvement of the quality of
a specific placing sequence are done by a GA. The decision
of where to place an item follows a specific placement
strategy. The dynamic between the two is as follows: The GA
generates potential placing sequences (i.e., ordered sequences
in which the residuals are to be placed), and the placement
strategy takes such sequences and generates a placement that
does not violate any of the constraints.

Complexity arises on several fronts. First, for an arbitrary
quantity of items q, there are q! possible placing sequences
(e.g., an order with 10 items has 10! or 3,628,800 possible
placing sequences). The factorial growth of the number of
theoretically possible palletizing solutions as a function of the
number of items is the biggest contributor to the complexity
of the 3D-PP problem. Secondly, for any placing sequence,

42118 VOLUME 12, 2024

A. A. Ananno, L. Ribeiro: Multi-Heuristic Algorithm

FIGURE 8. Interlocking of layers during block building displayed as (a) top view between two identical layers and (b) side
view for multiple heterogeneous layers.

FIGURE 9. Visualization of block’s halves and quadrants.

the placement strategy itself generates additional complexity.
An item can potentially be placed in any available space on
the available blocks.

The second phase of the algorithm reduces this complexity
as follows. Instead of generating/encoding placing sequences
for individual items, the GA’s individuals encode the order
in which items of a certain type are to be placed (Figure 12
shows how the problem is encoded in the GA’s individuals as
well as how the mating and mutation evolutionary operators
are applied). This has two effects:

1) it partially addresses Constraint 7 which stipulates
that items of the same type should ideally be packed
together (and thereby by encoding item types rather
than individual items implicitly presorts them by type
before sending them to the placement strategy);

2) significantly reduces the search space when the resid-
uals contain items of the same type (e.g., if a set
of residuals would be composed of 50 items from

TABLE 5. List of 10 custom individuals added to the randomly generated
population pool during GA initialization.

25 different types distributed such that every two items
were of the same type, the search space would reduce
from 50! to 25!).

However, 25! possible placing sequences is still a very
large number and the fraction of this solution space that the
GA could explore with reasonable performance is very small.

Proper initialization of the GA becomes very important.
The algorithm therefore includes a pre-selected set of
individuals in its first generation. These individuals are
detailed in Table 5 and codify placement sequences in
increasing and decreasing order of properties that are relevant
for the palletization process including: weight, quantity, base
surface area, volume and volume vs. quantity.

These individuals have shown to enable theGA to converge
quicker to a satisfactory solution by conditioning the search
space exploration around useful starting points that codify
many of the manual placement strategies in place today in
industry.

Evaluation of individuals within the GA is subject to two
fitness functions. These functions are formulated as follows:

• Fitness function 1: Minimize the average item type
heterogeneity on all the pallets used to pack the order.

• Fitness function 2: Maximize the average compactness
of all the residual items placed on top of existing blocks
and empty pallets for the current problem instance.

VOLUME 12, 2024 42119

A. A. Ananno, L. Ribeiro: Multi-Heuristic Algorithm

FIGURE 10. Phase-1 block generation for a large order.

Fitness function 1 considers the item types of the
items pre-blocked into the pallets and therefore encourages
solutions that are more compatible with Constraint 7.

Fitness function 2 promotes tighter packing of the residual
items. Compactness evaluates how tightly items are packed
on a pallet. It is a measurement of the maximum surface area
of an item that is in contact with other items or the pallet.
The compactness metric is normalized between 0 and 1. If an
item has a compactness value of 1 that means all 6 surfaces
of the cuboid item are in full contact with other items in the
pallet, and 0 when vice versa. Fitness function 2 evaluates
the compactness of only the residual items since the rest of
the items are already packed compactly using the constructive
heuristics described earlier.

Both fitness functions are therefore directly influenced
by the placement strategy used to pack the residuals. The
GA must apply the placement strategy to every placement
sequence in order to evaluate the results.

The GA uses a modified definition of the Extreme Points
(EPs) placement strategy documented in [64].

The general idea of extreme points is that when an item
i with dimensions [li, wi, hi] is placed on a point [xi, yi, zi],
it creates additional points (called EPs) where new items can
be placed. Generically, if an item is positioned at [xi, yi, zi]
on a block or pallet, the following three new EPs are made
available for subsequent placements [li + xi, yi, zi], [xi, wi +
yi, zi] and [xi, yi, hi + zi].
In the present case, at the beginning of phase 2, the EPs

corresponding to the vertices of the top surfaces of the items
in all blocks are immediately made available to the placing
strategy. Then, after placing each residual, three EPs per
placed residual are created as shown in Figure 11. Each
EP may only support one placement. The list of available

FIGURE 11. Visualization of the extreme points generated by placement
of items inside a pallet.

EPs is therefore updated after each placement and does not
include duplicated points. EPs are ranked based on their
height. Lower EPs score higher to discourage the GA from
building columns of items. If two EPs are at the same height
then the one closer to the origin of the pallet is ranked
first.

For every placing sequence the placement strategy will:

• attempt to place an item in the highest scoring EP and
check if the placing violates any of the hard constraints,
if it does not, the list of EPs is updated and the next item
is placed on the new highest ranking EP;

• if the placement fails, the algorithm will attempt to place
the item in the secondary orientation;

• if the placement on the highest ranking EP fails
regardless of the item orientation, the second highest

42120 VOLUME 12, 2024

A. A. Ananno, L. Ribeiro: Multi-Heuristic Algorithm

ranked EP is selected and tested, and so on and so forth,
until no more EPs are left.

If the placement strategy runs out of valid EPs, the
individual corresponding to that placing sequence is given
maximum penalizing scores on both fitness functions. If the
GA is not able to find a valid solution, i.e., all individuals are
unviable, after a certain number of generations, the GA fails
and restarts with an additional empty pallet added to the list
of available block/pallets.

Failing and restarting the GA is strictly necessary to fulfill
Constraint6. Simultaneously, the placing strategy ensures that
Constraint 5 is respected. Furthermore, in all cases, the items’
positions determined by the placing strategy, during the
execution of the GA, are always encoded into an individual
as metadata. Each individual in the GA has therefore an
active part that participates in the optimization process and
a passive part that stores additional information about the
placing solution that the individual represents (position and
orientation) as well as relevant information about the item
types it must place (namely:type, quantity, dimensions and
height). The previous is important because, as a multi-
objective optimization problem, the result of the evolutionary
runs is a Pareto front of non-dominated solutions representing
different trade-offs. Currently, the algorithm will prioritize,
from the Pareto front, solutions benefiting compactness over
heterogeneity.

