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ABSTRACT In recent years, Dynamic Graph (DG) representations have been increasingly used for
modeling dynamic systems due to their ability to integrate both topological and temporal information in
a compact representation. Dynamic graphs efficiently handle applications such as social network prediction,
recommender systems, traffic forecasting, or electroencephalography analysis, which cannot be addressed
using standard numerical representations. As a direct consequence, dynamic graph learning has emerged as
a new machine learning problem, combining challenges from both sequential/temporal data processing and
static graph learning. In this research area, the Dynamic Graph Neural Network (DGNN) has become the
state-of-the-art approach and a plethora of models have been proposed in the very recent years. This paper
aims to provide a review of the problems andmodels related to dynamic graph learning. The various dynamic
graph supervised learning settings are analyzed and discussed. We identify the similarities and differences
between existing models concerning the way time information is modeled. Finally, we provide guidelines
for DGNN design and optimization, and review public datasets for evaluating model performance on various
tasks, along with the corresponding publications.

INDEX TERMS Dynamic graph representation learning, dynamic graph embedding, dynamic graphs,
dynamic graph neural networks.

I. INTRODUCTION
Graphs are data structures used for representing both
attributed entities (the vertices of the graph) and relational
information between them (the edges of the graph) in
a single and compact formalism. They are powerful and
versatile, capable of modeling irregular structures such as
skeletons, molecules, transport systems, knowledge graphs,
or social networks, across different application domains such
as chemistry, biology, or finance. This expressive power of
graphs explains why they have been used extensively in the
last few years for real-world applications.

The ability of a system to learn and reason from graphs
is important for tasks such as classification, regression,
and clustering. Unlike traditional methods that rely on
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hand-crafted features, graph representation learning learns
how to encode attributes and structural information on
graphs into low-dimensional vectors. This paradigm shift
has led to state-of-the-art results in many domains, such
as chemical synthesis, recommender systems, and social
network analysis. [1]

In the machine learning literature, most of the existing
contributions focus on static graphs where the node set,
the edge set, and the nodes/edge attributes do not evolve
with time. Yet, for some real-world applications such as
traffic flow forecasting, rumor detection, or link prediction
in a recommender system, graphs are asked to handle
time-varying topology and/or attributes, in order to model
dynamic systems. Several terms are used in the literature
to refer to graphs in which the structure and the attributes
of nodes/edges evolve. Dynamic graphs [2], [3], temporal
graphs [4], [5], [6], time (or temporally) evolving graphs [7],
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[8], [9], [10], time-varying graphs [11], [12], time-dependent
graphs [13], [14], or temporal networks [15], [16], [17],
[18] are examples of such terms which refer to conceptual
variants describing the same principles. This multiplicity of
terms can be explained by the diversity of the scientific
communities interested in this kind of models but also by
the youth of the field. It illustrates the need for precise
definitions and clear taxonomies of problems and models,
which is one of the contributions of this paper. In the
following, we choose to use the more general term Dynamic
Graph (DG), especially in light of Hamilton’s remark
in ‘‘Graph Representation Learning’’ [1] that ‘‘the term
‘graph’ appears to be more prevalent in machine learning
community, perhaps in some part due to the terminological
clash with ‘neural networks.’. . . ’’.
As a direct consequence of the emergence of dynamic

graph representations, dynamic graph learning emerged as a
new machine learning problem, combining challenges from
both sequential/temporal data processing and static graph
learning.

When learning on sequential data, the fundamental chal-
lenge is to capture the dependencies between the different
entities of a sequence. In this domain, the original concept
of recurrence, mainly instantiated by LSTM [19], has
been gradually replaced in recent years by convolutional
architectures [20], [21], which offer better parallelization
capabilities during learning. More recently, sequence-to-
sequence models based on the encoder/decoder framework
have been proposed [22], allowing to deal with desynchro-
nized input and output signals. These models, such as the
famous Transformer [23], rely on the intensive use of the
attention mechanism [24], [25], [26].
When learning on static graphs, the main challenge is to

overcome the permutation invariance/equivariance property
inherent to the absence of node ordering in graph representa-
tions. Benefiting from the rapid development of the learning
algorithms and hardware, geometric deep learning (or graph
neural networks) [27] has recently emerged, which can iter-
ate over the given inputs and outputs to learn the parameters
that encode the input features into low-dimensional infor-
mative vectors. To solve the graph representation learning
problem, node-based message-passing mechanisms based on
graph structure have led to the first generation of Graph
Neural Networks (GNNs), called Message Passing Neural
Networks (MPNNs) [28]. As convolutions on images, these
models propagate the features of each node to neighboring
nodes using trainable weights that can be shared with respect
to the distance between nodes (Chebnet) [29], to the features
of the connected nodes (GAT) [30] and/or to edge features
(k-GNN) [227]. Given the maturity of such models and their
applicability for large sparse graphs, they have been applied
with success on many downstream tasks. This maturity
also explains the existence of some exhaustive reviews and
comparative studies, such as in [31], [32], [33], and [34]
to cite a few. One can note that, despite these successes,

it has been shown that MPNNs are not powerful enough [33].
That is why machine learning on graphs is still a very
active field, trying to improve the expressive power of
GNNs [35], [36], [37].

Compared to neural networks applied for learning on
sequences and on static graphs, Dynamic Graph Neural
Network (DGNN) is a much more recent field. Prior to
the development of DGNNs, algorithms for DG predictive
tasks relied on traditional graph-theoretic methods, such as
those based on non-negative tensor factorization [38]. Until
recently, such methods and algorithms are still being refined
and used for tasks such as embedding and clustering on
dynamic graphs [40], [41]. As a relatively young technique,
to the best of our knowledge, the founding DGNN models
are from 2018 [42] and 2019 [43] for respectively the
discrete and the continuous cases. These papers have been
at the root of a ‘‘zoo’’ of methods proposed by various
scientific communities, with various terminologies, various
learning settings, and various application domains. Up until
today, many novel state-of-the-art approaches have been
proposed within the DGNN field, such as GraphMixer
[129], which explores the combination of the MLP-Mixer
structure [39] with DGNNs, the Euler framework [89]
for distributed systems; and architectures exploring the
combination of Transformers and Dynamic Graph Neural
Networks [73], [122].

In order to structure the domain, some state-of-the-art
papers have been published recently [44], [45], [46], [47].
Without emphasizing the DGNNs, these papers give a good
overview of many machine learning issues linked to dynamic
graphs and describe many existing models. However, several
limitations prevent the reader from understanding more
complete and up-to-date techniques. For example, these
surveys do not address the recent use of transformer
models [23] in dynamic graphs; Surveys [45], [46], [47] did
not discuss models for spatio-temporal graphs, which are
introduced in detail in this survey. More importantly, this
survey attempts to provide perspectives and taxonomies of
DGNNs that are more accessible to machine learners and
graph theorists, including detailed discussions of design and
optimization strategies for DGNNs, along with a synthesis of
datasets and relevant publications.

The main objective of this review is to extend the existing
studies mentioned above, by focusing on dynamic graph
supervised learning using neural networks. It is addressed
to the audience with fundamental knowledge of neural
networks and static graph learning. Three main contributions
can be highlighted. The first one consists in clarifying
and categorizing the different dynamic graph learning
contexts that are encountered in the literature. These contexts
are distinguished according to the type of input DGs
(discrete vs. continuous, edge-evolving vs. node-evolving
vs attributes-evolving, homogeneous vs. heterogeneous) but
also according to the learning setting (transductive vs. induc-
tive). The second contribution is an exhaustive review of

VOLUME 12, 2024 43461



L. Yang et al.: Dynamic Graph Representation Learning With Neural Networks: A Survey

FIGURE 1. Left: inference phase for making predictions Ŷ on given data X.
Right: learning phase for updating the parameters 2 of the predictor g.

existing DGNN models, including the most recent ones. For
this review, we choose to categorize models into six groups,
according to the strategy used to incorporate time information
in the model, which is the main challenge for the application
of neural networks on DGs. Based on this categorization,
and using the taxonomy of contexts mentioned above, the
third contribution is to provide some general guidelines for
designing, optimizing, and evaluating DGNNs.

The remainder of this paper is structured as follows.
Section II relates to the first contribution, by considering
the inputs, the outputs, and the learning settings that can be
encountered when learning on dynamic graphs. Section III
reviews existing Dynamic Graph Neural Networks (DGNNs)
and compares them according to their temporal information
processing. Finally, section IV brings forward the guidelines
for designing and optimizing DGNNs, along with a synthesis
of common datasets and relevant publications for evaluating
them.

II. REPRESENTATION LEARNING OF DYNAMIC GRAPHS
In this section, we define important concepts about repre-
sentation learning on dynamic graphs, providing the nec-
essary material for understanding the review of embedding
approaches presented in section III. The section is structured
as follows: after positioning the context of representation
learning in subsection II-A, we give useful definitions about
the representation of static graphs and dynamic graphs in
subsections II-B and II-C. We then discuss the possible
outputs of machine learning models operating on dynamic
graphs and the transductive/inductive nature of learning tasks
in subsections II-D and II-E. Finally, we present examples of
applications in each learning setting in subsection II-F.

A. REPRESENTATION LEARNING
Regardless of the data representation, the goal of supervised
learning methods is to build a parameterized statistical model
or predictor g2 that maps between an input space X and
an output space Y (see Fig. 1). During the learning phase,
the training of the predictor g2 consists in updating its
parameters 2 using a dataset (X,Y) of couples (x, y) with
x ∈ X and y ∈ Y . The update is computed by a minimization
of the loss between the predictions Ŷ and the ground truth Y.
When learning on structured data such as sequences,

images, or graphs, information varies according to the
position in a structure. This structure is generally a grid that
may have one or multiple dimensions: 1D for text (i.e. the
position of the word) or speech (i.e. the time), 2D position
for images, etc.

