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ABSTRACT Exam timetabling is a prominent topic in academic administration management as it ensures
the effective utilization of resources and satisfies the requirements and preferences of stakeholders, which
leads to a productive academic environment, contributing to the institution’s overall success. Given the
myriad of solution methodologies explored across diverse exam timetabling problems and constraints,
both in studied benchmark datasets and real-life cases over the last decade, it is imperative to undertake
a comprehensive survey. This survey paper aims to comprehensively describe the exam timetabling problem
(ETP), including its variants, constraints, and benchmark dataset. We look at different methods to solve ETP
problems from 2012 to 2023. These methods include mathematical optimization, heuristics, metaheuristics,
hyper-heuristics, hybrid approaches, and matheuristics. Finally, we discuss the review findings and potential
research directions. By doing so, we hope to facilitate a deeper understanding of ETP and offer valuable
insights for future research.

INDEX TERMS Educational timetabling, exam scheduling, exam timetabling, solution methodologies.

I. INTRODUCTION
Educational timetabling represents a significant instance
among challenging combinatorial optimization problems [89].

independently, and each instance may differ significantly in
constraints and dimensions.
Exam timetabling problem (ETP) was defined by

This intricate problem is conventionally classified into three
principal types: school timetabling, course timetabling, and
examination timetabling [1]. Each involves assigning events
(e.g., meetings, exams, lectures, tutorials, classes) to limited
resources (e.g., timeslots and rooms) while adhering to
predefined constraints. Despite similarities, solving one
problem type with a method does not guarantee success with
another. Consequently, each problem type has been addressed
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Qu et al. [2] as ‘“‘assigning a set of exams into a limited
number of timeslots (periods) and rooms (of certain capacity)
subject to a set of constraints.” Constraints can vary in
definition or weighting based on institutional requirements.
The scientific community has been studying the ETP
since the 1960s, with an early survey conducted by [3]
focusing on practical applications of graph coloring heuristics
from 1964 to 1984. Carter and Laporte [4] extended
the survey by categorizing algorithms into sequential,
generalized search, cluster, and constraint-based methods,
while Schaerf [1] reviewed the early approaches for resolving
the ETP. Most algorithms primarily addressed the basic
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timetabling problem with minimal constraints during that
period.

The area of timetabling problems, including exam
timetabling, has a thriving research community, with notable
biannual conference series such as Practice and Theory of
Automated Timetabling (PATAT) dedicated to timetabling
practices and their applications. Exam timetabling constantly
evolves, leading to rapid developments in theory and practice.
With more standardized benchmark datasets, researchers are
exploring ways to place the timetabling problem in a real-
world context. Some studies focus on the optimality gap when
solving benchmark instances, while others prioritize the time
to find a feasible solution.

Many studies have investigated educational timetabling;
however, the breadth of the field restricts each to addressing
specific problem subsets. In 2008, Lewis [70] focused his
study on metaheuristic techniques, while Pillay [72] focused
on hyper-heuristics within educational timetabling in 2014.
In 2020, Bashab et al. [73] specifically concentrated on uni-
versity timetabling using metaheuristic techniques. In 2022,
Ceschia et al. [74] focused on benchmarks and state-of-
the-art results in educational timetabling. Numerous survey
papers in educational timetabling have delved into specific
subdomains, such as course timetabling [87] and school
timetabling [88], each with its associated methods [83], [84],
[85], [86], respectively.

For dedicated surveys focusing on exam timetabling,
Qu et al. [2] conducted a comprehensive study from 1995
to 2008, discussing key research achievements and trends
in exam timetabling, encompassing algorithmic strategies,
benchmark datasets, and emerging challenges. The survey
by Bashar et al. in 2019 [5] exclusively concentrates on
one formulation of ETP, namely the Uncapacitated ETP.
Notably, the need for dedicated surveys addressing the
exam timetabling problem is even more pronounced when
compared to other educational timetabling subdomains. This
scarcity encompasses the analysis of benchmark datasets
or specific methods and the investigation of real-world
problem constraints and requirements. Examining existing
literature is crucial to discern gaps in exam timetabling
research, considering substantial advancements in problem
understanding and solution methodologies over the past
decade.

This survey is essential for bridging the gap between
benchmark datasets introduced over a decade ago and recent
real-world cases, providing valuable insights to researchers,
educators, and policymakers to navigate the evolving land-
scape of exam timetabling challenges. The contributions of
this survey paper are:

o We present an overview of the terminologies, problem

descriptions, variants, and constraints related to the ETP.
The review outlines the commonly used ETP benchmark
datasets, detailing their respective characteristics and
state-of-the-art methods.

« We provide an up-to-date overview of recent solution

methodologies employed in ETPs, encompassing both
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benchmark and real-world ETPs from 2012 to 2023.
Furthermore, we have structured the article based on the
methods and techniques in chronological order, aiding
readers in comprehending the methodology timeline in
the field.

o We categorize solution methods into six categories:
mathematical optimization, heuristics, matheuristics,
metaheuristics, hybrid approaches, and hyper-heuristics.
The tables and figures in this article categorize these
methods, facilitating researchers in selecting categories
of interest for further study.

« We discuss the classification of the recent methodolo-
gies used in the ETP field and propose future research
directions.

The remainder of the paper is structured as follows:
Section II outlines the scope of the reviewed paper. Section I11
defines the problem variants and constraints. Section IV
classifies and offers an overview of solution methodologies
for ETPs. The categorization of these solution methodologies
is discussed in Section V. Section VI highlights trends
in benchmark ETP. Section VII discusses potential future
directions. The paper concludes with Section VIII.

Il. SURVEY SCOPE
We opted to initiate the search period in 2012 since it
marked the commencement of widespread publications on
exam timetabling problems, employing various solution
methodologies. Bibliographic information was obtained from
the Science Citation Index Expanded (SCIE) and Social
Science Citation Index (SSCI) within the Web of Science
Core Collection by Clarivate Analytics. The search involved
looking for phrases related to exam timetabling in the
topic field from 2012 to 2023 in the SSCI and SCIE
databases. Additionally, further refinement of publications
was carried out by selecting articles that prominently
featured the search keywords in their front page elements,
including the article title, abstract, author keywords, and year
published. The search terms and research strategy utilized for
exam timetabling were elaborated upon, encompassing the
following criteria:

Article title: “‘exam timetabling” or ‘‘examination

timetabling” or “‘university timetabling” or “exam

timetabling problem” or ‘“‘exam scheduling” or

“examination scheduling” or

Abstract: ‘“‘exam timetabling” or “examination

timetabling” or

Keywords: “‘exam timetabling” or ‘“‘examination

timetabling” and

Year: “2012-2023”

The search results (last accessed: January 9, 2024) resulted
in 1,955 publications meeting these criteria, which were
subsequently retrieved for further analysis. Apart from
that, publications from the journal OPSEARCH are also
included. After excluding specific publication types such as
dissertations, conference proceedings, surveys, reviews, book
chapters, partial exam-related studies, and those with fewer
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TABLE 1. List of ETP journals studied.

Journal Paper
Annals of Operations Research

Computers and Operations Research

European Journal of Operational Research

Journal of Scheduling

Applied Soft Computing

Expert Systems with Applications

IEEE Transactions on Evolutionary Computation

Journal of the Operational Research Society

Applied Intelligence

Information Sciences

OPSEARCH

Turkish Journal of Electrical Engineering and Computer Sciences
Others

Total

nj = « —_
oo wwwsuunu D

than five pages, we obtained 59 journal articles, as listed in
Table 1.

IIl. EXAMINATION TIMETABLING

A. PROBLEM DEFINITION

An ETP involves allocating a predefined set of exams, each
with a known number of students, into specific timeslots
within a designated exam session, adherence to a defined set
of feasibility constraints (hard constraints), and optimization
of quality based on specified criteria (soft constraints). Soft
constraints can be breached, resulting in a penalty for the
objective function.

B. TERMINOLOGIES

In this survey, we establish the meanings of several key
terms within the exam timetabling domain, which will be
consistently applied throughout this survey.

o Exam: To schedule exams, a specific period and room
must be assigned for each one.

o Exam session: An exam session consists of the entire
period during which exams occur or several periods over
a defined time frame.

o Timeslot/ Period: The exam session spans a certain
number of days, each of these days further segmented
into distinct timeslots. Each combination of day and
timeslot designates a specific period within the exam
session.

e Room: Each room is assigned a designated capacity,
indicating the maximum number of available student
seats. Certain exams may necessitate one or multiple
rooms, while others can be conducted using an online
platform and do not require physical spaces.

o Invigilator: Also known as a proctor or supervisor,
oversees students during exams.

C. ETP VARIANTS AND DATASETS
In the existing literature, two main variants of ETP are
recognized: Uncapacitated and Capacitated.

o Uncapacitated ETP imposes no room capacity restric-
tions during scheduling and assumes there will consis-
tently be a room with ample space for all participating
students.
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o Capacitated ETP entails considering limited room/slot
capacity per period.

- Room-Capacitated ETP: a capacity constraint is
imposed on each period.

- Slot-Capacitated ETP: a capacity constraint is
imposed on available rooms, specifying the max-
imum seating capacity each room can accommo-
date during a given period.

For each variant, we present an overview of the problem,
constraints, and objectives, along with the main characteris-
tics of the respective benchmarks.