By the end of the second phase, the algorithm is guaranteed
to have found a solution.

C. IMPLEMENTATION AND PARAMETRIZATION OF THE GA
The base GA considered in the algorithm described before
uses the DEAP Library [65] implementation of the Mu
plus Lambda evolutionary strategy with the NSGA-II [66]
selection operator. The Mu plus Lambda algorithm carries
out selection from both the existing population and the
offspring. While other evolutionary and selection strategies
are possible, the authors have found, by experience, that the
above combination delivers good quality results. The quality
of the solutions obtained is in fact much more influenced
by the placement strategy rather than the evolutionary and
selection strategies due to the extremely large solution space
of the problem.

Nevertheless, tuning the evolutionary strategy parameters
will still contribute to better quality solutions. In the present
case, the following values are used:

• mu = 15, mu is the number of individuals to select for
the next generation;

• lambda= 30, lambda is the number of individuals on the
offspring at each generation;

• crossover probability = 0.5, is the probability that an
individual in the offspring is produced by crossover;

• mutation probability = 0.2, is the probability that an
individual in the offspring is produced by mutation;

• population size = 100, the initial size of the population;

FIGURE 12. GA individuals encoding, mate and mutate operations.

• max stagnation = 5, the base implementation from
DEAP was modified to include an early stoppage
condition if evolutionary stagnation occurs, in this case,
if the fitness values of the solutions are not improving
after max stagnation consecutive rounds, the algorithm
is stopped;

• ngen = 30, is the maximum number of evolutionary
cycles the algorithm will run if stagnation does not
occur.

Stagnation checking is active even for infeasible solutions,
as experience has shown that if the GA is not able to find a
feasible solution within the first max stagnation evolutionary
rounds it probably never will on subsequent rounds.

To explicitly connect the GA implementation to the
previously described heuristics and constraints, it is worth
mentioning that the evaluation of one individual entails
applying the placement strategy to that individual and, after
the placement strategy has been executed, the GA will score
the individual on solution heterogeneity and compactness.
So it is effectively the placing strategy that guarantees
the fulfillment of the hard constraints 2 and 6, while the
GA’s selection strategy favors the softer, customer-based
constraints 7 and 8.

Mating (crossover) and mutation operations are executed
in the following way (Figure 12). Given the nature of the
encoding of the individuals, which requires that genes within
an individual cannot repeat (that would mean the same
item type being packed twice, which violates the problem
specification), mating and mutation operations operate as
follows:

• Mutation - a pair of genes is randomly selected from the
individual and the genes are swapped.

• Mating - one crossover point is randomly selected, and
the genes are exchanged between both individuals. This
eventually leads to repeated genes and genes that were
not included in the solution. The repeated genes are then

VOLUME 12, 2024 42121

A. A. Ananno, L. Ribeiro: Multi-Heuristic Algorithm

FIGURE 13. Phase-2 GA Architecture.

replaced by the genes that had not been included in the
solution.

For reference, the general architecture of the GA is
depicted in Figure 13, which shows the delimitation of
the standard GA implementation and the custom placement
strategy heuristics specific to the 3D-PP developed in the
paper.

V. RESULT ANALYSIS AND DISCUSSION
To demonstrate the performance of the proposed solution,
the algorithm was benchmarked using the two datasets
described in Section III. The palletization of the orders of
both datasets was carried out on a workstation with an Intel
XeonW-1250 CPUwith a maximum clock speed of 3.30GHz
and 16 gigabytes of RAM. The proposed solution was coded
using Python V3.12 and executed on a Windows 11 version
22H2 operating system.

A. PERFORMANCE ASSESSMENT CRITERIA
The performance of the algorithm was analyzed using
three key metrics: average volume utilization, average
compactness and execution time.

The average volume utilization per pallet demonstrates
how efficiently the loading space is utilized by the algorithm.
The more the available volume in a pallet is filled, the better;
after all, companies pay for such volume during transport.
This metric can be deceiving in extremely low volume orders,
normally used in more academic datasets, whereby the total
number of items is not sufficient to fill the volume available
in the pallet. Otherwise, for more realistic orders, it is a good
estimate of the quality of the solution.

It is worth noting here that the algorithm actually does not
optimize for volume utilization but rather for compactness.
For realistic orders the bulk of items can be, from a volume
utilization perspective, very efficiently packed into blocks.
Note that when creating layers, the algorithm requires full

and half layers to be at least 90% filled and quarter layers
to be at least 85% filled, which results in extremely compact
and volume efficient arrangements. The bulk of the order
developed into blocks determines, to a very large extent,
the number of pallets used. The algorithm is allowed to add
more pallets dynamically to fulfill the complete packing of
the order and after the first phase, there is usually usable
free volume on the existing blocks/pallets. The usage of
the GA to optimize compactness ensures that the available
volume is explored and that residuals will ideally be packed
against existing items from the existing block, preferably of
the same kind. This indirectly, but significantly, optimizes
volume utilization as well.

On that line, one also evaluates the compactness of the
solution with a secondary purpose. Compact arrangements
are usually stabler during transport and will do without
being wrapped in plastic, with important sustainability
implications. Compactness can therefore be used as an
indicator of whether or not a packed pallet needs additional
support structures.

Finally, execution time creates a kind of make or break deal
on the practical utilization of the algorithm. Longer execution
times may or may not be acceptable depending on the number
of orders that need to be processed per unit of time (seconds,
minutes, hours, days, weeks, etc.). Measuring the execution
time allows for identifying the use cases that are feasible for
the current version of the algorithm.

B. BENCHMARKING WITH INDUSTRY DATA (DATASET
1000)
The algorithm was tested first against the Dataset
1000 detailed in [5] and briefly described in Section III.
To help position and characterize the results on such a rich but
complex dataset, the dataset was segmented into five classes
corresponding to 5 entropy intervals:

• Entropy Interval 1 - [0, 0.2];

42122 VOLUME 12, 2024

A. A. Ananno, L. Ribeiro: Multi-Heuristic Algorithm

FIGURE 14. Distribution of volume utilization for different order sizes and entropy intervals from [5] (each symbol
represents up to 2 observations).

• Entropy Interval 2 -]0.2, 0.4];
• Entropy Interval 3 -]0.4, 0.6];
• Entropy Interval 4 -]0.6, 0.8];
• Entropy Interval 4 -]0.8, 1];
The results of the algorithm on the above-mentioned

dataset are summarized in Figures 14, 15 and 16. Collectively,
the three figures provide a good insight into the expectable
performance of the algorithm on real datasets. Before the
results are analysed it is worth recalling that the algorithm is
guaranteed to always generate a solution. This is important
because many algorithms described in the literature do
not provide such guarantees, which renders their practical
utilization limited.