FIGURE 2. Encoder/decoder model applied on dynamic graphs: the
encoding consists in computing Z = f (DG), where DG is a dynamic graph
(including both topology and attributes), f (·) is a parameterized statistical
model (typically a neural network with learnable parameters), and Z is
the encoded tensor representation of DG. The decoder fdec (·) takes as
input the representations Z to get the predictions Ŷ.

When the size of the structure mentioned above may
vary, recent models frequently follow the encoder/decoder
principle, where a variable-length input signal is encoded into
a latent representation, which is then used by a decoder to
compute the output signal for the downstream task (see Fig. 2
in the case of dynamic graphs). The latent representation
allows processing variable-size input and output signals that
are not necessarily synchronized. Encoder/decoder models
are of great interest in many sequence-to-sequence problems
involving text, images, or speech. In this context, learning
the latent representation (also known as embedding) is called
representation learning.

In the case of dynamic graphs, the information varies
according to both the position in the graph and the time.
Moreover, the structure of the graph itself can also evolve
over time. Before diving into the representation learning
of dynamic graphs, the following subsections give the
necessary definitions concerning the inputs, the outputs, and
the learning tasks.

B. STATIC GRAPH MODELING
A static graph G can be represented topologically by a tuple
(V ,E) where V is the node set ofG and E is the edge set ofG.
The connectivity information is usually represented by an
adjacency matrix A ∈ R|V |×|V |. In this matrix, A(u, v) = 1 if
there is an edge between node u and v,A(u, v) = 0 otherwise.
A is symmetric in an undirected graph, while in the case of
directed graphs A is not necessarily symmetric.

Nodes usually have attributes represented by a feature
matrix XV ∈ R|V |×dV , where dV is the length of the
attribute vector of a single node. Similarly, edges may have
attributes (such as weights, directions, etc.) which can also be
represented by a matrix XE ∈ R|E|×dE .
In the case of weighted graphs, the values in the matrix A

are the weights of each edge instead of 1 which is denoted as:

Au,v =

{
wu,v if (u, v) ∈ E
0 otherwise.

For some specific applications, both nodes and edges can
be of different types. For example, in recommender systems,
nodes can usually be mapped into two types, item, and user,
and can have feature matrices of different sizes and contents.
In such cases, we extend the notation of the graph to G =

(V ,E, φ, ψ) with the type mapping functions φ : V → O
and ψ : E → R, where |O| denotes the possible types of
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TABLE 1. Degree of Dynamism discussed in the article.

nodes and |R| denotes the possible types of edges [48]. When
|O| = 1 and |R| = 1, nodes and edges are of a single type, this
graph is called homogeneous. In contrast, in a heterogeneous
graph, |O| + |R| > 2 and each type of node or edge could
have its own number of feature dimensions [48], [49].

Figure 3 illustrates the difference between homogeneous
and heterogeneous graphs.

C. DYNAMIC GRAPH MODELING
In this subsection, we first introduce the definition of a
dynamic graph and the concept of Degree of Dynamism.
Then, we provide the main existing formalisms for rep-
resenting DG, synthesizing previous studies that focus on
subparts of these representations [13], [15], [45], [50], [51],
[52]. We also introduce in this part a representation called
Equivalent-Static-Graph which consists in modeling a DG
using a static graph. The different models are compared in
Fig. 3.
Definition 1 (Dynamic Graph): A dynamic graph is a

graph whose topology and/or attributes change over time.
To cover this broad research area, the definition of dynamic

graphs that we propose in Def. 1 is highly generic, intending
to include, as much as possible, the relevant models in
the existing literature. According to this definition, both
structure and attributes may change over time in a dynamic
graph. Edges and/or nodes may be added or deleted and
their attributes may change. Thus, this definition covers
different configurations. In order to distinguish between
them, we propose in this paper the concept of degree of
dynamism defined as follows:
Definition 2 (Degree of Dynamism (Node-Centric)): The

degree of dynamism of a DG describes whether the topology,
i.e. the edge set E and the node set V , vary or not.
Theoretically, there are 4 possible situations: (1) Both
V and E are invariant, denoted as fixV ,E . This situation
corresponds to DG called ‘‘Spatial-Temporal Graphs’’ or
‘‘Spatio-Temporal Graphs’’ (STGs) in the literature. (2) V is
invariant but the set of edges change, denoted as fixV . (3) The
node set and the edge set are both changing, denoted as vary.
(4) The set of edges is constant but the set of nodes changes.
Since an edge is defined by a tuple of nodes, this situation is
meaningless.

Table 1 illustrates these different configurations which will
be discussed throughout the paper.

Irrespective of the degree of dynamism, three main
representation formalisms can be found to describe a DG.
They are listed below.

1) CONTINUOUS TIME DYNAMIC GRAPHS
To preserve accurate time information, Continuous Time
Dynamic Graphs (CTDGs) use a set of events to represent
dynamic graphs. As mentioned in the review [45], existing
works mainly focus on the dynamics of edges and outline
three typical representation methods that represent events
with index i = 1, 2, . . . by giving a pair of nodes (ui, vi) and
time ti:
Contact-Sequencemethods [15], [45] represent the instan-

taneous interaction between two nodes (u, v) at time t:

Contact − Sequence = {(ui, vi, ti)} (1)

Event-Based methods [45], [53] represent edges with a
time ti and a duration 1i. They are similar to the Interval-
Graph defined in [15]. The difference is that Interval-Graph
uses a set Te of start and end times (ti, t ′i ) to represent all active
times of the edge, rather than the duration of each interaction
in Event-Based.

Event − Based = {(ui, vi, ti,1i)} (2)

Interval − Graph = {(ui, vi,Te)} ;

Te =
(
(t1, t ′1), (t2, t

′

2), . . .
)

(3)

Graph-Stream methods [45] are often used on massive
graphs [54], [55]. They focus on edges’ addition (δi = 1)
or deletion (δi = −1).

Graph− Stream = {(ui, vi, ti, δi)} (4)

2) DISCRETE TIME DYNAMIC GRAPHS
Discrete-time dynamic graphs (DTDGs) can be viewed as
a sequence of T static graphs as shown in (5). They are
snapshots of the dynamic graph at different moments or time-
windows. DTDGs can be obtained by periodically taking
snapshots of CTDGs on the time axis [45], [50].

DTDG = (G1,G2, . . . ,GT ) (5)

3) EQUIVALENT STATIC GRAPHS
Representations of this category consist in constructing a
single static graph, called Equivalent Static Graph (ESG),
for representing a dynamic graph. Several methods for
constructing ESG have been proposed in recent years.
We divide them into two categories: edge-oriented and node-
oriented ESG.
Edge-oriented ESG aggregate graph sequences into a

static graph with time information encoded as sequences
of attributes [5], [15], [16] as shown in Fig. 3 (right
top). Such representations are also called time-then-graph
representations [52].
Node-oriented ESG build copies of vertices at each

moment of their occurrence and define how the nodes are
connected between timestamps/occurrences [5], [56], [57],
[58]. A simple example is shown in Fig. 3 (right bottom),
further details are discussed in subsection III-B.
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FIGURE 3. Left: Common static graph representations. The edges in a weighted directed graph have directions and weights, which are frequently
used when modeling email networks, citation networks, etc. The nodes and edges in a heterogeneous graph can have multiple possible types i.e.,
recommendation systems and knowledge graphs. Middle: Discrete Time Dynamic Graph (DTDG) represented by snapshots, and Continuous Time
Dynamic Graph (CTDG) represented by events, the example in the figure is the ‘‘Contact Sequence’’ case. Right: Equivalent Static Graphs (ESGs)
represented by edges and nodes.

A major interest of ESG representations is that they make
static graph algorithms available for learning on dynamic
graphs.

D. DYNAMIC GRAPH OUTPUT GRANULARITY
As said before, supervised learning aims to learn a mapping
function between an input space X and an output space Y .
The previous subsection introduces how a DG x ∈ X can
be represented as input of a model. This subsection now
discusses the output, i.e. the space Y .
Since a dynamic graph involves concepts from both

graph and temporal/sequential data, both aspects must be
considered to define the space Y .

Sequential data are generally made of feature vectors of
length d that evolve over time, denoted as X ∈ RT×d for a
sequence of T time steps. Depending on the task, the output
Y can be either a label (sequence classification problems),
a value (sequence regression problem), a sequence of labels
of the same size as the input size (sequence labeling), or a
sequence of labels of a different size from that of the input
(sequence-to-sequence problem).

In static graph learning, the inputs have topological
information in addition to the features XV and XE . As for
sequences, the outputs Y can be local (one label per node or
per edge) or global (one label per subgraph or for the entire
graph).

As a consequence, the output granularity when considering
DG can be temporally timestep-level or aggregated, and
topologically local or global. The output contents can be
categorical labels for classification or numerical values for
regression.

E. TRANSDUCTIVE/INDUCTIVE ON DYNAMIC GRAPHS
When learning on static graphs, transductive and inductive
tasks are frequently distinguished. Transductive tasks consist

in taking decision for a set Vinference of unlabeled nodes, the
model being learned on a set of labeled nodes Vlearning of
the same graph. In such a situation, the features and the
neighborhood of nodes in Vinference can be exploited by the
learning algorithm in an unsupervisedway (i.e., learn and find
patterns with unlabeled data). For this reason, this situation
is also called semi-supervised learning on graphs [59].
In contrast, an inductive task is the case when there are
nodes in the Vinference that were not seen during the learning
phase [9]. This situation typically occurs when learning and
inference are performed on different static graphs.

