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ABSTRACT In this paper, we present a hybrid heuristic method based on the harmonic search algorithm
to solve the vehicle routing problem with time windows. The importance of efficient path planning in
logistics and supply chain management is emphasized herein, particularly under complex constraints like
time window and vehicle capacity limits. The hybrid heuristic harmony search algorithm combines the
global search capability of the harmony search algorithm with the accuracy of the local search heuristic
to efficiently explore and harness the solution space. Through rigorous testing on the Solomon dataset,
the hybrid heuristic harmony search algorithm performed remarkably in the generation of competitive
solutions while maintaining the computational efficiency of the solutions. The results showed that the
algorithm achieved competitive solutions even under strict time window constraints. The convergence of
the algorithm was examined, and its strong performance in handling complex instances was revealed. This
study enhances the operational efficiency of an organization and provides perspectives and solutions for

optimization strategies in the domains of logistics and supply chain management.

INDEX TERMS Harmony search, heuristic algorithm, solomon dataset, vehicle routing problem.

I. INTRODUCTION

In the field of modern logistics and supply chain manage-
ment, route planning is extremely critical. Effective route
planning is important in reducing costs and improving
efficiency. This is because they directly affect the operational
efficiency, cost control, and customer satisfaction of an
organization [1]. The objective of route planning is to
transport goods or services across locations in the most
efficient way possible. This involves determining the shortest
path while considering various constraints, such as traffic
conditions [2], distribution time windows [3], and vehicle
load limits [4]. In this context, the vehicle routing problem
(VRP) is an important branch of route planning. The VRP
involves finding an optimal set of routes under constrained
conditions so that a vehicle can efficiently serve a set of
customers and return to its starting point. Exploring the
Vehicle Routing Problem (VRP) typically involves reducing
the total distance or costs incurred, alongside accommodating
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various operational considerations like limitations on vehicle
capacity and specified service time windows(TWs), and
customer demand, which render the VRP complex and
challenging. From the basic form, which ensures that a
single vehicle visits all customer points along the shortest
path and returns to the origin, to more complex variants,
such as a VRP considering multiple vehicles [5], VRP
with different types of customer demands [6], and VRP
with dynamic road condition information [7], the VRP is
diverse and highly adaptable. Thus, studying and solving the
VRP is required to understand the basic principle of path
planning and improve the efficiency and responsiveness of
real logistics systems. With the advancement of technology,
particularly in algorithm research, computing power, and
data processing, the VRP and its related studies provide
perspectives and solutions for modern logistics and supply
chain management [8]. With the increasing diversification
and sophistication of customer demands, the traditional VRP
model can no longer fully satisfy the needs of complex real-
world scenarios. The VRP with TW (VRPTW) has emerged
to accurately simulate real-world distribution constraints [9].
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In the VRPTW, in addition to factors such as the route and
load of a vehicle, each customer has one or more TWs
in which the vehicle must arrive and complete the service.
This window can be fixed or flexible (i.e., with tolerance
for early or late arrival). Vehicles arriving at the location
of the customer outside the specified TW are not allowed,
which may result in the service not being completed or
requiring additional high costs to be processed. Thus, the
VRPTW adds a time dimension to the basic VRP, resulting
in a more complex problem. Fig. 1 shows a typical VRPTW,
illustrating a network of multiple customer nodes, each with
its geographic location and an assigned service window.
As shown, three vehicles depart from a central depot, and
each vehicle is assigned certain customer nodes to service.
Importantly, the service of each customer is constrained by
the geographic location and TWs. These windows specify
the time frame in which the service can begin and must be
completed, ensuring a timely service. The marker next to each
customer node shows its TW information (Fig. 1), indicating
that the vehicle must arrive and complete the service within
that time frame.
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FIGURE 1. An example of a VRPTW.

In such a scenario, the goal of the VRPTW is to optimize
vehicle routing to ensure that all customers are served within
their time windows while minimizing the total distance and
time traveled. This requires a complex algorithm that inte-
grates TW constraints, vehicle capacity, and route efficiency.
Considering that the VRP is a nondeterministic polynomial
time (NP)-hard problem, its TW variant is considered to
possess a high degree of computational complexity [10].
With the escalation in problem size, especially regarding
the quantity of customers and the complexity of the Time
Windows, there is a notable surge in the computational effort
required to identify the optimal solution. Current solution
methods fall into three main categories: exact, heuristic,
and metaheuristic algorithms [11]. Exact algorithms are
dedicated to finding the optimal solution to the problem and
are typically employed to solve small VRPTW problems.
However, as the problem’s scale expands, the computational
duration associated with these algorithms markedly escalates,
thereby limiting their application to large-scale VRPTW
problems [12], [13], [14]. Golden et al. [15] showed that exact
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algorithms are not effective for VRP problems with more
than 50 clients. Heuristic algorithms can find suboptimal
solutions in an acceptable time, although the optimal solution
may not be guaranteed [16], [17]. Contrarily, meta-heuristic
algorithms employ more general search strategies to optimize
solutions by simulating natural processes or drawing on other
intelligent behaviors. These algorithms comprise genetic
algorithms (GAs) [18], particle swarm optimization [19],
and simulated annealing algorithms [20]. They can find
near-optimal solutions to a wide range of problems through
a combination of iterative search and multiple heuristics.
Qi and Sun proposed an improved algorithm based on an ant
colony system (ACS), which demonstrated its effectiveness
in dealing with the VRPTW by dual optimization on the
primary objective (minimizing the number of vehicles) and
the secondary objective (reducing the total cost of the trip)
[21]. Zhang et al. proposed a hybrid algorithm combining
the forbidden search and artificial swarm for a novel VRP
with a TW and tray loading constraint algorithm optimized
for complex requirements in the real logistics industry [22].
Bouchra et al. introduced a combined approach, integrating
Genetic Algorithm (GA) with the variable neighborhood
search technique, aimed at addressing the vehicle routing
problem featuring a soft Time Window (STW) in both
static (VRPSTW) and dynamic (D-VRPSTW) contexts [23].
Shen et al. proposed a hybrid algorithm that fuses an ACS
and Brainstorm Optimization (BSO) algorithm as a hybrid
swarm intelligence algorithm to solve the VRPTW. They
obtained a competitive solution when experimenting on
Solomon’s benchmark instance [24]. Solving the VRPTW
requires traditional cost and efficiency considerations, as well
as time accuracy and customer satisfaction. Owing to this
VRPTW characteristic, researchers have increasingly favored
the use of heuristic algorithms, meta-heuristic algorithms,
and a hybrid of both to find approximate or suboptimal
solutions.