One starts the analysis by evaluating Figure 14, which also
reveals additional relevant information about the dataset by
showing that the order complexity (interpreted as entropy)
is not a function of the number of items alone. Figure 14
breakdowns the distribution of orders by order size along
the different complexity classes. Small orders have less than
600 items on them, medium orders have between 600 and
1300 items on them, and large orders have more than
1300 items. While medium and large orders predominantly
occupy the fifth entropy interval, quite many small orders
denote high complexity as well.

Average volume utilization has modest values in low
entropy orders because many of these orders have a very
small amount of items whose volumes do not fill a single
pallet. The same is valid for higher entropy orders with few
items on them. In effect, the Dataset 1000 contains a relatively

high number of such orders. They are frequent in the F&B
industry and therefore worth studying, mainly occurring
when products are shipped directly to small businesses or
when samples are being exchanged between operational units
of the same company.

Complex, medium and large volume orders are usually
packed with good performance, with a large portion of
such orders utilizing more than 60% of the available pallet
volume. Here, it is important to re-stress that these results
fulfill the 8 constraints previously detailed. This is relevant
because the algorithm enforces extremely stringent support
and stability constraints. Many of the algorithms described in
the literature, for example, do not test for support or stability
and mainly concentrate on creating non-colliding geometric
arrangements of the items. Simultaneously, the results reflect
what is possible with real form-factor measurements. At this
point, onemay reflect on the fact that above 60% is acceptable
but perhaps not enough for real industrial applications and
that in industry, pallets must surely be packed with a higher
efficiency today. Both reflections are true but with important
caveats. In practical industrial scenarios, additional load
carriers are incorporated into the same pallet to even out
surfaces and create additional supporting layers. The previous
means that a certain volume in the order is actually occupied
by the load carrier, which is a non-value adding volume. Load
carriers usually take the form of pallets interleaved between
item layers. A standard Euro pallet has a maximum usable
shipping height normally restricted to 1400 mm counting
from the top surface of the pallet, with a total usable volume

VOLUME 12, 2024 42123

A. A. Ananno, L. Ribeiro: Multi-Heuristic Algorithm

FIGURE 15. Comparison of mean compactness among different problem instances from [5]. Individual standard
deviations are used to calculate the intervals.

of 1344 dm3. The Euro pallet itself is 1200 mm by 800 mm of
base area with a height of 144 mm. Its volume is therefore
138.24 dm3. This means that for every load carrier that is
included approximately 10% of volume is lost to the load
carrier. The algorithm can bemodified to include load carriers
and therefore improve its packing efficiency. Conceptually,
a load carrier is just an item with the same dimensions as a
pallet.

It is now worth inspecting Figure 15.
Figure 15 illustrates that the mean compactness score

improves when the number of items within the orders
decreases. Overall, the average compactness lies between
35-60%. It is important to stress that compactness is only
evaluated for the residuals and does not measure the highly
compact and stable arrangements of the blocks created in the
first phase of the algorithm. For smaller orders, the algorithm
finds more side surfaces to lean residuals against. Some of
the real small orders are entirely packed in phase 2, no layers
or blocks are possible. In this case, the residuals are tightly
packed together. On large orders, the residuals are usually
placed on top of existing blocks and there is naturally less side
contact surface to support against. A similar effect is seen in
small orders.

Finally, it is worth analyzing the execution efficiency of the
proposed algorithm (Figure 16).

Execution efficiency is mainly dictated by the nature
of the residual items. In fact, the execution of phase one
of the algorithm, even for large volume orders, occurs in
under 10 seconds. When one inspects, however, the overall
execution times, the majority of the values are very far from

the first phase execution times. Order entropy and the variety
of item types influence the execution time more profoundly
than order volume. Higher entropy orders, including items of
many different types, usually cause the GA to have to re-start
and add new pallets, sometimes as much as four times inmore
complicated cases. On larger orders, there are many more
EPs that need to be tested and the likelihood that the placing
strategy fails near completion is higher. In many cases, this
means that the placing strategy is able to tentatively place the
majority of the residuals only to fail when 2% to 5% of the
residuals are left to place. The placement strategy is applied
to all the individuals in each generation during the execution
of the GA. In these complex scenarios where the strategy
fails consistently towards the end, the penalty in execution
efficiency is very high with some extremely complex orders
taking as much as 17500 seconds to execute. The placement
strategy has been identified as the bottleneck in the process
due to the many different constraints it needs to satisfy.

To better understand the execution efficiency of the
proposed algorithm, a distribution of the number of orders
solved in different time intervals is described in Table 6.
A large portion of the orders (59.03%) consisting of low
to medium complexity can be solved in under 10 minutes.
A total of 323 orders with medium and high complexity can
be solved in 10-60 minutes. Additionally, high complexity
orders (5.52%) are solved within 60-120 minutes. Extremely
high complexity orders, which are less frequent (3%), require
more than 120 minutes to solve.

The authors believe that the profiling of the order into
entropy classes and the evaluation of the algorithm against

42124 VOLUME 12, 2024

A. A. Ananno, L. Ribeiro: Multi-Heuristic Algorithm

FIGURE 16. Empirical cumulative distribution of computational time for different problem instances from [5].

TABLE 6. Execution time distribution for the 996 orders in the Dataset
1000.

them provides an innovative and useful way of benchmarking
the 3D-PP algorithms. One of the advantages is that when
considering a new dataset, it is possible by comparison
with Figure 16 to build a quick idea on the expectable
performance of the algorithm in the new dataset or industrial
application.

The palletization results obtained for the dataset are
available in https://github.com/luferi/3DBPP.