1) UNCAPACITATED ETP VARIANT

The Uncapacitated variant represents the traditional version
of ETP introduced by Carter et al. [59]. It features a dataset
comprising 13 real-world cases collected at universities, pri-
marily in Canada, known as the Toronto dataset. Furthermore,
the dataset was expanded by Bilgin et al. [69] to establish
a Slot-Capacitated variant. This modified dataset enforces a
maximum seating capacity for each timeslot, featuring three
daily exam slots.

a: CONSTRAINTS

Consider one hard constraint for clash-free exams and one
soft constraint for maximizing the distribution of conflicting
exams.

b: OBJECTIVE FUNCTIONS

Minimize the sum of proximity costs per student, represent-
ing the distance between conflicting exams. Students taking
exams with a time gap encounter varying proximity costs,
determined by weights: 16 for no gap, 8 for one interval, 4 for
two intervals, 2 for three intervals, and 1 for four intervals.

c: DATASETS

Accessible through http://www.cs.nott.ac.uk/ pszrq/data.htm,
the dataset includes 13 instances, each with two plain text
files—exams and student enrollments. Two versions exist for
the five instances, varying in student count, enrollments,
exams, and conflict density. A program with its source code
for penalty computation can be found on the website. Table 2
illustrates the characteristics of the Toronto version 1 dataset,
including the modified Toronto data in the last two columns.

2) ROOM-CAPACITATED ETP VARIANT

The 2nd International Timetabling Competition (ITC 2007)
organizers provided 12 instances from British universities
for track 1 exam timetabling [61] that were used to evaluate
the results, per the competition regulations. This problem
formulation effectively bridges the gap between research
efforts and institutional requirements by introducing many
practical aspects of real-world cases.

a: CONSTRAINTS
Consider five hard constraints: exam conflicts, room capacity,
period length, precedence, and room exclusivity, as well as

41481



IEEE Access

E. S. K. Siew et al.: Survey of Solution Methodologies for Exam Timetabling Problems

TABLE 2. Features of Toronto Datasets; symbol definitions:
IN - Instances, EX - Exams, ST - Students, ER - Enrolments, CD - Conflict
Density, PD - Periods, DY - Days, CP - Capacities.

IN EX ST ER CD PD DY CP
CAR-S-91 682 16925 56877 0.13 35 17 1550
CAR-F-92 543 18419 55522 0.14 32 12 2000

EAR-F-83 190 1125 8109 027 24 8 350
HEC-S-92 81 2823 10632 042 18 6 650
KFU-S-93 461 5349 25118 006 20 7 1955

LSE-F-91 381 2726 10918 006 18 6 635
PUR-S-93 2419 30032 120681 0.03 42 10 5000
RYE-F-92 486 11483 45051 0.07 23 8 2055
STA-F-83 139 611 5751 014 13 4 3024
TRE-S-92 261 4360 14901 0.18 23 10 655
UTA-S-92 622 21266 58979 0.13 35 12 2800
UTE-S-92 184 2750 11793 008 10 3 1240
YOR-F-83 181 941 6034 029 21 7 300

seven soft constraints: two exams in a row, mixed duration,
undesired period, spread, frontload, undesired room, and two
exams in a day.

b: OBJECTIVE FUNCTIONS
Minimize the penalty that measures the violation of the seven
terms associated with the soft constraints. The weightings

vary between instances and are specified in the input
file.

¢: DATASETS

Auvailable for download at https://www.unitime.org/ITC2007/,
the solver and its corresponding source code are also acces-
sible. The dataset is also accessible at https://opthub.uniud.it/
problem/timetabling/edutt/ett/itc-2007-ett, where solutions
can be validated. Each instance is inputted with a text format
specifying exam details, hard constraints, and institutional
weightings. Table 3 illustrates the characteristics of the ITC
2007 datasets.

TABLE 3. Features of ITC 2007 Exam Track Datasets; symbol definitions:
IN - Instances, EX - Exams, ST - Students, ER - Enrolments, CD - Conflict
Density, PD - Periods, RM - Rooms, CP - Capacities.

IN EX ST ER CD PD RM CP
EXAM1 607 7891 32380 0.05 54 7 802
EXAM2 870 12743 37379 0.01 40 49 4076
EXAM3 934 16439 61150 0.03 36 48 5212
EXAM4 273 5045 21740  0.15 21 1 1200
EXAMS5 1018 9253 34196 001 42 3 2395
EXAM6 242 7909 18466 0.06 16 8 2050
EXAM7 1096 14676 45493  0.02 80 15 2530
EXAM8 598 7718 31374 0.05 80 8 922
EXAM9 169 655 2532 0.08 25 3 170
EXAMI10 214 1577 7853 005 32 48 1914
EXAMI11 934 16439 61150 0.03 26 40 4924
EXAM12 78 1653 3685 0.18 12 50 1525

3) SLOT-CAPACITATED ETP VARIANT

The dataset from Yeditepe University (Faculty of Engi-
neering) in Turkey includes real-world problems spanning
eight semesters across three consecutive years. Initially
presented by Ozcan and Ersoy [75], it underwent subsequent
modifications by Bilgin et al. [69].
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a: CONSTRAINTS
The problem includes two hard constraints (exam conflict and
slot capacity) and one soft constraint (exam spread).

b: OBJECTIVE FUNCTIONS

Minimize the instances of students undergoing two consecu-
tive exams on a single day.

c: DATASETS

The datasets, available on http://www.cs.nott.ac.uk/ pszajp/
timetabling/exam/, consist of eight real-life instances that
have been converted into the ITC 2007 format by Parkes
and Ozcan [60]. To align with the ITC 2007 formulation,
a considerably large room with a high cost, though having no
impact on solution cost [32], was introduced for all Yeditepe
instances except one. Table 4 illustrates the characteristics of
the Yeditepe datasets.

TABLE 4. Features of Yeditepe Datasets; symbol definitions: IN -
Instances, EX - Exams, ST - Students, ER - Enrolments, CD - Conflict
Density, PD - Periods, CP - Capacities.

IN EX ST ER CD
yue20011 126 559 3486  0.18
yue20012 141 591 3708 0.18
yue20013 26 234 447 0.25
yue20021 162 826 5755 0.18
yue20022 182 869 5687  0.17
yue20023 38 420 790 0.2
yue20031 174 1125 6714  0.15
yue20032 210 1185 6833  0.14

&)
@]
0

AN I NY
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4) OTHER DATASETS

The other ETP datasets that are available to be accessed are
listed in Table 5.

TABLE 5. Datasets for ETP with web links.

Datasets Web link Reference
Nottingham  http://www.cs.nott.ac.uk/~pszrq/data.htm [62]
Melbourne  http://www.cs.nott.ac.uk/~pszrq/data.htm [63]
Purdue https://www.unitime.org/exam_datasets.php [38]
UniudData https://bitbucket.org/satt/ [79]

examtimetablinguniuddata/

D. CONSTRAINTS
Table 6 lists primary constraints categorized into exam-
related, period-related, and room-related constraints. It pro-
vides their appearances across three benchmark instances
and other real-world cases surveyed in the literature. These
constraints may be classified as either hard or soft, contingent
on the requirements or preferences of the institutions.
Invigilator-related constraints have received relatively less
attention in the reviewed papers. These constraints have yet
to be incorporated into any benchmark dataset, attributed to
the diverse and significantly varying nature of constraints
across different universities and the preferences that can
represent each university’s unique challenges. Table 7 lists
invigilator-related constraints from real-world problems in
the surveyed literature.

VOLUME 12, 2024



E.S. K. Siew et al.: Survey of Solution Methodologies for Exam Timetabling Problems

IEEE Access

TABLE 6. Common Constraints for ETP; symbol definitions: T - Toronto Benchmark, EX - ITC 2007 Exam Benchmark, Y - Yeditepe Benchmark, H - Hard

Constraint, S - Soft Constraint.

Constraints 1 Y  References

Exam related constraints

Each exam is allocated a clash-free timeslot. H [68], [76]

Only one exam can be taken by a student at any given time. H H [81, [311, [37], [51], [52], [77]

Each course’s exams should be scheduled only once and within a single time slot. [36], [37], [43], [46], [52], [56], [77],
[78]

Sets of exams are mandated to be held at the same timeslot. H [81, [46], [51], [56], [68]

Exams are scheduled based on priority value, determined by the exam size. S

The exam can only be assigned to an available room or timeslot. [38], [51], [76]

No consecutive exam timeslots (e.g., taking two exams on the same day, taking three exams on S S [81, [38], [43], [51], [52], [56], [68],

the same day, having two exams back-to-back) [77], [78]

Period related constraint

Exam duration must not exceed the designated timeslot. H [68]

Minimize the total number of days on which exams are held. S [68]

All exams should be scheduled within the specified exam session. [8], [52], [68]

Enforces the assignment of exams to specified or preferred slots or days. [51], [52], [56], [68], [76]

Spread student exams evenly across the exam session. S [81, [31], [36], [371, [77]

Exams with a mixed duration may be scheduled in the same time slot. S

Consider timeslot precedence (ordering) restrictions, e.g., scheduling Exam B after Exam A. H [76]

Daily exam scheduling is restricted to user-identified exam slots. [37], [68]

Courses in a given semester should have different timeslots assigned for their exams. [37], [43]

Room related constraints

The total number of students taking the exam remains within the limits of the capacity of the H H [8], [25], [31], [36], [38], [43], [46],

room(s). [51], [52], [56], [68], [76]-[78]

Exam room allocation constraints, such as Exam A being assigned to Room 101. H

Certain exams must be scheduled in the preferred room or specific room type. [38], [51], [52], [56], [76]

Each room accommodates only a single examination. No room sharing allowed. [25],[31],[38],[43], [511, [52], [68],
[77]

A room cannot be used during timeslots in which it is unavailable. [38], [51]

Same-exam rooms should be located proximate to each other. [31], [38], [43], [46]

An exam can be split across multiple rooms. [31], [78]

Minimize exams with varying durations being held in the same room. S

Maximize utilization of the room capacity. [38], [78]

The limit for splitting an exam into multiple rooms is not exceeded.

[38], [52], [56]

TABLE 7. Invigilator-related constraints.

