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ABSTRACT Rolling bearings in production practice usually serve in a healthy state. Some fault state labels
are scarce or even no labels, resulting in unbalanced data categories. Meanwhile, frequent working condition
switching results in significant differences in data distribution among working conditions, and labeled data
in some working states cannot be fully utilized. To deal with the challenge of low fault identification
accuracy caused by these practical factors, this paper proposed a novel adversarial unsupervised subdomain
adaption multi-channel deep convolutional network (ASMDCN). Firstly, a parallel three-channel depth
feature extraction module is built, and a multi-scale convolution kernel is used to fully extract the rich
features of vibration signals under various working conditions. Secondly, a novel loss function is designed
to adequately consider the classification difficulty of samples and the degree of class imbalance. Finally, the
adversarial training strategy is used to force the feature extractor to extract the domain invariant features,
and the Local Maximum Mean discrepancy (LMMD) is used to align the global and related subdomains of
the source and target domains. The experimental results show that the designed feature extraction can fully
extract the domain-invariant features of the rolling bearings under different working conditions. Under the
proposed objective function optimization, the network model can fully align the features of multi-source and
single-target domain under unbalanced data and has strong generalization performance.

INDEX TERMS Intelligent cross-domain fault diagnosis, unbalanced data, adversarial domain adaptation,
subdomain adaptation.

I. INTRODUCTION
As the core part of large-scale mechanical equipment,
rotating machinery plays a considerable role in aerospace,
communication and transportation, petrochemical, and other
fields [1], [2], [3]. However, these sizeable mechanical
equipment usually work in harsh environments, and rolling
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bearings, as their key components, are vulnerable to impact
loads, mechanical fatigue, frequent switching of working
conditions, improper maintenance, and other reasons for
failure [4], [5], [6]. Once the failure occurs, it may cause
substantial economic losses and negative social impact.
Therefore, conditionmonitoring and fault diagnosis of rolling
bearings can accurately assess potential risks and make
predictive maintenance decisions, which is significant to
mechanical equipment’s safe and stable operation [7], [8].
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In the past, the traditional methods based on vibration signal
processing and feature extraction have achieved remarkable
results [9], [10], [11]. However, this shallow model method
is limited in the actual industry because it relies too much on
expert system knowledge [12].
With the widespread application and rapid development

of artificial intelligence technology in various industries,
the deep learning fault diagnosis method has become a
research hotspot due to its end-to-end structure and the
ability to extract high-level feature representation of sig-
nals directly [13], [14], [15]. Typical methods are based on
convolutional neural networks (CNN) [16], recurrent neural
networks [17], autoencoders [18], and graph convolutional
neural networks (GCNN) [19]. Among them, the method
based on convolutional neural networks shows excellent
diagnostic performance in fault diagnosis. XING et al. [20]
directly send vibration signals to the proposed new 1D-CNN,
which had high diagnostic accuracy for unbalanced data.
Zhang et al. [21] applied 1D-CNN to construct a multi-scale
residual attention network, which can learn multi-scale fea-
tures of signals in a high-noise environment. Zhang et al. [22]
designed an improved three-layer CNN structure to realize
the fault diagnosis of bearing with multiple operating con-
ditions. However, all the above studies are based on the
assumption that the sample data is labeled and that the sam-
ples used for model training and the samples to be tested obey
the same distribution. Due to production process constraints,
rolling bearings need to switch working states frequently.
Specific differences in data distribution exist, and data labels
cannot be obtained under specific working conditions. If the
above method is used directly, the diagnostic accuracy will
decrease or fail.

Unsupervised domain adaption can effectively align the
distribution difference between the source and target domain
and diagnose the fault types of the target domain without
labels. Li et al. [23] proposed a domain adversarial net-
work framework based on correlation alignment (CORAL)
with high diagnostic accuracy and good generalization for
cross-domain diagnosis. Zhang et al. [24] proposed a domain
additional network with a multi-scale attention mechanism,
which used maximum mean discrepancy (MMD) to mini-
mize the distribution difference between the source and target
domains, achieving better diagnostic results for rolling bear-
ings. Ferracuti et al. [25] used Wasserstein Distance (WD)
as the distance measurement function of source and target
domains, effectively diagnosing various faults and complex
working conditions. Wan et al. [26] used Multiple Kernel
MMD (MK-MMD) and a multi-domain discriminator to
align the source and target domain data distribution. They
achieved excellent migration effect in cross-operating fault
diagnosis of bearings. The above researchwork hasmade out-
standing achievements in the cross-operating unsupervised
fault diagnosis of rolling bearings. However, the above meth-
ods mainly learn the global distribution difference between
the source and target domains. If the subdomain data can

FIGURE 1. Problem description of the domain adaptation.

be further considered and fine-grained information can be
captured, the diagnosis results may be significantly improved.