C. BENCHMARKING WITH AN ACADEMIC DATASET
(BR1-7 DATASETS)
In this subsection, the performance of the proposed solution
is compared against other 3D-PP algorithms that have been
proposed in the literature. It is difficult to find performance
results and indicators for multi-container problems with a
relatively high number of constraints. The BR datasets,
described in Section III are single container benchmarks that
are commonly used in the literature. As a single container
dataset, the majority of the algorithms tested against it
evaluate the volume utilization achieved but do not satisfy
the complete shipment constraint (Constraint 6). Instead, the
problem is usually treated as a variation of the knapsack
problem, where the objective is to combine items such that

TABLE 7. Comparing the performance of different 3D-PP algorithms
benchmarked on BR1-7 datasets in terms of percentage of average
volume utilization.

the used pallet volume is maximized. The authors have
selected a total of 7 algorithms, published after the year
2000, benchmarked using the BR datasets and following
layer/block/wall building approaches:

• HBMLS → Heuristic block-loading algorithm based on
multi-layer search [53]

• WGMA → Wall generation meta-heuristic algorithm
[18]

• CLTRS → Container loading by tree search algorithm
[54]

• VNS → Variable neighborhood search [67]
• BSG-VCS → Beam search algorithm [68]
• GRASP → Greedy random adaptive search [36]
• HGA → Hybrid genetic algorithm [69]

Their performance, with respect to average volume uti-
lization, on the BR datasets is detailed in Table 7. Virtually
all these algorithms are capable of using at least 90% of the
available packing volume.

VOLUME 12, 2024 42125

A. A. Ananno, L. Ribeiro: Multi-Heuristic Algorithm

FIGURE 17. Comparison of mean compactness among different problem instances from the BR1-7 datasets.
Individual standard deviations are used to calculate the intervals.

Table 7 also shows the results attained by the proposed
solution with two different configurations, strict and relaxed
support and complete shipment constraints. In the first
(strict support) the algorithm applies fully all the constraints
specified.

Not surprisingly, the volume utilization results obtained
are all near 50% of volume utilization. There is a very clear
explanation for that. The proposed solution guarantees that
all the items are packed. In the BR dataset, the total number
of items is roughly equal to or slightly less than the usable
volume in the container. A perfect packing, which is not
possible due to a combination of the item’s form factor, would
yield close to 100% volume utilization. In this context, the
current algorithm will, in all cases, use one additional pallet.
Mathematically this yields an average volume utilization of
about 50% since all the items that theoretically fit in one
single container are now fully packed in two containers.

In the relaxed support constraint configuration, the
algorithm is setup in a way that closely resembles the
objectives and packing behavior of the other algorithms it
is compared with. In this case, the support constraints are
removed and items are mainly placed taking into account
collision free placement and stability criteria. Additionally,
for the relaxed case, the numbers reflect that of the most
filled pallet, rather than the average of the used volume
as in the previous case. One notices some improvement,
up to 10% in BR1. However, the algorithm will still consider
pallet stability constraints. Because the BR datasets do not
include weight information, the authors have assigned a
unitary weight to all the packages. In this case, their relative
proportion may create imbalances in the center of mass,

TABLE 8. Comparing the average computing time (in seconds) of
100 problem instances in each of the BR1-7 datasets using different
3D-PP algorithms.

which leads the algorithm to prefer certain less-than-optimal
solutions.

The results of the proposed solution on the BR datasets
are further analyzed in Table 8, Figures 17 and 18. Table 8
compares the average execution time of the proposed solution
with the execution time of other algorithms documented in the
literature, for the purpose of solving each instance of the BR
dataset. As mentioned before, execution time is proportional
to the quality of the software implementation and the
available computational power. However, it is also greatly
affected by the number of constraints and optimization
variables that are included in the algorithm. The analysis
of Table 8 shows, as expected, that the proposed solution
is slower on the selected datasets, in comparison to other
previously published results. However, a direct comparison
is unfair due to the higher number of constraints, and
subsequent improved real-world quality of the palletizing
solutions, considered in the proposed solution. One turns,
therefore, the attention to the assessment of the absolute value
of the numbers. The worst-case scenario for the BR datasets

42126 VOLUME 12, 2024

A. A. Ananno, L. Ribeiro: Multi-Heuristic Algorithm

FIGURE 18. Empirical cumulative distribution of computational time for different problem instances from the BR1-7
datasets.

is about 8 mins of execution time, which still allows real-time
execution by pre-calculating the orders.

Average execution times portray a limited picture of the
problem, without an indication of the distribution of such
execution times. In order to better characterize the complexity
of the problem instances in the BR datasets a similar approach
to Section V-B was used. All 700 problem instances are
distributed into 5 entropy intervals. All the orders in this
dataset are considered small orders as they are all under
600 items. In the BR dataset, orders are usually much more
homogeneous in comparison with the orders in the Dataset
1000. This enables the algorithm to perform the majority
of the packing using the first stage. Figure 18 shows that
solutions for high entropy orders are found significantly faster
than in the case of the high entropy orders in Dataset 1000.
Because the second stage of the algorithm has fewer items
to pack, this also results in more compact arrangements,
as shown in Figure 17.

Figure 17 also shows, however, that the average compact-
ness reduces when the heterogeneity of the problem instances
increases from interval 3 to 5. As problem instances get
more heterogeneous, the first phase of the algorithm packs
a smaller number of items into layers and produces a large
number of heterogeneous residuals. Heterogeneous residual
items have a high deviation in their contact surface area. This
makes it difficult for the GA to pack them compactly.

D. INTEGRATION INTO INDUSTRIAL ENVIRONMENTS
The algorithm takes input data in the format described in [5].
Without repeating the details of this previous contribution,
the authors can mention that typical data can be presented
to the algorithm from a Comma-Separated Values File (CSV
file) or as a stream of strings encoding the same information.

Relevant data that the algorithm needs to operate includes:
order number, product id, quantity of products of a given
id in the order, product dimensions and product weight.
As mentioned before, items are assumed to be of cuboid
shape. The algorithm outputs the optimized placing sequence
including the Cartesian position and orientation of each item
in the shipment as detailed in Figure 4.

Industrial integration of the algorithm would require trans-
forming existing order data, typically stored in a company’s
ERP, into the required data format that the algorithm is
designed to use. Then, the data must be transferred to the
algorithm for processing. The results of algorithm must then
be collected and used in any appropriate way for the system
(for example sending the results to a automatic palletizing
machine or displaying them in visual interface to guide a
human operator in the process). This data transformation and
usage pipeline can be automated in a number of different
ways. The exact way depends on the Information Technol-
ogy/Operational Technology infrastructures available at the
company. Profiling of the orders into complexity classes
will help the end user understand which performance can
be expected from the algorithm as a function of the most
frequent types of orders. The processing of extremely large
and complex orders may have to be carried out ahead of time
in order to cater for a higher computational execution time.
The algorithm discussed in the paper purposely avoids such
implementation details, is generic, and can be parameterized
to fit each specific case.

