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ABSTRACT A novel adaptive robust hybrid force/position control (ARHFPC) strategy is proposed for robot
manipulator systems subject to dynamic uncertainties and unknown matched and mismatched disturbances
under input saturation. First, the position controller is designed based on the backstepping approach. The
first-order low-pass filter and the auxiliary dynamic system are synthesized into the controller to overcome
the complex derivative operation of virtual control and handle the effect of input saturation, respectively.
Radial basis function neural networks (RBFNNs) are utilized to approximate the dynamic uncertainties
and matched disturbances. Then, a disturbance observer is designed for the mismatched disturbances.
To enhance control accuracy of the interaction force between the end-effector and the external environment,
a fuzzy proportional-integral (FPI) control scheme is presented. Theoretical analysis proves that all signals
in the closed-loop control system of robot manipulators are locally uniformly ultimately bounded (UUB).
Simulation results demonstrate the effectiveness and robustness of the proposed control scheme.

INDEX TERMS Mismatched disturbances observer, input saturation, auxiliary dynamic system, robot
manipulators.

I. INTRODUCTION
Over the past decades, robot manipulators have been widely
employed in industrial fields [1], [2], such as handling, weld-
ing, assembling, etc. However, robotic manipulator systems
are affected by the presence of matched and mismatched
disturbances, dynamic uncertainties, and input saturation.
Enhancing the trajectory tracking performance accuracy and
the accuracy of interaction force control for the end-effector
of robot manipulators remains a challenge, especially when
these systems are subjected to external disturbances such
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as position sensor faults, mechanical vibrations, and other
external disturbances.

Various nonlinear control methods have been developed
to enhance the position and force tracking performance
for the trajectory tracking problem of robot manipulator
systems, such as sliding mode control (SMC), backstepping
control, and computed torque control (CTC) [3], [4], [5], [6].
An adaptive neuron-fuzzy controller for an industrial robot
manipulator is proposed to achieve the hybrid force/position
control [7]. In paper [8], a new generalized proportional
integral observer is designed to estimate velocity and force
to achieve the robot manipulator’s adaptive force/ position
control. Lutscher et al. [9] proposed an indirect force
controller to deal with unknown environments, providing
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intuitive control over hybrid force and positioning tasks
in joint space and workspace. Wang et al. [10] proposed
an adaptive fuzzy computed torque controller based on the
workspace of a robot manipulator to enhance the accuracy
of force control in unknown environments. In paper [11],
an extended adaptive fuzzy SMC is presented for posi-
tion/force control for Stewart manipulator. For reconfig-
urable manipulators subject to time-varying constraints,
Cao et al. [12] developed an RBFNNs-based terminal SMC
to achieve the hybrid force/position control. The paper [13]
presents a force/position control scheme with environmental
compliance for a continuum robot that allows the end position
to be modified by changes in the continuum robot and
environment. In paper [14], an adaptive fuzzy SMC is
developed which requires the minimum dynamic information
and does not need uncertainties bounds for the robot manip-
ulators operating in uncertain environments. Peng et al. [15]
proposed a neural network-based joint velocity observer to
accomplish velocity-free measurement tracking control of
a robot manipulator. In paper [16], an adaptive SMC is
presented for a crawler-type mobile manipulator to realize
the force/position control. Yang et al. [17] developed a
RBFNNs-based adaptive impedance controller for tracking
the expected interaction force, and the joint velocity is
estimated by a nonlinear velocity observer. To the best
of our knowledge, there are few controller strategies have
been discussed to enhance the control accuracy of the robot
manipulators with mismatched disturbances.

The tracking performance of robot manipulators is always
influenced by actuator faults, uncertainties and external
disturbances. The disturbances are generally composed of
the matched and mismatched disturbances [18], [19], [20],
[21]. Matched disturbances directly hold up the system states
of robot manipulators through the control input. It usually
contains the friction of joints. In contrast, mismatched
disturbances indirectly affect the system states of the robot
manipulators in the absence of control inputs. Mismatched
disturbances widely present in some real engineering system.
While the mismatched disturbances usually contain the
nonlinear terms in rotational kinematic, actuator failure, and
external environmental disturbances. As a result, the robot
may fail to perform tasks precisely or may exhibit undesired
behavior, such as overshooting or oscillations. How to design
the control scheme to eliminate the effect of mismatched
disturbances is still a challenge.

Disturbance observer is commonly employed to achieve
high-performance tracking control in robot manipula-
tors [22]. Several studies [23], [24], [25] have focused on
constructing disturbance observers to estimate mismatched
disturbances presumed to originate from an exogenous
system. To reduce the influence of mismatched uncertainties,
a self-learning disturbance observer-based feedback lin-
earization controller is proposed [26]. In paper [27] and [28],
a finite-time disturbance observer is proposed formismatched
disturbances. In paper [29] and [30], an adaptive disturbance

observer is presented. Zhou et al. [31] investigated the
tracking control for strict-feedback nonlinear system under
mismatched disturbances. A backstepping controller is
designed, and the disturbance estimates are inserted in the
virtual control for mismatched disturbances rejection. How-
ever, other significant factors such as dynamic uncertainties
and input saturation have not been fully considered in these
studies.