Aiming to capture fine-grained information, Zhu et al. [27]
proposed a deep subdomain adaption network, which used
LMMD to align the related subdomains of the two data
domains. They achieved remarkable results in image migra-
tion recognition. In the field of bearing fault diagnosis,
Liu et al. [28] proposed a deep adversarial subdomain adap-
tion network, which used the simultaneous constraints of
domain discriminator and LMMD to extract domain invariant
and fine-grained features. Zhang et al. [29] proposed a hybrid
adversarial data analysis network, which uses LMMD to
realize subdomain adaption and has robust diagnostic per-
formance in multiple transfer diagnosis. Xiao et al. [30] pro-
posed a subdomain adaption deep transfer learning network
for intelligent damage diagnosis of bridges. MK-LMMD
was used to realize global and local alignment of the fea-
tures of the two domains. Kavianpour et al. [31] proposed
a class alignment network based on GCNN and adopted
MK-LMMD to realize the alignment of subclass features. The
above research work has made an outstanding contribution
to cross-domain unsupervised subdomain adaption. However,
the above studies are based on the assumption of the balanced
distribution of data categories in two domains and utilize the
single-source domain to train the model. In actual production,
bearings are primarily operated under normal conditions.
In other words, the normal sample size is large, and the fault
sample is accidental, resulting in an imbalance in the fault
category. In addition, bearings need to be switched frequently
in various working conditions to complete a specific pro-
duction process, and in some working conditions, we cannot
obtain data and labels. Therefore, how to make full use of
the unbalanced data with labels in multi-working states to
diagnose unlabeled test samples is an urgent problem in the
field of fault diagnosis.

Aiming at the above problems, this paper proposes an
ASMDCN to fill the gap. As shown in Fig. 1, the left section
uses global data alignment but does not consider subdomain
data. Although the middle part considers the alignment of
subdomain data, it ignores the influence of unbalanced data,
eventually leading to misclassification. On the far right is our
proposed method. The network framework employs unbal-
anced data under various working conditions to train the
network and realizes high-precision unsupervised fault diag-
nosis of cross-operating rolling bearings. The contributions
of this paper are as follows:
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FIGURE 2. The proposed framework.

1) Considering the degree of unbalance of class data
and the difficulty of sample classification, a new label loss
function is proposed as a part of the overall objective func-
tion, achieving high-precision classification of class data
unbalance.

2) The adaptive constraints of the adversarial domain are
employed to guide the three-branch deep convolutional net-
work to extract the domain-invariant features fully conducive
to model classification. Simultaneously, LMMD is further
used to align the related subdomains of the domains.

3) To enhance the model’s generalization ability, the
labeled source domains data under multiple working condi-
tions and single working conditions unlabeled target domain
data are used to train the model.

The rest of this paper is organized as follows: The sec-
ond section introduces the problem definition and the basic
theory of MMD. The third section presents the structure
of the ASMDCN framework in detail. The fourth section
introduces the experimental data used and the detailed exper-
imental results. The fifth section gives the conclusion of this
paper.

II. BASIC THEORY
A. PROBLEM DEFINITION
This paper mainly studies the cross-operating unsupervised
intelligent fault diagnosis method of rolling bearings. Due
to the limitations of the production process, rolling bearings
usually need to be switched frequently under various working
conditions. Therefore, we construct the multi-source domains
Ds1 =

{(
xs1i , ys1i

)}ns1
i=1 , · · · ,Dsn =

{(
xsni , ysni

)}nsn
i=1 (ns =

ns1 + · · · + nsn) with ns labeled samples and target domain

Dt =

{(
x tj

)}nt
j=1

with nt unlabeled samples, where xsni is the

i-th sample of n-th working conditions in the source domain,

ysni the corresponding label, x tj is the j-th sample in the
target domain. We assume that multi-source domains Ds =

{Ds1, · · · ,Dsn} and target domain Dt have the same sample
space Y = {1, 2, · · · ,NC }, NC represents the number of
rolling bearing health status categories. Since both Ds and Dt
are collected under different working conditions, their proba-
bility distributions are also different. Therefore, suppose P =

{p1, · · · , pn} and q represent marginal probability distribu-
tions for Ds and Dt , respectively. In this paper, we employ
labeled multi-source domains and unlabeled single-target
domain to train the model to diagnose the health category of
the target domain.