In the case of dynamic graphs, the evolving nature of both
V and E brings more possible scenarios when considering
the transductive/inductive nature of the tasks. Various con-
figurations should be defined, considering the ‘‘degree of
dynamism’’ defined in section 2. We use the term ‘‘case’’ to
distinguish between different transductive/inductive natures
of dynamic graph learning taking into account the degree of
dynamism.

Specifically, we divide learning on dynamic graphs into
five cases:

• Trans-fixV ,E (1): in this case, the topology of the DG is
fixed, V and E are therefore the same on the learning
and inference sets.

• Trans-fixV (2): in this case, the learning and inference
node sets are fixed and equal but the edge set evolves,
which requires taking into account the evolving connec-
tivity between nodes on the graph.

• Trans-vary (3): in this case, V t
learning and V

t
inference may

evolve over time, but the presence of each node to be
predicted in the test set are already determined in the
learning phase: ∀v ∈ Vinference, v ∈ DGlearning.

• IndV (4): this case refers to node-level inductive tasks,
where the learning and inference are on the same DG,
but ∃v ∈ Vinference, v /∈ DGlearning. Although the label
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FIGURE 4. The transductive and inductive cases in dynamic graph
learning under discrete time: (1) denotes the case where both the node
set and edge set are fixed in learning and inference. (2) denotes the case
where only the node set is fixed for learning and inference. (3) denotes
the case where the node set changes but no unseen node appears for
inference. (4) denotes the inductive case where the train and test are on
the same DG but there are new nodes for inference. (5) denotes the
inductive case where there are new DGs for inference.

and historical attributes from the learning phase can
be reused on the inference set, a major challenge is to
handle the unseen nodes and the uncertain number of
nodes.

• IndDG (5): this case refers to DG-level inductive
learning, where learning and inference are performed on
different DGs. The statistical model needs to handle the
complete unseen dynamic graphs.

These 5 cases are illustrated in Fig. 4. In all cases,
the learning of vector representations of nodes that change
over time is the basis for dynamic graph learning. The
representation learning of edges and (sub)graphs is optional,
depending on the specific predictive task, because they can
be obtained by operations on the representations of a pair of
nodes or multiple nodes.

F. DYNAMIC GRAPH PREDICTIVE TASKS
In the previous subsections, we have investigated dynamic
graph learning specificities related to the representations of
the input (discrete vs. continuous time), the granularity of the
output (local vs. global, timestep-based vs. aggregated), and
different learning cases. In this section, we categorize existing
contributions in the literature according to these four criteria.

Table 2 gives a synthetic view of this categorization with
an emphasis on the targeted applications and on the metrics
used for assessing models’ performance.

As one can see in this table, in Discrete Time Trans-
ductive Tasks, related applications usually concern relatively
stationary topologies, i.e. Trans-fixV ,E , such as human body
structure or geographic connectivity. Some typical node-
level/local tasks predict attributes for the next time step(s)
based on past time step(s), such as traffic flow [51], [60],
[61], [62], [63], number of infectious disease cases [64],
[65], [66], number of crimes [67] and crop yields [68].
Graph-level/global tasks either retrieve the class of each
snapshot like sleep stage classification [69] or output a
prediction for the entire DG such as the emotion of a skeletal
STG [70]. When the DG has a fixed set of nodes with

evolving edges, i.e. Trans-fixV , such cases can be employed
for modeling the connectivity in the telecommunication
network [10] or contact of individuals in a conference [18].
In recent research, anomaly detection on dynamic graphs has
gained prominence. The main goal is to detect anomalous
graph objects [71]. Most contemporary research using neural
networks focuses on DTDGs with topological changes,
i.e. the Trans-vary case. In this context, 1% to 10% of
non-existent edges are introduced into each snapshot, and
the goal is to detect them with edge classification. This task
has been extensively adopted in various domains, such as
blockchain networks [72], [73], [74], brain networks [72],
email networks [73], [75], [76], and for identifying attacks
on enterprise networks [74].

InDiscrete Time Inductive Tasks, i.e. when unseen nodes
need to be predicted in discrete time i.e. IndV , some typical
tasks concerns node classification [4] or link prediction [4],
[18], [77] for future snapshots in social networks. An example
of IndDG with graph-level output is classifying real and fake
news based on the snapshots of its propagation tree on the
social network [78], [79].

Dynamic graphs in Continuous Time are widely used
to model massive dynamic graphs that frequently have new
events, such as recommendation systems [80], [81], [82]
or social networks in the transductive cases [83], [84] or
inductive cases [2], [6], [17], [43]. Local tasks predict
the properties and interactions of seen or unseen nodes,
under transductive and inductive cases, respectively. Since
CTDGs have no access to global/entire graph information
under their minimum time unit, the global timestep level
label is meaningless under continuous time. However, global
aggregated tasks can be implemented by aggregating nodes
of different time steps, such as rumor detection in continuous
time [8]. Since CTDG can be transformed to DTDG by
periodically taking snapshots [45], [50], the above tasks can
also be considered as tasks under dynamic time with a lower
time resolution.

To evaluate the performance of a statistical model on a
given task, traditional machine learningmetrics are employed
as shown in table 2. When the output predictions are discrete
values, i.e. for classification task [2], [4], [6], [8], [43],
common metrics include accuracy, precision, recall, F1, and
area under the receiver operating characteristic (AUROC).
When the output values are continuous values, i.e. for
regression task [51], [60], [61], common metrics are mean
absolute (percentage) error, root mean square (log) error, and
correlation.Node ranking tasks [81], [82] predict a score for
each node and then sort them. These tasks can be evaluated
by the reciprocal rank, recall@N, cumulative gain, and their
variants. Note that dynamic tasks are generally evaluated
using static metrics computed along the time axis.

III. DYNAMIC GRAPH EMBEDDING WITH NEURAL
NETWORKS
In the previous section, we have introduced various dynamic
graph predictive task settings and we have categorized
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TABLE 2. Common dynamic graph predictive tasks and related applications categorized by their input time granularity, transductive/inductive cases, and
label shapes. ‘‘Clf.’’ indicates classification and ‘‘Reg.’’ indicates regression. Social networks also contain contact network and citation network, whether it
is heterogeneous or not. Where ‘‘DT’’ refers to ‘‘Discrete time’’ and ‘‘CT’’ refers to ‘‘Continuous time’’.

literature contributions according to these settings. In this
section, we now take the model point of view, by describing
how DGNNs embed dynamic graphs into informative vectors
for subsequent predictions.

We first introduce the general idea of dynamic graph
embedding in the context of the different learning tasks
mentioned in subsection III-A. We then dive into different
embedding approaches, by categorizing them according to
the strategy used for handling both temporal and structural
information. Finally, we present the methods for handling
heterogeneous dynamic graphs.

A. DYNAMIC GRAPH EMBEDDING
From an encoder-decoder perspective, a deep learning statis-
tical model first maps the original input into an embedding
vector/matrix/tensor denoted as Z, and then exploits Z to
predict an output [44], [85].

When learning on graphs, embedding can be performed
either at node/edge-level or at (sub)graph-level [46], [86].
Node-level embedding benefits a wide range of node-related
tasks and allows more complete input information to be
retained for later computation [86].
In the same way, time-step level embedding retains

more information than time-aggregated embedding as when
learning on sequential data [87].

As a consequence, embedding a dynamic graph at its finest
granularity consists in computing a d-dimensional vector
representation ztv ∈ Rd for each node v ∈ V , at all time steps
t ∈ T . In this case, the embedding of the dynamic graph is
given by Z ∈ R|V |×|T |×d , as shown in Fig. 5.
However, the different input time granularity and learning

settings mentioned in the previous section do not always

FIGURE 5. The most fine-grained node embedding Z ∈ R|V |×|T |×d , where
|V | is the number of nodes, |T | is the number of timesteps, and d is the
dimension of embedding z t

v of a single node v at a single timestep t .

enable such an ‘‘ideal’’ embedding Z. In this subsection,
we generalize the practicable embeddings under these
different settings as shown in Fig. 6.

For discrete time transductive settings, when the node set is
constant, (i.e. for cases (1) and (2) of Fig. 4), the input nodes
can be encoded at the finest granularity Z ∈ R|V |×|T |×d since
all the nodes are known during learning, as shown in Fig. 5.

When the DTDG node set changes across snapshots in a
transductive task (i.e. for case (3)), the nodes can still be
encoded in the shape of |V | × |T | × d , where |V | denotes
the cardinal of the universal node set [88], [89], by filling the
missing values with 0 vectors [90] or the latest updated node
embedding [89]. An example of filling the missing values
with 0 vectors [90] is shown in Fig. 6 (A) for node C at t1 and
node A at t3.
For discrete time inductive settings (i.e., for cases (4)

and (5)) the predictor cannot determine the existence of
a node until its first appearance. This case is illustrated
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FIGURE 6. The most fine-grained embedding available under different
dynamic graph learning settings. The embedding of node v at moment t
is denoted zt

v , and the timeline on the right side of each node indicates
its available embeddings. In case (A) Discrete, transductive setting, since
the total number of nodes |V | and time steps |T | are known, the entire
embedding of a dynamic graph can thus be represented by a tensor of
shape |V | × |T | × d . In case (B), the total number of nodes is unknown in
the learning phase due to the inductive setting. In continuous setting (C)
or (D), typically, the embedding of a node is updated only when it has
edges with other nodes, e.g., node A at timestamps t1, t17, and t42.

in Fig. 6 (B) where the predictor cannot determine the
existence of node C until it appears at t4. Hence, |V t

| can
vary at each timestep t . Therefore, the embedding of nodes
in the inference set cannot be represented in the shape of
|V | × |T | × d . In this situation, existing approaches use a
list of hidden state matrices of different sizes to store the
representations of all accessible time steps for each node
seen [8], [78], [79], e.g. Z =

{
Z1,Z2, . . . ,ZT

}
with Zt ∈

R|V t |×d for t ∈ {1, . . . ,T }.
In continuous time, there is no longer a time grid, as shown

in Fig. 6 (C & D). Therefore, there are no longer embedding
updates for all nodes at each time step. Instead, when an event
occurs on the CTDG, either the embeddings of the associated
nodes are updated or the embedding(s) of the unseen node(s)
are added [2], [6].