In some industrial applications, the force/position tracking
performance has to be as accurate as feasible. This requires
the ability to accurately approximate external disturbances
and dynamic uncertainties. Consequently, this work proposes
a robust hybrid force/position control strategy for robot
manipulators with matched and mismatched disturbances,
dynamic uncertainties under input saturation. The proposed
controller can track trajectories precisely and reinforce the
precision of the end-effector’s interaction force control. The
contributions of this work are composed mainly of the
following:

• A novel adaptive robust hybrid force/position control
(ARHFPC) strategy is proposed for robot manipulator
systems subject to unknown matched and mismatched
disturbances, dynamic uncertainties and input satura-
tion. A disturbance observer is designed for the tracking
control of robot manipulators subject to mismatched dis-
turbances. LuGre friction model is described the friction
dynamics. The observer ensures that the estimation error
remains bounded and converges to a neighborhood near
the origin.

• RBFNNs with a new adaptive law are used to
approximate the dynamic uncertainties. The proposed
controller scheme can simultaneously handle dynamic
uncertainties and input saturation for the trajectory
tracking of robot manipulators under unknown time-
varying disturbances.

• The fuzzy inference system is applied to improve the
traditional proportional-integral force controller and
enhance the precision of the interaction force control.

This paper is organized as follows. Section II addresses
the dynamic model of robot manipulators under mismatched
and matched disturbances, uncertainties and input saturation.
In Section III, the design process of the position/force
controller based on backstepping and fuzzy techniques is
introduced. Stability analysis is given in Section IV. The
simulation results are provided in Section V. Conclusions are
given in Section VI.

II. PROBLEM STATEMENT
A. DYNAMIC MODEL OF ROBOT MANIPULATOR SYSTEM
The dynamic model of the n-rigid link serial robot manipula-
tor is described by:

M (q) q̈+ C (q, q̇) q̇+ G (q) + τd + Ff (q̇) = τ + JTλ.

(1)
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where M (q) ∈ Rn×n denotes the inertia matrix, C (q, q̇) ∈

Rn×n denotes the Coriolis and Centrifugal force matrix,
and G (q) ∈ Rn represents the gravitation torque. q =

[q1, · · · , qn]T ∈ Rn, q̇ ∈ Rn, q̈ ∈ Rn represent the positions,
velocities, and accelerations vectors. τ = [τ1, · · · , τn]T ∈

Rn is the actual input vector. τd = [τd1, · · · , τdn]T ∈

Rn represents the matched disturbance vector. Ff (q̇) =[
Ff 1, · · · ,Ffn

]T
∈ Rn represents the joint friction vector.

λ ∈ Rm represents the interaction force. J ∈ Rm×n denotes
the Jacobian matrix. LuGre friction model [32] is defined to
described the friction dynamics

Ff = ϕ1 (tanh (γ1q̇) − tanh (γ2q̇)) + ϕ2 tanh (γ3q̇) + ϕ3q̇ ,

(2)

where γ1, γ2, γ3, ϕ1, ϕ2, ϕ3 are positive parameters.
Assumption 1: The friction vector and unknown time-

varying disturbance are bounded:∥∥Ff (q̇)
∥∥ ≤ a1 + a2 ∥(q̇)∥ , ∥τd∥ ≤ a3. (3)

where a1, a2, a3 are positive constants.
The disturbances are generally composed of the matched

and mismatched disturbances. Mismatched disturbances are
those that not in the same channel as the control input. The
matched disturbances are those that in the same channel as the
control input. Then, we can rewritten the dynamics model (1)
with matched and mismatched disturbances as the following
joint-space form

ẋ1 = x2 + d (t)
ẋ2 = 4 (x1, x2) + 9 (x1, x2) τ + 2 (x2, t)
y = x1

(4)

where the state vectors x1 ∈ Rn and x2 ∈ Rn

represent the joint positions and velocities, respectively, and
4 (x1, x2) = −M−1 (q) (C (q, q̇) q̇+ G (q)), 9 (x1, x2) =

M−1 (q), 2 (x2, t) = −M−1 (q)
(
τd + Ff

)
. d (t) =

[d1, · · · , dn]T ∈ Rn represents the unknown time-varying
mismatched disturbance.
Assumption 2: The disturbances d (t) are bounded, and

the condition limt→∞ḋ (t) = 0 holds.
For the subsequent work, the dynamic model of the robot

manipulator should have the following properties.
Property 1: M (q) is a symmetric and positive definite

invertible matrix. There exists with the positive constants c1,
c2 satisfying the following conditions:

c1 ∥e∥2 ≤ eTM (q) e ≤ c2 ∥e∥2 , ∀e ∈ Rn. (5)
Property 2: Ṁ (q)−2C (q̇, q) is a skew-symmetric matrix,

eT
[
Ṁ (q) − 2C (q̇, q)

]
e = 0, ∀e ∈ Rn. (6)

The precise dynamic parameters such as the inertia and
the Coriolis and Centrifugal force is difficult to obtain
in practice due to measurement errors and environmental
factors. Therefore, the terms M (q), C(q, q̇), G(q) are divided
into the nominal terms M0 (q), C0 (q, q̇), G0 (q) and the

uncertain terms 1M (q), 1C (q, q̇), 1G (q), respectively.
It can be described as

M (q) = M0 (q) + 1M (q)
C (q, q̇) = C0 (q, q̇) + 1C (q, q̇)
G (q) = G0 (q) + 1G (q) .