Constraints References
Invigilators should not oversee their exams. [22]

Only lecturers can be chief invigilators, as per university policy. [22]
Invigilators cannot have overlapping duties per timeslot. [22], [66]
No invigilator can invigilate more than three exams per exam session. [22]
Assign the necessary number of invigilators and appoint one chief for ~ [22]

each room.

Invigilator workloads should be balanced across all invigilators. [22], [66]
Invigilators must not have more than two consecutive duties. [66]
Invigilators cannot be assigned additional exams during the timeslots ~ [66]

when they are responsible for invigilator duties.

IV. SOLUTION METHODOLOGIES

This section delves into the solution methodologies employed
in the context of the ETP in this survey paper, categorizing

these methods into one or more of the six categories:

o Metaheuristics: high-level methodologies that combine

underlying heuristics, employing intelligent strategies
for exploring and exploiting the search space and
concurrently guiding heuristic procedures with learning
techniques. The classification of a metaheuristic as
either single-solution or population-based is contingent
upon the number of solutions examined in each iteration
of the exploration procedure.

- Single solution-based (MH-S): employ iterative
processes to enhance an individual candidate
solution using transformation operators within its
neighborhood, employing local search techniques.

- Population-based (MH-P): commence by estab-
lishing an initial collection of candidate solutions,
iteratively manipulating them to improve search,

+ Mathematical Optimization (MQO): also known as

mathematical programming, involves optimizing a
mathematical model. It is categorized into Linear
Programming (LP), which deals with linear functions
and integer variables, and Nonlinear Programming
(NLP), which involves general functions with discrete
and continuous variables. This category encompasses
integer linear programming, goal programming, mixed
integer programming, and constraint programming.
Heuristics (HE): find high-quality solutions within an
acceptable computational cost but do not guarantee opti-
mality. This category comprises constructive heuristics,
graph coloring, and decomposition.

VOLUME 12, 2024

and replacing some with new solutions based on
quality criteria to explore and exploit effectively.
Matheuristics (MAH): hybridizes metaheuristics with
mathematical programming techniques, utilizing math-
ematical programming models in a heuristic framework.
Hyper-heuristic (HH): explores a search space com-
posed of low-level heuristics or heuristic components,
delineating two major types:
- Generation hyper-heuristics: create new heuris-
tics using components and operators.
- Selection hyper-heuristics: enhance solutions by
selecting low-level heuristics from a provided set.
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« Hybrid Approaches: a high level of integration, either
by incorporating a metaheuristic algorithm into a search
tool or integrating various metaheuristic algorithms into
a unified framework.

A. MATHEMATICAL OPTIMIZATIONS

1) LINEAR PROGRAMMING

Arbaoui et al. [32] presented a mixed-integer mathematical
model and used the CPLEX 12.5 solver to test it on both
the ITC 2007 benchmark and the Yeditepe benchmark.
In the preprocessing stage, the exam-based conflict graph
was utilized to reveal implicit conflict constraints between
exams. The approach incorporated valid inequalities derived
from cliques and employed a data-dependent dual-feasible
function to improve the model. Experimental results demon-
strated the superior performance of the enhanced model in
most instances of both datasets compared to the original
model. In 2019, [50] proposed a generic mixed integer
programming (MIP) model with compact formulations
having an equation count proportional to the number of
exams. The lower bounds were improved by focusing on two
exam spacing soft constraints. Computational analysis on the
same datasets showed a substantial enhancement in lower
bounds compared to previous results and outperformed other
available formulations.

Woumans et al. [36] developed two column generation
(CG) models for scheduling multiple exam versions while
ensuring even distribution. These models were implemented
using IBM ILOG CPLEX and tested with real-world data
at the KU Leuven campus and the Toronto benchmark.
Model 1 used columns to represent exam schedules for
unique student groups, while Model 2 represented mask
schedules for each group. Post-processing employed heuristic
and binary IP approaches to assign exam versions to student
groups. Model 1 focused on minimizing spread costs, even
if it led to higher total costs, and performed well on both
Toronto datasets. Model 2 aimed for the lowest total cost but
could only solve one dataset within the time limit.

Cataldo et al. [43] tackled a curriculum-based ETP for
Universidad Diego Portales in Chile using three mathematical
programming models. Unlike other ETPs, the exam schedule
conflict numbers, in this case, are uncertain and depend
on curriculum configurations. The first model allocated
timeslots and room patterns to group courses, whereas the
second model allocated timeslots and room patterns to each
course. In the final model, specific rooms were allocated
to each exam based on the outcomes of the second model.
These models were implemented using GAMS, with CPLEX
serving as the solver. Compared to the university’s manual
process, the schedules demonstrated improved efficiency,
with fewer conflicts in most situations and no requirement
for rescheduling.

Keskin et al. [46] proposed a mixed MIP model with
a 2-stage heuristic approach to address a real-world ETP
at Pamukkale University’s Faculty of Engineering. The
scheduling process involves two stages: determining the

41484

exam time in the first stage and assigning classrooms and
students to those exams in the second stage. The proposed
two-stage method yielded better feasible solutions and faster
computation times than commercial software (i.e., CPLEX
and Gurobi). Additionally, it shortened the projected final
week by one day.

Giiler and Gecici [51] developed a decision support system
(DSS) using a spreadsheet and MIP model to generate
balanced schedules for Y11d1z Technical University’s Indus-
trial Engineering Department. To create the DSS, the MIP
model was integrated into Microsoft Excel with the Solver-
Studio add-in and Gurobi. In 2021, [56] presented two MIP
models with a decomposition approach for solving exam
and supervisor assignment problems at a vocational school
that provides associate-level degrees. The MIP models were
integrated into a web-based DSS, enabling a typical end-user
to generate a timetable in less than two minutes using the
CBC open-source solver.

Al-Hawari et al. [52] introduced a three-phase Integer Lin-
ear Programming (ILP) for addressing the ETP at the German
Jordanian University (GJU) and Toronto benchmark. The
approach decomposed the problem into three phases: first,
allocating exams to timeslots; second, assigning timeslots to
days; and third, assigning exams to rooms. ILP formulations
were used to obtain solutions for each phase, with a
CPLEX solver being utilized. Modularization simplified the
formulation, resulting in easily generated, feasible timetables
stored in multiple standard formats significantly faster than
manual methods.

Godwin [78] utilized linear O-1 integer mathematical
programs, formulated using AMPL and solved with CPLEX,
to generate a quality exam timetable considering faculty,
room, and student-oriented aspects. Two surrogacy-based
approaches were introduced: one assessed surrogacy levels
among different objective functions, identifying potential
surrogates for multi-objective problems, and the other
created multiple solutions for quality and computational
time comparisons. Tested on a business school ETP, the
optimization models—faculty-oriented and room-oriented—
exhibited quicker optimization times and served as effective
surrogates for each other. However, they proved less suitable
as surrogates for student-oriented objective functions.

Bazari et al. [77] implemented an ILP model using
IBM ILOG CPLEX and its optimizer. CPLEX’s innovative
search tree traversal facilitates more efficient discovery of
feasible solutions than relying solely on the branching and
cutting method. Tested at Ferdowsi University Management
Department, the model outperformed the manually prepared
schedule, showcasing its superiority in optimal class utiliza-
tion, avoiding exam conflicts, and achieving average exam
spreads.

2) GOAL PROGRAMMING (GP)

Cavdur and Kose [37] designed a binary GP-based approach
incorporating fuzzy logic to tackle the ETP tailored explic-
itly for the Industrial Engineering Department at Uludag
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University. Initially, fuzzy criticality levels for exams were
determined by assigning them based on three factors: class
credits, success ratios, and class types. Next, the criticality
levels and pre-processed data were inputted into a GP model
to develop an optimal exam schedule. A simple algorithm
was then used to assign rooms and proctors. In all evaluated
objectives, the model’s generated schedule performs better
than the human expert’s produced schedule.

B. HEURISTICS

Burke et al. [14] evaluated a linear combination of primitive
heuristics on an enhanced weighted graph that utilized
continuously updated information. A new vertex-selection
heuristics was developed based on saturation degree and
largest weighted degree. The improved model enabled the
combination of basic heuristics to create compound selectors
and introduced “‘badness” thresholds for color assessment.
Tested on Toronto datasets, it achieved optimal results in five
cases and outcomes comparable to the best-known outcomes
in seven others. Performance gains were observed when the
linear combination strategy was combined with backtracking.

Abdul-Rahman et al. [21] proposed an adaptive decom-
position and heuristic ordering strategy and experimented
on the Toronto dataset. Exams were categorized into two
subsets, difficult and easy, and ordered using various graph
coloring heuristics to prioritize the assignment of exams to
timeslots. To enhance the solution quality, the boundary set,
positioned as a subset between the easy and difficult sets,
underwent merging and swapping with the difficult set. If no
improvement occurred, the roulette wheel selection-based
shuffle strategy was applied. While the experimental
results did not surpass six constructive approaches in their
entirety, they remained competitive with other improvement
strategies.

Kahar and Kendall [22] designed a two-phase constructive
algorithm for addressing the ETP at Universiti Malaysia
Pahang (UMP). In the first phase, exams were concurrently
scheduled in timeslots and rooms, and the second phase
involved invigilator scheduling. They enhanced the invigi-
lation scheduling model with new constraints, including a
minimum 2-day gap between duties, simultaneous oversight
of exam papers by lecturers in the same location, and
penalties for overseeing their papers. The algorithm met all
constraints that the UMP proprietary system could not.

Kasm et al. [68] introduced a constructive heuristic,
incorporating a color graphing algorithm, to address a
capacitated ETP at Masdar Institute and Toronto benchmark.
They considered a new constraint related to the limit on
the number of exams assigned to a single student within
a predetermined period. Utilizing an adjustable parameter
known as the quantity of high-degree nodes, the heuristic
impacted scheduling efficiency by giving preference to
larger courses. It prioritized identifying the color group
that harbors the most non-conflicting vertices, deviating
from emphasizing minimizing the number of such groups.
Experimental results showed its efficiency compared to the
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IP formulation, yielding optimal or near-optimal outcomes in
computational time and scheduling duration for both datasets.