B. MMD
MMD is one of the most commonly used discrepancy mea-
sures approach in domain adaptation. The method maps two
distributed data into a Hilbert space and calculates the differ-
ence. MMD is to find the continuous function φ : x → R in
the sample space and then calculate the mean of the samples
of the two distributions on φ. The size of the difference
reflects the degree of similarity of the different distributions.
Let Xs =

{
xsi

}ns
i=1 and Xt =

{
x tj

}nt
j=1

obey the probability

distributions p and q respectively, then the formula for MMD
between the two datasets is as follows:

dH (p, q) ≜
∥∥Ep [φ(Xs)] − Eq [φ(Xt )]

∥∥2
H (1)

where H is reproducing kernel Hilbert space (RKHS). φ(·)
is a function that maps data to a Hilbert space. The above
formula is called the overall probability measure in statistics.
To further calculate the difference, the biased estimate of
MMD can be used to replace it. The calculation formula is
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TABLE 1. The structure and detailed parameters of the proposed ASMDCN.

as follows:

d̂H (p, q) =

∥∥∥∥∥∥ 1
ns

ns∑
i=1

φ
(
xsi

)
−

1
nt

nt∑
j=1

φ(x tj )

∥∥∥∥∥∥
2

H

=
1
n2s

ns∑
i=1

ns∑
j=1

k
(
xsi , x

s
j

)
+

1

n2t

nt∑
i=1

nt∑
j=1

k
(
x ti , x

t
j

)

−
2
nsnt

ns∑
i=1

nt∑
j=1

k(xsi , x
t
j ) (2)

where k(·, ·) is a Gaussian kernel function, which is generally
chosen as Gaussian kernel.

III. THE PROPOSED FRAMEWORK
The proposed framework structure is shown in Fig. 2. The
main idea of the proposed method is to fully extract the

Domain-invariant features of the cross-domain unbalanced
data and realize the global and subdomain self-adaptation of
the cross-domain data. The following will be described in
detail.

A. ADVERSARIAL UNSUPERVISED SUBDOMAIN
ADAPTION MULTI-CHANNEL DEEP CONVOLUTIONAL
NETWORKS
The proposed ASMDCN network framework consists of
three modules: feature extractor, label classifier, and domain
discriminator. The overall structure and detailed parameters
of the model are shown in Table 1.
For the whole model, firstly, a multi-channel feature

extractor is used to fully extract rich features from the
multi-source labeled source domains and single-source unla-
beled target domain, and the SE module is used to stimulate
further and suppress the features to automatically obtain
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FIGURE 3. The structure of the designed feature extractor.

high-level features representations that are beneficial to
model classification. Secondly, the features extracted from
the source and target domains are sent to the label classifier
to realize the classification of the source domain data and
the subdomain adaptation of the cross-domain data. At the
same time, the features are sent to the domain discriminator,
and the source of the features is identified, which conducts
the feature extractor to extract the domain-invariant features.
Finally, under the optimization of the objective function, the
model iteratively trains and updates the network parameters
to achieve cross-domain unsupervised fault diagnosis of the
target domain data. The components are described in detail
below:

1) FEATURE EXTRACTOR Gf
Domain-invariant feature extraction of cross-domain data has
always been a hot research topic. The typical approach is
to apply a deeper network structure or a manually designed
feature extraction algorithm to the signal. However, artificial
feature extraction requires expert knowledge and experience
to design according to task requirements or signal characteris-
tics. In addition, with limited data, deep networks easily lead
to overfitting, and the extracted features are not rich enough.

For the fault diagnosis problem of multi-source cross-
domain with unbalanced data, the reasonable design of
the feature extractor is one of the critical factors affect-
ing the diagnosis performance. Inspired by references [6]

and [32], we design a parallel three-channel feature extrac-
tor, as shown in Fig. 3, which comprises a four-layer
‘‘convolution-pooling’’ of three parallel branches. Channel 1
of the three parallel branches slides the convolution over
the data using larger convolution kernels of size 41, fol-
lowed by large convolution kernels of 21, 11, and 9 to fully
capture the global high-level feature representation of the
data. Channel 2 uses medium-sized convolution kernels 7,
5, 3, and 2, respectively, to extract local high-level feature
representations of the data. Channel 3 uses a smaller convo-
lution kernel to extract and locate critical features of the data.
The structure and parameters of the three channels are the
same, but the convolution kernel size is different. After each
convolutional layer, the features are further processed using
batch normalization and Relu to avoid gradient disappearance
and explosion. Regarding channel dimension, the features
obtained from the three channels are concatenated to get the
output features. Then, SE attention is used to squeeze or
excite the features further, and then the combined features
with weight are obtained.

Specifically, assume that xsn(n = 1, 2, . . . ,N ) and x t

(xsn ∈ RN×B×L , x t ∈ RB×L) represent source domain
data of N labeled working conditions of rolling bearings and
unlabeled target domain data of single working conditions.
B is the batch size of input data during model training, and L
represents the length of data samples. Multi-source domains
and single-target domain are input to the model for feature
extraction.