(7)

Assumption 3: The uncertain terms are bounded

∥1M (q)∥ ≤ ℓM , ∥1C (q, q̇)∥ ≤ ℓC , ∥1G (q)∥ ≤ ℓG ,

(8)

where ℓM , ℓC , ℓG are positive constants.

B. INPUT SATURATION
Taking into account the physical limitations of the robot
manipulator’s joint motors, the control input is subject to the
input saturation

τ =


τmax, if τc ≥ τmax

τc, if τmin < τc < τmax

τmin, if τc ≤ τmin ,

(9)

where τmax = [τ1,max, · · · , τn,max]T is the maximum control
force or moment and τmin = [τ1,min, · · · , τn,min]T is the
minimum control force or moment provided by motors,
respectively.

C. NEURAL NETWORK FUNCTION APPROXIMATION
As neural networks are excellent at approximating nonlinear
functions, the nonlinear terms of the robot manipulator are
approximated by the RBFNNs. The form of RBFNNs is given
as:

F (Z ) = WTS (Z ) , (10)

where F (Z ) : Rq
→ R represents a nonlinear function,

Z =
[
Z1, · · · ,Zq

]T
∈ Rq

∈ �Z denotes the input of the
neural network, W = [w1, · · · ,wl]T ∈ Rl rpesents the
weight vector, l > 1 describes the network node number, and
S (Z ) = [s1, · · · , sl]T ∈ Rl represents the Gaussian basis
function

si(Z ) = exp

(
−(Z − βi)T (Z − βi)

η2i

)
, i = 1, 2, · · · , l ,

(11)

where ηi and βi = [βi1, · · · , βiq]T are the width and centers
of the Gaussian function, respectively.

The equation (10) can be described as follows

F (Z ) = W ∗TS (Z ) + 1 , (12)

where 1 expressed as the error of approximation, which
satisfies |1| ≤ 1̄with 1̄ > 0 being a constant.W ∗ represents
an ideal constant weight which can described as

W ∗
= argmin

W∈Rq

{
sup
Z∈�Z

∣∣∣F (Z ) −WTS (Z )

∣∣∣} . (13)
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Control Objective: This paper aims to propose an
adaptive robust hybrid force/position controller for the
robot manipulator system described by equation (1) with
matched and mismatched disturbances, uncertainties and
input saturation such that the closed-loop system is bounded
under Assumptions 1-3. The hybrid controller is expected to
exhibit excellent tracking performance, as evidenced by the
convergence of the tracking error lim

t→∞
x̃1, λ̃ → 0.

III. DESIGN OF ADAPTIVE ROBUST HYBRID
FORCE/POSITION CONTROLLER
In this section, we develop a novel Adaptive Robust Hybrid
Force/Position Control (ARHFPC) scheme for the robot
manipulator, aiming to enhance both trajectory tracking per-
formance and the accuracy of the end-effector’s interaction
force control. The proposed controller comprises several
key components: a low-pass filter, a backstepping con-
troller, Radial Basis Function Neural Networks (RBFNNs),
a Mismatched Disturbance Observer (MDO), an Auxiliary
Dynamic System (ADS), and a Fuzzy Inference System
(FIS). The low-pass filter is employed to address the complex
derivation problem of the virtual control input. RBFNNs
are utilized to approximate dynamic uncertainties, while
the MDO is constructed to reject mismatched disturbances.
Additionally, an ADS is employed to mitigate the effects
of input saturation. Furthermore, a FIS system is applied to
enhance the traditional proportional-integral force controller
and improve the accuracy of interaction force control.
Figure 1 illustrates the structure of the proposed control
scheme.

A. POSITION CONTROLLER DESIGN
The position controller is developed step by step using the
backstepping technique. Firstly, some auxiliary variables
is introduced. Then, the candidate Lyapunov function is
presented directly..
Step 1: The state error is defined as:

x̃1 = x1 − xd , (14)

where xd is the desired trajectory. The derivative of the state
error (13) is defined as

˙̃x1 = α − ẋd , (15)

and the virtual control input is defined as

α = −K1x̃1 + ẋd − d̂ (t) , (16)

where d̂ (t) represents the estimation of d (t). The Lyapunov
function candidate is defined as

V1 =
1
2
x̃T1 x̃1 . (17)

The following low-pass filter with time constant T0 is applied:{
T0υ̇d + υd = α

υd (0) = α(0) ,
(18)

where υd denotes the state of the filter, and υ̇d which is used
to replace the α̇ can be obtained directly from the filter.
Step 2: Define the state error as:

x̃2 = x2 − υd , (19)

Therefore, differentiating the Lyapunov function V1, we can
obtain

V̇1 = −x̃T1
˙̃x1

= −x̃T1 K1x̃1 + x̃T1 x̃2, (20)

The Lyapunov candidate function is defined as follows:

V2 = V1 +
1
2
x̃T2 Mx̃2. (21)

According to Property 2, the time derivative of V2 can be
described as:

V̇2 = −x̃T1 K1x̃1 + x̃T1 x̃2 +
1
2
x̃T2 (Ṁ − 2C)x̃2

+ x̃T2 (τ − τd − Ff − Cυd−G−M υ̇d )

= −x̃T1 K1x̃1 + x̃T1 x̃2 + x̃T2 (τ − τd − Ff
− Cυd−G−M υ̇d ). (22)

To handle the dynamic uncertainties, matched distur-
bances, and joint friction, the RBFNNs are used to approx-
imate

W ∗TS(Z ) = 1M υ̇d + 1Cυd + 1G+ τd + Ff + ε(Z ) ,

(23)

where Z = [qT, q̇T, υdT, υ̇Td ]
T

∈ �Z , ε(Z ) denotes the
approximate error vector and satisfies ∥ε(Z )∥ ≤ ε̄. Define Ŵ
as an estimation of W ∗, the estimation error is W̃ = W ∗

−Ŵ .
Therefore, the following controller is designed

τs = C0υd + G0 +M0υ̇d − x̃1 − K2x̃2 + Ŵ TS(Z ) , (24)

with the adaptive law:

∗20c ˙̂Wi = −Pi(Si(Z )x̃2,i + σiŴi),i = 1, · · · , n , (25)

where Pi > 0 and σi > 0 are design parameters.
The following ADS is formed to settle the influence of input

saturation [33]:
where 1τ = τ − τc, ϑ = [ϑ1, · · · , ϑn]T ∈ Rn represents

the state vector, K0 = KT
0 ∈ Rn×n represents a positive

parameter matrix and ω > 0 denotes a small positive scalar.
Therefore, combining equation (24) and (26), as shown

at the bottom of the next page, the position controller is
proposed as follows

τc = τs + τa , (27)

where τa = Kaϑ , Ka ∈ Rn×n is described as a positive gain
matrix.
According equation (27), we can rewritten the equation (22)

as follow

V̇2 = −x̃T1 K1x̃1 − x̃T2 K2x̃2 + x̃T2 W̃
TS(Z )

+ x̃T2 ε(Z ) + x̃T2 Kaϑ , (28)

where K1=diag [k11, · · · , k1n] and K2 = diag [k21, · · · , k2n]
are design positive parameter matrices.
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FIGURE 1. Scheme of the adaptive robust hybrid force/position controller for robot manipulator.

B. MISMATCHED DISTURBANCE OBSERVER DESIGN
The time derivative of the state error (14) is:

˙̃x1 = ẋ1 − ẋd = x2 + d − ẋd . (29)

Substituting equation (4) into equation (29), we obtain

¨̃x1 = ẋ2 + ḋ − ẍd
= 4 (x1, x2) + 9 (x1, x2) τ + ḋ − ẍd
= 0 (x1, x2, xd ) + 9 (x1, x2) τ + ḋ , (30)

where 0 (x1, x2, xd ) = 4 (x1, x2) − ẍd .
The following observer is proposed for rejecting the

influence of mismatched disturbance{
d̂ = δ + N
δ̇ = −L (0 (x1, x2, xd ) + 9 (x1, x2) τ ) − Ld̂ ,

(31)

where N = L ˙̃x1, δ ∈ Rn represents the state vector of the
observer, and L = diag [l1, · · · , ln] is a positive gain matrix.
Define the disturbance observer error as d̃ = d − d̂ , and its
derivative can be obtained

˙̃d = ḋ −
˙̂d

= ḋ − δ̇ − Ṅ

= ḋ + L (0 (x1, x2, xd ) + 9 (x1, x2) τ )

+ Ld̂ − L ¨̃x1

= ḋ − L
(
ḋ − d̂

)
. (32)

The Lyapunov function candidate is chosen to be

Vd =
1
2
d̃Td̃ . (33)

Taking its first time derivative, we can obtain

V̇d = d̃T
(
ḋ − L

(
ḋ − d̂

))
= d̃Tḋ − d̃TLḋ + d̃TLd̂ . (34)

From the following square inequality

d̃Tḋ ≤ ε1d̃Td̃ +
1
4ε1

ḋTḋ, (35)

−d̃TLḋ ≤ −ε2d̃Td̃ −
1
4ε2

ḋTLTLḋ, (36)

d̃TLd̂ ≤ ε3d̃Td̃ +
1
4ε3

d̂TLTLd̂ , (37)

where ε1, ε2, ε3 are small positive constants. Subsequently,
equation (34) can be reformed as:

V̇d ≤ −bVd + c , (38)

where

b = 2(ε2 − ε1 − ε3), (39)

c = (
1
4ε1

−
λmin(LTL)

4ε2
)C2

d +
λmin(LTL)

4ε3
d̂T d̂ . (40)

ϑ̇ =

−K0ϑ −

∑n
i=1

∣∣x̃2,i1τi
∣∣+ 0.51τT1τ

∥ϑ∥
2 ϑ + 1τ, ∥ϑ∥ ≥ ω

0n×1, ∥ϑ∥ < ω

(26)
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Then, we have V̇d ≤ 0 by choosing the appropriate
parameters. The disturbance estimation error is bounded and
converges to a neighborhood near the origin.

