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ABSTRACT In real-life situations where human care robots are deployed, there are custom sound events
whose acoustic characteristics change depending on the user’s choice unlike general sound events so that
the human care robots cannot recognize custom sound events correctly in a conventional way. To solve this
critical problem, a real-time sound event recognition system with customization process is proposed. The
human care robot collects custom sound samples of a specific user and customizes a sound event recognition
model. The overfitting-based customized model shows the best recognition performance by improving
F-scores by 66.4% on average compared to the conventional recognition model. After the customization
process, the human care robot performs a real-time sound recognition by consistently streaming robot’s real-
time microphone signals into the overfitting-based customized SER model. In this process, an optimized
overlap is applied on subsequent audio inputs on SER to achieve sufficiently fast response and robust
performance. As a pilot test of the human care robot implemented in actual environment, the real-time sound
recognition system shows the best average F-score of 0.982 with 75% overlap for sound events including
custom sounds. This pilot test result confirms that the real-time sound recognition systemwith customization
process can be successfully applied to human care robots to respond to the custom sounds.

INDEX TERMS Sound event recognition, human care robot, custom sound event, real-time system.

I. INTRODUCTION
Elderlies need meticulous and continuous care because they
are vulnerable to various physical and mental dangers. As a
global phenomenon, elderlies’ population is rapidly overtak-
ing the world population and number of people who can look
after elderlies is decreasing, as result total cost for society to
take care of elderlies is increasing exponentially. These yield
growth in burdens for caring elderlies and decline in elderlies’
life qualities. Therefore, human care robot that assists and
takes care of the elderlies is emerging as a solution to the
aging society [1].

Thanks to the rapid development in deep learning tech-
nology, various types of artificial intelligence have been
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implemented to human care robot in order to make them
comprehend situations of users and take appropriate actions
corresponding to the situations automatically [2], [3]. For
example, we could implement object detection algorithm
on a robot with cameras to observe and understand the
environment and circumstance [4], [5], [6]. However, visual
intelligence provides limited understanding on circumstances
around the robot, as it can only recognizes events within visi-
ble regions and fails to recognize events in the limited vision
of the camera. On the contrary, auditory intelligence is advan-
tageous over visual intelligence as sound can be heard even
when the sound source is invisible. It also enables the robot
to understand circumstances more comprehensively by rec-
ognizing urgent events where alarms ringing, people scream
or moan, etc. Therefore, we come up sound recognition sys-
tem for human care robot that recognizes events from given
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FIGURE 1. Spectrogram of example sounds of (a) general and custom doorbells and (b) general and custom phonebells.

audio input to provide auditory intelligence on a human care
robot.

Sound recognition field is recently led by works on sound
event detection (SED), which performs classification and
time localization simultaneously. In general, convolutional
recurrent neural network (CRNN) [7], which combines con-
volutional layers and recurrent layers, is mainly used as the
SED model [8], [9]. CRNN with transformer [10], [11] and
conformer [12] widely used in automatic speech recogni-
tion achieved state-of-the-art performance in SED [13], [14],
[15], [16], [17]. CRNN with frequency dynamic convolu-
tion, which is the content-adaptive model [18], [19], [20],
improved SED performance by considering frequency depen-
dencies as well as temporal dependencies [21]. In addition,
data augmentation methods [22], [23], [24] improved not
only performance but also robustness of SED model. There
are other studies on applying sound recognition methods to
human care robots. Previous studies for robot application
have been mainly conducted to secure robust recognition
performance in noisy situations by applying sound event
recognition (SER) models [25], [26], [27], [28], [29]. Since
human care robots do not require very precise time localiza-
tion, SER instead on SED has been usually applied to the
robots. In this work, we build sound recognition system for
human care robot using SER as SED requires unnecessarily
precise time localization. When applying SER on human care
robot, we focus on identifying and resolving the effects of
sound events rather than noise.