C. METAHEURISTICS

1) SINGLE-SOLUTION BASED METAHEURISTICS

a: TABU SEARCH (TS)

Pais and Amaral [13] proposed a TS method utilizing a fuzzy
inference rule-based system (FIRBS) for automated tabu
tenure management. Two features, inactivity, and frequency,
were employed to register elements on the tabu list. The
definitions of these features varied depending on the neigh-
borhood, taking into account both simple and Kempe chain
moves. The study experimented with Toronto datasets in two
phases. Initially, it compared FIRBS to TS with fixed tenure
values, showing a significant improvement. In the second
phase, FIRBS was compared with four other established
methods using the same objective function, demonstrating
its simplicity and suitability as an alternative to manually
tuning tabu tenure. In 2016, [34] presented a multi-objective
approach that utilized TS for multi-criteria ETP, assessed on
the same dataset. Two features were introduced to enhance
automation: FIRBS for tabu list’s element tenure selection
and MCR for flexible preference modeling. FIRBS achieved
the best value for 3 of 4 objectives, and MCR’s weighting
functions provided a smoother balance between objective
function values.

b: VARIABLE NEIGHBORHOOD SEARCH (VNS)

Elloumi et al. [25] developed an adapted VNS to minimize
total capacity usage for an ETP at the Faculty of Economics
and Management Sciences of Sfax. The first stage involved
scheduling exams into timeslots, and the second stage
assigned exams from timeslots to available classrooms. Two
reduction procedures were employed: one involved sorting
exam sizes and classroom capacities in a non-decreasing
order, and the second used a dominance criterion. The VNS
algorithm efficiently allocated classrooms using insertion and
swap moves as neighborhood structures. Evaluating the VNS
algorithm against this lower limit validated its ability to
produce favorable outcomes.

c: SIMULATED ANNEALING (SA)
Battistutta et al. [39] introduced a single-stage SA method
that utilized a feature-based parameter tuning technique
designed for the ITC 2007 benchmark. The technique entailed
the inclusion of non-feasible solutions within the search space
and managing them through suitable penalty mechanisms.
A two-step parameter tuning process identified crucial
parameters and correlated parameters’ values to instance
features through a linear function using a regression model.
Compared to the five ITC 2007 finalists, they globally
outperformed them and achieved the best outcomes in two
instances. The study highlighted that a properly tuned search
method could effectively enhance generalization on new
instances.

Leite et al. [48] designed an accelerated variant of SA,
named FastSA, which automatically computes the cooling
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rate. The approach comprised two phases: construction, using
a saturated degree graph coloring variant to form the initial
solution and optimization, employing the SA approach. Test-
ing on ITC 2007 datasets showed that FastSA outperformed
standard SA with fewer evaluations and less computation
time. FastSA ranked third among five algorithms when pitted
against state-of-the-art methods, exhibiting improvement in
one out of twelve instances.

Bellio et al. [55] proposed a two-stage SA-based approach
for an ETP based on the formulation of uncapacitated Toronto
benchmarks. In Stage 1, they focused on conflict resolution
to establish a feasible solution, and Stage 2 enhanced the
solution by optimizing exam distances without introducing
new conflicts and utilizing specific neighborhood relations.
The results obtained matched or surpassed the best outcomes
in 10 out of 13 instances compared to a compilation of
the most renowned results in the literature. Also, using
a mathematical model and ‘““warm-starting” CPLEX with
SA-derived solutions to try to improve the initial solutions
for instances but run into problems, showing how hard it is to
use exact algorithms for larger instances.

Van Bulck et al. [67] presented an SA algorithm with a
multi-neighborhood approach to address the ITC 2007 bench-
marks. The SA framework incorporated six neighborhoods:
Move, Kempe, Kick, Shake, and two noteworthy additions:
a beam search operator for exam-to-room assignments and
an approach leveraging multiple disconnected components
in the underlying conflict graph. Its parameters underwent
fine-tuning using the irace package through iterated racing
procedures. The ablation analysis demonstrated a preference
for including all neighborhoods, mainly Move and Swap,
while the infrequent selection of Kempe was attributed to
computational costs. The algorithm excelled in 11 out of
12 instances compared to ITC 2007 competition finalists and
achieved the best solutions in 5 out of 8 Yeditepe instances.

Carlsson et al. [76] investigated three distinct meth-
ods for addressing a real-world ETP proposed in [79]:
(i) extended SA with a new neighborhood relation,
SwapEvents; (ii) constraint programming (CP) solved using
Gecode; and (iii) two MIP models solved with Gurobi
(2-stage method, MIP2S, and encoded in MiniZinc, MIPMZ).
The experimental results demonstrated that extended SA
outperformed the original SA in all instances except for two
and surpassed MIPMZ and MIP2S in all instances except for
two. CP exhibited somewhat inferior performance, and while
MIPMZ succeeded in some instances, it struggled or timed
out in others.

d: HILL CLIMBING (HC)

Bykov and Petrovic [33] implemented a step-counting mech-
anism named the Step Counting Hill Climbing algorithm
(SCHC). SCHC generated an initial feasible solution using
the Saturated Degree heuristic for exam scheduling and
then employed a heuristic search, utilizing various moves
and the Kempe chain procedure iteratively to produce a
candidate solution. Three variants of SCHC were developed:
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SCHC-all (counting all moves), SCHC-acp (counting only
accepted moves), and SCHC-imp (counting only improving
moves). SCHC-acp outperformed SA, Late Acceptance Hill
Climbing, Great Deluge, and other SCHC variants in longer
runs when evaluated on ITC 2007 problems. Additionally,
SCHC-amp outperformed previously published results on
eight benchmark instances, including one pre-competition
and two post-competition outcomes.

Burke and Bykov [40] presented a Late Acceptance
Hill Climbing (LAHC) approach with an added greedy
rule and enhanced history recording and evaluated it using
benchmarks for the Travelling Salesman and ITC 2007 ETP.
The algorithm initiated its process by generating an initial
feasible solution at random, employing the saturation degree
heuristic for exam room allocation. It then iteratively accepts
or rejects candidates while ensuring feasibility by applying
a range of moves. Throughout the entire search process,
only feasible solutions were considered. The proposed
approach demonstrated superior performance compared to
basic LAHC, Simulated Annealing, threshold acceptance,
and Great Deluge on most of the benchmark problems,
particularly those with larger sizes.

e: GREAT DELUGE (GD)

Kahar and Kendall [31] implemented a modified GD
algorithm (modified-GDA) for a capacitated ETP at UMP.
The algorithm included a simple parameter that enabled
dynamic adjustments to the boundary, decay rate, and desired
value as the search process unfolded. The modified-GDA
approach surpassed UMP’s proprietary software, Dueck-
GDA, and constructive heuristics by generating high-quality
solutions that satisfied all constraints, which the proprietary
software could not achieve.

Burke and Bykov [35] introduced an extension of GD
called Flex-Deluge, featuring a flexible acceptance condition.
This enhancement underwent testing on both the Toronto
and ITC 2007 benchmarks. They introduced two concepts
to improve search technique performance: slowing down
uphill moves and adapting the algorithm to specific problem
properties. Experimental results demonstrated that the adap-
tive Flex Deluge algorithms (AFDA), specifically AFDA/LD
and AFDA/LD+LNS, which use the largest degree (LD) for
replacement moves and the largest number of students (LNS)
for room moves, outperformed other algorithms, such as GD,
greedy HC, and fixed Flex-Deluge. AFDA variants achieved
superior results compared to previous publications, obtaining
nine top results for the ITC 2007 benchmark and nine out of
16 top results for the Toronto benchmark.

2) POPULATION BASED METAHEURISTICS

a: MEMETIC ALGORITHM (MA)

Lei et al. [44] presented an MA based on a multiobjective
evolutionary algorithm with decomposition (MOEA/D) to
address the uncapacitated Toronto ETP. In the initial phase,
the algorithm used double hybrid initialization to generate
diverse-length initial populations, followed by crossover
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and mutation on randomly selected individuals. Two local
search operators, period-supplement and bi-directed, were
employed to enhance solution distribution and optimize two
objectives simultaneously. The experimental results showed
that double hybrid initializations worked better than random
and hyper-heuristic ones, demonstrating the effectiveness and
robustness of the designed operators.

Leite et al. [45] designed a cellular memetic algorithm
(cMA) that hybridized a cellular evolutionary algorithm and a
threshold acceptance metaheuristic to address ETP posed by
Toronto and ITC 2007 benchmarks. This two-phase cMA first
generated feasible solutions using saturated degree and then
optimized them in the second phase using TA, Kempe chain
neighborhoods, and a combination of mutation and crossover
operators. The cMA method did better than other solutions
that had been published before. It had the smallest average
relative deviation compared to the best solutions on four out
of thirteen cases in the Toronto dataset and three out of twelve
cases in the ITC 2007 dataset.

b: HONEY-BEE MATING OPTIMIZATION (HBMO)

Sabar et al. [10] proposed a modified HBMO algorithm
and evaluated its performance using the Toronto and Socha
datasets for uncapacitated ETP and course scheduling
problems. Their approach started by creating populations
of feasible solutions using the largest enrolment, largest
degree, and least saturation degree. In the crossover pro-
cess, two timeslots were randomly chosen from the queen
and drone, and events were then swapped between these
selected timeslots. To prevent the drone’s sperm from being
reused, an event-swapping mutation operator was employed
between timeslots. Mated drones were eliminated to sustain
population diversity, and newly produced broods were
introduced into the population for the subsequent mating
cycle. This approach outperformed the original HBMO on
Toronto datasets and achieved results comparable to or better
than five population-based and eight non-population-based
methodologies.