Having delineated the various forms of node embedding
in discrete-time and continuous-time scenarios, we now
explore various dynamic graph neural network (DGNN)
architectures. To informatively encode dynamic graphs into
tensors or a list of vectors, a DGNN must capture both the
structure information and its evolution over time. Therefore,
to handle topology and time respectively, DGs are often
decomposed or transformed into components like equivalent
static (sub)graphs [91], [92], [93], random walks [17], [18],
[84], [94], [95], or sequences of matrices [69], [78], [90].
In the literature, numerous approaches have emerged by
combining different encoders fG(·) for static graphs with fT (·)
for temporal data. A plethora of graph and temporal data
encoders have been at the root of the DG encoders reviewed

in the section. These encoders are described in appendices A
and B.

In the following subsections, we present a categorization
of existing DGNN models. The taxonomy is based on
the strategy used to handle both temporal and structural
information. This leads to the 5 categories shown in Figure 7.
A sixth category, corresponding to very recent transformer
models that mix ideas from the previous ones, is then
described:

1) Modeling temporal edges through node-oriented ESG,
denoted as TE (Section III-B).

2) Sequentially encoding the hidden states, denoted as
enc(H ) (Section III-C).

3) Sequentially encoding the DGNN parameters, denoted
as enc(2) (Section III-D).

4) Embedding occurrence time t as edge feature of edge-
oriented ESG, denoted as emb(t) (Section III-E).

5) Sampling causal random walks (RWs), denoted as
CausalRW (Section III-F).

6) Dynamic Graph Transformer, denoted as DGT
(Section III-G).

Note that these approaches are not exclusive, i.e. they can
be combined and used on the same DG.

B. TEMPORAL EDGE MODELING
Since applying convolution on a static graph is generally
easier than encoding across multiple snapshots, the DG
encoding problem is frequently transformed into encoding
a static graph where each node is connected to itself in the
adjacent snapshot [91], [92], denoted as TE . This approach
can also be interpreted as constructing a time-expanded graph
[5], [56], [57] or node-oriented ESG (see section 2.2.4) and
is widely used to encode Trans-fixV ,E cases, i.e., ‘‘Spatial-
Temporal Graphs’’ or ‘‘Spatio-Temporal Graphs’’ (STGs).
In more complex configurations, nodes are also connected
with their k-hop neighbors in the adjacent snapshot(s) [64].

An example of such a strategy is shown in Fig. 8.
An equivalent static graph G′

=
{
V ′,E ′

S ,E
′
T

}
is obtained

by modelling temporal edges [91]. G′ has |V ′
| = |V | × T

nodes and |E ′
S | = |E| × T spatial edges. Depending on the

modeling approach, the number of temporal edges |E ′
T | =

|V | × (T − 1) can be greater.
Once defined the connection rule for temporal edges, the

traditional convolution for static graphs is applicable on
ESGs. An influential example is the ST-GCN module [92],
which has been employed for skeleton-based action classi-
fication. To update the hidden states h to h′ in an ST-GCN
layer (see (6)), a typical spatial GNN aggregates the neighbor
features with the msg(·) function, computes their weights by
the w(·) function, and then sums them after normalization
with the norm(·) function. Note that, unlike the neighborhood
definition in static graphs, the neighborhood set N of vti
is defined by: (1) spatially, the shortest path distance with
neighbor vj obeys d(vj, vi) ≤ K and (2) temporally, the time
difference between timestamps q and t , i.e. |q − t| is not
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FIGURE 7. Dynamic graph neural network taxonomy on temporal information processing: 1. Temporal Edge Modeling models temporal edges to
transform STGs into static graphs. 2. Sequentially Encoding Hidden States H encodes the hidden states of each snapshot across time with a temporal
encoder fT (·). 3. Sequentially Encoding Parameters 2 encodes the parameters 2 of the graph encoder fG(·) across time with a temporal encoder fT (·).
4. Embedding Time t converts time values to vectors and concatenates or adds them to the attribute vectors when encoding node B. 5. Causal Walks
restricts the random walks on dynamic graphs by causality.

FIGURE 8. Comparing snapshot representation (left) and STG with
temporal edges (middle) [91]. The edges in blue indicate temporal edges.
In ST-GCN module (right) [92], temporal edges also connect nodes with
their K -hop neighbors in the adjacent 0/2 snapshot(s), thus the light
green area shows the neighborhood of the orange node while applying
spatial-temporal graph convolution with K=1 and 0=3.

greater than ⌊0/2⌋.

h
′t
i =

∑
vtj∈Nvti

norm
(
msg(hti ,h

t
j ) · w(hti ,h

t
j )
)

Nvti =

{
vqj |d(v

t
j , v

t
i ) ≤ K , |q− t| ≤ ⌊0/2⌋

}
(6)

Following the methodology introduced in ST-GCN [92],
STSGCN [96] applies the similar approach to traffic flow
forecasting. It constructs temporal edges to connect each
node with itself across preceding and succeeding time steps,
subsequently leveraging traditional Graph Convolution layers
for node encoding. Going beyond simply using the adjacency
matrix of each snapshot,TSNet [97] proposes a sparsification
network to generate sparsified subgraphs based on the learned
distribution. This method samples a subset of edges for
reducing the risk of overfitting. Once the sparsified subgraphs
are generated, each node is then connected to its neighbors
from preceding, current, and succeeding snapshots, which
is referred to as ‘‘Temporal-Structural Neighbourhood’’ for
subsequent graph convolution operations.

Besides using the existing graph structures, Transformers’
self-attention mechanism is exploited to learn the relations
between nodes over multiple time steps [98], [99], [100],
[101]. An in-depth discussion about transformers-based
approaches is provided in Section III-G.

C. SEQUENTIALLY ENCODING HIDDEN STATES H
In DTDGs, there are usually additions/deletions of edges or
nodes [4], [10], [18], [77]. To deal with these topological

changes, this category denoted as enc(H) uses fG(·) and fT (·)
to encode the graph and time domains alternatively. Enc(H)
is widely applied to the Trans-fixV ,E case, i.e. STGs [51],
[60], [61], [62], [63], [68], [70], [102] and the Trans-
fixV cases on DTDGs [4], [10], [18], [77], [103], [104].
fT (·) either encodes each snapshot across time after fG(·)
encodes each snapshot [42], [88], [90], i.e., in a stacked
way [45], or incorporates graph convolution when encoding
each snapshot across time [42], [61], [105], i.e., in an
integrated way [45].
When the input is an STG, rather than processing them

as static graphs, this approach factorizes space and time and
processes them differently [51], [60], [61], [65], [68], [69],
[102], [103], [104], [106], [107], [108], [109]. RSTG [106]
and DyReG [107] first encode each snapshot at node-level
with weightedmessage passing as fG(·), and then encode each
node over time using LSTMorGRUas fT (·). Both approaches
are of the stacked fashion.

If the node set Vt of a DTDG is constant, then this
DTDG is equivalent to an STG only with an additional
change in the edge set Et , i.e. Trans-fixV case. Therefore,
the stacked architecture mentioned in the previous paragraph
is equally practicable. A typical example is CD-GCN [90]
that concatenates the attributes and the adjacency matrix
for each snapshot t to form input Xt

||At . Each snapshot is
first encoded by GCN to obtain the node-level topological
hidden states zti,GCN , and then encoded by LSTM in the
time dimension to obtain zti,LSTM . Finally, an MLP maps
the concatenation of the hidden states and raw features to
the final node-level hidden states zti for each time step.
Similar structures which stack temporal encoder fT (·) after
graph encoder fG(·) are STGCN [60], GraphSleepNet [69],
E-LSTM-D [110], Graph WaveNet [51], GRNN [62].
A simple example is shown in (7). As amatter of fact, they can
be stacked in more complex ways, see tab 3 for more details.

Zt = fT
(
fG(Xt )

)
or fT (Xt )||fG(Xt ) (7)

Another strategy for sequentially encoding the hidden
states incorporates fG(·) into fT (·) rather than stacking them.
Since there are usually projection or convolution modules
in fT (·) to handle the features of nodes, this ‘‘integrated
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TABLE 3. Main components of selected (DT)DGNNs which sequentially encode hidden states. Without specification, GNN refers to graph convolution or
message passing, OP refers to Orthogonal Procrustes [222], TCN refers to temporal convolution and its variants, Attention refers to the attention
mechanism [24], AE refers Autoencoder and its variants, and RW refers to Random Walk-based approaches [132], [133], [143].

mode’’ turns these modules into fG(·) to aggregate neigh-
boring features. GCRN-M2 [42] replaces the convolution
in convLSTM with graph convolution. Similar examples are
GC-LSTM [105] and DCRNN [61] which replace the linear
layer in LSTM and GRU with respectively GCN [111] and
diffusion convolution [112].
To deal with the addition/deletion of nodes in a transductive

nature, i.e. Transvary case, one needs to handle Vt which
may change across snapshots. TNDCN [88] proposes to set a
universal node set V = ∪Vt to ensure that |V | is the same for
each snapshot, which transforms the transductive case into a
node set-invariant case on DTDG.