VI. CONCLUSION
3D bin packing problems have a very high impact on any
industrial/logistics operation where packing/palletizing and
transport operations are included. Packing in a way that
maximizes the usage of available volume is the golden

VOLUME 12, 2024 42127

A. A. Ananno, L. Ribeiro: Multi-Heuristic Algorithm

standard. However, packing is a multidimensional problem
and the ability to maximize volume utilization is influenced
by many factors. In the literature, there are a multitude of
solutions for a multitude of well-known variations of 3D-
PP. However, many of the discussed solutions only have an
academic interest.

Real-world packing scenarios are first conditioned by how
much a priori know-how is there about the items that need
to be packed. In many scenarios, ordering patterns are quite
stochastic and many items are bundled together into larger
containers opportunistically (online problem), transported,
and subsequently broken down again and distributed (for
example, in large online retail operations). However, in many
other industrial scenarios, customers will place well-defined
orders including a variety of different items. The entire
shipment contents are therefore known (offline problem).
This contribution focused mainly on the latter. By studying
and evaluating order profiles from real industry data, as well
as considering a set of general but also customer-specific con-
straints that occur very frequently in real 3D-PPs, the authors
propose and evaluate a potential solution. In particular, the
proposed solution addresses two customer-specific needs:
packing similar items together and creating packing solutions
that are executable in fully automated, semi-automated or
fully manual palletization processes.

The 3D-PP solutions generated by the proposed approach
have a number of interesting features with a very high
practical impact. For once, they provide a wide set of
guarantees with respect to the support of the items and the
stability of the container. In addition to these guarantees, they
rely on a combination of strategies that promote the geometric
interlocking of items. The latter has a very high sustainability
impact on many occasions and may mean that the pallet
can be transported, under certain conditions, without plastic
wrapping or other additional supporting and stabilizing aids,
potentially reducing the weight on the pallet and doing away
with excessive plastic usage.

The proposed algorithm was tested and validated against a
very large set of cases and it was demonstrated that solutions
of good quality can be generated in a timely way, for the
majority of the orders.

A number of improvements in the quality of the solutions
are possible, namely in respect to volume utilization for
introducing additional load carriers, which is a relatively
common practice in the F&B industry. This direction has
not been explored in the current version of the algorithm
and is the subject of future work. Also in the scope
of future work, the authors anticipate a set of relevant
developments: the evaluation of additional packing strategies
in the second phase of the algorithm but also the use of
machine learning based approaches that can consume, in the
learning process, the high quality solutions generated by
the current approach. In that respect, the proposed approach
serves a dual purpose: it can be used on its own, establishing
a quality and performance baseline, but it may also be
used to generate synthetic data for further AI/ML-based

developments. Integration of machine learning techniques
to the proposed solution can potentially improve its ability
to optimize large-volume strongly heterogeneous order with
acceptable performance.

ACKNOWLEDGMENT
The authors would like to thank the invaluable input of the
partners of the FLAP project which contributed to the high
quality results reported in this manuscript.

REFERENCES
[1] N. Chernov, Y. Stoyan, and T. Romanova, ‘‘Mathematical model and

efficient algorithms for object packing problem,’’ Comput. Geom-
etry, vol. 43, no. 5, pp. 535–553, Jul. 2010. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0925772109001576

[2] S. Ali, A. G. Ramos, M. A. Carravilla, and J. F. Oliveira, ‘‘On-line three-
dimensional packing problems: A review of off-line and on-line solution
approaches,’’ Comput. Ind. Eng., vol. 168, Jun. 2022, Art. no. 108122.

[3] Amazon. (2022). How We Work to Find the Perfect Fit for Your
Product’s Packaging. [Online]. Available: https://www.aboutamazon.
co.uk/news/sustainability/how-we-work-to-find-the-perfect-fit-for-your-
products-packaging

[4] E. E. Bischoff and M. S. W. Ratcliff, ‘‘Issues in the develop-
ment of approaches to container loading,’’ Omega, vol. 23, no. 4,
pp. 377–390, Aug. 1995. [Online]. Available: https://www.sciencedirect.
com/science/article/pii/030504839500015G

[5] L. Ribeiro and A. A. Ananno, ‘‘A software toolbox for realistic dataset
generation for testing online and offline 3D bin packing algorithms,’’
Processes, vol. 11, no. 7, p. 1909, Jun. 2023. [Online]. Available:
https://www.mdpi.com/2227-9717/11/7/1909

[6] A. Bortfeldt and G. Wäscher, ‘‘Constraints in container loading—A state-
of-the-art review,’’ Eur. J. Oper. Res., vol. 229, no. 1, pp. 1–20, Aug. 2013.

[7] H. Wu, S. C. H. Leung, Y.-W. Si, D. Zhang, and A. Lin, ‘‘Three-stage
heuristic algorithm for three-dimensional irregular packing problem,’’
Appl. Math. Model., vol. 41, pp. 431–444, Jan. 2017. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0307904X16304887

[8] M. T. Alonso, R. Alvarez-Valdes, M. Iori, and F. Parreño, ‘‘Mathematical
models for multi container loading problems with practical constraints,’’
Comput. Ind. Eng., vol. 127, pp. 722–733, Jan. 2019. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0360835218305527

[9] I. Deplano, C. Lersteau, and T. T. Nguyen, ‘‘A mixed-integer linear model
for the multiple heterogeneous knapsack problem with realistic container
loading constraints and bins’ priority,’’ Int. Trans. Oper. Res., vol. 28, no. 6,
pp. 3244–3275, Nov. 2021.

[10] C. Paquay, S. Limbourg, M. Schyns, and J. F. Oliveira, ‘‘MIP-based
constructive heuristics for the three-dimensional bin packing problem
with transportation constraints,’’ Int. J. Prod. Res., vol. 56, no. 4,
pp. 1581–1592, Feb. 2018. [Online]. Available: https://www.tandfonline.
com/doi/full/10.1080/00207543.2017.1355577

[11] T. A. M. Toffolo, E. Esprit, T. Wauters, and G. V. Berghe, ‘‘A two-
dimensional heuristic decomposition approach to a three-dimensional
multiple container loading problem,’’ Eur. J. Oper. Res., vol. 257, no. 2,
pp. 526–538, Mar. 2017. [Online]. Available: https://www.sciencedirect.
com/science/article/pii/S0377221716305707

[12] L. Junqueira, R. Morabito, and D. S. Yamashita, ‘‘Three-
dimensional container loading models with cargo stability and
load bearing constraints,’’ Comput. Oper. Res., vol. 39, no. 1,
pp. 74–85, Jan. 2012. [Online]. Available: https://www.sciencedirect.
com/science/article/pii/S0305054810001486

[13] J. Hasan, J. Kaabi, and Y. Harrath, ‘‘Multi-objective 3D bin-packing
problem,’’ in Proc. 8th Int. Conf. Model. Simul. Appl. Optim. (ICMSAO),
Apr. 2019, pp. 1–5.