¢: PREY-PREDATOR ALGORITHM (PPA)

Tilahun [49] introduced an extended PPA and tested
it on six instances of uncapacitated Toronto datasets.
Three classifications were assigned to the initial solutions:
the top-performing solution was denoted as the best prey, the
least effective solution was marked as the predator, and the
rest were considered ordinary prey. The best prey exploited
its neighborhood, whereas the predator explored the search
space to locate a promising area. Both the exploration
and exploitation search behaviors influenced the ordinary
prey. Statistical comparisons were conducted between the
results and seven selected methods from existing literature,
demonstrating performance on par with the best.

d: FIREFLY ALGORITHM (FA)

Nand et al. [58] designed a discrete firefly algorithm
(dFA) by introducing preference parameters, a stepping-
ahead mechanism to tackle the uncapacitated Toronto ETP.
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The algorithm consisted of three phases: Phase 1 used
dFA to create an initial solution; Phase 2 improved it
with simple moves; and Phase 3 employed sequential
neighborhood operators for further refinements. The novel
stepping-ahead mechanism utilized preference parameters to
enhance optimization and thoroughly explored the solution
space, identifying superior solutions. Compared to 10 other
algorithms using identical stages, dFA-Step showed similar
performance in 5 out of 12 datasets.

D. HYPER-HEURISTICS (HH)

1) SELECTION HYPER-HEURISTICS

Burke et al. [9] evaluated various Monte Carlo-based HHs
on the capacitated Toronto dataset. They employed basic
heuristic selection methods such as greedy, simple random,
choice functions, and a learning scheme. Additionally,
they applied three move acceptance techniques based on
Monte Carlo methods: standard SA, SA with reheating, and
exponential Monte Carlo. An experiment tested combinations
of heuristic selection and move acceptance techniques in
selection HH. The results indicated that the most effective
performance was achieved when combining the SA approach
with the reheating move acceptance method and utilizing the
choice function technique.

Demeester et al. [8] proposed a tournament-based HH
approach to a curriculum-based ETP at KAHO and two
post-enrollment ETP benchmarks—Toronto and ITC 2007.
The study examined various factors, including the random
heuristic selection, tournament factor, and four move accep-
tance criteria: “improving or equal”, SA, GD, and a modified
late acceptance (LA). Results showed that combining LA
with the steepest descent was the most effective move
acceptance criterion, on par with SA. It outperformed the
manual solution for KAHO and improved 7 of 13 instances
in Toronto. While not surpassing the best-known approaches
in ITC 2007, it remained competitive.

Pillay [6] used an evolutionary algorithm (EA) based HH
with three heuristic representations for the Toronto ETP:
fixed length (FHC), N-times (NHC), and variable length
(VHC). These representations, using unique combinations
of low-level heuristics, were assessed for their impact
on EA performance. FHC performed less effectively than
VHC and NHC. Combining all three representations yielded
superior results compared to using FHC, VHC, or NHC
individually.

Soghier and Qu [16] suggested an iterative HH method
that used a low-level graph coloring heuristic to choose
which exams to take and adaptively hybridized bin-packing
heuristics to assign exam timeslots and rooms automatically.
This approach dynamically selects and adjusts the level
of hybridization for each heuristic to generate a spectrum
of heuristic sequences with varying quality. Combining
top-performing heuristics resulted in the best solutions across
the ITC 2007 datasets, achieving feasibility in all eight
instances and ranking Sth among the nine best approaches in
the literature.
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Sabar et al. [26] created a framework for gene expres-
sion programming-based HH and utilized it to tackle the
ITC 2007 ETP and a dynamic vehicle routing problem. This
framework represented an improvement-oriented approach,
featuring a set of perturbative low-level heuristics and high-
level techniques with two elements: selection of heuristics
through a dynamic multi-armed bandit approach with
extreme value-driven rewards and an automatically generated
criterion for accepting moves using gene expression program-
ming. This approach outperformed the ITC 2007 competition
winner and post-ITC 2007 methods in 4 of 8 instances.

Qu et al. [27] developed an HH framework using an
Estimation Distribution Algorithm (EDA) to tackle the
uncapacitated Toronto ETP. The high-level search process
relied on a basic EDA, guiding heuristic selection for various
problem-solving scenarios. The performance of low-level
heuristics was assessed through their probability distribution
during solution construction, enhancing HH search. Despite
lacking backtracking or local improvement techniques, this
constructive approach showed promising results across all
instances, matching the top performance among the ten others
discussed in the literature.

Muklason et al. [41] designed a three-stage multi-objective
selection HH approach to optimize standard objectives
and fairness within student cohorts. In the initial stage,
feasible solutions were created using the squeaky wheel
technique. In the subsequent two stages, a selection HH
was used, integrating the GD algorithm and reinforcement
learning to control the move acceptance and 14 low-level
heuristics, respectively. Stage 2 aimed to optimize the
standard objective, while Stage 3 sought fairer solutions
within a reasonable Pareto front range. Experiments on
three benchmarks (Toronto, ITC 2007, and Yeditepe) showed
that the approach works for multi-objective ETP, with
performance similar to methods that have been reported
before.

Hao et al. [53] introduced a unified evolutionary multitask-
ing graph-based HH that employed evolutionary multitasking
for high-level search and graph heuristics for low-level
heuristics. This unified framework exhibited greater effec-
tiveness and versatility than the single-task HH method based
on experimental results on both Toronto ETP and graph
coloring problems.

2) GENERATION HYPER-HEURISTICS

Sabar et al. [7] proposed a novel graph coloring constructive
HH approach that utilized hierarchical fusion of four low-
level heuristics: largest colored degree, saturation degree,
largest enrollment, and largest degree. Combining these
heuristics generated four ordered lists to calculate the
scheduling difficulty index for the initial exams. Exams
were chosen according to their difficulty index and assigned
to timeslots using a roulette wheel selection. Despite
its single-pass stochastic nature, this approach exhibited
competitive performance when evaluated against other HH
methods using single sequential graph coloring on the
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Toronto dataset and constructive methods on the ITC
2007 dataset.

Sabar et al. [17] designed a grammatical evolution HH
framework and tested its performance on the ITC 2007 and
Toronto benchmarks. The framework utilized grammatical
evolution to build an online solver, utilizing a grammar defini-
tion to define heuristic components (neighborhood structures,
acceptance criteria, and combinations). It automatically
evolves multiple templates of perturbation heuristics to solve
a problem instance. Experimental findings indicated that
integrating adaptive memory into grammatical evolution-HH
improved performance compared to the version without it.
The approach achieved competitive results when compared
to state-of-the-art HHs and bespoke methods for Toronto
datasets, surpassing both the winner of the ITC 2007 com-
petition and post-ITC 2007 methods.

Burke et al. [20] designed an adaptive HH approach that
hybridized low-level heuristic moves to enhance timeta-
bles. The Toronto and ITC 2007 datasets revealed the
optimal combination of swap timetables (ST) and Kempe
chains (KCM) through offline learning. Ordering exams
violating soft constraints via saturation degree Yyielded
superior outcomes. They subsequently crafted an adaptive
ST-KCM hybridization in two stages: first, they generated
and analyzed random heuristic sequences to pinpoint the best
ones. Second, they randomly assigned heuristics to empty
positions to determine the optimal sequence. This approach
showcased robust generalization across two benchmark
datasets, achieving performance comparable to the latest
cutting-edge techniques.

Abdul-Rahman et al. [19] introduced an adaptive linear
approach based on squeaky wheel optimization. Each exam
received a difficulty score during the assignment process by
calculating a modified weighted sum of low-level heuristics.
Exams were ordered based on their difficulty score, with
higher scores getting assigned timeslots and rooms before
lower scores. This cycle continued until a feasible solution
improved as resources were allocated to minimize penalties.
When several heuristics were used with a modifier, the
results were similar to other constructive methods for the
Toronto datasets. Feasible results were obtained for the ITC
2007 datasets.

Pillay and Ozcan [47] presented a generation construc-
tion HH that automates generating low-level construction
heuristics. This study investigated two kinds of heuristics:
arithmetic (AHH), evolved through genetic programming,
and hierarchical (HHH), explored through three distinct
approaches: HHH-GP (genetic programming), HHH-GA
(genetic algorithms), and HHH-RG (random generation),
each with its unique representation. Experimental results on
the Toronto and ITC 2007 exam timetabling benchmark sets
revealed AHH’s superiority over HHH and traditional graph
coloring heuristics. On the other hand, HHH-GA showed
promise for the ITC 2007 course timetabling benchmark.
Hence, the authors concluded that heuristic effectiveness
varies based on specific educational timetabling problems.
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Mweshi and Pillay [54] enhanced the framework of HH
methods to create perturbative heuristics with a broader
design. Initially, these heuristics came from basic actions
and solution components using grammatical evolution. This
extension added conditional constructs, incorporated data
from the solution space, and broadened the syntax of
fundamental actions to include a broader range of heuristics.
They tested this approach on benchmark sets in three
domains: boolean satisfiability problems, ETP, and vehicle
routing problems. The effectiveness of these newly generated
heuristics highlighted the approach’s versatility and demon-
strated its competitiveness with existing perturbative HH on
the ITC 2007 exam benchmark.

E. HYBRID APPROACH

Abdullah and Turabieh [11] presented a tabu-based MA by
integrating a genetic algorithm and a tabu search algorithm
and evaluated its performance on the ITC 2007 exam
and course problems. The algorithm employed various
neighborhood structures for local search and integrated a tabu
list to manage their selection. Experiments were conducted
on ITC 2007 datasets using three different selections of
neighborhood structures: “‘random,” ‘“‘best,” and “‘general”.
The “best” sequence demonstrated superior performance in
course timetabling, while the “general” sequence excelled
in examination timetabling. The results surpassed the ITC
2007 exam track winners in 7 out of 8 datasets.