C. FORCE CONTROLLER DESIGN
In some working scenario, the robot manipulator is tasked
with trajectory tracking while simultaneously adhering to
constraints on the force exerted by the end-effector due to
human interaction and environmental factors. To achieve this,
selection matrices S1 and S2 are commonly employed to
designate the control mode for each joint. During the design
of the force controller, we aim to keep the Z-axis interaction
force λ constrained.

The force controller takes the following form:

λ = K∗
p λ̃ + K∗

i

∫
λ̃dt , (41)

where λ̃ = λ − λd is defined as the interaction force error,
λd is the desired force. K∗

p and K∗
i are proportional gain and

integral gain, respectively.
In order to better improve the force tracking effect of the

end-effector, we introduce the dynamic adjustable parameter.
Then, FIS technique is utilized to adjust the parameters of the
force controller. Define λ̃ and d λ̃ as the inputs of the inference
system, and 1Kp and 1Ki represent the system outputs. The
IF ∼ THEN rule of the FIS is designed as follows:

Rule Rbc : IF λ̃r is Bb, d λ̃r is Cc,

THEN 1Kir is rbc, 1Kpr is vbc ,

where r = 1, 2, · · · ,m, Bb(b = 1, 2, · · · bN ) and Cc(c =

1, 2, · · · cN ) are the fuzzy sets for λ̃r and d λ̃r . rbc and vbc
are described as the central of fuzzy sets for 1Kir and
1Kpr . Applying singleton fuzzification, product inference,
and center average defuzzification, the final FIS can be obtain

1Kir =

∑bN
b=1

∑cN
c=1 µBb (λ̃r )µCc (d λ̃r )rbc∑bN

b=1
∑cN

c=1 µBb (λ̃r )µCc (d λ̃r )

1Kpr =

∑bN
b=1

∑cN
c=1 µBb (λ̃r )µCc (d λ̃r )vbc∑bN

b=1
∑cN

c=1 µBb (λ̃r )µCc (d λ̃r )
,

(42)

where µBb (λ̃r ) and µCc (d λ̃r ) are the membership functions
in the fuzzy sets Bb and Cc, respectively. Subsequently, the
follow equation can be obtained:{

K̂ir = K∗

ir0 + 1Kir
K̂pr = K∗

pr0 + 1Kpr ,
(43)

where K∗

ir0 and K
∗

pr0 are the initial values of K
∗
ir , K

∗
pr . K

∗

i0 =

diag[K∗

i10, · · · ,K∗

im0], K
∗

p0 = diag
[
K∗

p10, · · · ,K∗

pm0

]
, 1Ki =

diag [1Ki1, · · · , 1Kim], 1Kp = diag
[
1Kp1, · · · , 1Kpm

]
.

From equation (39), and (41), the force controller based on
the FIS in Cartesian space can be described as:

λ = K̂i

∫
λ̃dt + K̂pλ̃ , (44)

where K̂i=diag
[
K̂i1, · · · , K̂im

]
, K̂p = diag

[
K̂p1, · · · , K̂pm

]
.

The Cartesian space force λ is converted into joint-space
torque by using the Jacobian matrix

τλ = JTS2λ. (45)

Finally, the hybrid force/position controller is proposed as
follow:

τ = τc + τλ , (46)

with the adaptive law (25) and fuzzy law (43). FIS Dynamic
Adjustable Parameter Technology introduces force errors
into parameter changes, allowing real-time adjustment of the
controller’s output action.

IV. STABILITY ANALYSIS
The following Lyapunov candidate function is selected for the
closed-loop system

V =
1
2
x̃T1 x̃1 +

1
2
x̃T2Mx̃2 +

∑n

i=1
W̃T
i P

−1
i W̃i

+
1
2
d̃Td̃ +

1
2
ϑTϑ. (47)

From equation (28), and (34), the time derivative of (47) can
be obtained

V̇ = −x̃T1 K1x̃1 − x̃T2 K2x̃2 + x̃T2 W̃
TS(Z ) + x̃T2 ε(Z )

+ x̃T2 Kaϑ −

∑n

i=1
W̃T
i (Si(Z )x̃2,i + σiŴi)

+ d̃Tḋ − d̃TLḋ + d̃TLd̂ + ϑTϑ̇ . (48)

By using Young’s inequality, we can achieve:

x̃T2 ε(Z ) ≤
1
2
x̃T2 x̃2 +

1
2
ε̄2, (49)

x̃T2 Kaϑ ≤
1
2
x̃T2 x̃2 +

1
2
ϑTKT

a Kaϑ, (50)

−σiW̃T
i Ŵi = −σiW̃T

i W̃i − σiW̃T
i W

∗
i

≤ −
σi

2
W̃T
i W̃i +

σi

2
W ∗T
i W ∗

i . (51)

(1) If the condition ∥ϑ∥ ≥ ω set, considering equation (26)
and the above inequality, we have:

ϑT ϑ̇ = −ϑTK0ϑ −

∑n

i=1

∣∣x̃2,i1τi
∣∣− 0.51τT1τ + ϑT1τ

≤ −ϑT (K0ϑ − 0.5In×n)ϑ −

∑n

i=1

∣∣x̃2,i1τi
∣∣. (52)

Then, according to equations (35)-(37), equations (49)-(51),
and equation (52), we can rewrite the equation (48) as
follows:

V̇

≤ −x̃T1 K1x̃1 − x̃T2 K2x̃2 + x̃T2 x̃2 +
1
2
ϑTKT

a Kaϑ

−
σi

2
W̃T
i W̃i − (ε2 − ε1 − ε3)d̃Td̃ − ϑT (K0ϑ

− 0.5In×n)ϑ +
σi

2
W ∗T
i W ∗

i −

∑n

i=1

∣∣x̃2,i1τi
∣∣

+ ḋT (
1
4ε1

−
LTL
4ε2

)ḋ + d̂T
LTL
4ε3

d̂ +
1
2
ε̄2
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≤ −λmin(K1)x̃T1 x̃1 −
λmin(K2) − 1

λmax(M )
x̃T2 x̃2 −

σi

2
W̃T
i W̃i

− (ε2 − ε1 − ε3)d̃Td̃ −

[
λmin(K0 −

1
2
KT
a Ka) −

1
2

]
ϑTϑ

+
σi

2
W ∗T
i W ∗

i + (
1
4ε1

−
λmin(LTL)

4ε2
)C2

d

+
λmin(LTL)

4ε3
d̂T d̂ +

1
2
ε̄2

≤ −ζ1V + ∇1 (53)

where λmin(·) and λmax(·) are the matrix’s minimum and
maximum eigenvalues, and

ζ1 = min
[
2λmin(K1),

2λmin(K2) − 2
λmax(M )

, −
2σi

λmax(Pi)
,

2(ε2 − ε1 − ε3), λmin(2K0 − KT
a Ka) − 1

]
,

∇1 =
σi

2
W ∗T
i W ∗

i + (
1
4ε1

−
λmin(LTL)

4ε2
)C2

d

+
λmin(LTL)

4ε3
d̂T d̂ +

1
2
ε̄2. (54)

Solving the inequality (53), we obtain:

0 ≤ V (t) ≤
∇1

ζ1
+

[
V (0) −

∇1

ζ1

]
e−ζ1t . (55)

(2) If the condition ∥ϑ∥ < ω set, based on (26) and
Young’s inequality, we have

ϑT ϑ̇ = 0 . (56)

According to equations (35)-(37), equations (49)-(51), and
equation (56), we can rewrite the equation (48) as follows:

V̇ ≤ −λmin(K1)x̃T1 x̃1 −
λmin(K2) − 1

λmax(M )
x̃T2 x̃2 −

σi

2
W̃T
i W̃i

− (ε2 − ε1 − ε3)d̃Td̃ +

[
λmin(

1
2
KT
a Ka)

]
ϑTϑ

+
σi

2
W ∗T
i W ∗

i + (
1
4ε1

−
λmin(LTL)

4ε2
)C2

d

+
λmin(LTL)

4ε3
d̂T d̂ +

1
2
ε̄2

≤ −ζ2V + ∇2 , (57)

where

ζ2 = min
[
2λmin(K1),

2λmin(K2) − 2
λmax(M )

, −
2σi

λmax(Pi)
,

2(ε2 − ε1 − ε3), λmin(KT
a Ka)

]
,

∇2 =
σi

2
W ∗T
i W ∗

i + (
1
4ε1

−
λmin(LTL)

4ε2
)C2

d

+
λmin(LTL)

4ε3
d̂T d̂ +

1
2
ε̄2 . (58)

Solving the inequality (57), we obtain:

0 ≤ V (t) ≤
∇2

ζ2
+

[
V (0) −

∇2

ζ2

]
e−ζ2t . (59)

TABLE 1. Design parameters of the controllers.

TABLE 2. The fuzzy rules of 1Kp.

TABLE 3. The fuzzy rules of 1Ki .

Subsequently, the following theorem summarizes the main
results.
Theorem 1: Consider the robot manipulator model (1)

with Assumptions 1-3, the hybrid force/position con-
troller (46) with the virtual control signal in (16), the first
order filter (18), the adaptive law (25), the ADS (26), and
the mismatched disturbances observer (31). If the condition
V (0) ≤ C0 with C0 being any positive constant hold, all the
signals of the closed-loop control system remain bounded, the
force and position tracking errors and observer errors remain
in a neighborhood around origin.

Proof: Synthesizing equation (54) and equation (59)
yield

0 ≤ V (t) ≤
∇

ζ
+

[
V (0) −

∇

ζ

]
e−ζ t , (60)

where ζ = min [ζ1, ζ2] and ∇ = min [∇1, ∇2]. According
to equation (60), V (t) is bounded if V (0) ≤ C0 hold. The
Lyapunov function V (t) is locally UUB. Therefore, x̃1, x̃2,
W̃ , d̃ , and ϑ̃ are locally UUB according to equation (47).
Furthermore, the conclusion limt→∞λ̃ = 0 is obtained by
the boundedness of q and q̇. Therefore, the force tracking
error λ̃ is also bounded and converges near a neighborhood
around origin. As a result, in this closed-loop control system
all signals are locally UUB. □ □ □
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FIGURE 2. Mismatched disturbances d and their estimate values d̂ .