Recently, various sound event recognition systems or
frameworks for human care robots and smart homes have
been proposed based on the previous academic research on
sound event recognition [30], [31]. The challenge human care

robots and smart homes is the automatic sound recognition
system and its ability to respond to problems that occur in
real-life situations. Human care robots and smart homes need
to recognize sounds occurring in the users’ private space in
real time and at all times without any off time to provide
services to the users. So, human care robots and smart homes
store the incoming sound data in real time as audio files with a
certain duration using microphones, and they send the audio
files to the server for data pre-processing and event recog-
nition [32], [33], [34], [35]. This system enables the robots
and the smart homes to recognize sound events in real time
and automatically. On the other hand, there are various factors
that degrade sound event recognition performance in indoor
environments where robots and smart homes are applied.
Different users have different room sizes and noises, and
the SNR varies depending on the relative position between
the microphone and the sound source. These performance
degradation factors have been analyzed, and sound event
recognition systems that are robust to these factors have been
proposed [36]. In this study, we propose an automatic sound
event system for application of human care robots in real-life
situations.

A. RESEARCH QUESTIONS FOR REAL-LIFE APPLICATIONS
OF HUMAN CARE ROBOTS
The ultimate goal of SER system for human care robots is
to accurately recognize sound events related to users in real
indoor environment without directly communicating with
users. However, there is a big gap between general sound
events assumed in conventional SER studies and sound events
occurring in real-life situations. The conventional SER stud-
ies assume that each sound event has a similar acoustic
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FIGURE 2. Confusion matrices of SER model tested with dataset containing (a) general bell sound set with average F-score of 0.946, (b) custom
bell sound 1 set with average F-score of 0.577, and (c) custom bell sound 2 set with average F-score of 0.608.

characteristic pattern based on a common mechanical or bio-
logical mechanism. For example, blender or vacuum cleaner
sound could be different by each device. But they share com-
mon mechanical structures thus produce sounds those share
similar acoustic characteristics. Cough and snoring sound
also could be different by each individual, but they share
common biological mechanism thus produce sounds those
share similar acoustic characteristics. These sound events
are recognized through frequency pattern classification using
deep neural networks. However, several sound events do not
satisfy this assumption in real-life situations where human
care robots are utilized. Due to the recent proliferation of
various digital devices, users can customize sound events
with any kind of pre-recorded sounds they want such as
music, animal sound, sound of nature, speech, etc. When
we hear these pre-recorded sounds, it could easily confuse
us if those are from video clips from Youtube, or they are
phonebell, or alarm sound. Thus, in real-life situations, there
are custom sound events that have different acoustic char-
acteristics from those we already know, or that have similar
acoustic characteristics to other sound events.

Among various sound events that can assist elderlies,
doorbell and phonebell can be easily customized by users.
Generally known doorbells and phonebells tend to repeat
simple melody or frequency patterns, and these general
sounds for doorbells and phonebells are dominated in various
sound event datasets utilized inDCASE challenges. However,
in real-life situation, each individual has a different type
of smartphone, and the phonebell sounds provided by each
smartphone are more like music rather than monotonous
sounds. In addition, in the case of doorbells, the doorbell
sounds in apartments, which are the primary residence of
Korean, have changed to simple music forms with melodies
rather than simple patterns in recent years. Figure 1 shows
example spectrograms of general sounds and custom sounds
for doorbells and phonebells. In details, the general phonebell
is the default ringtones on Apple smartphone, and the cus-
tom phonebells are music-like ringtones on Samsung and
Google smartphones. As can be seen in the spectrograms,

general doorbell and phonebell repeat simple frequencies
and harmonics. On the other hand, custom sounds appear as
a combination of random and complex frequencies, similar
to music. Rather, custom doorbells might look similar in
frequency patterns to the general phonebell. This makes it
difficult to find common acoustic features between custom
sounds within the same class.