The mapping function of the feature extractor composed
of three branches is set as Gf . The mapping parameter is set
as θf . Therefore, the i-th source domain xsni sample and the
j-th target domain x tj sample are input to Gf . The features
obtained from the three channels are concatenated to obtain
the high-level feature representation Z̃ s = Gf (xsn; θf ) and
Z̃ t = Gf (x t ; θf )(Z̃ s, Z̃ t ∈ RB×D), where D is the number of
channels of the feature map output by the feature extractor.
Then, the resulting features Z̃ s and Z̃ t are sent to SE attention
for further processing. Refer to the design idea of channel
attention mechanism in literature [32]. It comprises a global
average pooling (GAP) layer, two fully-connected (FC) lay-
ers, a ReLU activation function, and a Sigmoid activation
function. Features Z̃ s and Z̃ t are first reduced in dimension by
GAP and then ascended dimension by linear layer to obtain
attention weight ωs/t = σ {FC[ReLU (FC(Z̃ s/t ))]}, where
σ ( · ) = 1

/
(1 + e−x) is the Sigmoid function, and FC( · ) is a

linear transformation. Finally, we get the features Z s = ωs ·Z̃ s

and Z t = ωt · Z̃ t with attention weights.

2) DOMAIN DISCRIMINATOR Gd
Due to the different production processes, the operating con-
ditions of rolling bearings need to be changed frequently,
which leads to the difference in the distribution of data
collected under various working conditions. We employ the
domain adversarial adaption loss function to reduce global
distribution differences.
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The domain discriminator is composed of three linear
layers. After the first two linear layers, the Relu activation
function is used to realize nonlinear transformation, and the
last layer uses the Softmax activation function. In the training
process of ASMDCN, feature extractor Gf and domain dis-
criminator Gd (θd is the parameter of the learning process)
play an antagonistic role, and the two form a maximum and
minimum game.

Specifically, as shown in Fig. 2, we add a gradient reversal
layer with parameter µ between Gf and Gd to solve the
game problem. The feature extractor Gf expects the domain
discriminator Gd to be unable to distinguish the source of the
extracted features through continuous learning. In contrast,
the domain discriminator Gd expects to identify whether the
features belong to the source or target domain through train-
ing. Therefore, in the data of a training batch, the objective
function of the domain against loss is as follows:

LAD =
1
B

B∑
i=1

log(Gd (Gf (xsni ; θf )); θd )

+
1
B

B∑
i=1

log(1 − Gd (Gf (x ti ; θf )); θd ) (3)

3) LABEL CLASSIFIER Gl
In previous studies, people usually constructed a balanced
dataset to train the model and used the cross-entropy loss
function as the optimization target of the source domain
classifier. However, the data collected in actual production
is usually unbalanced because the equipment is generally
healthy. Hence, the data collected are primarily healthy sam-
ples; the fault samples account for less. If the cross-entropy
function is directly used as the optimization target, the model
will not learn enough for a few samples and cannot achieve
accurate classification.

For the processing of unbalanced data, Lin et al. [33]
proposed a focal loss (FL) function in 2018, which could
adjust the weight values of samples of different categories and
samples with varying classification difficulties and achieve
great success. Subsequently, FL and its variants achieved
remarkable results in applying bearing fault diagnosis [34],
[35]. Inspired by the above ideas, we design a new classifica-
tion loss function for unbalanced data based on cross-entropy
with dynamic weights and improved Focal loss. In the design,
we consider two fundamental problems: the classification
difficulty of input samples and the imbalance of sample
categories. The calculation formula of the designed objective
function is as follows:

Lw−f =
1
B

B∑
i=1

C∑
j=1

(1 − p(ysi = j|Z si ))
γ

· wsc · (−log(p(ysi = j|Z si ))) (4)

where p(ysi = j|Z si ) is the probability that the feature of the i-th
sample in the source domain is predicted to be of class C , and
j is the actual label of this sample. γ is a hyperparameter. wsc

is the weight corresponding to the cross-entropy loss function
in the model training process, and its calculation formula is
as follows:

wsc =
1

log(µ + nc
/
N )

, c ∈ {1, 2, . . . , n_class} (5)

whereµ is the hyperparameter, nc is the sum of labels belong-
ing to class c in the current BATCH, N is the total number
of samples in the current BATCH, and n_classis the total
number of categories.

According to the characteristics of the data collected by the
rolling bearing, (1 − p(ysi = j|Z si ))

γ in the objective function
Lw−f is used to control the classification difficulty of the
input samples of the model. A more significant loss value is
assigned to the samples that are difficult to classify, and the
opposite value is set to the samples that are easy to classify.
Since each BATCH of data input gives a different number of
classes to the model, wsc is used to assign dynamic weights
to the cross-entropy loss function within each batch to deal
with sample class imbalance. Compared with the weight
coefficient of ordinary class weighting calculation, even if
the number of samples nc of a specific class participating in
training in the current BATCH is 0, its weight parameters are
bounded, effectively avoiding the loss value disappearing.