Harmony Search (HS) is a meta-heuristic algorithm that
simulates the process of musical improvisation [25]. Since
its emergence in 2001, it has demonstrated its effectiveness
in solving optimization problems in several domains [26].
There are many applications in solving the VRPTW. For
example, Yassen et al. devised a meta-heuristic Harmony
Search Algorithm (meta-HSA) targeting this issue, aiming
for an equilibrium between the exploratory capabilities of
HSA and the refinement offered by the Local Search (LS)
strategy, this balance was achieved through the adaptive
selection of parameters for both HSA and LS, including the
LS’s neighborhood structure, thereby significantly enhancing
the algorithm’s performance [27]. Maleki et al. proposed a
hybrid adaptive globally optimal HSA (HSGHSA) to solve
the VRPTW. They enhanced the algorithmic capabilities
by combining the improved HSGHSA with an adaptive
mechanism to adjust the control parameters and employing
six LS neighborhood structures [28]. These studies focused
on how to harness the global search capability of HSAs
to explore diverse solutions. This effectiveness stems from
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HSA’s primary strength - its formidable capability for global
search. This attribute enables it to proficiently navigate the
solution space, thereby facilitating the discovery of solutions
that are close to the optimal. Compared with other meta-
heuristic algorithms, the lesser parameter-tuning requirement
of the HSA makes it easier to operate and implement during
the optimization search process. Thus, the HSA is efficient
and flexible in handling complex problems, such as the
VRPTW. However, although the HSA is effective in global
search, it may suffer the challenge of slow convergence
in certain cases, particularly when dealing with large-scale
problems. In addition, the HSA may fall into local optima
while maintaining its stochastic nature, thereby affecting
the quality of the final solution. In practice, an important
challenge for HSAs is how to balance their stochastic and
deterministic elements to ensure that premature convergence
is avoided and the search direction remains stable. Thus,
this study examined how to improve and sound the search
algorithm, i.e., to improve the convergence speed of the HSA
while avoiding falling into local optima as much as possible.
In addition, we investigated how to balance the stochastic and
deterministic elements by design to enhance the performance
of the algorithm in solving VRPTWs.

Researchers have analyzed the effects of various heuristics
and meta-heuristics on the VRP [29], [30]. They concluded
that no single heuristic or meta-heuristic could outperform
others in all cases. Hybrid algorithms can enhance the
advantages of two or more methods by combining or
competing approaches to produce better solutions. This
study focused on the VRPTW, specifically the Solomon
dataset. The Solomon dataset is a standard test set that
is widely used in VRPTW research, containing VRPTW
instances of different sizes and characteristics. It is an ideal
testbed for algorithm performance evaluation. The vehicle
must arrive within the TW specified by the customer,
not early nor late. If early, it incurs a waiting time,
and if late, it is denied service. To effectively solve this
problem under strict time constraints, we propose a Hybrid
Heuristic HSA (HHHSA). This algorithm is based on the
HS framework, which introduces inter-route and intra-
route improvement strategies. The present paper reports
computational results on the Solomon dataset, comparing
its performance with the best known solutions (BKS) and
solutions obtained using other meta-heuristics. The results
showed that the HHHSA could find competitive solutions
in an acceptable time. Furthermore, we examined the
convergence of the HHHSA, corroborating its remarkable
performance in handling complex instances under strict TW
constraints. This study is important for understanding and
solving the VRPTW and provides perspectives and effective
solutions for path planning in logistics and supply chain
management.

The rest of the paper is structured as follows: Chapter 11
details the mathematical model and constraints of the vehicle
path problem and its TW variant. Chapter III reviews
the principles of the HSA and its application to the path
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optimization problem. Chapter IV demonstrates the improved
HHHSA proposed herein, detailing its improvement points
and expected advantages. Chapter V analyzes and compares
the performance of the proposed algorithm with existing
algorithms on standard test sets. Finally, Chapter VI provides
the conclusions.

Il. PROBLEM DEFINITION AND MODELING

The mixed integer model of the VRPTW can be described
as V. = {0,1,2,...,n}, where O denotes the center, and
V. = {1,2,...,n} denotes the set of customers. K is the
set of vehicles, and the onboard capacities are all Q. The
distance and time costs for a vehicle to travel from customers
i to j are djj and t;;, respectively. The demand of customer
i is g;, the required service time is s;, and the service time
window is [e;, [;], with e; being the earliest and /; being the
latest allowable starts of the service, respectively. Vehicle &
arrives at customer i at ATik, and the waiting time is WTl.k.
If vehicle k travels from customercustomer i to customer j
agcld successively servei two customers one after another, then

X = 1, otherwise Xi; = 0. The mathematical model of

VRPTW was constructed as follows:

minZ:Z Z le];d,]

ieV jeV /{i} keK

st > D> xk=1 (YjeW) 1)
)

keK i€V /{j
Z Z xi=1 (YieV) )
kekK jeV /{i}
Dxy=D xfj=1 (VkeKk) (3)
iV, jeVe

Doxb= D xk<1VieV.,Vkek (4
jeVe/li) jeve/ti)
D D % ai=QVkeK ®)
ieV jeV /{i}
Z Z X <|S|—1LVSC V.. |S|>2.Vk €K
ieS jeS/{i}

(6)

ei <ATF + WIF <I;,Vk e K,YieV (7

wrf = max {0, (e; = AT})} Vie Vi vk e K )