[14] O. X. D. Nascimento, T. A. de Queiroz, and L. Junqueira, ‘‘Practical
constraints in the container loading problem: Comprehensive formulations
and exact algorithm,’’ Comput. Oper. Res., vol. 128, Apr. 2021,
Art. no. 105186. [Online]. Available: https://www.sciencedirect.com
/science/article/pii/S0305054820303038

[15] H. Zhao, Q. She, C. Zhu, Y. Yang, and K. Xu, ‘‘Online 3D bin packing
with constrained deep reinforcement learning,’’ in Proc. AAAI Conf.
Artif. Intell., May 2021, vol. 35, no. 1, pp. 741–749. [Online]. Available:
https://ojs.aaai.org/index.php/AAAI/article/view/16155

42128 VOLUME 12, 2024

A. A. Ananno, L. Ribeiro: Multi-Heuristic Algorithm

[16] D. V. Kurpel, C. T. Scarpin, J. E. P. Junior, C. M. Schenekemberg,
and L. C. Coelho, ‘‘The exact solutions of several types of container
loading problems,’’ Eur. J. Oper. Res., vol. 284, no. 1, pp. 87–107,
Jul. 2020. [Online]. Available: https://www.sciencedirect.com/
science/article/pii/S0377221719310136

[17] R. Hu, J. Xu, B. Chen, M. Gong, H. Zhang, and H. Huang, ‘‘TAP-
Net: Transport-and-pack using reinforcement learning,’’ ACM Trans.
Graph., vol. 39, no. 6, pp. 1–15, Nov. 2020, doi: 10.1145/3414685.
3417796.

[18] E. F. da Silva, A. A. S. Leão, F. M. B. Toledo, and T. Wauters,
‘‘A matheuristic framework for the three-dimensional single large
object placement problem with practical constraints,’’ Comput. Oper.
Res., vol. 124, Dec. 2020, Art. no. 105058. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0305054820301751

[19] V. E. Ocloo, A. Fügenschuh, and O. M. Pamen, ‘‘A new mathematical
model for a 3D container packing problem,’’ Brandenburgische Technische
Universität Cottbus-Senftenberg, Senftenberg, Germany, Tech. Rep., 2020.

[20] J. Olsson, T. Larsson, and N.-H. Quttineh, ‘‘Automating the
planning of container loading for atlas copco: Coping with
real-life stacking and stability constraints,’’ Eur. J. Oper. Res.,
vol. 280, no. 3, pp. 1018–1034, Feb. 2020. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0377221719306368

[21] F. Gzara, S. Elhedhli, and B. C. Yildiz, ‘‘The pallet loading problem: Three-
dimensional bin packing with practical constraints,’’ Eur. J. Oper. Res.,
vol. 287, no. 3, pp. 1062–1074, Dec. 2020.

[22] R. R. Júnior, H. H. Yanasse, R. Morabito, and L. Junqueira, ‘‘A hybrid
approach for a multi-compartment container loading problem,’’ Expert
Syst. Appl., vol. 137, pp. 471–492, Dec. 2019. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0957417419304993

[23] R. D. Saraiva, N. Nepomuceno, and P. R. Pinheiro, ‘‘A two-phase
approach for single container loading with weakly heterogeneous boxes,’’
Algorithms, vol. 12, no. 4, p. 67, Mar. 2019. [Online]. Available:
https://www.mdpi.com/1999-4893/12/4/67

[24] F.Wang andK. Hauser, ‘‘Stable bin packing of non-convex 3D objects with
a robot manipulator,’’ in Proc. Int. Conf. Robot. Autom. (ICRA), May 2019,
pp. 8698–8704.

[25] B. Mahvash, A. Awasthi, and S. Chauhan, ‘‘A column generation-based
heuristic for the three-dimensional bin packing problem with rotation,’’
J. Oper. Res. Soc., vol. 69, no. 1, pp. 78–90, Jan. 2018.

[26] A. G. Ramos, E. Silva, and J. F. Oliveira, ‘‘A new load balance
methodology for container loading problem in road transportation,’’ Eur. J.
Oper. Res., vol. 266, no. 3, pp. 1140–1152, May 2018. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0377221717309633

[27] C. Paquay, S. Limbourg, and M. Schyns, ‘‘A tailored two-phase
constructive heuristic for the three-dimensional multiple bin size
bin packing problem with transportation constraints,’’ Eur. J. Oper.
Res., vol. 267, no. 1, pp. 52–64, May 2018. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0377221717310214

[28] T. S. Li, C.-Y. Liu, P.-H. Kuo, N.-C. Fang, C.-H. Li, C.-W. Cheng,
C.-Y. Hsieh, L.-F. Wu, J.-J. Liang, and C.-Y. Chen, ‘‘A three-dimensional
adaptive PSO-based packing algorithm for an IoT-based automated
e-fulfillment packaging system,’’ IEEE Access, vol. 5, pp. 9188–9205,
2017.

[29] J. F. Correcher, M. T. Alonso, F. Parreño, and R. Alvarez-Valdes, ‘‘Solving
a large multicontainer loading problem in the car manufacturing industry,’’
Comput. Oper. Res., vol. 82, pp. 139–152, Jun. 2017. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0305054817300126

[30] M. T. Alonso, R. Alvarez-Valdes, F. Parreño, and J. M. Tamarit,
‘‘Algorithms for pallet building and truck loading in an interdepot
transportation problem,’’ Math. Problems Eng., vol. 2016, pp. 1–11,
Dec. 2016.

[31] M. D. G. Costa and M. E. Captivo, ‘‘Weight distribution in container
loading: A case study,’’ Int. Trans. Oper. Res., vol. 23, nos. 1–2,
pp. 239–263, Jan. 2016. [Online]. Available: https://onlinelibrary.
wiley.com/doi/abs/10.1111/itor.12145

[32] O. C. B. D. Araújo and V. A. Armentano, ‘‘A multi-start random
constructive heuristic for the container loading problem,’’ Pesquisa
Operacional, vol. 27, no. 2, pp. 311–331, Aug. 2007, doi: 10.1590/s0101-
74382007000200007.