Ahandani et al. [12] proposed a structure integrating
discrete particle swarm optimization (DPSO) and a two-stage
HC local search for the Toronto ETP using three hybridization
strategies. It involved both generation HH elements (asso-
ciated with DPSO and heuristic updates) and selecting HH
components (concerning low-level heuristic management and
the use of two-staged HC). The DPSO algorithm used a
mixed-population heuristic initialization method to create an
initial population and iteratively improve it through DPSO
and local search. The study’s findings strongly supported
the effectiveness of these DPSO algorithms with diverse
structures and strategies as HH systems. They performed as
well as or outperformed other HH methods and were on par
with evolutionary algorithms in the literature.

Abdullah and Alzagebah [18] created a hybrid self-adaptive
bees algorithm (BA) by making three essential mod-
ifications: comparing selection strategies (tournament,
disruption, rank), comparing local search algorithms (SA
and LAHC) through parameter tuning, and looking into
how a self-adjusting mechanism affects the effectiveness of
neighborhood exploration. Experimental on the Toronto and
ITC 2007 datasets identified the most effective BA algorithm
enhancements, with the self-adaptive disruptive selection
strategy combined with LAHC local search showing superior
performance over other strategies (basic BA, rank selection,
tournament selection, and SA local search). In 2015, [28]
hybridized bee colony optimization with LAHC, disruptive
selection, and self-adaptive, yielding results that are on par
with the best-performing methods on Toronto datasets and
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mirrored the success of the top five winners in the ITC
2007 datasets.

Al-Betar et al. [24] suggested using the harmony search
algorithm to create an optimization framework that combines
different parts of MA and tested how well it worked on
the uncapacitated Toronto datasets. The three components
incorporated were the recombination operator for global
improvement (GIM), the randomness operator for ran-
dom improvement (RIM), and the neighborhood operator
for local improvement (LIM). The combination of GIM,
RIM, and LIM components worked well for complicated
timetabling problems and did better than 22 other comparison
methods, such as local search-based MH, MH-P, H, and
HH. This method yielded the best overall outcomes in two
instances out of twelve.

Fong et al. [23] presented a novel approach that hybridized
the artificial bee colony (ABC) and GD algorithms, involving
two phases: initialization and enhancement. The enhance-
ment stage was divided into three sub-stages—employed bee,
onlooker bee, and scout bee phases. The assimilation policy
controlled the search in the employed bee phase, while the
Nelder-Mead simplex search approach refined the solutions
in the onlooker bee phase. In addressing the Toronto ETP,
this technique exceeded the basic ABC algorithm and attained
three novel best results while retaining its competitiveness
against state-of-the-art methods. In 2015, [29] integrated
a modified neighborhood search function in the employed
bee phase of a variant ABC algorithm, drawing inspiration
from the ‘““global best” model found in particle swarm
optimization. Evaluation of the same datasets revealed that
the results of this variant were almost identical to those of the
previous version.

Li et al. [30] presented an Evolutionary Ruin and Stochas-
tic Rebuild approach, validated using uncapacitated Toronto
datasets. The method involved four phases: (i) solution
decomposition for solution breakdown, (ii) evolutionary ruin
for destructive modification, (iii) stochastic recreate for
restoration, and (iv) solution acceptance for probabilistic
acceptance determination. It outperformed graph-based HH
algorithms but was inferior to local search algorithms based
on experimental results.

Miiller [38] designed a multi-phase search algorithm for a
real-life ETP at Purdue University and introduced nine new
benchmark datasets. The algorithm began with a construction
stage employing an iterative forward search algorithm and
incorporating conflict-based statistics. The following phase
used an HC algorithm to arrive at a local optimum, then a GD
technique to account for oscillations in the overall solution
value bound. Experimental results affirmed the two-hour
time limit’s reliability for creating Purdue’s timetables.
UniTime enabled interactive manual adjustments with solver
recommendations to maintain quality during modifications.

Lei et al. [42] developed an adaptive coevolutionary
MA for addressing the Toronto benchmark. This algorithm
conducted an evolutionary search in two domains: heuristic
space for global search and solution space for local search.

41489



IEEE Access

E. S. K. Siew et al.: Survey of Solution Methodologies for Exam Timetabling Problems

The heuristic space began with an HH approach to create
an initial population and used the basic crossover operator
and mutation operator to identify possible heuristic lists.
Tailored evolutionary operators were utilized in the solution
space to expand the exploration scope and optimize the
solution. An adaptive coevolutionary strategy was used to
select the search space adaptively. Compared to 11 popular
methodologies, this algorithm achieved top-five results
across 12 instances.

Aldeeb et al. [57] introduced a hybrid intelligent water
drops (IWD) algorithm for addressing the Toronto ETP.
The algorithm involved six phases for hybrid IWD: static
parameter initialization, dynamic parameter initialization,
assigning a random timeslot to an individual exam for
each IWD, constructing IWD solutions, enhancing solutions,
and termination. In the final stage, an enhancement loop
integrated a local search optimizer (LSO), employing Move,
Swap, and Kempe Chain neighborhood structures. Based on
the experimental results, the algorithm outperformed nine
swarm-based approaches in three datasets and achieved the
best results compared to 10 metaheuristic approaches in one
dataset.

F. MATHEURISTIC
Gogos et al. [15] presented a multi-staged algorithmic
approach for solving the ITC 2007 ETP, primarily managed
by the Greedy Randomized Adaptive Search Procedure
(GRASP). This approach comprised three phases: pre-
processing to uncover hidden dependencies, construction for
timetable creation, and an improvement stage for solution
optimization. The improvement phase incorporated HC local
search, SA local search, and an IP sub-problem solved using
the GLPK solver. In cases where the current solution could
not be enhanced, a shaking stage rescheduled suboptimal
exams. Experimental results demonstrated that this approach
ranked second among the ITC 2007 competition winners.
Cimen et al. [66] introduced a Mixed-Integer Linear Pro-
gramming (MILP) model and a heuristic algorithm to address
the invigilator scheduling problem at Hacettepe University
and Gazi University. When tested on eight real-life cases,
both demonstrated effectiveness by outperforming schedules
created by the faculty. The experimental results demonstrate
that the MILP-generated schedules showcase an enhanced
distribution of invigilation hours, avoidance of successive
assignments, and prioritization of department-based duties.
Simultaneously, the heuristic algorithm excels at creating
schedules with a fair distribution of invigilation hours and
avoids successive assignments, proving its applicability to
larger-sized examinations.

V. CATEGORIZATION OF ETP SOLUTION
METHODOLOGIES

In this study, we reviewed solution methodologies for ETP
presented in 59 journal articles spanning from 2012 to 2023,
as illustrated in Table 8. The distribution of the chosen
papers based on publication year and categories is depicted

41490

in Figures 1 and 2, providing percentage and numerical
perspectives. The publication trends over the years are
illustrated in Figure 1, revealing fluctuating patterns. The
peak publication rate, with ten publications representing 17%
of the total, occurred in 2012, while the lowest percentage,
with two publications reflecting 3% participation, was
observed in 2013, 2018, 2020, and 2021. The categorization
of these methodologies is depicted in Figure 3.

3 (5%) 10 (16.67%) Year
02012

02014
®2015
02016
®2017
02019

2022
02023
®2013
7 02018
(11.67%) ®2020
®2021

(11.67%)

6 (10%)

5 (8.33%)
FIGURE 1. Distribution of the ETP studies by publication year.

17 (28.33%)

11
(18.33%)
Categories
MH

HH
MO
HA
HE
MAH

12 (20%) 14 (23.33%)

FIGURE 2. Distribution of the ETP studies by category.

As indicated in Table 8, there are fourteen hyper-
heuristics (HH), twelve mathematical optimizations (MO),
twelve metaheuristics based on single solutions (MH-S),
five approaches employing population-based metaheuristics
(MH-P), eleven hybrid approaches (HA), four heuristics
(HE), and two matheuristics (MAH). The highest figure is
observed in the HH within these categorizations, while the
least falls under the MAH. HH strives to elevate the level
of generality in the operation of optimization systems. They
operate on a search space defined by lower-level heuristics or
even metaheuristics for the addressed problem. The primary
focus of HH is the thoughtful selection or generation of the
appropriate (meta-)heuristic for any given situation.
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-TS+MA ]

-PSO + HC [12]
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- MA + H5A [24]

-BCO + SA + LAHC [28]
- INMGD + ABC [23][29]
-ER + SR [30]

-IFS + HC + GD [38]
-EA - MA[42]

- IWD + LSO [57]

Mathematical Optimization

- LP [32][36][43][46][50-52][56][76-7E]
- GP [37]

Heuristics [14][21-22][&8]

Matheuristic [151[66]

Categories

Hyper-heuristic

Metaheuristics

FIGURE 3. The categorization of solution methodologies for ETP.

Various selection HH has been explored in ETP, such
as Monte Carlo Search [9], multiple move acceptance
criteria [8], swarm-based computational intelligence integra-
tion [12], evolutionary algorithms combined with low-level
heuristics citeb6, and estimation distribution algorithm [27].
Additionally, multi-objective selection HH with GD and rein-
forcement learning [41] and multitask selective HH [53] have
been investigated. Adaptive approaches were implemented in
HH for selecting heuristics, ordering heuristics, or hybridiz-
ing heuristics based on a learning mechanism [16], [19],
[20], [21]. On the other hand, generation HH employed in
ETP encompasses generation construction heuristics [47] and
perturbative heuristics [54]. Genetic programming, which
includes gene expression programming [26] and grammatical
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Selection HH [&][8-9][16][26-27][41][53]

RN GCeneration HH [7I[171[19-20][471[54]

-TS  [13][34]

-WNS [25]

-HC [33][40]

- SA [39][48][55]1[671[76]

/S
\

Single-solution based -GD  [31[35]
- HBMOQ 0]
-MA [44-45]
-PRA [49]

Population based - FA [58]

evolution [17], [54], was employed to evolve acceptance
criteria and generate selection heuristics.