AT} + WTf + 5i 4 1y = AT Vi, j € V.,

i #j,Vk e K ©)
1, if vehicle k travels from customer i

to customer j

0, otherwise
(10)

where Z is the total distance traveled by all the vehicles. In the
constraints, (1) and (2) show only one vehicle arriving at each
customer and only one vehicle departing from each customer,
respectively. This implies that only one vehicle served each
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customer. Equation (3) ensures that each vehicle k departs
from and returns to the depot once. This implies that each
vehicle began its route from the warehouse, served a series
of customers, and returned to the warehouse. Equation (4)
shows that each vehicle k departed from one customer only
to another while each customer i was being served and that
each customer i was served only once by a vehicle k. This
constraint helps to prevent situations where each vehicle
serves the same customer multiple times or a customer is
served by multiple vehicles. Equation (5) shows that the sum
of the demands of the customer visited by each vehicle did
not exceed the onboard capacity of the vehicle. Equation (6)
shows that there are no two customers for repeated visits
and was used to eliminate sub-loops. Equation (7) shows
that if a vehicle exists to service a customer, the start time
of the customer is within its TW, i.e., the TW constraint.
Equation (8) denotes the waiting time for the vehicle to arrive
at the customer it is to serve. Equation (9) denotes the arrival
time relationship constraint of a vehicle for two customers
served consecutively.

Ill. BASIC HARMONY SEARCH ALGORITHM

The HSA, inspired by the process of music composition, is an
optimization method based on intelligent search. Geem et al.
proposed this algorithm in 2001, aiming to solve the
optimization issues by simulating the process of discovering
a harmonic melody in a music performance [25]. Just as a
musician refines his melody through continuous practice, the
optimization algorithm improves the evaluated value of the
objective function through an iterative process. HSAs gen-
erate better harmonies by selecting or adjusting harmonies
in an already existing harmony library (solution set). After
repeated iterations, the optimal solution to the problem, i.e.,
the best harmony, is found. Compared with traditional GAs,
HSAs integrate the genetic characteristics of the population
and focus on the range of the values of individuals, to better
inherit the good characteristics and avoid falling into the local
optimum.

The flow of the HSA is as follows:

A. SETTING UP THE PROBLEM AND ALGORITHM
PARAMETERS
We can summarize the global optimization problem in this
way:

f(x) was minimized subject to

x(eX, i=12,...,N (11)

where f(x) represents the objective function, x denotes the
array of decision variables x (i), N is the total count of decision
variables, and X; specifies the range of feasible values for
each decision variable. Furthermore, the algorithm’s initial
phase requires appropriate configuration of parameters.

B. SETTING UP THE HARMONY MEMORY
A harmony memory (HM), characterized by a Harmony
Memory Size (HMS), was established in accordance with the
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solution space, in the following manner.

- 1 1 1 1 9
x12 x% ... x%,fl x]%,
X Xy e Xy Xy
HM = . . e . . (12)
(HMS—1 HMS—1  HMS—1 A HMS—1
Vs "2 mus Navis  Nums
L X X5 cee Xyl xy

Continuous problems were randomly generated according
to the following formula:

x/ = LB(i) + (UB(i) — LB())  r (13)

wherei =1,2,...,N,j=1,2,... HMS, and r is a random
number between 0 and 1.

For discrete optimization problems, the following formula
was followed:

X e Xi = (a1, %) ..., x(K)) (14)

where x;(K) is an alternative discrete value in the i-th
dimension.

C. CREATING A NEW HARMONY

The formation of a new harmony vector involves three distinct
rules: (a) memory consideration, (b) pitch adjustment, and (c)
random selection [31]. Initially, a random number, r{, within
the range [0, 1], is generated and compared with the pre-set
Harmony Memory Consideration Rate (HMCR). If r; <
HMCR, a variable from the pre-established HM, known as
the memory consideration, is chosen randomly. If not, it is
sourced through random selection, meaning it’s generated
randomly within the search boundaries. Subsequently, the
harmony variable is updated. In case of an update via memory
consideration, an adjustment is necessary. Here, another
variable rp within the [0, 1] range is randomly produced.
If » < PAR, the variable undergoes a modification based
on the preset Bandwidth (BW), resulting in a newly adjusted
variable, referred to as the pitch adjustment. The rule for pitch
adjustment is outlined as follows:

X =x"" £ r« BW (15)

1

where r is a random number between 0 and 1.

D. UPDATE THE HARMONY MEMORY

Should the newly generated harmony yield a more favorable
outcome in terms of the objective function compared to the
least effective solution in the previously initialized HM, it will
replace the least effective harmony within the HM.

E. DETERMINING TERMINATION

The process involved assessing whether the current count of
iterations had reached the pre-established maximum number
of iterations, Tj,,. If this threshold had not been met,
the procedure encompassed in Steps (3) and (4) would be
reiterated until the maximum iteration count was attained.
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According to the vehicle path planning problem and the
characteristics of the HSA, a harmony represents a customer
or vehicle code. We designed the basic framework of the HSA
for solving the VRPTW as follows:

Step 1. Initialize the HM.

Step 2. Generate the i-th solution component of the
new harmony according to the three rules of new solution
generation.

Step 3. Determine if the generated i-th solution component
is legal (if repeated with the previously generated i — 1
solution components). If not, execute Step 2, otherwise, i =
i+ 1.

Step 4. Determine if a set of completed harmony has been
generated. If so, execute Step 5; otherwise, execute Step 2.

Step 5. Calculate the objective function value of the new
harmony. Ascertain if the harmony satisfies constraints, such
as the maximum driving distance and maximum vehicle
capacity limit. If not, add the corresponding penalty.

Step 6. Assess whether the newly formulated harmony
outperforms the least effective harmony in the HM. In cases
where it does, proceed to substitute the least effective
harmony with this new one.

Step 7. Determine if the termination condition is satisfied.
If so, stop; otherwise, execute Step 2.