Moreover, it remains to be seen how conventional SER
models recognize custom sounds with different acoustic
characteristics from those trained. In this study, in order to
focus on the influence of custom sound events, the SER
model is implemented of ResNet-34-based model, which is
mainly used in the deep learning-based recognition tasks.
We select four sound events consisting of custom sound
events (doorbell and phonebell) and sound events with con-
sistent frequency characteristics (cough and snore). The SER
model trains with Audioset [37], FSD50K [38], and other
datasets utilized in DCASE challenges. The test dataset to
verify the model performance is directly collected indoor
environment. The detailed information about training and
evaluation processes are described in Section III. For trained
SER model, a total of three tests are performed for each of
general bell sound set, custom bell sound 1 set, and cus-
tom bell sound 2 set using the sounds shown in Figure 1.
Cough, snore, and other sounds are the same for all three
test sets. The test data is unseen data during model training,
and the confusion matrices of event recognition results are
shown in Figure 2. The SER model achieves high average
F-score of 0.946 for the test dataset with general bell sounds.
However, the model shows average F-scores of 0.580 and
0.576 for the test datasets with custom bell sounds 1 and 2,
respectively.While cough and snore result in high and consis-
tent F-scores, the SER model shows F-scores of zero for the
custom doorbell 1 and 2, 0.450 for the custom phonebell 1,
and 0.432 for the custom phonebell 2. The reason for perfor-
mance degradation is that the conventional SER models are
overgeneralized to general sounds, and the custom sounds do
not share the similarity of acoustic characteristics between
general sound samples within the same event. Cough and
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snore have common acoustic characteristics regardless of
who makes those sounds, so the SER model is generalized to
recognize common characteristics and shows good recogni-
tion performance. These results indicate that the recognition
performance is low for custom sound events that are typically
encountered in real-life situations. Due to inaccurate recog-
nition performance of custom sounds, human care robots
cannot provide accurate services to users who customize
sound events. Therefore, the research question is how to
enable human care robots to recognize any custom sound
accurately in real time.

B. RESEARCH OBJECTIVES
Prior to this study, there have been reports on custom sound
events [31], but there has been no research on sound event
recognition systems that can automatically respond to the
custom sound events. Thus, we propose an automatic sound
event recognition system that can recognize custom sounds
in terms of practical applications for human care robots. The
custom sound events can be set to any pre-recorded sound
the user wants, so it is not feasible to generalize the acoustic
characteristics of custom sounds using data-driven methods.
So, we focus on the specificity of the environment in which
human care robots are utilized. A human care robot usually
interacts with one specific user in single specific space: user’s
home. The specific user may customize the sounds for several
sound events, but from the robot’s perspective, it only needs
to be aware of the custom sounds set by that specific user,
not all possible custom sounds. Thus, we aim to customize
the sound event recognition system of robot for the specific
user to accurately recognize custom sounds. However, this
customization process should be automatic. The reason is that
users of human care robots are not experts in robotics or sound
event recognition, so it is difficult to customize the robots
by themselves. Even if experts are involved, it is difficult
to access the robots due to issues such as personal privacy.
Therefore, in this paper, we propose a real-time sound recog-
nition system with customization process for human care
robot. The main contributions of this work are as follows:

- Recognition of custom sound events which composed
of pre-recorded sound events upon user’s prefer-
ence is defined as research question in this paper;
and corresponding recognition algorithm, human care
robot implementation and living room validation are
presented.

- The proposed sound recognition algorithm with cus-
tomization process using specific user’s custom sounds
improves F-scores by average of 64.2% compared to the
conventional recognition model.

- Real-time sound recognition system with customization
process is proposed and implemented in human care
robot. Predefined data-acquisition, signal processing,
and inference actions are executed by the robot in a real
time fashion.

- Through a pilot test in real domestic environments
(Korean elderly apartments), proposed real-time custom

sound recognition system showed 0.982 of average
F-score, confirming feasibility of the proposed sound
recognition system.

The remainder of the paper is organized as follows.
Section II introduces customization methods of the SER
model mounted on a human care robot and the real-time
sound recognition system with customization process.
Section III describes dataset, training details with evaluation
metrics, and pilot test setting. Section IV shows the exper-
iment results, and Section V discusses the results. Finally,
Section VI presents conclusion and future works.