However, as indicated in Table 8, there has been a dis-
cernible shift in research focus from a predominant emphasis
on HH to an increasing inclination towards metaheuristics
and MO over the timeline from 2012 to 2023. Figure 2 reveals
a heightened interest in metaheuristic categories, constituting
28% of the selected studies: 20% in MH-S and 8% in
MH-P. It is evident from Figure 3 that many of the selected
metaheuristic algorithms encompass widely recognized and
frequently employed ones, such as the MA, LAHC, TS, and
GD. These algorithms’ performance and experimental out-
comes have demonstrated their efficiency and effectiveness.
Notably, SA has received extensive coverage in publications,
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surpassing the previously mentioned methods. The hybrid
approach has demonstrated exceptional performance by com-
bining metaheuristics with (meta-)heuristics or incorporating
local search methods into population-based methods. This
approach significantly benefits by enhancing diversity within
a population, thereby boosting the search capabilities of the
resultant hybrid algorithm [24], [80]. Notably, it has gained
substantial traction, as evidenced by its 18% publication
record.

The MO emerges as another highly utilized approach,
with a substantial participation rate of 56%, as depicted in
Figure 4, which illustrates the distribution of categories for
ETP real-world problems. MO approaches are extensively
employed in addressing real-world datasets, primarily owing
to their effectiveness in handling small to medium-sized exam
timetabling scenarios at the faculty or departmental level,
mainly attributed to their assurance of optimal solutions and
straightforward implementation through software integration
with efficient heuristic algorithms. However, their efficiency
diminishes when dealing with large-scale problems [55].
In such instances, the complexity of MO solutions escalates
exponentially, classifying these problems as NP-hard with
exponential time complexity, making MO approaches suit-
able for the ETP when time and space complexity are not
critical considerations.

1(5.56%)

10 (55.56%)

Category ® MO ® MH-5 ® HE @ HA © HH ® MAH

FIGURE 4. Distribution of categories for real-world dataset.

VI. CURRENT TRENDS IN BENCHMARK ETP

Between 2012 and 2023, benchmark problems, particularly
the Toronto benchmark (44%) and the ITC 2007 exam
benchmark (29%), have been extensively studied in the
exam timetabling domain, as illustrated in Figure 5(a).
In contrast, the Yeditepe benchmark has received less
attention, with only 5% of the studies. Meanwhile, real-
world datasets have also gained attention, constituting 22%
of the studies. Additionally, there has been a noticeable
increase in exploring other real-world problems, as evidenced
in Figure 5(b). Table 9 presents a compilation of benchmark
datasets with their respective categories and references.
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A. TORONTO DATASETS

Table 9 highlights that hyper-heuristics (HH) constitute 32%,
and hybrid approaches (HA) account for 23%, emerging
as the most frequently employed methods for addressing
large-sized Toronto datasets. Meanwhile, mathematical opti-
mization (MO) approaches have a less significant presence,
comprising only 6%. Despite their utilization in the Toronto
benchmark problem, MO approaches exhibit limited effec-
tiveness, with one solving only two small-size instances and
another primarily focusing on method validation without
demonstrating associated costs.

For this dataset, a total of 34 unique methodologies have
been proposed. Among these, the state-of-the-art results
are predominantly attributed to the multi-neighborhood SA
approach by Bellio et al. [55] in most instances. Furthermore,
Leite et al.’s cellular memetic [45] and Burke & Bykov’s flex-
deluge [35] each exhibit the best results in specific instances.
Specifically, in [35], the average run time was 5.1 hours at a
CPU speed of 3.2 GHz. In [45], a run time of 31.4 hours at
a CPU speed of 2.0 GHz. Additionally, [55] achieved their
best record running times under conditions of equal running
time and CPU speed, as reported in [45]. Before 2012, the
hybrid variable neighborhood approach by Burke et al. [90] in
2010 exhibited state-of-the-art results in a specific instance.

The outcomes for this problem are highly sensitive to
running time, where longer durations yield better results.
Due to the heterogeneous nature of running times and
processor speeds in the literature, achieving fair comparisons
is challenging. Consequently, depending solely on the total
iteration count as the sole termination criterion for the
competition proves inadequate. Instead, attention must be
given to the relative computational costs, which vary based
on the specific instance, adding complexity to the comparison
process.

B. ITC 2007 (TRACK 1) DATASETS

According to Table 9, HH dominates with 44%, followed
by metaheuristics single-solution (MH-S) at 26%, as the
most commonly adopted methods for the ITC 2007 exam
benchmark problem. For comparability, the running time
aligns closely with the ITC 2007 benchmarking tool’s
specified time limit. For this dataset, a total of 23 unique
methodologies have been proposed. The state-of-the-art
results reported within the competition time limit are predom-
inantly associated with a step-counting hill climbing method
introduced by Bykov and Petrovic [33] and a flex-deluge
approach by Burke and Bykov [35], prevailing in the majority
of instances. Additionally, a distributed scatter search method
by Gogos et al. [81] excels in two instances. In contrast,
an HH by Sabar et al. [26] achieved the best result in a single
instance, similar to [81]. Notably, the parallel distributed
scatter search metaheuristic, introduced by Gogos et al. [82]
in 2010, demonstrated state-of-the-art results across several
instances. A detailed discussion on state-of-the-art results for
the Toronto benchmark and the ITC 2007 exam benchmark
can be found in the survey paper [74].
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TABLE 8. Solution methodologies for the ETP and studied datasets.

Year  Methodology Category Datasets Ref
2012 Evolutionary Algorithm based Hyper-heuristics HH Toronto [6]
Graph Coloring Constructive Hyper-heuristics HH Toronto, ITC 2007 [7]
Hyper-heuristics with Annealing Simulation + Great Deluge + Late Acceptance HH Toronto, ITC 2007, Real-world [8]
Monte Carlo Hyper-heuristics HH Toronto [9]
Honey-bee Mating Optimization MH-P Toronto [10]
Tabu Search + Memetic Algorithm HA ITC 2007 [11]
Discrete Particle Swarm Optimization + Two Staged Hill Climbing HA Toronto [12]
Tabu Search MH-S Toronto [13]
Constructive Heuristics HE Toronto [14]
Greedy Randomized Adaptive Search Procedure + Hill Climbing + Simulated MAH ITC 2007 [15]
Annealing + Integer Programming
2013 Hyper-heuristics HH ITC 2007 [16]
Grammatical Evolution Hyper-heuristics HH Toronto, ITC 2007 [17]
Bees Algorithm + Simulated Annealing + Late Acceptance Hill Climbing HA Toronto, ITC 2007 [18]
2014  Adaptive Linear Combination of Heuristics HH Toronto, ITC 2007 [19]
Adaptive Selection of Heuristics HH Toronto, ITC 2007 [20]
Graph Coloring Heuristics HE Toronto [21]
Constructive Heuristic HE Real-world [22]
Nelder-Mead Great Deluge + Artificial Bee Colony HA Toronto [23]
Memetic Computing + Harmony Search Algorithm HA Toronto [24]
Variable Neighborhood Search MH-S Real-world [25]
2015  Hyper-heuristics + Multi-Armed-Bandit + Gene Expression Programming HH ITC 2007 [26]
Hyper-heuristics HH Toronto [27]
Bee Colony Optimization + Simulated Annealing + Late Acceptance Hill Climbing HA Toronto, ITC 2007 [28]
Artificial Bee Colony + Nelder-Mead + Great Deluge HA Toronto [29]
Evolutionary Ruin + Stochastic Rebuild HA Toronto [30]
Great Deluge MH-S Real-world [31]
Mixed Integer Programming MO ITC 2007, Yeditepe [32]
2016  Step Counting Hill Climbing MH-S ITC 2007 [33]
Tabu Search MH-S Toronto [34]
Flex-Deluge MH-S Toronto, ITC 2007 [35]
Integer Programming + Column Generation MO Real-world, Toronto [36]
Goal Programming MO Real-world [37]
Iterative Forward Search + Hill Climbing + Great Deluge HA Real-world [38]
2017  Simulated Annealing MH-S ITC 2007 [39]
Late Acceptance Hill Climbing MH-S ITC 2007 [40]
Selection Hyper-heuristics + Great Deluge HH Toronto, ITC 2007, Yeditepe [41]
Adaptive Coevolutionary + Memetic Algorithm HA Toronto [42]
Mixed Integer Programming MO Real-world [43]
2018  Memetic Algorithm MH-P Toronto [44]
Cellular Memetic Algorithm MH-P Toronto, ITC 2007 [45]
Mixed Integer Programming MO Real-world [46]
2019  Arithmetic Hyper-heuristics + Hierarchical Hyper-heuristics HH Toronto, ITC 2007 [47]
Simulated Annealing MH-S ITC 2007 [48]
Prey-Predator Algorithm MH-P Toronto [49]
Mixed Integer Programming MO ITC 2007, Yeditepe [50]
Graph Coloring Heuristics HE Real-world, Toronto [68]
2020  Mixed Integer Programming MO Real-world [51]
Integer Linear Programming MO Real-world, Toronto [52]
Selective Hyper-heuristics HH Toronto [53]
2021 Grammatical Evolution Hyper-heuristics HH ITC 2007 [54]
Simulated Annealing MH-S Toronto [55]
Mixed Integer Programming MO Real-world [56]
2022  Intelligent Water Drops + Local Search Optimizer HA Toronto [57]
Stepping Ahead Firefly Algorithm MH-P Toronto [58]
Mixed-Integer Linear Programming + Heuristic MAH Real-world [66]
Integer Linear Programming MO Real-world [78]
2023 Simulated Annealing MH-S ITC 2007, Yeditepe [67]
Integer Linear Programming MO Real-world [77]
Constraint Programming, Mixed Integer Programming, and Simulated Annealing MO and MH-S  Real-world [76]

C. YEDITEPE DATASETS

The Yeditepe Benchmark, comprising only four studies,
involved applying MO approaches in two. The dataset’s focus
is restricted, possibly owing to its simpler formulation and the
relatively diminutive scale of its instances compared to other
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benchmarks. The state-of-the-art method for this dataset is
multi-neighborhood SA, introduced by Buick et al. [67]. Both
the HH by Muklason et al. [41] and the MIP approach by
Arbaoui et al. [50] achieve the best results in the same two
instances, similar to Bulck et al.
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FIGURE 5. (a) Distribution of studied datasets (b) Distribution of studied datasets over time.