IV. PROPOSED METHOD
The specific algorithm design process was as follows:

A. ENCODING

Here, sequential coding was employed to solve the vehicle
path planning problem. Sequential encoding is intuitive and
prevents repetition. For a given path planning problem with
n customers and m vehicles, we used n + m — 1 consecutive
natural numbers to represent the encoding. Here, the first n
bits represent the customer, and the last m — 1 bits represent
the vehicle identification. For example, for a path planning
problem with 10 customers and 3 vehicles, we used the
following encoding: 1, 2, 3, 11, 4,5, 6,7, 12, 8, 9, 10. Here,
11 and 12 represent the vehicle identification code, indicating
that the route of the first vehicle is 0, 1, 2, 3, 0, and the
second vehicle serves customers 0, 4, 5, 6, 7, 0. In turn, the
third vehicle serves customers 0, 8, 9, 10, 0. This encoding
method intuitively represents the path-planning situation of
the vehicle.

B. GENERATION OF SOLUTIONS

The basic harmony algorithm for new solution generation
includes three keys: random generation, harmony retention
probability, and harmony perturbation probability.

If the current solution to be generated is the i-th solution
component x; of the new solution X = (x1,x2,...Xj...xXN),
a random number r; is first generated. if ri < HMCR, then
x; is randomly selected from column i of the HM. If the
randomly selected position is &, then x; = HM (h, i). If r; >
HMCR, x; takes random values from its value interval. For the
VRP comprising n customers and m vehicles using sequential
coding, the value space of x;is (1,2, ...,N,...,N+M —1).
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For r1 < HMCR, x; was randomly selected from the i-th
column of the HM, and random number r, was generated.
If r» < PAR, then one of the previous solution vectors was
selected to swap with the i-th bit solution vector.

C. HANDLING STRATEGIES FOR ILLEGAL ENCODINGS

As this study adopted the natural number coding, consid-
ering the natural number coding characteristics and model
constraints, the code must be guaranteed to be unique and
non-repeating. However, in the process of generating the
new solution of the harmonic algorithm, duplicate harmonies
will inevitably be generated, such as coding 1, 11, 2, 3,
2,5,6,7,3,8,9, 10. For example, the aforementioned
code has duplicates of 2 and 3, and such code is illegal.
To ensure that the encoding of the new solution x; is legal, the
following rejection strategy was used in the algorithm design
and processing.

Let us assume that the new solution vector to be generated
is X' = (x[,x5,...x/...xy), T = ¥, and x; is the i-th
solution component generated according to the new solution
generation rule of harmony. The rejection process is shown
in Fig. 2.

Step 1. Determine if i > N; if yes, stop generating
solutions. Otherwise, execute Step 2.

Step 2. Determine if i = 1; if yes, x/ = x;, T = T U {x/},
and i = i + 1. Otherwise, execute Step 3.

Step 3. Determine if x; € T'; if yes, generate the nearest
node x; to x/_, that satisfies x/#T, and perform T = T U {x/},
i =i+1.1fx; € T does not hold, then x| = x;, T = TU{x;},
and i =i + 1. Execute Step 1.

Stop

xi=x;
T=Tu{x"} —
i=i+1

Regenerate x; until x; ¢ T

xi=x
o T=Tu{x"}
X=XUfx} o
i=i+1

FIGURE 2. Rejection process of an illegal encoding.

D. PLUG-IN HEURISTIC PATH CONSTRUCTION
The basic idea of the plug-in heuristic method is to select
customer nodes to construct a path following certain rules
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until a feasible solution is formed. For the present VRPTW,
we first decoded a feasible path based on the constraints of
vehicle loading. Second, considering that this study attempted
to solve the VRPTW, the decoded feasible path may not
meet the TW. To adjust the generated path, we first selected
a seed customer in the path to form the initial path of a
single customer point and ensured that the remaining path
in the customer not added to the path was inserted into the
formed path. Thereafter, the customer not added to the path
was selected and inserted into the formed path. The selected
path had already completed the judgment of the feasible path.
Thus, the new customer point was only placed in the most
suitable position according to the TW to ensure that the TW
was strictly enforced from beginning to end.

If there were 10 existing customer points, coded as 1, 2, 3,
11,4,5,6,7, 12, 8,9, 10, according to the aforementioned
decoding principle, the first path was 0-1-2-3-0. For this path,
we first randomly selected a node (e.g., node 2) and randomly
selected the remaining unselected customer points on this
path such as 1. We adjusted the left TW according to 1 and 2,
keeping the left TW of the previous customer point smaller
than that of the latter. Assuming that it was now adjusted to
2,1, we selected customer point 3, following the idea of the
plug-in heuristic method. At this time, 3 was inserted into
the position, according to the size of the left TW inserted
in the appropriate position. This was to ensure that the left
TW of all the customer points for the smallest to the largest
were in order.

E. LOCAL NEIGHBORHOOD SEARCH

To balance the vehicle tasks and further improve the quality
of the solution, this paper proposes the following perturbation
strategies, which are mainly the deletion and reinsertion
operators. The deletion operator proposed in this paper
is the correlation deletion, and the reinsertion operator is
the feasible optimal reinsertion. They were implemented as
follows:

1) CORRELATION DELETION OPERATOR

First, the number of customer nodes, TR, to be deleted was
determined. The number of regular deletions was 10%—20%
of the total number of all the customer points. Second,
customer i was randomly selected, and the TR customers with
higher correlation with customer i from the corresponding
path were removed. The correlation between clients i and j
was defined as

1
R =
YT eV

where ¢ = ——, d,uux 1s the distance between this node

(customer i) and the farthest node feasible

1, Customer i and customer j
V= are not on the same route

0, Customer i and customer Jj are on the same route
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2) FEASIBLE OPTIMAL REINSERTION OPERATOR

The process of feasible optimal insertion was as follows: let
us consider the insertion of customer j. First, we calculated
all the feasible insertion locations and their path distance
increments after insertion into the paths of the current
solution R that satisfies the TW constraints and the vehicle
capacity constraints. Thereafter, we inserted customer j into
the location with the smallest path distance increment. If there
was more than one location satisfying the insertion condition,
the one with a smaller path distance length was preferred.
If there was no location satisfying the insertion condition,
a new path r, = {0,j, 0} was added and incorporated into
the current solution, R.