In the inductive case, one cannot presume V to set
the universal node set, which brings about an inconsistent
number of nodes in each snapshot making fT (·) impossible
to encode at the node level. Therefore, this method in
inductive tasks is only applicable for encoding graph-level
representations across time, e.g. for fake news detection
based on its propagation tree. Dyn-GCN [78] applies Bi-
GCN [113] to encode the hidden states zGt for each snapshot
t by aggregating the hidden states of its nodes and edges, and
passes (zG1 , zG2 , . . . , zGT ) into an attention layer to compute
the final hidden states of the entire DG.

D. SEQUENTIALLY ENCODING PARAMETERS THETA
Although enc(H) is relatively intuitive and simple in terms
of model structure, the problem is that they can neither

handle the frequent changes of the node set, especially in the
inductive tasks, nor pass learned parameters of fG(·) across
time steps [3]. To encode DTDGs more flexibly, some other
approaches constrain or encode the parameters of fG(·) across
time steps [3], [114], [115].
In order to encode the parameters2 of GCN, EvolveGCN

[3] proposes to use LSTM or GRU to update the parameters
of the GCN model at each time step as shown in (8) and (9):

2t
fG = LSTM(2t−1

fG ) (8)

2t
fG = GRU(Ht ,2t−1

fG ) (9)

Otherwise, by constraining the GNN parameters, Dyn-
GEM [114] incorporates autoencoder (AE) to encode and
reconstruct the adjacency matrix of each snapshot. Its
parameters 2t are initialized with 2t−1 to accelerate and
stabilize the model training. Similarly, in VGRNN [115] the
authors combine GRNN and a variational graph AE in order
to reuse learned hidden states of t− to compute the prior
distribution parameters of the AE.

E. TIME EMBEDDING
When the scale of the dynamic graph is large, as in
social networks and recommendation systems, aggregation
to snapshots is neither precise nor efficient [45], [50]. Such
DGs are thus represented by a set of timestamped events.
Therefore, when encoding a CTDG, one should consider not
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FIGURE 9. To aggregate information of neighbors on a dynamic graph, for
example, to encode the pink node, the nodes with which it has an edge,
i.e. its temporal neighbors [93] (yellow, orange, purple nodes) and the
temporal information (in blue) are embedded as vectors. This can also be
interpreted as constructing an equivalent static (sub)graph via attributes.

only how to asynchronously update the node representations
over time, but also to define the neighbors of nodes.

The DGNNs presented in this subsection update the
representation of a node v when it changes, i.e., when it
participates in a new edge or when its attributes change. Its
neighbors at moment t , also called temporal neighborhood,
are usually defined as the nodes that have common edges
with v (before t) [6]. Thus, such models consider v-centric
equivalent static subgraph as shown in Fig. 9. In such cases,
the occurrence time of each edge can be considered as
part of the edge attributes or used as the weight for graph
convolution.

TDGNN [83] proposes a weighted graph convolution by
assuming that the earlier an edge is created, the more weight
this edge will have in aggregation, as shown in Equ. 10.
In more detail, the weight αtu,v of an edge (u, v) at moment
t is calculated by the softmax of the existence time t − tu,v of
the edge.

αtu,v =
et−tu,v∑

u∈Nt (v)∪v e
t−tu,v

(10)

To better leverage the time information, DySAT for
DTDGs [116] directly learns position embedding [117] to
transform the absolute temporal position of snapshot t into
a vector of dv dimensions and add it to the node’s hidden
state hv ∈ Rdv . TGAT, on the other hand, uses function
time encoding [118] to ensure the translation-invariant of the
time kernel function. It embeds the value of the existence
time t − t(u,v) of edge (u, v) on the CTDG as a vector of
dT dimensions and then concatenates it to the node v’s
hidden states ztv. When aggregating neighbor information
for a node u, the weight of each neighbor is computed by
multi-head attention (11). Similar methods have also been
applied for time embedding in Transformers on Dynamic
Graphs [73], [98], [99], [100], [101], [116], [119], [120],
[121], [122], [123], [124], [125], [126], [127]. Section III-G
delves into a detailed exploration of position and time
embedding approaches in transformer architectures.

rClq(t) = [Z(t)]0WQ

K(t) = [Z(t)]1:NWK

αtu,v =
exp

(
qTu kv

)∑
v∈Nt (u) exp

(
qTu kv

) (11)

To better reuse the messages aggregated for each node by
TGAT, TGN [2] adds a memory mechanism that memorizes

the historical information for each node v with a memory
vector sv. This memory is updated after each time t a node
v aggregates its neighbors’ informationmt

v.

stv = MLP(mt
v, s

t−
v ) (12)

Similar to TGN, TGNF [8] embeds nodes and time
information via TGAT [6], and then updates the node’s
memory S via the temporal memory module (TMM). In order
to learn variational information better, it calculates the
similarity (St ,St− ) of the memory S at t and t− during
training as part of the loss, called Time Difference Network
(TDN).

Besides the memory module, later studies attempted to
enhance the performance of TGAT from various perspectives.
For instance, to accelerate the speed of model inference of
TGAT, especially in contexts like financial fraud detection,
APAN [128] redesigned the TGAT’s workflow. They tran-
sitioned from the conventional encoding→propagation→
decoding architecture of TGAT to an encode→decode→
propagation sequence, thus effectively decoupling model
inference from graph computation. On the other hand, in the
pursuit of architectural simplicity,GraphMixer [129] posits
that a static functional time encoding is sufficient, negating
the need for additional training. Further emphasizing sim-
plicity, this model relies on MLP and mean-pooling layers,
avoiding the complexity introduced by structures such as
RNNs or multi-head attention mechanisms.

Some other approaches consider the interaction predictions
on the graph as a Temporal Point Problem (TPP [130]) and
simulate the conditional intensity function that describes the
probability of the event. DyRep [43] encodes a strength
matrix S ∈ R|V |×|V | to simulate the intensity function
of the interactions between each node pair and uses S as
the weights for graph convolution. S is initialized by the
adjacency matrix A and updated when an interaction (u, v)
occurs at time t . In this case, the embedding of each node
involved is updated. For example, the update of v is the
sum of the three embedding components given by (13): the
latest embedding of v, the aggregation of embeddings of u’s
neighbor nodes, and the time gap between v’s last update and
this update.

ztv = σ
(
W1ht

−

N(u) + W2zt
−

v + W3(t − t−)
)

(13)

All of the models mentioned above embed timestamps or
time gaps as part of the features. However, models such as
TGAT are unable to capture accurate changes in structure
without node features [17]. As discussed above, DyREP [43]
solves this problem but is unable to perform the inductive
task as it relies on the intensity matrix S. This raises another
challenge: How to learn in an inductive task based only on
the topology when the nodes have no features.

F. CAUSAL RANDOM WALKS
Random walk-based approaches do not aggregate the neigh-
borhood information of nodes, but sample node sequences to
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FIGURE 10. Supra-adjacency representation: treating discrete time
dynamic graphs as directed static graphs for sampling random walks.

capture the local structure. To incorporate time information
into the random walks, different ways of defining ‘‘causal
walks’’ on dynamic graphs are derived.

To sample random walks with temporal information in
discrete time, an intuitive way is to convert the DTDG into
a directed static graph. Huang et al. [131] construct a ESG
via topology, and allow random walks to sample inside the
current layer (/timestep) to get the structural information or
walk into the previous layer to obtain historical evolving
information. Following the supra-adjacency representation
(see fig. 10), DyAne [18] applies the random walk approach
of static graphs (DeepWalk [132] and LINE [133]) to
DTDGs. Otherwise, without using these representations,
LSTM-node2vec [94] directly samples one neighboring
node of a target node v per snapshot as a walk.

Similar to the method based on supra-adjacency, the walks
obey causality under continuous time, i.e. after walking from
node B to node C via an edge occurring at t2, node C can
only walk to the next node via an edge having occurring time
t > t2 (Fig. 11).
Some early methods are CTDNE [84] and T-Edge [95].

To encode a node v, they both sample the causal walks
starting from v, each walk W being a sequence of (node,
time) pairs. Then they embed each (node, time) pair and
encode the sequence W by fT (·) like RNNs. Combined
with anonymous walk embedding, Causal AnonymousWalks
(CAW [17]) anonymize nodes and their attributes in order to
focus more on graph motifs, which solve the problem at the
end of Sec. III-E. Drawing inspiration from CAW,NeurTWs
[134] proposes spatio-temporally biased random walks that
refine the walk sampling algorithm. This adjustment elevates
the traversal probability of the most recent neighbors and
those with superior connectivity. Similarly anchored in CAW,
CAt-Walk [135] extends random walk sampling to hyper-
graphs. This is achieved by sampling set walks to encode
hyperedges, where notably, an edge can bridgemultiple nodes
and is depicted as a set.

G. DYNAMIC GRAPH TRANSFORMERS
As a model originally designed for sequence to sequence
problems, Transformers architectures [23] are increasingly
being employed in static graph representation learning and
extended to dynamic graphs. We have already mentioned
above how models use Transformer as a temporal [101],
[108], [121], [123] or spatial encoder [101], [123], [136],

FIGURE 11. Schematic diagram on sampling casual walks on a CTDG, the
right part shows graph pattern extracted by anonymizing nodes.

as well as implementing the positional encoding technique,
all of which show its great potential for learning dynamic
graph representations.