The domain discriminatorGd mentioned above can induce
the feature extractor Gf to extract domain invariant features
by reducing the global distribution difference of cross-
domain data. Still, it ignores the fine-grained information of
the data. To solve this problem, LMMD is introduced to do
further subdomain alignment on the features obtained from
the source and target domains. LMMD is weighted according
toMMD, which considers the weight of the sample according
to the category of the sample, which can be expressed as
follows:

LLMMD(p, q) =
1
N

N∑
n=1

∥∥∥∥∥∥∥
∑
xsi ∈Xs

wsni φ(xsi ) −

∑
xtj ∈Xt

wtnj φ(x tj )

∥∥∥∥∥∥∥
2

H

(6)

where wsni and wtnj represent the weights of xsi and x
t
j belong-

ing to category n, respectively. N is the number of sample
classes. In a BATCH,

∑ns
i=1 w

sn
i = 1 and

∑nt
j=1 w

tn
j = 1. For

a given sample xi, wni can be calculated as follows:

wni =
yin∑

(xj,yj)∈D yjn
(7)

where yin is the label of Hi and the n-th element of vector
yn. For the source domain sample xsi , we can calculate wni
by its actual label yin. However, the target domain sample
x tj is unlabeled. Considering that the output feature H t of
the subdomain alignment module can be converted into a
probability distribution, we use its predicted pseudo-label ŷtjn
to calculate the weight wnj of the target domain. According to
Fig. 1, H s and H t (H s,H t

∈ RB×n) are the output features of
the first linear layer in the LMMD embedded source domain
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classifier and subdomain alignment module. We can derive
an adaption function for subdomain alignment:

LLMMD
(
H s,H t)

=

∥∥∥∥∥∥ 1
ns

ns∑
i=1

wsni φ
(
H s
i
)
−

1
nt

nt∑
j=1

wtnj φ(H t
j )

∥∥∥∥∥∥
2

H

=
1
N

N∑
n=1

 ns∑
i=1

ns∑
j=1

wsni w
sn
j k

(
H s
i ,H

s
j

)

+

nt∑
i=1

nt∑
j=1

wtni w
tn
j k

(
H t
i ,H

t
j

)

−2
ns∑
i=1

nt∑
j=1

wsni w
tn
j k(H

s
i ,H

t
j )

 (8)

In summary, we can get the loss function of the label
classifier:

Ll = Lw−f + λLLMMD
(
H s,H t) (9)

where λ is the compromise parameter of subdomain adaption
and classification loss, the formula is as follows:

λ =
2

1 + e−10m/M − 1 (10)

where m is the current epoch, andM is the total epochs.

B. TRAINING PROCESS OF ASMDCN
According to the above, the proposed objective optimization
function of ASMDCN consists of the following three parts:

1) Source domain classifier error
2) Domain discriminator error
3) Subdomain adaption error
Therefore, combined with (3) and (9), the overall objective

optimization function of ASMDCN is:

Ltotal(θf , θc, θd ) = Lw−f + λLLMMD
(
H s,H t)

− µLAD
(11)

where µ is the tradeoff parameter of Ltotal .
The three parts of Ltotal each play different optimization

roles. First of all, Lw−f is designed with full considera-
tion of difficult samples and highly unbalanced data in the
source domain data. In the ASMDCN training process, the
parameter θf of Gf is updated by minimizing the Lw−f func-
tion to achieve high-accuracy classification of the source
domain. Secondly, LLMMD

(
H s,H t

)
is an optimization func-

tion that aligns the related subdomains of the target and source
domains. With the help of the source domain classifier, the
accurate classification of the target domain without labels
can be achieved byminimizing LLMMD

(
H s,H t

)
. Finally, LAD

is the optimization objective function of adversarial learn-
ing. In the ASMDCN model, Gf and Gd are regarded as
a minimax two-person game, and the performance of Gf
and Gd is improved in the adversarial process. Specifically,
optimizing the parameter θf of Gf minimizes the Lw−f func-
tion to confuse the two domains so that Gf can learn the

TABLE 2. Training strategy of ASMDCN.

FIGURE 4. Bearing experimental platform of CWRU.

domain invariant features. At the same time, by optimizing
the parameter θd of LAD, the LAD function is maximized to
improve the discriminant ability of the domain discriminator.

For all diagnostic tasks, we use SGD with a momentum
of 0.9 as the network optimizer. In the process of network
iterative training, the learning rate ηθ is constantly updated.
ηθ = η0

/
(1 + αθ)β ,where θ is the training progress linearly

changing from 0 to 1, η0 = 0.001, α = 10, and β = 0.75
[27]. Total epochs are 300, batch size is 64, weight_decay is
5e-4. The network training process adopts the early-stopping
strategy, and the stopping cycle is 30. Detailed training strat-
egy are shown in Table 2.
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TABLE 3. Description of imbalanced dataset for CWRU.

FIGURE 5. Bearing experimental platform of Hou De.

TABLE 4. Description of the imbalanced dataset for case 2.