F. IMPROVED HYBRID HEURISTIC HARMONY SEARCH
ALGORITHM

We set the number of new solutions that had been generated as
newger. iter was the current number of iteration generations
of the loop, and IT" was the set maximum number of iteration
generations. The new solution was X, and the set holding the
new solutions was NEW . Thus, the update process of the new
solution set was NEW = [NEW, X], and n was the number
of dimensions of the solution, i.e., the number of variables.
The improved HHHSA process was as follows:

Step 1: Initialize the HM and parameters.

Step 2: Determine if iter exceeded IT. If yes, output the
optimal solution; otherwise, execute Step 3.

Step 3: Determine if newger exceeded the set maximum
number of new solutions to be generated, HMS. If so, update
the HM, and iter = iter + 1, then execute Step 2. Otherwise,
execute Step 4.

Step 4: Determine if the number of generated solution
components, i, reaches n. If yes, a completely new solution
X was generated. Update the new solution set NEW, i.e.,
NEW = [NEW,X], newger = newger + 1, then execute
Step 3; otherwise, execute Step 5.

Step 5: Generate a random number, ry. If rj < HMCR, the
i-th solution component of the new solution X was randomly
selected in the i-th column of the HM. Execute Step 6;
otherwise, the i-th solution component of the new solution
X was randomly selected in its own value space, then execute
Step 8.

Step 6: Generate a random number, r;. If r» < PAR, pitch
adjustment was applied to a randomly selected number from
column i of the HM; otherwise, it remained unchanged.

Step 7: Perturbation of the new harmony.

Step 8: i =i+ 1, and execute Step 4.

The flowchart of the algorithm is shown in Fig. 3.

V. EXPERIMENTS AND DISCUSSION

This study selected Solomon’s Vehicle Path Planning prob-
lem dataset as the benchmark problem instance. In assessing
the effectiveness of the proposed Hybrid Heuristic Harmony
Search Algorithm (HHHSA) in addressing the VRPTW,
an initial comparison was made with the Best Known
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TABLE 1. Categorization of solomon’s VRPTW datasets.

Dataset Number of Number of customers Number of vehicle Vehicle Capacity Distribution Type . Wldt.h of
instances time window
Cl 9 100 25 200 Cluster Small
Cc2 8 100 25 700 Cluster Large
R1 12 100 25 200 Random Small
R2 11 100 25 1000 Random Large
RC1 8 100 25 200 Random/ Cluster Small
RC2 8 100 25 1000 Random/ Cluster Large
’ ‘ TABLE 2. Performance of different HMS values.
Initialization
Upper HMS
Instances 5 10 20 50 80 100
Output optimal solution
C102 829.12 835.99 875.99 904.46 891.22 971.35
C206 588.49 588.69 589.12 599.16 607.68 598.57
R103 1242.95 1261.92 1260.92 1288.66 1292.1 1300.19
R201 1187.22 1229.92 1219.64 124943 1220.32  1238.88
RC101 1697.88  1738.85 1765.55 1817.67 1908.24  1849.53
RC201 1302.81 1329.35 1342.11 1341.14  1359.38 1355.98
Average 1141.41 1164.12  1175.56  1200.09 1213.16  1219.08
TABLE 3. Performance of different PAR values.
Instances 0.1 0.2 0.3
C102 829.12 831.98 836.1
N | Select the closest node €206 588.49 589.12 591.06
from ts solution space || R103 1242.95 1290.1 1331.12
R201 1187.22 1190.12 1220.1
Y RC101 1697.88 1721.01 1760.66
Randomly selected from RC201 1302.81 1320.98 1329.98
the icth column of HM Average 1141.41 1157.22 1178.17

Generate random R2

pitch adjustment

Plug-in heuristic path

construction

Local search

FIGURE 3. Flowchart of the HHHSA.

Solutions (BKS), as well as the standard HSA and its
prominent variants. Subsequently, we evaluated the average
performance against other meta-heuristic algorithms and
scrutinized the convergence efficiency of our proposed
algorithm.

A. BENCHMARK PROBLEM INSTANCES

The Solomon dataset contains 56 problem instances (each
with different characteristics and complexities). The bench-
mark instances were classified into six categories (Cl,
C2, R1, R2, RCI, and RC2), which can be employed to
comprehensively evaluate the performance of algorithms.

VOLUME 12, 2024

These problem instances cover different customer distribu-
tions, capacity limits, and TW constraints. Class C was
the clustered distribution of customer points, class R was a
random distribution of customer points, and class RC was
a mix of random and clustered distributions. Each class
was divided into two subclasses according to the vehicle
capacity and the length of the TW. Classes CI1, R1, and
RCI had a vehicle capacity of 200, and the TWs of their
algorithms were tighter than those of C2, R2, and RC2.
The vehicle capacities of classes C2, R2, and RC2 were
700, 1000, and 1000, respectively. The problem sets R1, C1,
and RCI1 featured brief scheduling cycles, accommodating
a limited number of customers (around 5-10) per route.
In contrast, sets R2, C2, and RC2 encompassed extended
scheduling intervals, enabling service to a larger group of
customers (exceeding 30) using the same vehicle. Each
instance comprised 100 customer nodes and a single depot
node, all distributed across a 100 x 100 Euclidean grid,
where travel times were equivalent to the respective distances.
Table 1 presents the specific classification information.

B. EXPERIMENTAL SETUP

The proposed algorithm was implemented and tested using
Matlab_R2023b, and all the experiments were conducted
using a MacBook (2.3 GHz 8-core Intel Core i9 processor,
16 GB 2667 MHz DDR4 RAM). The HHHS parameters were
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as follows. The HMCR parameter was established at 0.9,
adhering to the guidelines suggested in a previous study [27].
Following the outcomes of initial testing (refer to Table 2),
the HMS was determined to be 5. Similarly, drawing from
preliminary results shown in Table 3, the PAR was set to 0.1.
The upper limit for iterations was established at 100.

C. RESULT ANALYSIS

To verify the effectiveness of the proposed algorithm in
dealing with the VRPTW, three experimental analyses were
performed, solving each arithmetic case 10 times and
counting their performances. The current findings were
juxtaposed with the reported Best Known Solutions (BKS),
alongside comparisons with outcomes from the standard Har-
mony Search Algorithm (HSA) and its renowned variations,
along with the average performances of other metaheuristic
algorithms. Finally, a case study was implemented to examine
the convergence of the HHHSA.