II. REAL-TIME SOUND RECOGNITION SYSTEM WITH
CUSTOMIZATION PROCESS FOR HUMAN CARE ROBOT
In this section, we propose two customization methods of
SER model and real-time sound recognition system with
customization process for human care robot. Main target of
human care robot in this work is to assist elderlies using
auditory cues, so we select four sound events that are difficult
to recognize using visual cues: cough, snore, doorbell and
phonebell.

FIGURE 3. Flowcharts of (a) overfitting-based customization and
(b) transfer learning-based customization methods. Custom sound
samples are recorded by a human care robot in a specific user’s
environment, and these customization processes assume the situation
after recording.

A. CUSTOMIZATION METHODS FOR SOUND EVENT
RECOGNITION MODEL
1) OVERFITTING-BASED CUSTOMIZATION
Asmentioned before, the human care robot need only provide
accurate event recognition and services for a specific user.
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The pre-recorded sound of a custom sound event doesn’t
change gradually like a speech changes with age or dis-
ease, but rather drastically with user preferences or electronic
device replacement. The custom sounds are usually fixed
for long time, and custom sound events do not change over
time, so recognition performance is also independent of time.
Thus, it is sufficient for the robot to recognize specific sounds
for events selected by the user, and human care robot does
not usually need to consider other sounds events for the
same events. The first customization method starts from the
idea that accurate recognition of custom sounds can be per-
formed if the SER model is overfitted to custom sounds of
a specific user. In detail, the SER model is trained using
only custom sound samples for the specific user, excluding
general sounds for custom sound events. The flow chart
of this overfitting-based customization process is shown in
Figure 3-(a). The overall training process is same as the
conventional SER training process, but the composition of
training dataset is different. For cough, snoring, and others,
which are non-custom sound events, datasets are constructed
using general sound samples. For doorbell and phonebell,
which are custom sound events, datasets use sound samples
recorded up to 10 seconds of sounds used by a specific user.
In this case, since the training data imbalance between custom
sound events and non-custom sound events is severe, the
custom sounds are replicated by the number of samples in
each non-custom sound event. For robustness of the network
to external noise, on-line data augmentation is applied to
these data, which convolves the room impulse responses and
adds various external noises at every iteration, and the SER
model is trained on the reconstructed dataset with on-line data
augmentation (augmentation details in Section III). Since the
model is trained using only specific custom sounds, it is
overfitted to these sounds, resulting in accurate recognition
and eventually customized to a specific speaker.

2) TRANSFER LEARNING-BASED CUSTOMIZATION
The overfitting-based customization method is intuitive, but
it differs from how humans perceive and respond to custom
sound events. Humans know the general acoustic features for
each sound event like the conventional SER models. When
humans hear a sound for a custom sound event, the sound
is recognized as another sound event, such as music. Unlike
conventional SER models, after misrecognition, humans
learn these specific sounds as doorbell and phonebell classes,
and recognize the same sound as these events for the sub-
sequent occurrence. Humans adjust their SER models based
on information about custom sound events, which is similar
to the process of fine tuning in deep learning-related tasks.
We propose transfer learning-based customization method
that mimics human reaction to custom sound events, and the
flow chart is shown in Figure 3-(b). There is a pre-trained
SER model using a dataset composed of general sound sam-
ples. This pre-trained model does not yet have the ability
to recognize custom sounds. The structure of SER model
consists of convolution-based layers that extract a sound

event-related feature vector from the input spectrogram, and
a linear layer-based classifier that classifies events from the
feature vector. The convolution-based layers serve as a gen-
eral feature extractor that allows acoustic event information to
be revealed well, so the parameters of the convolution-based
layers are fixed to prevent overfitting and training instability
during transfer learning process [39]. The parameters of lin-
ear layer-based classifier are tuned with pre-recorded custom
sounds of the specific user. However, if the model is tuned
with only custom sound samples, the model will be trained to
improve performance on custom sound events without gain-
ing recognition performance on non-custom sound events
(cough and snore). To maintain performance for non-custom
sound events after transfer learning, we utilize anchor data
of non-custom events for tuning together. The anchor data is
selected as data with high probability score that pre-training
model correctly recognizes among the training data of non-
custom events. For a balanced dataset, custom sound samples
are recorded with the same anchor data length as the non-
custom events. During the training of the network, on-line
data augmentation is applied to the dataset, and the lin-
ear layer-based classifier is tuned with pre-recorded custom
sound data and anchor data of non-custom sound events.
Since the transfer learning-based customizationmethod is not
to train the entire model, but to tune the model with a small
dataset, it is possible to customize the SER model faster than
overfitting-based customization method.