IV. EXPERIMENTAL RESULTS AND VERIFICATIONS
In this section, datasets from Case Western Reserve Univer-
sity (CWRU) and Wuxi Hou De Automation Instrument Co.,
LTD. (Hou De) are selected to verify the migration diagnostic
performance of the proposed method and the stability of
processing unbalanced data. Regarding comparison methods,
we chose the currently popular DANN [36], D-Coral [37],
DDC [38], DSAN [27], DCTLN [39], DASAN [28] and other
methods for comparison. We use the PyTorch framework to
build the network model.

A. INTRODUCTION OF DATASET
1) CWRU BEARING DATASET
As shown in Fig. 4, the test bench comprises an induction
motor, an accelerometer, a torque converter and a dynamome-
ter. This dataset is the most commonly used in rolling bearing
fault diagnosis because of its rich fault types and high data
quality. In this experiment, we selected vibration signals with
a sampling frequency of 12K from the drive end bearing,
which were collected under motor loads of 0, 1, 2 and 3 HP,
respectively. There are four health status signals: normal,
inner ring fault, outer ring fault and rolling element fault.
Among them, each fault signal is divided into three faults of
different severity, according to the damage diameter of the

bearing (7mil, 14mil, and 21mil). Therefore, we regard the
four motor loads as operating conditions (A, B, C, D), and
ten health status signals can be obtained under each working
condition.

The failure of rolling bearings in industrial field service has
a specific rule: under normal circumstances, it first works in a
normal state, then a slight fault occurs, then gradually devel-
ops to a moderate fault, and finally enters a serious fault state
until the equipment is shut down. Therefore, the number of
vibration signals obtained at each stage of the failure process
is different. To be closer to practical engineering applications
and reflect the superiority of our proposed model, we estab-
lished unbalanced datasets, as shown in Table 3., according
to the severity of faults and the number of samples obtained,
in which the length of each sample is 1024.

The number of samples in the test set is 40. It is worth
mentioning that datasets need to be established for the above
four working conditions according to the number of samples
in Table 3.

2) HOU DE BEARING DATASET
As shown in Fig. 5, this test bench comprises a motor, shaft,
acceleration sensor and rolling bearing. It has a simple struc-
ture, convenient operation, stable running state and high data
quality. On this bench, we simulated five operating states with
four speeds of 2600, 2800, 3000 and 3200r/min, respectively:
normal, rolling element fault, cage fault, inner ring fault
and outer ring fault. The signal sampling frequency is 8K.
We regard each speed as an operating condition, so there are
four operating conditions (A, B, C, D), and each working
condition has five operating states.

For the data collected by this experimental platform,
we also built the dataset shown in Table 4. Similar to the
case, the length of each sample in the dataset is also 1024,
and the dataset should also be made by Table 4 for four
operating conditions. We also set up four transfer diagnosis
tasks (A/B/C→ D, A/B/D → C, A/C/D→ B, D/B/C → A).

B. COMPARATIVE METHODS
To comprehensively evaluate the superiority and effective-
ness of the proposed transfer learning method, we select the
transfer learning strategy with good performance to carry
out comparative experiments. The comparison method is
described in detail as follows:

1) DANN
The basic structure of the DANN is composed of a feature
extractor, label classifier and domain discriminator. The fea-
ture distribution difference between the source and target
domains is reduced by adversarial training. Then, the two
domains are confused to make the model learn the invariant
features.

2) D-CORAL
It utilized the convolution/pooling layer to extract data fea-
tures and embedded the correlation alignment into the fully
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FIGURE 6. Transfer diagnosis accuracy of CWRU on the different datasets.

FIGURE 7. Confusion matrix of different methods on the dataset c in task A/B/C→D for CWRU.

connected layer as second-order moment matching to reduce
the difference in feature distribution between the two domains
to achieve domain self-adaptation

3) DDC
It used MMD in the fully connected layer of the network
model to reduce the global distribution difference between the
two domains and learned features through iterative training.

4) DSAN
Similar to DDC. The difference is that LMMD is used in the
fully connected layer of the model further to align the related
subdomains of the two domains.

5) DCTLN
In essence, it is a convolutional transfer learning network
that reduces the difference between the feature distributions
extracted by the feature extractor through domain adversarial

training and then maximizes the consistency of the global
feature distribution by using MMD.

6) DASAN
Similar to DCTLN,DASAN focuses on global adaptation and
realizes subdomain adaptation.

The ASMDCN proposed in this paper is similar to
DASAN. However, DASAN assumes the dataset is bal-
anced, and the label classifier adopts cross-entropy. However,
ASMDCN considers the problem that data categories are
usually unbalanced in engineering practice and designs Lw−f
that can handle unbalanced data. In addition, we use multiple
source domain data instead of single source domain data
during model training.