1) COMPARISON WITH THE BEST KNOWN SOLUTIONS

We compared the reported BKS [24], and the references of
each BKS corresponding to the solution method are labeled
in Table 4. “N**” and “N*”” denote the number of vehicles and
the total distance traveled in the current BKS for that instance,
respectively. “BN”” and “BD” denote the total number of
vehicles and total distance traveled in the optimal results
of the 10 solutions of the proposed algorithm, respectively.
To examine the gap between the proposed method and BKS,
we calculated the GAP using GAP = (BD — D*) /D*.

We determined the route with the shortest distance, and
the proposed algorithm achieved good results compared with
those of the BKS using the Solomon dataset. For C1 and C2,
the HHHSA found all the BKS, except C104 and C204. For R
and RC, the proposed algorithm approached the BKS in many
cases, demonstrating its effectiveness in dealing with the
VRPTW in different environments. The average gaps for R1,
R2, RC1, and RC2 were 3.27%, 1.61%, 3.55%, and 1.71%,
respectively. Although gaps existed in certain cases, most of
them were relatively small, suggesting that the algorithm was
robust in various scenarios. These gaps highlight potential
areas for improvement but validate the ability of the algorithm
to effectively solve the complex constraints of the VRPTW.

2) COMPARISON OF STANDARD HARMONY SEARCH
ALGORITHMS AND WELL-KNOWN VARIANTS

The solution outcomes of our proposed algorithm were
evaluated against those of the standard Harmony Search
Algorithm (HSA) and its recognized variants (Tables 5, 6,
and 7 for the Best, Avr, and Std., respectively), and the
winning solutions are marked in bold.

The results showed that the HHHSA demonstrated sig-
nificant advantages in several instances. In the best result
comparison, the HHHSA met or exceeded the existing HSA
and its variants in most cases. In the average result and
standard deviation comparisons, the HHHSA exhibited high
stability and superiority, confirming its effectiveness and

42090

robustness in solving the VRPTW. In specific instances,
such as C102, C206, and C208, the standard deviation
of the HHHSA was significantly lower than that of other
algorithms, suggesting that its solution was less volatile and
more stable. Noteworthily, in specific problem instances, the
advantage of the HHHSA was not evident. This may have
been due to the special nature of the problem instances or a
mismatch between the search strategy of the HHHSA and the
characteristics of the problem instances, which is a direction
of our future research.

3) COMPARISON WITH OTHER METAHEURISTIC
ALGORITHMS

Table 8 lists the results of the application of the HHHSA,
the well-known Tabu search (TS), TS-CP, GA, hybrid GA
(HGA), AC-TC, and Meta-HSA algorithms to Solomon’s
benchmark dataset. TS is a probabilistic TS proposed in
a previous study [36]. TS-CP represents a straightforward
framework that integrates Tabu Search (TS) with constraint
programming methodologies [48]. GA and HGA were
proposed in previous studies [17], [49]. AC-TS is a reported
hybrid AC with TS [50]. Meta-HSA is one of the best reported
HSA variants [27].

The average results (Avr.) in Table 8 shows that the average
performance of the HHHSA was consistent and stable,
indicating that its performance was less volatile across runs
and provided a reliable solution for the solver. The HHHSA
significantly outperformed other algorithms when solving R2
and RC2. In the R1, C1, and C2 instances, the HHHSA
performed similarly to the best results in Table 8. Although
it did not completely outperform all the other algorithms,
it still showed its competitiveness and adaptability. In terms
of runtime, HHHSA performed extremely well. Its runtime
was relatively low compared with those of other algorithms,
such as the GA and HGA. This is important for practical
applications where good quality solutions are required in a
reasonable time.

Our goal was not to defeat all the existing solutions but to
propose a solution that minimizes the need to manually adjust
and that can deliver good results in solving the VRPTW. The
experimental results confirmed its usefulness.

4) CASE STUDY ON CONVERGENCE ANALYSIS

We selected the simpler C102 and the more complex R204,
RC201 with a strict TW as representatives of the case studies.
Fig. 4 shows the convergence change curve for the C102
instance. As the number of iterations increased, the objective
value continually decreased, indicating that the HHHSA
effectively optimized the route to reduce the total distance.
The colored lines represent the average value of each
iteration, and the red line indicates the best value for
each iteration. The convergence results were evident around
generation 13 and finally converged to the optimal solution
828.94 at generation 75. Fig. 5 shows the route result, and
Table 9 presents the detailed route information.
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TABLE 4. Results for solomon’s 56 instances with 100 customers.