Remark 1: Controller gains K1, K2 typically lead to faster
error convergence, as they increase the control effort in
response to the error signals x̃1, x̃2. The parameter K0,
Ka represents an additional control gain term. Adjusting its
value can influence the control performance, particularly
in situations where there are uncertainties. L terms affect the
accuracy of disturbance observation and the ability of the
controller to reject disturbances.

V. SIMULATION RESULTS AND DISCUSSION
The PUMA560 robot is employed to evaluate the perfor-
mance of the proposed controller in this section. The first
three joints is only considered for simplicity in analyzing.
The detail robot parameters are given in the work [34]. The
parameters of friction model (2) are chosen as ϕ1 = 0.2,
γ1 = 1, ϕ2, ϕ3 = 0.5, γ2, γ3 = 0.5.
The RBFNNs’ function centers βi are evenly spaced in the

range [−2, 2] × [−2, 2] × [−2, 2] × [−2, 2] × [−2, 2] ×

[−2, 2]× [−2, 2]× [−2, 2]× [−2, 2]× [−2, 2]× [−2, 2]×
[−2, 2]. The desired interaction force is selected as λd = 20N.
The distance between the origin of the inertial reference
frame and the Z-axis surface is considered as: xe = 1m. Then,

FIGURE 3. The tracking performance comparison under scenario 1.

the end-effector’s interaction force is described as λ = ke
(xz − xe) and the selection matrix is chosen as S2 =

diag[0, 0, 1], respectively.
We make a comparison to illustrate the ARHFPC con-

troller performance with the PD controller (61), SMC
controller (62), and backstepping controller (63) to illustrate
the performance. All design parameters of the proposed
controller are outlined in the Table 1. The joint saturation
limits are set to [±50N.m,±50N.m,±30N.m]. In the force
controller term, we define the N (negative), Z (zero),
P (positive) as the fuzzy subsets, respectively. The fuzzy
rules for 1Kp and 1Ki are presented in Table 2 and Table 3,
respectively.

τpd = −kpx̃1 − kd ˙̃x1. (61){
τsm = M (ẍd − ks2 ˙̃x1) + C(x2 − s) + G− ks2sgn(s)
s = ˙̃x1 + ks1x̃1.

(62)

τbs = Mẍd + (C − kb2 −Mkb1)x2 + G

− (kb1kb2 + I )x̃1 + (Mkb1 + kb2)ẋd . (63)
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FIGURE 4. Joint position tracking errors under scenario 1.

We choose desired trajectories, unknown time-varying
mismatched disturbances as

xd = [xd1, xd2, xd3]T =

 1.5 sin(0.2t)
1.5 sin(0.1t)
1.5 sin(0.5t)

 , (64)

d(t) = [d1,d2,d3]T =

 cos(2.5t) − 2 cos(3.5t)
2 cos(3.5t) − sin(2.5t)
sin(2.5t) + 2 cos(3.5t)

 . (65)

Figure 2 show the estimation of the mismatched dis-
turbances. It is obviously shown that the MDO can
quickly track unknown mismatched disturbances. We design
three scenarios to illustrate performance of the proposed
controller.

A. TRACKING WITH SMALL EXTERNAL DISTURBANCES
In the first simulation, the following small time-varying
disturbances

τd = [τd1, τd2, τd3]T =

 1.5 cos(4.5t)
1.5 sin(3.5t)
1.5 sin(4.5t)

 (66)

was applied. The position tracking performance of joints 1-3
under the controllers are shown in Figure 3. Figure 4 shows

FIGURE 5. Control effort of the different controllers under scenario 1.

FIGURE 6. Interaction force tracking under scenario 1.

the position tracking errors. Observing Figures 3 and 4,
we notice that all four controllers are capable of swiftly track-
ing the desired signal. However, the PD controller exhibits
the poorest tracking performance when small disturbances
occur. In contrast, the SMC controller outperforms the PD
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FIGURE 7. Force tracking errors under scenario 1.

FIGURE 8. The tracking performance comparison under scenario 2.

controller in terms of tracking performance. Notably, both
the ARHFPC and Back-stepping controllers demonstrate
superior performance. The control efforts exerted by each
joint for the controllers are depicted in Figure 5, indicating
that the proposed ARHFPC controller provides continuous

FIGURE 9. Joint position tracking errors under scenario 2.

control input. Figure 6 and Figure 7 show the interaction force
tracking and tracking errors. Combining Figure 3 to Figure 7,
based on the proposed controller, we can obtain that it has
minor tracking errors and better control performance when
the system is affected by small disturbances.