Existing surveys [137], [138] have discussed the integra-
tion of Transformers with Graph Neural Networks (GNNs)
for static graphs. This integration is accomplished in three
principal ways [138]: (a) Using GNNs as auxiliary modules,
(b) Improving Positional Embedding (PE) with graphs,
and (c) Improving Attention matrix with graphs. However,
on dynamic graphs, both PE and attention mechanisms
become far more complex with the addition of the time
dimension. To our knowledge, there is no current survey
that compares these model architectures. In this subsection,
we review cutting-edge dynamic graph transformers and
synthesize their techniques in table 4.

1) COMBINATION OF TRANSFORMER WITH DGNNS
There are three possible ways for combining Transformers
and DGNNs models, synthesized in Fig. 12 (left). The
first combination is a sequential application of transformer
layer(s) and GNN layer(s) in an independent way [101],
[121], [124], [139]. The second combination alternates GNN
layers and Transformer layers in the DG encoder [100], [126],
[136]. The third combination is a parallel encoding of the DG
by independent transformer and GNN layers, followed by a
combination of their encoded hidden states [120], merging
the strengths of both layers. Additionally, some dynamic
graph models [73], [98], [99], [122], [123], [125], [127] use
transformers exclusively as graph encoders, exploiting the
self-attention mechanism for node hidden states propagation
without relying on traditional GNN architectures.

2) POSITIONAL ENCODING (PE) ON DYNAMIC GRAPHS
Positional Encoding (PE) is a central and essential question
in the implementation of transformers. In the context of
dynamic graphs, the PE is far from trivial because it must
account for the position of the elements in the graph structure,
as well as their temporal location. We have distinguished
position encoding into 4 types. The first method is the
embedding based on the time-related index of nodes or
edges [98], [100], [120], [124], [127]. The second method
utilizes (global) graph spectral information [99], such as
the Laplacian or its eigenvectors. The third method relies
on spatial domain information or local structures, such as
embedding the node degrees or random walks [73], [99],
[101], [122], [123], [127], [139]. Finally, as mentioned in
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FIGURE 12. Left: Three ways of combining Transformers with DGNNs. Right: The integration of Self-Attention (SA) for spatial attention, temporal
attention, spatial-temporal attention, or temporal neighbor attention.

TABLE 4. An analysis of the architecture of Dynamic Graph Transformers: The Transformer architecture can be combined with DGNN layers separately,
alternately, in parallel, or even completely replace the DGNN module. Positional Encoding can be performed on the chronological index, on spectral and
spatial features, or on the timestamp. The Self-Attention (SA) mechanism can operate spatially as a graph encoder (S), or temporally as a temporal
encoder (T). Otherwise, SA can also be performed on the replicas of nodes across multiple snapshots (ST), called Spatial-Temporal Self-Attention, or on
the temporal neighbors of different timestamps (Temporal NB).

section III-E, almost all the dynamic graph transformers use
time embedding to represent the timestamp or snapshot index
with a vector.

3) SELF-ATTENTION (SA) MECHANISM
Concerning Self-Attention (SA), there are four solutions on
dynamic graphs, as shown in Fig. 12 (right): Spatial SA:
when a token represents a node in a snapshot, SA operates
at the spatial level, equivalent to the graph encoder fG,
with SA matrix dimensions being the square of the number
of nodes Nt in the snapshot t [101], [120], [121], [122],
[123], [125], [136]. Temporal SA: When a token represents
the same node (or the entire snapshot) across multiple
snapshots, SA operates at the temporal level and acts as a
temporal encoder fT , its SA matrix dimensions thus are the
square of the number of time steps K [101], [120], [123],
[125], [136]. Spatial-Temporal SA: Following Temporal
Edge Modeling III-B, creating replicas for each node in
K snapshots, forming Spatial-Temporal Attention, with the
Attention matrix size being the square of

∑
Nt or K × T

[98], [99], [100], [101], [139]. Temporal Neighbor SA also
operates on topology, but its tokens are nodes/neighbors from
different timestamps [73], [124], [126], [127], i.e. temporal
neighbors in CTDGs [2], [6]. Timestamp information is

combined into hidden states by time embedding, therefore no
replica of nodes is needed to be created for each node as in
Spatial-Temporal SA.

The emergence of Transformer architectures tailored to
dynamic graphs marks an evolution towards more diversified
temporal encoding methods. Such as in ASTTN [99] which
integrates multiple types of positional encoding and learns
spatiotemporal attention, as well as in VDGCNeT [101]
which combines different attention mechanisms. Meanwhile,
the effectiveness of each positional encoding approach and
attention mechanisms in different cases and datasets poses an
open challenge that warrants further analysis and research.

H. ENCODING HETEROGENEOUS GRAPHS
Since heterogeneous graphs can maintain more informative
representations in tasks like link prediction in recommen-
dation systems, they present a unique challenge in terms of
node embedding on dynamic graphs. A key concern is to
have a dedicated module for handling different types of nodes
and edges on dynamic graphs. We introduce in the following
paragraphs two main approaches as illustrated in Fig. 13.

GNN-based models keep the same dimension d of
embedding for different node types (e.g. for user nodes
and item nodes) to facilitate computations. For example,
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FIGURE 13. Handling heterogeneous nodes. Above: embedding them into
the same vector space (e.g. with d = 5). Below: sampling random walks
with defined metapaths.

to update the node embeddings when user u and item i have
a connection etu,i at time t , JODIE [82] embeds the user
attributes xu, the item attributes xi, the edge attributes xe
and the time difference since the last update 1 to the same
dimension d and then adds them together:

htu = σ
(
Wu

1h
t−
u + Wu

2h
t−
i + Wu

3h
t
e + Wu

41u

)
hti = σ

(
Wi

1h
t−
i + Wi

2h
t−
u + Wi

3h
t
e + Wi

41i

)
(14)

where t− refers to the timestamp of the last update thus
1 = t − t−, and hti = xti for the first layer of model.
DMGCF [80] and DGCF [81] also use similar approaches
for same dimensional embedding. In line with this method,
DyHAN [109] and HTGNN [104] improve this approach by
assigning different weights to neighbors of different types
during the aggregation process, bothmethods first use a graph
convolution for each type of neighbors surrounding node v.
Then, an attention mechanism is employed to compute
the weight of each type for updating the hidden states
of v.

RW-based methods deal with heterogeneous graphs by
defining metapaths [140] which specifies the type of each
node in the walk, such as (user, item, user), so that each
random walk sampled (also called ‘‘instance’’) with the
same metapath can be projected to the same vector space.
Examples on the dynamic graph are THINE [141] and
HDGNN [142] which sample instances and encode them
through the attention layer and bidirectional RNN layers,
respectively.

So far, we have presented the main approaches for
capturing time and graph dependencies within dynamic
graphs, with a special emphasis on the cutting-edge area
of Dynamic Graph Transformers. In the next section,
we propose guidelines for the design and optimization of
DGNN architectures, as well as present several tables of
common public datasets for DGNN evaluation.

TABLE 5. Adapted cases of dynamic graph predictive tasks of each
method: TE stands for ‘‘Temporal Edge Modeling’’, Enc(H) for
‘‘Sequentially Encoding Hidden States’’, Enc(2) for ‘‘Sequentially Encoding
Model Parameters’’, Emb(t) for ‘‘Embedding time’’, Causal RW for ‘‘Causal
Random Walks’’, DGT for ‘‘Dynamic Graph Transformer’’. ✓ means
‘‘applicable’’, ∗ means ‘‘applicable with output restrictions’’, and no
symbol indicates that it is not yet used in the literature.

IV. DISCUSSION
In the previous sections, we have highlighted the diversity of
contexts that can be encountered when considering machine
learning on dynamic graphs, as well as the diversity of
existing models to tackle these problems. In this section,
we present some guidelines for designing DGNNs based on
the taxonomies presented in section II and III. To the best
of our knowledge, while such guidelines have already been
proposed for static graphs [31], they do not exist for DGNNs.

A. HOW TO DESIGN DGNNS?
For static graphs, Zhou et al. [31] described the GNN design
pipeline as: i) determine the input graph structure and scale,
ii) determine the output representation according to the
downstream task, and iii) add computational modules.
For dynamic graphs, the design of DGNN has to consider

more factors. We therefore generalize the workflow of
designing DGNN as follows:

1) Clearly define the input, output and nature of the task,
according to the taxonomies of section II;

2) Choose the compatible time encoding approach accord-
ing to the learning setting, using the categorizations of
section III and more precisely the Table 5;

3) Design NN structure;
4) Optimise the DGNN model.

The key points in the DGNN compatibility are the input
time granularity, the nature, and the object to be encoded.
We concluded their known adapted DG types and listed them
in table 5 and describe the various cases in this subsection.
Transductive tasks under discrete time, as a relatively

simple setting, can be encoded with any approach to
incorporate time information. In the setting of inductive
DT, no approach using TE is found in the literature, and
the method of enc(H) must also have its output aggregated
because of the gap mentioned in sections III-C, e.g. node-
level time-aggregated or graph-level time-step. To handle
continuous time, only emb(t) and Causal RW are widely used
in the literature.

Once the approach has been selected, the next step is to add
the computational components, which are very different for
each approach.
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For the first three methods mainly used in discrete time,
i.e., ① TE , ② Enc(H), and ③ Enc(2), they can be abstracted
to encode graph and time information via fG(·) and fT (·),
respectively. These neural network components are usually
some of the modules introduced in the appendices A, B and
Tab. 3. In particular, the encoding of temporal edges in the
TE approach can be performed by fG(·) without a specific
fT (·). In enc(H) approach, there are more possible ways to
combine fG(·) and fT (·) (stacked, integrated, etc.). In enc(2)
approach, the key is how fT (·) acts on the parameters of fG(·).
Remarkably, compared to Enc(H) or Enc(2) which encode
a graph of |Vt | nodes T times, the TE method encodes a
large graph with

∑T
t=1 |Vt | nodes at once. Its high space

complexity is a possible problem.
For the time embedding approach ④ emb(t), in addition to

the method of aggregating information of neighbors i.e. fG(·),
one also needs to consider the function for time embedding
(e.g. by a set of sine or cosine functions [6] or a learnable
linear layer [43]) and how to combine them to the hidden
states of edges or nodes (e.g. by addition or concatenation).
In the situation where the past representation of a node is
stored [2], [8], [43], one also needs to determine the module
used to update the node representation, i.e. fT (·).