It is worth noting that the above comparative methods
use different network architectures. When compared directly
with ASMDCN, the diagnosis is not convincing. Therefore,
to ensure a fair comparison of migration results, we designed
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FIGURE 8. Seven methods for data visualization of transfer diagnostic task A/B/C→D on the dataset c.

the model architecture of the above comparison method to
be the same as that of ASMDCN. That is, the feature extrac-
tor, label classifier, and domain discriminator have the same
parameters [40].

C. EXPERIMENTAL RESULTS FOR CWRU
We employ labeled multi-source domain data and unlabeled
single target domain to train the diagnostic model in this
experiment. According to the four operating conditions of
the testing sets, we set a total of four transfer diagnosis tasks
(A/B/C→D,A/B/D→C,A/C/D→B,D/B/C→A).We used
the classification accuracy of test data from 4 conditions
(including three source conditions and one target condition)
to evaluate the diagnostic performance of the model, which
is worth noting. We performed all transfer diagnosis results

ten times to ensure the influence of random initialization
on network parameters. The transfer diagnosis results of the
proposed ASMDCN and six transfer learning comparative
methods for CWRU datasets are shown in Fig. 6.

The diagnosis results in Fig. 6(a) were carried out under
a slightly unbalanced dataset. The diagnostic accuracy was
the lowest since DANN only adopted an adversarial training
strategy and ignored cross-domain data alignment. The meth-
ods of D-Coral and DDC only align the global cross-domain
data, and the diagnostic accuracy is also low. DSAN uses
LMMD to realize global alignment of cross-operating data
with related subdomains, resulting in slightly higher diag-
nostic accuracy than D-Coral and DDC. Although DCTLN
adopts the domain adaption method, it only employsMMD to
align cross-domain data from a global perspective. It ignores
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FIGURE 9. Transfer diagnosis accuracy of Hou De on the different datasets.

TABLE 5. The diagnostic accuracy of ASMDCN for each working condition
under the three methods for CWRU.

TABLE 6. The diagnostic accuracy of ASMDCN for each working condition
under the three methods for Hou De.

further processing of related subdomains, resulting in low
diagnostic accuracy. The DSAN method comprehensively
uses domain adaption strategy and LMMD to somewhat
improve its diagnostic accuracy. Still, this method ignores
the influence of unbalanced data on the model, making its
diagnostic accuracy lower than the proposed ASMDCN.
Moreover, with increased data categories’ imbalance, the
diagnostic accuracy of the comparative methods showed a
downward trend. (b) and (c) in Fig. 6 are obtained under
moderately and severely unbalanced datasets, respectively.
The diagnostic accuracy of DSAN and DASAN methods is
seriously decreased because these two methods ignore the
influencing factors of unbalanced data and pay too much
attention to subdomain adaptation. While the other meth-
ods mainly learn the global features, there is no overfitting
phenomenon, but the diagnostic accuracy also shows a trend
of decline. On the contrary, the proposed ASMDCN has
the highest diagnostic accuracy among the three datasets
because it utilizes a function Lw−f that can handle unbalanced
data, and employs domain adversarial and LMMD training
strategies. Although. The diagnostic accuracy of ASMDCN
decreased with the aggravation of data imbalance, but the
lowest diagnostic accuracy still reached 97.18%.

To more clearly show the experimental results of the pro-
posed ASMDCN and the comparison method, we plot the
confusion matrix for the diagnosis results of the transfer
diagnosis task A/B/C→D in the case of dataset c. As shown
in Fig. 7, the horizontal coordinate represents the labels
diagnosed by the model, the vertical coordinate represents
the actual labels and the numbers on the diagonal represent
the percentage of correctly classified labels. We can see
from the figure that the proposed method has the highest
diagnostic accuracy. The classification errors of the four com-
parison methods, DANN, D-Coral, DDC and DCTLN, are
mainly concentrated in moderate and severe faults. In con-
trast, DSAN and DASAN are primarily focused on severe
faults. Meanwhile, the above seven comparison methods can
correctly classify normal and minor faults. The above results
are because the number of samples participating in model
training is unbalanced, resulting in the model learning more
fully for most samples but not enough for a few samples.

To display the above experimental results more intu-
itively, we utilize t-SNE to visualize the characteristics of
the test data. The high-dimensional features are reduced
into two-dimensional features and one-dimensional features.
Next, we employ two-dimensional features to draw cluster
graphs (represented by (×)) and one-dimensional features to
draw histograms and probability distribution function curves
(represented by (×∗)). As can be seen from Fig. 8, the cluster
graph of the proposed ASMDCN method gathers the same
type of features in the source domain and the target domain
together well, and the classification among various fault data
is obvious. Also, the data distribution difference between
the source and target domains is slight in the combined
graph. On the contrary, the visualization effect of the contrast
method is poor.