Instances BKS HHHSA GAP Instances BKS HHHSA GAP
N* D* N BD N* D* N BD
C101 10 828.94 [32] 10 828.94 0.00% RI112 10 953.63 [32] 10 997.19 4.57%
C102 10 828.94 [32] 10 828.94 0.00% R201 8 1147.8 [33] 7 1162.2 1.25%
C103 10 828.06 [32] 10 828.06 0.00% R202 8 1034.35 [32] 5 1044.89 1.02%
C104 10 824.78 [32] 10 846.78 2.67% R203 6 874.87 [32] 6 882.29 0.85%
C105 10 828.94 [32] 10 828.94 0.00% R204 5 735.8 [33] 4 737.23 0.19%
C106 10 828.94 [32] 10 828.94 0.00% R205 5 954.16 [33] 5 975.77 2.26%
C107 10 828.94 [32] 10 828.94 0.00% R206 5 879.89 [32] 6 905.91 2.96%
C108 10 828.94 [32] 10 828.94 0.00% R207 4 799.86 [34] 5 818.53 2.33%
C109 10 828.94 [32] 10 828.94 0.00% R208 4 705.45 [35] 4 718.54 1.86%
C201 3 591.56 [32] 3 591.56 0.00% R209 5 859.39 [32] 5 866.4 0.82%
C202 3 591.56 [32] 3 591.56 0.00% R210 5 910.7 [35] 7 924.87 1.56%
C203 3 591.17 [32] 3 591.17 0.00% R211 4 755.96 [34] 4 776.02 2.65%
C204 3 590.60 [32] 3 596.55 1.01% RC101 15 1623.58 [36] 16 1672.9 3.04%
C205 3 588.88 [32] 3 588.88 0.00% RC102 14 1461.23 [32] 14 1505.9 3.06%
C206 3 588.49 [32] 3 588.49 0.00% RC103 11 1261.67 [37] 12 1290.3 2.27%
C207 3 588.29 [32] 3 588.29 0.00% RC104 10 1135.48 [38] 10 1153.8 1.61%
C208 3 588.32 [32] 3 588.32 0.00% RC105 16 1518.58 [32] 15 1564.8 3.04%
R101 20 1642.88 [32] 19 1656.5 0.83% RC106 13 1371.69 [39] 14 1417.25 3.32%
R102 18 1472.62 [40] 18 1477.7 0.34% RC107 12 1212.83 [34] 12 1280.28 5.56%
R103 14 1213.62 [40] 15 1225.84 1.01% RC108 11 1117.53 [40] 11 1190.15 6.50%
R104 11 976.61 [32] 11 1017.5 4.19% RC201 9 1265.56 [32] 7 1283.82 1.44%
R105 15 1360.78 [32] 15 1416.7 4.11% RC202 8 1095.64 [32] 7 1106.85 1.02%
R106 13 1240.47 [34] 13 1269.3 2.32% RC203 5 928.51 [34] 5 951.06 2.43%
R107 11 1073.34 [34] 12 1112.68 3.67% RC204 4 786.38 [33] 4 801.43 1.91%
R108 10 947.55 [34] 10 984.91 3.94% RC205 7 1157.55 [33] 7 1169.22 1.01%
R109 13 1151.84 [34] 13 1203.7 4.50% RC206 7 1054.61 [32] 6 1082.66 2.66%
R110 12 1072.41 [32] 12 1139.3 5.87% RC207 6 966.08 [32] 6 984.93 1.95%
R111 12 1053.50 [32] 11 1094.3 3.87% RC208 4 779.31 [34] 5 788.9 1.23%
TABLE 5. Best performance of the HHHSA in relation to HSA and its variants.
Instances Best
HAS[25] IHSA[41] GHS[42] SGHSA [43] DHSA [44] MHSA [45] SHSA [46] ITHSA [47] Meta-HAS [27] HHHSA
R101 1704.11 1692.5 2389.48 2025.19 1872.75 1745.09 1690.39 1722.76 1642.88 1656.5
R103 1387.59 1412.28 2125.59 1646.74 1489.3 1476.33 1394.02 1399 1232.96 1225.84
R201 1858.5 1824.19 2106.68 1846.44 1740.26 1907.6 1419.44 1810.93 1202.96 1162.2
C102 1228.2 1176.51 2708.38 1616.49 1314.26 1337.5 1079.36 1128.79 828.94 828.94
C109 1362.78 1418.72 2894.76 1690.83 1500.72 1574.62 1099.79 1365.04 832.29 828.94
C206 1516.25 1505.35 2109.02 1677.9 1702.53 1706.81 817.02 1314.86 595.37 588.49
C208 1414.39 1297.89 1805.01 1751.98 1696.58 1609.91 769.57 1241.73 594.7 588.32
RC101 1734.57 1703.34 2537.67 2097.18 1870.16 1794.66 1713.62 1746.66 1639.73 1672.9
RC201 2106.93 2084.07 2497.04 2227.3 2079.33 2189.64 1689.17 2074.96 1345.16 1283.82
TABLE 6. Mean performance of the HHHSA in relation to HSA and its variants.
Instances Avr
HSA[25] 1IHSA[41] GHS[42] SGHSA[43] DHSA[44] MHSA[45] SHSA[46] ITHSA [47] Meta-HSA [27] HHHSA
R101 1762.02 1767 25343 2245.04 1956.56 1836.07 1741.15 1771.57 1644.01 1659.15
R103 1497.12 1507.72 2366.45 1846.03 1613.44 1586.46 1447.27 1485.82 1255.23 1242.95
R201 1990.66 1983.83 2294.26 2150.17 2024.42 2099.55 1521.87 1991.73 1232.95 1187.22
C102 1456.81 1402.57 2920.21 2051.46 1623.65 1614.25 1197.21 1334.46 831.67 829.12
C109 1615.31 1659.52 3079.97 2127.45 1841.43 1833.45 1225.69 1603.77 847.45 872.99
C206 1802.84 1758.84 2308.17 2226.03 2051.09 1968.11 888.88 2050.26 632.87 588.49
C208 1679.24 1666.59 2161.45 2091.27 2021.68 1938.39 862.95 2042.63 638.68 588.32
RC101 1814.3 1811.43 2742 2325.94 1998.28 1893.67 1800.66 1830.43 1663.5 1697.88
RC201 2237.13 2260.14 2701.32 2448.81 2362.23 2412.18 1772.53 2282.6 1385.5 1302.81

Figs. 6 and 7 show the convergence curve and rout-
ing results of R204, respectively. The convergence graph
shows significant convergence near generation 6 and finally
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converges to the best solution 737.23 at generation 64, with
only 0.19% Gap with BKS. Table 10 shows the routing
information of the final solution.
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TABLE 7. Standard deviation outcomes for the HHHSA in comparison to HSA and its variants.