For random walk-based method ⑤ Causal RW, one needs
to determine the random walk sampling strategy as well
as the method for encoding the sampled walks, typical
walk-encoding strategies are [132], [133], [143], and [144].
Methods based on emb(t) and CausalRW are increasingly
being applied to CTDGs [2], [17], [118] because there are
no limitations due to the case of DG predictive task.

⑥ Dynamic Graph Transformers are also capable of
encoding dynamic graphs in various cases, but it’s important
to consider their integration with other DGNN modules,
as well as the approach for the position encoding and the Self-
Attention mechanism, as described in Section III-G. From
the point of view of computational efficiency, the quadratic
complexity due to its Self-attention mechanism is also a
problem to be considered.

Last but not least, in the case of heterogeneous graphs,
an additional vector projection or setting of metapaths has to
be considered.

B. HOW TO OPTIMIZE DGNNS?
With the development of artificial neural networks and the
continuous emergence of new structures over the last five
years, questions have been raised about the optimization of
DGNNs. Apart from general neural network training issues
(overfitting, lack of data, vanishing gradient, etc.), a main
issue for GNN is over-smoothing [145], [146], [147]: if the
number of layers and iterations of a GNN is too large, the
hidden states of each node will converge to the same value.
The second main challenge is over-squashing [148], [149],
[150]: if a node has a very large number of K-hop neighbors,
then the information passed from a distant node will be
compressed and distorted.

To overcome the above problems, numerous methods have
been proposed. According to us, general trends to improve
DGNN can be categorized as (1) Input oriented, (2) DGNN
component oriented, and (3) DGNN structure oriented.

1) INPUT ORIENTED OPTIMISATION
To avoid overfitting when learning graph representations, two
main issues related to the DG need to be considered: the noise
in topology (e.g. missing or incorrect links) and the noise in
the attributes (e.g. incorrect input attributes or output labels)
[151], [152].

Since there may be pairs of similar nodes in the graph
that should be connected but are not (due to geographical
constraints, missing data, etc.), some approaches aim to
exploit a more informative graph structure or to augment
attribute data.

For discrete time, an example is ST-SHN [67] for
crime prediction. Considering each region as a node and
its geographical connectivity as an edge, ST-SHN infers
the hyper-edges connecting multiple regions by learning
the similarity of hidden states between node pairs. These
hyper-edges help to learn cross-region relations to handle the
global context.

For continuous time, such as heterogeneous graph-based
recommendation systems, DMGCF [80] constructs two
additional homogeneous graphsGu for users andGi for items
based on the known user-item graphGui. Then two GCNs are
used to aggregate information onGu∪Gi andGui respectively
to learn more informative node embeddings.

Noise in attributes can also lead to overfitting DGNNs,
therefore adaptive data augmentation is another direction for
input-oriented improvement. Wang et al. proposed Memory
Tower Augmentation (MeTA [153]) for continuous time
data augmentation by perturbing time, removing edges, and
adding edges with perturbed time. Each augmentation has
learnable parameters to better adapt to different input data.

2) DGNN COMPONENT ORIENTED OPTIMISATION
To solve the over-smoothing and over-squashing problems on
graphs, the improvement of the DGNN modules focuses on
a more versatile message propagation and a more efficient
aggregation.

To avoid stacking multiple layers of GCNs, TNDCN
[88] uses different-step network diffusion which provides a
larger receptive field for each layer. Each step k propagates
attributes with a k-hop neighborhood and has its independent
learnable parameters0k , as shown in equ. 15, where Ãk refers
to the parameterised k-hop connectivity matrix.

H =

∑
k≥0

ÃkHk0k (15)

Inspired by the Bidirectional LSTM [154], an easy-to-
implement enhancement for propagation is bi-directional
message passing Bi-GCN [78], [113]. It processes an
undirected tree graph as two directed tree graphs: the first one
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TABLE 6. Public datasets of node/edge-level predictive tasks. The ⋄ markers indicate that some of the publications use a subset of this data.

from the root to the leaves, and the second one from the leaves
to the root. Then two GCNs with different parameters encode
each case independently to obtain more informative hidden
states.

Besides improving propagation methods, a widely used
technique for aggregating information is the (multi-head)
attention mechanism, which enables the model to use
adaptive weights

(
fattn : R|Nvi |×d → R|Nvi |×1

)
for enhancing

vanilla GCNs [155], as well as its variant self-attention
mechanism

(
fself−attn : R|Nvi |×d → R|Nvi |×d

′
)
which is good

at capturing the internal correlation among elements in the
sequence.

The three component-oriented improvements mentioned
above are applicable not only to fG(·), but also to fT (·)
when encoding along time, such as dilated convolution for
expanding the temporal perceptual field [157], Bi-LSTM for
bidirectional propagation along the sequence [154], and (self-
)attention mechanisms for encoding sequences [23].

3) DGNN STRUCTURE ORIENTED OPTIMISATION
Another research direction is to optimize the overall structure.
For example, residual connection [158] for dealing with the
vanishing gradient is widely used in DGNNs, especially for

FIGURE 14. The main differences between the time-embedding methods,
with the green color indicating the graph encoding-related methods and
the blue color indicating the time encoding-related methods.

the DGNNs which sequentially encode hidden states [61],
[65], [90].

In particular for the time embedding approach under
continuous time, how to better store historical information
and how to learn variations of information are two major
challenges due to the difficulty of encoding over time.Models
such as TGAT [6] can encode the timestamps of the event
but cannot reuse the hidden states already encoded in the past
timesteps. TGN [2] addresses this problem by incorporating
memory modules, TGNF [8] adds the similarity between
current memory and previous memory in the loss to
encourage the model to learn variational information. All
these improvements enhance the performance and efficiency
of the model. The evolution of the relevant models is shown
in Fig. 14.
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TABLE 7. Publicly available datasets for the graph-level predictive tasks.

TABLE 8. Publicly available datasets for geosignal predictive tasks.

C. DATASETS FOR EVALUATING DGNNS
Evaluation of dynamic graph neural networks is important for
validating their performance in real-world scenarios. Proper
evaluation not only proves a model’s effectiveness but also
demonstrates its generalizability across multiple datasets.

DGNNs are adept at handling a variety of tasks. Key tasks
include node/edge-level and graph-level predictive tasks,
as well as link prediction which predicts the probability of a
connection between two nodes. The tasks and corresponding
evaluation metrics are discussed earlier in sections II-D
and II-F. A synthesis of the task modeling (classification
or regression, discrete-time or continuous-time, transductive
or inductive), metrics, and concrete applications (e.g., rumor
detection, traffic flow forecasting) can be found in Table 2.
Given the complex form of dynamic graphs, to our

knowledge, there is little mention of dataset compilation in
existing surveys [45], [46], [47], only [44] provides a list of
public datasets up to 2020. In order to better evaluate the
performance of DGNNs, a selection of representative datasets
from different domains is provided in three detailed tables,
each highlighting a different area of focus: Table 6 describes
the commonly used publicly available datasets for node/edge-
level predictive tasks, the domains in which they were
collected, and a selection of articles using the datasets. Table 7
focuses on graph-level tasks, including graph propagation for
rumor detection [159], [160], [161], [162], [163], skeleton-
based action recognition [164], [165], [166], and action or
sleep stage classification based on biometric signals such
as electrocardiogram (ECG) or electroencephalogram (EEG)
[108], [167]. Table 8 focuses on the prediction of signals
on geographically based graphs. Since the raw data is based
on signals, in some literature [63], [64], [68], the number of
edges is not determined by the dataset, but is calculated based

on the geographic distance. We also provide the temporal
granularity of the signal and the duration for each dataset.

In addition to the SNAP [168] and Network Repository
[169] mentioned in the table 6, the latest libraries TGB [171]
and DyGLib [172] have also begun to focus on the issue of
dynamic graph benchmarking and datasets. These libraries
aim to develop a solid pipeline to ensure the fairness and
reproducibility of experiments performed on continuous-time
dynamic graphs. The constant emergence of new libraries
and open datasets symbolizes the potential of dynamic graph
neural networks in various fields.

V. CONCLUSION
Thanks to their ability to integrate both structural and
temporal aspects in a compact formalism, dynamic graphs
have emerged in the last few years as a state of the art model
for describing dynamic systems.

Many scientific communities have investigated this area
of research using their own definition, their own vocabulary,
their own constraints, and have proposed prediction models
dedicated to their downstream tasks. Among these models,
Dynamic Graph Neural Networks occupy an important place,
taking benefit of the representation learning paradigm.

The first part of this survey provides clarification and
categorization of the different dynamic graph learning
contexts that are encountered in the literature, from the
input point of view, the output point of view, and the
learning setting (inductive/transductive nature of the task).
This categorization leads to five different learning cases
covering the different contexts encountered in the literature.

Using this categorization, our second contribution was
to propose a taxonomy of existing DGNN models.
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We distinguish six families of DGNN, according to the
strategy used to incorporate time information in the model

Finally, we also provide practitioners with some guidelines
for designing and improving DGNNs, as well as a summary
of common public datasets across domains for validating their
models.