TABLE 9. Solution methodologies utilized for benchmark datasets.

Benchmark No. of
(Total) Category Publication % References
[6]-[9], [17], [19], [20]
Toronto (34) HH 12 35 [27], [411, [47], [53],
[57]
[12], [18], [23], [24],
HA 8 2 [281-[30], [42]
MH-P 5 15 [101, [44[]5,8[?5], [49],
MH-S 1 2 [13], [341, [35], [55]
HE 3 9 [147, 1217, [68]
MO 2 6 [36], [52]
[71, [8], [16], [17],
IT%?)W HH 10 44 [19], [20], [26), [41],
[47], [54]
[33], [351. [39], [40],
MH-S 6 26 (48], 167]
HA 3 13 [T1], [18], [28]
MO 2 9 [32], [50]
MH-P I 4 [45]
MAH T 4 [15]
Yeditepe (4) MO 2 50 [32], [50]
MH-S I 25 [67]
HH 1 25 [41]

The features, source code, instances, and new best
solutions for the Toronto benchmark [55], ITC 2007 bench-
mark [39], [67], and Yeditepe benchmark [67] are publicly
accessible for this dataset on the Exam Timetabling ETT
section of OPTHUB (https://opthub.uniud.it) (last accessed:
January 20, 2024). This platform allows researchers to
verify and upload new instances, along with their solutions
and corresponding scores, thereby fostering comparison,
collaboration, and reproducibility.

VII. FUTURE DIRECTIONS

Despite being more realistic than the incapacitated vari-
ant and featuring a more complex formulation than the
Yeditepe benchmark, ITC 2007 (Track 1) still reveals
a gap between benchmark standards and the practical
implementation of ETP in terms of requirements. This
gap, highlighted in Table 6, is marked by differences in
benchmark and other real-world constraints, particularly
period-related and room-related constraints, indicating a need
for more consideration for all practical features. Addressing
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this discrepancy could be facilitated by introducing addi-
tional benchmark datasets that closely emulate real-world
exam timetabling scenarios. These datasets should capture
practical constraints, especially period-related and room-
related constraints, crucial for effective resource management
in institutions. Furthermore, ongoing investigations are
impeded by the absence of crucial metadata, including
details like the student’s year and course, exam school, and
faculty, which are essential for defining cohorts in existing
benchmarks. Integrating this metadata into public datasets
would significantly enhance the refinement of formulations
and algorithms, aligning them more closely with student
preferences [41].

Fairness holds paramount importance and is typically
assessed through the spread of exam periods among all
students. [36] introduced a formulation that approaches
this issue from a student-centric perspective, considering
scheduling specific examinations multiple times to improve
fairness among diverse student groups. In a complementary
fashion, [41] integrated fairness as an objective function
within a cohort of students in a multi-objective optimization
strategy designed to enhance overall fairness. Future research
endeavors could delve into the students’ demonstrated
preference for timetables that are inherently fair, potentially
leading to the development of examination schedules that
align with these preferences and contribute to an elevated
level of student satisfaction [41].

The primary limitation of metaheuristics lies in the
necessity to configure a multitude of parameters, and the
effectiveness of a metaheuristic hinges on parameter tuning.
Despite the time-consuming nature of this process, which
involves multiple runs to assess performance across instances
with varied parameter settings, the universality of parameter
tuning is advantageous. The competitive results were attained
in [55] notably through SA, which performed tuning on
artificial instances while avoiding excessive fine-tuning on
benchmarks. Future research can explore the feasibility

VOLUME 12, 2024



E.S. K. Siew et al.: Survey of Solution Methodologies for Exam Timetabling Problems

IEEE Access

of implementing feature-based tuning, adjusting parameters
aligned with each given instance’s distinctive features. It is
preferable to enable algorithms to autonomously adapt their
behavior for optimal solutions or use automatic parameter
tuning approaches such as REVAC, SMAC, ParamILS, and
F-Race [39], [55], [67].

The hybridization of metaheuristics with machine learning
methods, such as deep learning or reinforcement learn-
ing, indicates a growing opportunity for cross-fertilization.
Another potential direction involves the parallel implementa-
tion of a metaheuristic algorithm [45]. Burke et al. [9] show-
cased the effectiveness of integrating reinforcement learning
with SA featuring reheating within a hyper-heuristic. Mean-
while, Muklason et al. [41] incorporated reinforcement learn-
ing and the great deluge algorithm into their hyper-heuristic.

The investigation of diverse hybrid techniques, designed
to leverage the distinct advantages inherent in various
search methods and metaheuristics, constitutes a notable and
burgeoning trend in ETP. It may also involve employing
metaheuristics for initializing the MIP or CP. Alternatively,
delve into more intricate interaction mechanisms, such as the
matheuristic paradigm, to further enhance the effectiveness
of these methods [76].

The efficiency and promptness of a local search method
depend on various factors, with the selection of both
neighborhood structure and search space standing out as
the most crucial determinants. Numerous implementations
face challenges when their neighborhood structures prove
to be overly simplistic. A notable trend observed in sev-
eral state-of-the-art techniques [26], [33], [35], [45], [55],
[67] applied to benchmark datasets is the integration of
sophisticated neighborhood structures, particularly during the
improvement phase. For instance, [55] achieved optimality by
employing a combination of neighborhoods based on various
atomic moves, suggesting the exploration of dynamic neigh-
borhood probabilities through an online learning mechanism
for future research. To boost local intensification, employ
an adaptation mechanism to choose an appropriate neigh-
borhood structure and oversee the search process [18], [28].
Future research could focus on developing neighborhood
operators in conjunction with Kempe-chain operators [48],
[58]. Introducing diverse neighborhood variations, such as
shuffling periods instead of relocating exams, may prove
valuable. Additionally, investigating the adaptation of these
neighborhoods to handle weakly connected subgraphs could
be an intriguing avenue for exploration [67].

The prevailing trend in timetabling research emphasizes
a noticeable inclination towards metaheuristic methods
and their hybridizations and MO approaches. Specifically,
the judicious fine-tuning of the metaheuristic approach
has showcased superior efficacy across most instances.
However, MO approaches, proven more efficacious in a
few instances [77], continue to be extensively utilized
in addressing real-world timetabling scenarios, primarily
attributed to the prevalence of small to medium-sized faculty-
level exam timetabling instances. This preference stems
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from the inherent scalability of such methods, enabling the
efficient generation of high-quality solutions within manage-
able timeframes. Despite the assurance of optimal solutions
offered by MO approaches, their widespread adoption faces
hindrances due to limited scalability in dealing with large-
scale problems. However, a phased approach in MO can
be employed for problem decomposition [52]. Nevertheless,
recent strides in computational power and solver efficacy are
progressively expanding the potential and practicality of MO
in addressing larger real-world timetabling challenges [78].

Most real-world timetabling in the reviewed studies is
conducted on a faculty or departmental basis. Addressing
challenges across various departments within an institution
through an integrated approach and resolving them consti-
tutes a potential research area aiming to foster efficient and
cohesive management. Local search algorithms are notable
for their remarkable efficacy in addressing large-scale prob-
lems with only moderate CPU time requirements [40]. The
hybridization of vital elements from local search-based meth-
ods with population-based methods [24] and hyper-heuristics
has proven particularly effective in handling extensive
datasets, contributing to optimizing solutions for complex,
real-world scenarios.

Instead of uniformly distributed study periods, it is perti-
nent to recognize that students devote more time to prepara-
tion for demanding examinations characterized by substantial
content, which underscores the need for researchers to
construct a framework endorsing an extended study duration
before intricate exams, juxtaposed with a briefer preparatory
period for more straightforward exams [77].

Another avenue for advancing the exam timetabling field
involves conducting technically enriched surveys through the
implementation of methodologies that emphasize state-of-
the-art algorithms and rigorously test their performances on
benchmarks.

VIIl. CONCLUSION

The survey primarily concentrates on high-quality journal
articles published between 2012 and 2023. We identify
emerging solution methodologies and problem variants
within the ETP domain, providing potential avenues for
further development to interested readers. The methodologies
are categorized based on temporal intervals, the analytical
techniques employed, and the datasets utilized. The problem
formulations articulated in this paper are concomitant with
a dedicated benchmark dataset meticulously tailored to the
specific constraints inherent in the considered ETP variant.
Despite over a decade since their publication, benchmark
instances for the specified exam variations remain persis-
tently challenging. Hence, there is a recognized need for
new benchmarks that consider resource-related constraints
to improve resource management, optimize utilization, and
narrow the gap between applicable strategies and theoretical
achievements. We hope that this survey will assist researchers
in identifying unexplored and challenging problem variants
or emerging, innovative solution methods within the expan-
sive and rapidly evolving domain of the ETP.
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