Instances Sud
HAS [25] IHSA[41] GHS[42] SGHSA[43] DHSA[44] MHSA [45] SHSA[46] ITHSA [47] Meta-HAS [27] HHHSA
R101 29.13 37.05 85.81 104.94 57.73 43.84 21.65 31.61 1.7 9.45
R103 39.37 50.76 93.58 99.78 57.72 447 23.83 34.75 15.2 12.1
R201 75.73 96.69 85.78 133.94 140.67 95.18 37.16 130.52 22.5 18.65
C102 104 117.08 129.48 273.28 147.43 147.89 55.87 121.16 3.65 0.37
C109 133.59 111.6 111.29 248.93 151.67 142.58 64.8 120.06 9.99 25.07
C206 171.22 148.17 124.97 265.53 199.4 213.28 43.71 426.17 20.86 0
C208 130.67 153.07 130.52 242.35 171.32 166.3 40.16 501.94 22.26 0
RCI101 48.28 42.16 101.4 135.17 92.51 68.19 37.9 50.74 20.7 12.16
RC201 89.22 90.68 111.01 158.03 110 146.35 38.89 105.77 24.16 11.16
TABLE 8. Comparison of the HHHSA and different heuristics.
Instances TS TS-CP GA HGA AC-TC Meta-HSA HHHSA GAP
R1 1209.35 1214.86 1333 1220 1241.24 1207.76 1217.85 0.84%
R2 980.27 930.18 1124 985.69 961.11 977.19 906.61 0.00%
Cl1 828.38 829.77 872 851.05 843.55 838.47 830.82 0.29%
C2 589.86 604.84 641 620.12 611.12 605.41 590.60 0.13%
RC1 1389.22 1385.12 1547 1366.62 1419.14 1381.96 1386.39 1.45%
RC2 1117.44 1099.96 1343 1108.5 1119.24 1099.12 1032.04 0.00%
Avr. 1019.09 1013.98 1143.33 1025.33 1032.57 1018.32 1003.87 0.00%
Running time - 160.8 709 1340 404.83 314.86 301.12
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FIGURE 4. Convergence curves of C102. FIGURE 5. Route results of C102.

TABLE 9. Route information of C102. TABLE 10. Route information of R204.

Vehicle Solution Vehicle Solution
1 0—81—78—76—71—70—73—77—79—80—0 1 0—52—31—-70—30—32—90—63—10—62—88—7—82—48—19—11
2 0—32—33—331—-335—337—38—-39336—34—0 —64—49—36—47—46—8—45—17—84—85—98—37—100—13—0
3 0—57—55—54—53—56—58—60—59—0 2 0—6—94—95—92—42—43—15—57—41—22—75
4 0—43—342—41—40—44—46—45—348—51—50—52—49—47—0 —56—2367392457257457321-40-58-0
5 0—90—87—86—83—82—84—+85—+88—89—91—0 3 0—89—18—83—60—5—61—16—86—38—14—44

—91—93—99—96—59—97—87—2—53—0

6 0-20—24-25-27-29-30-28—-26—23-22-5210 4 0—27—69—1—50—76—3—79—33—81—9—51—20—66—65—71—35
7 0—98—96—95-94—-92-93-97—100—-99—0 —534578-529—524—55—25—54—80—68—77— 12526280
8 0—67—65—63—62—74—72—61—64—68—66—69—0
9 0—-5—+3-27—-8—=10—11-9—6—4—2—1-75—0
10 0—13—17—18—19—15—16—14—12—0

finally converged at the current optimal solution of 1283.82 at
generation 40. Table 11 shows the routing information of
RC201 with evidence of the strong performance of HHHSA
in handling complex instances under strict TW constraints.
As a new hybrid optimization algorithm, the HHHSA
achieved good results in dealing with the VRPTW in different

Similarly, Figs. 8 and 9 show the convergence curve
and route result of RC201, respectively, demonstrating the
effectiveness of the HHHSA in the optimization process. The
algorithm significantly converged around generation 9 and
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TABLE 11. Route information of RC201.

Vehicle Solution

0—72—36—39—42—44—41—38—40—43—35—37—-54—-68—0
0—90—0
0—5—-45-2-6—7—8—-46—3—1-4—-100—70—0
0—71—=67—62—85—76—51—+84—56—66—0
0—64—83—52—75—23—-21—18—19—-49—-22—20—24—48—25—77—58—0
0—69—82—98—88—53—99—57—86—+87—9—10—97—74—13—17—0
0—92—95—63—33—31—-29—27—30—28—26—34—50—32—89—91—80—0
0—61—-81—94—96—93—0
0—65—59—14—47—16—15—11—12—78—73—79—60—55—0

O 0N B W —

scenarios. It achieved optimal or near-optimal results in
several instances, particularly when dealing with complex
and large-scale instances. Simultaneously, the stability and
efficient runtime of the HHHS A confirmed its ability to solve
real VRPTWs. There is still room for further optimization
of the performance of the algorithm for specific types of
problem instances. Future research can focus on the tuning
of algorithmic parameters and the improvement of the search
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FIGURE 9. Route results for RC201.

strategy to enhance the applicability and solution quality of
the algorithm.

VI. CONCLUSION

We proposed the HHHSA to provide an efficient solution to
the VRPTW. The VRPTW is a combinatorial optimization
problem with complex constraints, where the core objective
is to minimize the total distance traveled while satisfying a
customer-specific service TW. The HHHSA was designed to
overcome these challenges by combining robust HSAs and
efficient heuristic techniques to improve the efficiency and
quality of path planning.

Here, the HHHSA performance was thoroughly tested
against the widely recognized Solomon benchmark dataset.
The results showed that the HHHSA had a clear advantage
in generating high-quality solutions and outperformed many
traditional methods in terms of computational efficiency.
The HHHSA demonstrated excellent performance and
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stability when dealing with large-scale and complex VRPTW
instances. Its success was attributed to its ability to efficiently
combine global and local search strategies, fully exploring
the search space. The strategy encoding, solution generation,
and optimization processes of the algorithm were carefully
designed to ensure that constraints were effectively handled
during the search process while optimizing the primary
objective of the total distance traveled. Furthermore, the
robustness and versatility demonstrated by the HHHSA
across different instance types of the Solomon benchmark
confirmed that it could handle different types of customer
distributions, vehicle capacities, and TW constraints. Thus,
the HHHSA is a powerful tool for solving VRPTWs in real
logistics and supply chain problems.

The remarkable results of the HHHSA in solving VRPTW
problems provide perspectives and methods for optimization
in logistics and supply chain management. Furthermore, the
study findings significantly contribute to the advancement of
operations research and intelligent systems. Future research
can explore the application of the HHHSA in other VRP
variants and how it can be integrated with real-time data for
more efficient and adaptive dynamic path planning.
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