In addition, we use a different number of source domains
to train the model to verify the idea that using multi-source
domain data can enhance the model’s generalization perfor-
mance. It is worth noting that the experiments in this part are
carried out in the case of dataset c, andwe separately calculate
the diagnostic accuracy of the test data under various working
conditions. Details of the experiment are as follows:
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FIGURE 10. Confusion matrix of different methods on the dataset c in task A/C/D→B for Hou De.

1) METHOD 1
We use labeled condition A as the source domain and unla-
beled condition D as the target domain to train the network
model.

2) METHOD 2
Labeled working conditions A and B are used as the source
domain, and working condition D is used as the target
domain.

3) SEND THEM TO THE MODEL FOR TRAINING
4) METHOD 3
We use three labeled working conditions, A, B, and C, as the
source domain and unlabeled working condition D as the
target domain, as the input data of the network model for
training.

We also conducted ten experiments, and the diagnos-
tic accuracy of the three methods is shown in Table 5.
For method 1, we can see that the model has low test
accuracy for conditions B and C. In contrast, high diag-
nostic accuracy for conditions A and D. Similarly, the
model of method 2 has a lower test accuracy for work-
ing condition C but a high diagnostic accuracy for other
working conditions. On the contrary, method 3 has higher
recognition accuracy for all working conditions. The above
results are because method 1 uses only working conditions
A and D, method 2 uses working conditions A, B and
D, and method 3 uses all working conditions comprehen-
sively. Therefore, we should fully exploit the source domain
data to train the model to strengthen its generalization
ability.

D. EXPERIMENTAL RESULTS FOR HOU DE
We conducted experiments in the Hou De laboratory to verify
the model’s generalization performance on different datasets
further. In this experiment, the details of our experiment
are the same as those of the CWRU experiment. We also
set up four transfer diagnosis tasks (A/B/C→D, A/B/D→C,
A/C/D→B, D/B/C→A). Source domains from three condi-
tions and a single-condition target domain were used to train
the model, the model’s classification accuracy was tested by
the testing set, and all the transfer diagnosis results were
performed ten times. The experimental results are shown in
Fig. 9. As can be seen, the model trained by ASMDCN under
the three datasets has the highest diagnostic accuracy for the
testing set. As the increase of the unbalance of data categories,
the diagnostic accuracy of the other six comparative methods
decreases to varying degrees. In other words, we can get
similar conclusions to CWRU under this experiment.

In this experiment, to visualize the diagnostic results more
clearly, as shown in Fig. 9, we trained themodel of ASMDCN
and the comparative methods in the case of dataset c by the
transfer diagnostic task A/C/D→B. We drew the confusion
matrix of the testing set diagnostic results. Simultaneously,
in the same case, as shown in Figure 10, we also draw the
cluster graphs and probability distribution function curves to
visualize the diagnosis results further. It can be seen from
FIG. 9 and FIG. 10 that the diagnostic effect of the proposed
method is optimal.

Finally, similar to the experimental details of CWRU,
we also trained the network model with a different num-
ber of source domains and diagnosed the testing set for
all conditions ten times. All experiments were conducted
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FIGURE 11. Confusion matrix of different methods on the dataset c in task A/C/D→B for Hou De.

with dataset c, and the comparative Method1, Method2, and
Method3 used labeled source domain conditions A, A/C, and
A/C/D, respectively, and target domain conditions B. The
diagnosis results are shown in Table 6. The results again
verify that training multi-source domain data can improve the
network model.

E. LIMITATION DISCUSSION
Although the proposed ASMDCN in this paper achieved the
highest diagnostic accuracy, themethod still has the following
limitations.

1) The proposed three-channel feature extraction modules
all use 4-layer convolution/pooling and have many network
parameters, which wastes computing resources to a certain
extent.

2) The proposed loss function contains two hyperparame-
ters, which must be set according to the number of samples
involved in model training.

3) Although ASMDCN can realize the task of cross-
operating unsupervised fault diagnosis of rolling bearings
affected by unbalanced data. However, through many experi-
ments, it is found that with the increase of sample imbalance,
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the diagnostic accuracy of the proposed method also gradu-
ally decreases, resulting in the final diagnosis failure.

V. CONCLUSION
This paper proposed a cross-operating unsupervised intelli-
gent diagnosis method for rolling bearings called ASMDCN.
A novel loss function is designed, which can effectively train
the model with unbalanced data of a multi-source domain
and a single target domain, realizing the high-precision diag-
nostic decision of the testing set. In addition, under the joint
constraints of adversarial training strategy and subdomain
adaptive, the model can promote the parallel multi-channel
feature extractor to fully mine domain-invariant features
under multiple working conditions, providing a new per-
spective for intelligent fault diagnosis based on domain
generalization. We verify the validity and generalization of
the ASMDCN on multiple transmission diagnostic tasks of
2 datasets. The superiority of the ASMDCN is proved by
comparing it with the current popular methods.
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