[33] D. Pisinger, ‘‘Heuristics for the container loading problem,’’ Eur. J. Oper.
Res., vol. 141, no. 2, pp. 382–392, Sep. 2002. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0377221702001327

[34] W. Zhu and A. Lim, ‘‘A new iterative-doubling Greedy–Lookahead
algorithm for the single container loading problem,’’ Eur. J. Oper.
Res., vol. 222, no. 3, pp. 408–417, Nov. 2012. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0377221712003529

[35] M. T. Alonso, R. Alvarez-Valdes, M. Iori, F. Parreño, and J. M. Tamarit,
‘‘Mathematical models for multicontainer loading problems,’’
Omega, vol. 66, pp. 106–117, Jan. 2017. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0305048316000335

[36] A. Moura and J. F. Oliveira, ‘‘A GRASP approach to the container-loading
problem,’’ IEEE Intell. Syst., vol. 20, no. 4, pp. 50–57, Jul. 2005.

[37] O. Faroe, D. Pisinger, and M. Zachariasen, ‘‘Guided local search for the
three-dimensional bin-packing problem,’’ INFORMS J. Comput., vol. 15,
no. 3, pp. 267–283, Aug. 2003.

[38] S. Nishiyama, C. Lee, and T. Mashita, ‘‘Designing a flexible evaluation of
container loading using physics simulation,’’ in Proc. 3rd Int. Conf. Optim.
Learn. Cádiz, Spain: Springer, 2020, pp. 255–268.

[39] R. D. Saraiva, N. Nepomuceno, and P. R. Pinheiro, ‘‘A layer-
building algorithm for the three-dimensional multiple bin packing
problem: A case study in an automotive company,’’ IFAC-PapersOnLine,
vol. 48, no. 3, pp. 490–495, 2015. [Online]. Available: https://www.
sciencedirect.com/science/article/pii/S2405896315003687

[40] J.-F. Tsai, P.-C.Wang, andM.-H. Lin, ‘‘A global optimization approach for
solving three-dimensional open dimension rectangular packing problems,’’
Optimization, vol. 64, no. 12, pp. 2601–2618, Dec. 2015.

[41] M. Hifi, I. Kacem, S. Nègre, and L. Wu, ‘‘A linear programming
approach for the three-dimensional bin-packing problem,’’ Electron. Notes
Discrete Math., vol. 36, pp. 993–1000, Aug. 2010. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S1571065310001277

[42] S. Martello, D. Pisinger, and D. Vigo, ‘‘The three-dimensional bin packing
problem,’’ Operations Res., vol. 48, no. 2, pp. 256–267, Apr. 2000.

[43] O. Kundu, S. Dutta, and S. Kumar, ‘‘Deep-pack: A vision-based 2D online
bin packing algorithm with deep reinforcement learning,’’ in Proc. 28th
IEEE Int. Conf. Robot Human Interact. Commun. (RO-MAN), Oct. 2019,
pp. 1–7.

[44] L. Duan, H. Hu, Y. Qian, Y. Gong, X. Zhang, Y. Xu, and J. Wei, ‘‘A multi-
task selected learning approach for solving 3D flexible bin packing
problem,’’ 2018, arXiv:1804.06896.

[45] K. Karabulut and M. M. Inceoğlu, ‘‘A hybrid genetic algorithm for
packing in 3D with deepest bottom left with fill method,’’ in Advances
in Information Systems, T. Yakhno, Ed. Berlin, Germany: Springer, 2004,
pp. 441–450.

[46] I. Gimenez-Palacios, M. T. Alonso, R. Alvarez-Valdes, and F. Parreño,
‘‘Logistic constraints in container loading problems: The impact of
complete shipment conditions,’’ TOP, vol. 29, no. 1, pp. 177–203,
Apr. 2021, doi: 10.1007/s11750-020-00577-8.

[47] R. Verma, A. Singhal, H. Khadilkar, A. Basumatary, S. Nayak, H. V. Singh,
S. Kumar, and R. Sinha, ‘‘A generalized reinforcement learning algorithm
for online 3D bin-packing,’’ 2020, arXiv:2007.00463.

[48] C. T. Ha, T. T. Nguyen, L. T. Bui, and R. Wang, ‘‘An online packing
heuristic for the three-dimensional container loading problem in dynamic
environments and the physical Internet,’’ in Proc. 20th Eur. Conf.
Appl. Evol. Comput., Amsterdam, The Netherlands. Cham, Switzerland:
Springer, 2017, pp. 140–155.

[49] H. Zhao, Q. She, C. Zhu, Y. Yang, and K. Xu, ‘‘Online 3D bin packing with
constrained deep reinforcement learning,’’ 2020, arXiv:2006.14978.

[50] C. S. Chen, S. M. Lee, and Q. S. Shen, ‘‘An analytical model
for the container loading problem,’’ Eur. J. Oper. Res., vol. 80,
no. 1, pp. 68–76, Jan. 1995. [Online]. Available: https://www.
sciencedirect.com/science/article/pii/037722179400002T

[51] S. Elhedhli, F. Gzara, and B. Yildiz, ‘‘Three-dimensional bin packing and
mixed-case palletization,’’ INFORMS J. Optim., vol. 1, no. 4, pp. 323–352,
Oct. 2019, doi: 10.1287/ijoo.2019.0013.

[52] A. Galrão Ramos, J. F. Oliveira, J. F. Gonçalves, and M. P. Lopes,
‘‘A container loading algorithm with static mechanical equilibrium
stability constraints,’’ Transp. Res. B, Methodol., vol. 91, pp. 565–581,
Sep. 2016. [Online]. Available: https://www.sciencedirect.com
/science/article/pii/S0191261515302022

[53] D. Zhang, Y. Peng, and S. C. H. Leung, ‘‘A heuristic block-
loading algorithm based on multi-layer search for the container load-
ing problem,’’ Comput. Oper. Res., vol. 39, no. 10, pp. 2267–2276,
Oct. 2012. [Online]. Available: https://www.sciencedirect.com/science/
article/pii/S0305054811003078

VOLUME 12, 2024 42129

http://dx.doi.org/10.1145/3414685.3417796
http://dx.doi.org/10.1145/3414685.3417796
http://dx.doi.org/10.1590/s0101-74382007000200007
http://dx.doi.org/10.1590/s0101-74382007000200007
http://dx.doi.org/10.1007/s11750-020-00577-8
http://dx.doi.org/10.1287/ijoo.2019.0013

A. A. Ananno, L. Ribeiro: Multi-Heuristic Algorithm

[54] T. Fanslau and A. Bortfeldt, ‘‘A tree search algorithm for solving the
container loading problem,’’ INFORMS J. Comput., vol. 22, no. 2,
pp. 222–235, May 2010, doi: 10.1287/ijoc.1090.0338.