As potential future research directions, we identify several
open challenges beyond the commonly addressed issues
of expressiveness and practical applications in surveys
[44], [47].

1) The evaluation of Discrete Time Dynamic Graphs
(DTDGs) warrants further exploration. While projects
such as TGL [171] andDyGLib [172] have established
datasets, models, and evaluation standards for CTDGs,
DTDGs suffer from inconsistent ways of dataset
preprocessing (e.g., time step segmentation based on
the number of edges or the time gap, the train/test
split based on the number of edges or snapshots,
etc.). In addition, task design and metric selection for
anomaly detection and regression tasks require clear
standards (e.g., normalization and negative sampling
methods) for comparative analysis of the model
generalization ability.

2) Exploring and adopting advanced methods from
static graphs to dynamic graphs is a potential research
direction. In addition to architectures such as Graph
Transformer, recent techniques such as graph grammat-
ical networks [228], curvature graph neural networks
[229], [230], and Unifilter [231] merit attention.

3) With the emergence of applications of DGNNs, the
demand for models to provide insights that are under-
standable to humans has become increasingly impor-
tant. Although existing methods [232], [233], [234]
can provide interpretability for the prediction on static
graphs, research on the interpretability of DGNNs is
still in its early stages [235]. For this reason, finer
task definitions and standards are needed. Furthermore,
while interpretability studies of static graphs often
use synthetic datasets, for dynamic graphs the use
of real-world datasets would greatly contribute to the
development and practicability of the field.

4) The total number of nodes in different DG datasets
varies widely, from small networks with only a few
hundred nodes to huge systems with millions of
nodes. Meanwhile, the time complexity of graph neural
networks varies in a wide range, from sublinear com-
plexity [236] to as high as cubic complexity [36], [37].
Therefore, an in-depth study of the scalability and
computational efficiency of DGNNs may not only
provide insights for academia but also inspire practical
applications in industry. When dealing with huge
dynamic graphs, the adoption of distributed systems
and learning paradigms [89] can be an effective
solution and reveal new research directions.

Although dynamic graph learning is a recent discipline,
it will undoubtedly be a major trend for machine learning

researchers for years to come. We hope that this review is
a modest contribution in this direction.

APPENDIX A STATIC GRAPH ENCODING
For a long time, static graph representation learning has
been based on matrix factorization [173], [174], [175], [176],
[177] and random walks [132], [133], [143], [178], [179],
[180]. Recently, graph neural networks have emerged as
powerful approaches, thanks to their ability to learn adaptive
parameters to map and filter the signals on the graph. In the
following, we split the graph representation learning methods
into Random Walk-based, Matrix Factorisation-based, and
GNN-based.

A. RANDOM WALK-BASED
After first introduced by Karl in 1905 [181], Random
walk-based approaches have then been applied to graph
structure sampling. Its variants have been employed for
applications including node similarity computation [182],
search engines [178], and so on for more than two decades.

A simple example is to randomly sample multiple
sequences of nodes by starting from several nodes and
walking to their neighboring nodes with probability 1 − a or
jumping randomly to any node in the graphwith probability a.
These sequences of nodes can be transformed into attribute
vectors of nodes by various methods, such as Skip-Gram
model [133] or embedding by neural networks [132],
[143]. Similar to Word2Vec [180] which generates word
embeddings based on word co-occurrence frequencies in
natural language processing tasks, DeepWalk [132] and
Node2Vec [143] encode the node embedding according to the
sampled node sequences.

B. MATRIX FACTORISATION-BASED
Influenced by the idea of dimensionality reduction, there is a
category of Matrix Factorisation-based models [175], [176]
[177] in the early research of graph machine learning. For
example, Graph Factorization [175] encodes the features
xi, xj of nodes i, j as vectors zi, zj and minimises the
difference between their inner product

〈
zi, zj

〉
and their

edge weight aij. Matrix factorization as a kind of shallow
embedding method has many limitations: The learned
parameters are the embedding of the nodes thus this
method is transductive, in addition, matrix factorization is
computationally expansive [183].

C. GNN-BASED
Geometric deep learning [27], also known as graph neural
networks, has recently emerged as an alternative to tradi-
tional methods. Benefiting from the rapid development of
the technical and scientific environment: efficient learning
algorithms, optimized libraries allowing parallel computing
on GPUs, and dedicated hardware, they can iterate over the
given inputs and outputs to learn the parameters that encode
the input features into low-dimensional informative vectors.
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Convolutional neural networks (CNNs) [184] are one of
the most popular neural networks because of their capability
to weightedly aggregate the neighborhood’s features and
filter signals. One primary problem with graph neural
networks is how to define the convolution on a graph.
Different perspectives have led to different implementations:
(1) spectral convolution and (2) spatial convolution (or
message passing), as well as more complex frameworks like
(3) graph Autoencoders and (4) graph Transformers.

From a signal processing point of view, the eigenvectors of
the normalized Laplacian matrix of a graph can be considered
as the bases of its graph Fourier transform. Multiplying
the signal of a transformed node (i.e., a spectrum) in the
spectral domain by a signal with learnable parameters (i.e.,
a convolution kernel) is equivalent to a spectral convolution
on the graph. Examples are Spectral CNN [185] and its
low-order approximation ChebNet [29], GCN [111].
Otherwise, from the spatial point of view, the convolution

on the graph can be regarded as the convolution of the image,
but is more complicated due to the irregular grid. Thus spatial
convolution can be implemented bymessage passing between
connected nodes e.g.MPNN [28],NN4G [186],GraphSage
[9], etc. GAT [30] adds the attention mechanism to spatial
convolution so that a node aggregates information with
different weights according to the attributes of neighboring
nodes. Some other approaches incorporate recurrent neural
networks and gating mechanisms, such as Gated graph neural
network (GGNN) [187], combining Gated Recursive Unit
(GRU) [188] and message passing network, treats message
propagation as the recursive update of the hidden states of
nodes and controls the update through a gating mechanism.

To encode dataX to a latent representationZ, Autoencoder
methods tend to reconstruct X̂ with encoded Z. When
getting X̂ and X as similar as possible, Autoencoder
learns the parameters that encode the most informative
representation Z. A typical example on graphs, Variational
Graph Auto-Encoders (VGAE) [189] encodes the feature
matrix X and the adjacency matrix A ∈ R|V |×|V | into Z ∈

R|V |×dV with a two-layer GCN, and then reconstructs the
adjacency matrix Â by an inner-product of Z, i.e., σ (Z.ZT).
In addition to the above models, Transformer models

have been applied to graphs in recent years. Min et als.
[138] summarizes them as the combinations of the following
three approaches: (1) Transformer as auxiliary modules of
GNN [190], [191], [192], (2) Use of graph topology for
improving self-attention [190], [192], such as using the
adjacency matrix as a mask, (3) Use of graph structure
during the positional encoding [193], [194], such as degree
or spectrum of nodes.

Once the graph is encoded into a latent representation
Z, classical tasks such as classification or regression can
be performed by a ‘‘readout’’ operation that aggregates
information. This can be performed using different pooling
methods [195], [196]. A very common case is to use mean
pooling to take the average value of the attributes of all nodes
as the attributes of the entire graph [27].

Despite the great performance of these model components
on various static graph tasks, there are more additional
elements to consider when handling dynamic graphs, which
are the encoding of temporal and sequential data.

APPENDIX B SEQUENTIAL AND TEMPORAL DATA
ENCODING WITH NEURAL NETWORKS
The time information on a dynamic graph may be indexes
of the sequence (in STGs and DTDGs) or precise timestamps
(in CTDGs), or both. In the literature, neural networks encode
sequential or temporal data in different ways, we present the
more classical ones in the following.

A. ENCODING SEQUENTIAL DATA
There is a semantic dependency between the elements of
sequential data, as in natural language processing tasks.
To handle them, themost well-known one is Recurrent Neural
Network (RNN) [197] which processes each input element
recursively along the direction of the sequence. By adding the
gating mechanism, Long Short-Term Memory (LSTM) [19],
[198] and Gated Recursive Unit (GRU) [188] have better
performance on long sequences.

Recursive networks like RNNs are not suitable for parallel
computing, while parallelizable networks based on linear
operations and convolution can avoid or reduce the number of
sequential operations: Equally using the gating mechanism,
the Gated Linear Units (GLU) [199] computes the hidden
states of the gated input by convolution to avoid dependence
on the previous time steps. Some other models use purely
convolutional layers, such as causal convolution inWaveNet
[200], which encodes the signal of the last l time steps through
l layers of convolution. When processing long sequences,
dilated causal convolution [156], [201] expands the field of
perception to avoid too many layers.

Furthermore, self-attention [23] modules, better known
with the Transformer architecture, can also capture long-term
dependencies by using linear transforms to learn the influence
of each element in a sequence on each other.

B. ENCODING TIME INFORMATION
Since time t is a numerical value, another practical way is to
encode the timestamp or sequence number as a d-dimensional
vector as part of the input features.

Common approaches are Positional Encoding (PE)
[23] which is employed in Transformer architecture, and
Time2Vec [202] which especially focused on encoding
temporal patterns [45]. Both of them use sine or cosine
functions, which make the vector representation bounded and
smoothly continuous in each dimension, as well as guarantee
the translational invariance of time difference values. Another
class of methods, Temporal Point Process (TPP [130]),
models the intensity function λi(t) of the probability of event
i occurring at moment t based on the historical events. Neural
networks allow TPP to learn intensity functions automatically
to better fit actual situations.
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APPENDIX C NOTATIONS USED IN THE ARTICLE

TABLE 9. Commonly used notations.
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