B. TRACKING WITH LARGE EXTERNAL DISTURBANCES
A large time-varying disturbances

τd = [τd1, τd2, τd3]T =

 5 cos(4.5t)
5 sin(3.5t)
5 sin(4.5t)

 (67)

are applied to the system. It is clear that the large time-varying
disturbances has an enormous influence on the performance
of four controllers. Figure 8-Figure 9 show position tracking
performance and tracking errors. Figure 11-Figure 12 show
force tracking performance and tracking errors, respectively.
According to the above figures, the PD and SMC offer worse
force and position tracking performance. The benefits of the
NN term compensation are significant in conditions where
the large time-varying disturbances exist. Low steady-state
errors and fast transient response are provided by the
ARHFPC. In addition, it also provides a continuous control
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FIGURE 10. Control effort of the different controllers under scenario 2.

FIGURE 11. Interaction force tracking under scenario 2.

input from Figure 10. The proposed controller still maintains
good control performance, and the tracking errors can meet
the actual expectation.

C. TRACKING WITH DYNAMIC UNCERTAINTIES
This scenario is designed to illustrate the robustness
of the ARHFPC controller by considering the dynamic

FIGURE 12. Force tracking errors under scenario 2.

FIGURE 13. The tracking performance comparison under scenario 3.

uncertainties. The uncertainties terms are selected as: 1M =

0.4M , 1C = 0.5C , 1G = 0.2G. Figure 13 to Figure 14
clearly demonstrate that the proposed ARHFPC controller
is still has good tracking accuracy for the desired position.
The proposed ARHFPC controller also provides a continuous
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FIGURE 14. Joint position tracking errors under scenario 3.

TABLE 4. Comparison results of performance indices.

control input from Figure 15. Figure 16 to Figure 17 show that
the force tracking performance is also well guaranteed. The
updating process of the adaptive of RBFNN weights is given
in Figure 18.
For the purpose of comparing the results of the above

controllers, the tracking errors is quantified by considering
the following performance indices are proposed as following

IRSE

=
1
N

∑N

i=1

√
∥e1 (k)∥2+∥e2 (k)∥2+∥e3 (k)∥2+

∥∥∥λ̃ (k)
∥∥∥2,
(68)

where ei, i = 1, 2, 3 is the tracking error of three joints. And
the comparison results are drawn in Table 4.

FIGURE 15. Control effort of the different controllers under scenario 3.

FIGURE 16. Interaction force tracking under scenario 3.

From Table 4, it is evident that the proposed controller
achieves smaller indices in all scenarios, indicating superior
control performance. This improvement can be attributed
to the introduced MDO and NN terms compensations,
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FIGURE 17. Force tracking errors under scenario 3.

FIGURE 18. The updating process of the adaptive of RBFNN weights.

facilitating the rapid convergence of estimated mismatched
disturbances and uncertainties towards their actual values.

Overall, the proposed ARHFPC controller demonstrates
the best performance in terms of steady-state error, transient
response, force, and position tracking accuracy, as evident
from the comparison results provided above.

VI. CONCLUSION
The main objective is to address the hybrid force/position
control problem for robot manipulators subject to dynamic
uncertainties, matched and mismatcheded disturbances, and
input saturation. Firstly, the position controller is developed
using backstepping technique. Then, the first-order low-
pass filter and the ADS are synthesized into the controller
to overcome the virtual control’s complex derivative oper-
ation and handle the input saturation effect, respectively.
Additionally, the force controller for the end-effector’s
interaction with the environment is enhanced using Fuzzy
Proportional-Integral (FPI) control. Due to the approximation
capacity of the RBFNNs, it is utilized to compensate for the

effects of matched disturbances, joint friction and dynamic
uncertainties. External disturbances consist of matched
and unmatched disturbances. Since the robot manipulators
are impacted by numerous disturbances during operation
that reduce the system control performance, an observer
is designed specifically for the mismatched disturbances,
aiming to improve control accuracy by accurately estimating
these disturbances and mitigating their effects on the system
states. It can provide that all the control signals of the whole
system are asymptotically stable by Lyapunov stable theroy.
The proposed approach achieves better tracking performance
in terms of matched and mismatched disturbance rejection,
uncertainties and input saturation. It indicates the best
performance in terms of steady state error, transient response,
force and positions tracking accuracy from the above
comparison results. The limitations of the proposed method
are that the matched and mismatcheded disturbances are
assumed to be continuously conductible. For future work,
we will investigate the influences of sensor faults on the
system and make a compensation for it in the course of
operation.

APPENDIX
LIST OF ABBREVIATIONS
ADS Auxiliary Dynamic System.
ARHFPC Adaptive Robust Hybrid Force/Position Con-

trol.
FIS Fuzzy Inference System.
FPI Fuzzy Proportional-Integral.
MDO Mismatched Disturbance Observer.
RBFNNs Radial Basis Function Neural Networks.
SMC Sliding Mode Control.
UUB Uniformly Ultimately Bounded.

LIST OF SYMBOLS
τ = [τ1, · · · , τn]T Actual input vector.
τd = [τd1, · · · , τdn]T Matched disturbance vector.
C (q, q̇) Coriolis and Centrifugal force

matrix.
d (t) = [d1, · · · , dn]T Unknown time-varying mis-

matched disturbances.
Ff (q̇) =

[
Ff 1, · · · ,Ffn

]T Joint friction vector.
G (q) Gravitation torque.
J Jacobian matrix.
M (q) Inertia matrix.
q, q̇, q̈ Positions, velocities, and

accelerations vectors.
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