[55] S. Liu, W. Tan, Z. Xu, and X. Liu, ‘‘A tree search algorithm for the
container loading problem,’’ Comput. Ind. Eng., vol. 75, pp. 20–30,
Sep. 2014. [Online]. Available: https://www.sciencedirect.com/science/
article/pii/S0360835214001776

[56] C.-F. Chien and J.-F. Deng, ‘‘A container packing support system
for determining and visualizing container packing patterns,’’ Decis.
Support Syst., vol. 37, no. 1, pp. 23–34, Apr. 2004. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0167923602001926

[57] X. Zhao, J. A. Bennell, T. Bektağ, and K. Dowsland, ‘‘A compar-
ative review of 3D container loading algorithms,’’ Int. Trans. Oper.
Res., vol. 23, nos. 1–2, pp. 287–320, Jan. 2016. [Online]. Available:
https://onlinelibrary.wiley.com/doi/abs/10.1111/itor.12094

[58] T. Tian, W. Zhu, A. Lim, and L. Wei, ‘‘The multiple
container loading problem with preference,’’ Eur. J. Oper. Res.,
vol. 248, no. 1, pp. 84–94, Jan. 2016. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0377221715006232

[59] C. D. Tarantilis, E. E. Zachariadis, and C. T. Kiranoudis, ‘‘A hybrid
metaheuristic algorithm for the integrated vehicle routing and three-
dimensional container-loading problem,’’ IEEE Trans. Intell. Transp. Syst.,
vol. 10, no. 2, pp. 255–271, Jun. 2009.

[60] H. Hu, X. Zhang, X. Yan, L. Wang, and Y. Xu, ‘‘Solving a new 3D
bin packing problem with deep reinforcement learning method,’’ 2017,
arXiv:1708.05930.

[61] A. Laterre, Y. Fu, M. K. Jabri, A.-S. Cohen, D. Kas, K. Hajjar,
T. S. Dahl, A. Kerkeni, and K. Beguir, ‘‘Ranked reward: Enabling
self-play reinforcement learning for combinatorial optimization,’’ 2018,
arXiv:1807.01672.

[62] E. K. Burke, M. Gendreau, M. Hyde, G. Kendall, G. Ochoa, E. Özcan, and
R. Qu, ‘‘Hyper-heuristics: A survey of the state of the art,’’ J. Oper. Res.
Soc., vol. 64, no. 12, pp. 1695–1724, Dec. 2013, doi: 10.1057/jors.2013.71.

[63] M. G. Epitropakis and E. K. Burke,Hyper-Heuristics. Cham, Switzerland:
Springer, 2018, pp. 1–57, doi: 10.1007/978-3-319-07153-4.

[64] T. G. Crainic, G. Perboli, and R. Tadei, ‘‘Extreme point-based heuristics
for three-dimensional bin packing,’’ INFORMS J. Comput., vol. 20, no. 3,
pp. 368–384, Aug. 2008.

[65] F.-A. Fortin, F.-M. De Rainville, M.-A. G. Gardner, M. Parizeau, and
C. Gagné, ‘‘DEAP: Evolutionary algorithms made easy,’’ J. Mach. Learn.
Res., vol. 13, no. 1, pp. 2171–2175, 2012.

[66] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, ‘‘A fast and elitist
multiobjective genetic algorithm: NSGA-II,’’ IEEE Trans. Evol. Comput.,
vol. 6, no. 2, pp. 182–197, Apr. 2002.

[67] F. Parreño, R. Alvarez-Valdes, J. F. Oliveira, and J. M. Tamarit,
‘‘Neighborhood structures for the container loading problem: A VNS
implementation,’’ J. Heuristics, vol. 16, no. 1, pp. 1–22, Feb. 2010.

[68] I. Araya, K. Guerrero, and E. Nuñez, ‘‘VCS: A new heuristic function
for selecting boxes in the single container loading problem,’’ Com-
put. Oper. Res., vol. 82, pp. 27–35, Jun. 2017. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0305054817300023

[69] A. Bortfeldt and H. Gehring, ‘‘A hybrid genetic algorithm for the
container loading problem,’’ Eur. J. Oper. Res., vol. 131, no. 1,
pp. 143–161, May 2001. [Online]. Available: https://www.science
direct.com/science/article/pii/S0377221700000552

ANAN ASHRABI ANANNO received the B.S.
degree in mechanical engineering from Rajshahi
University of Engineering & Technology (RUET),
Rajshahi, Bangladesh, in 2019, and the M.S.
degree in mechanical engineering from Linköping
University, Linköping, Sweden, in 2022, where
he is currently pursuing the Ph.D. degree in
industrial engineering. He has (co)authored more
than 25 papers and book chapters published in
journals, books, and conference proceedings. His

research interests include discrete optimization, multi-objective design
optimization, industrial cyber-physical systems, and design automation.

LUIS RIBEIRO (Senior Member, IEEE) received
the M.Sc. and Ph.D. degrees in electrical and
computer engineering, with specialization in
robotics and computer integrated manufacturing
from NOVA University Lisbon, Portugal, in
2007 and 2012, respectively. He is an Associate
Professor (Biträdande Professor) in manufacturing
engineering, with a specialization in industrial
cyber-physical systems, with Linköping Univer-
sity, Sweden. His Habilitation (SE Docent) is in

manufacturing engineering from Linköping University. He has participated
in several national and international research projects in the field of
intelligent and plug and produce production systems and he was a Freelance
Consultant and a Software Engineer in the automotive industry. He has
(co)authored more than 80 papers and chapters published in journals, books,
and conference proceedings. He is the author of the book System Design and
Implementation Principles for Industry 4.0. His research interests include
the modeling, development, and implementation of intelligent software
solutions-based in multi-agent systems, service-oriented architectures, and
cloud for the fast reconfiguration, execution, and ramp-up of batch-size-one
production systems. He is a member of the Swedish Advisory Production
Council. He is also the Vice-Chair of the IEEE Technical Committee on
Industrial Agents.

42130 VOLUME 12, 2024

http://dx.doi.org/10.1287/ijoc.1090.0338
http://dx.doi.org/10.1057/jors.2013.71
http://dx.doi.org/10.1007/978-3-319-07153-4