B. REAL-TIME SOUND RECOGNITION SYSTEM WITH
CUSTOMIZATION FOR HUMAN CARE ROBOT
Human care robot should recognize sound events in real-time
to immediately provide appropriate services for various sit-
uations. We propose a real-time sound recognition system
for human care robot using the customized SER model.
The SER model is designed to recognize sound events for
2-second-long audio input in order to secure high recog-
nition performance and less computation cost considering
real-time processing. Since SER model is trained to perform
SER on 2-second-long audio input, continuously received
microphone input should be made to 2-second-long seg-
ments. A simple and intuitive method is to execute following
loop: collect microphone input until its length reaches 2 sec-
onds, then feed the 2-second-long segment to SER, then
discard the received audio and collect microphone input again
from scratch. However, this method causes two problems.
First, it might fail to recognize short sound event happened
just around the boundaries of two adjacent audio segments.
Second, the maximum possible delay between sound event
happening and the prediction notification is 2 seconds, which
is quite long for a real-time operation. To mitigate these prob-
lems, we utilize a method to overlap adjacent input segments
fed to SER model. When we apply ol% overlap, it means
last ol% of i-th input segment is reused as the first ol% of
(i + 1)-th input segment. For example, when we apply 75%
overlap, an input segment is obtained from 0 ∼ 2 seconds
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FIGURE 4. Flowchart of real-time sound recognition system for human
care robot.

of microphone input and then the next input segment is
obtained from 0.5 ∼ 2.5 seconds of microphone input so that
the adjacent inputs are overlapped by 75% corresponding to
0.5 ∼ 2 seconds of microphone input. The overlap proportion
between subsequent inputs, ol, can be set between 0% and
100%. This method could effectively enhance robustness of
SER and recognize events faster and more frequent.

The overall process of the real-time sound recognition
system with customization is described in Figure 4. We aim
to develop a human care robot system under the assumption;
the human behaves as natural as possible in the domestic
environment using their ordinary devices. So, we proposed
the system that provides appropriate services through only
human care robots without any additional devices in the user’s
living environment. The system is composed of a human
care robot and a server with GPU processor. The human care
robot records sound around it using microphone and executes
actions depending on SER results. The server receives audio
data from the human care robot and runs SER on the received
audio data. First, when the human care bot enters a user’s
living space, it begins the process of customizing the SER
model. The human care robot records custom sounds of
the user and sends them to the server. This study does not
address how the user and the human care bot communicate
naturally to record the custom sound samples. Instead, the
user simply plays the doorbell and phonebell to the human

care robot, and the robot would record the sounds. The length
of recording depends on the customization methods. The
robot records each custom sound event up to 10 seconds for
overfitting-based customization method and the same length
as the anchor data for transfer learning-based customiza-
tion method. The server uses these recorded custom sound
samples as a dataset to customize the SER model. Customiz-
ing SER model adopts either overfitting-based or transfer
learning-based method. After the customization process, the
human care robot starts real-time sound event recognition,
and audio data is recorded through the robot’s microphone.
The robot stacks audio buffer with pre-defined length, then
send it to the server continuously. Then, to match the length
of SER input audio data to be 2-second-long, the server stacks
audio buffers until it obtains an audio packet longer than
2 seconds. When the audio packet exceeds 2 seconds, the
server gets first 2 seconds from the audio packet and feed
it to SER. Meanwhile, the server removes first (100 - ol)%
of the audio packet and then stacks sound buffer from the
robot again for next SER inference. The server performs SER
on the 2-second-long audio segment using stored customized
SER model. If the recognition result is one of the four events
(cough, snore, doorbell, phonebell), the proposed system
generated pre-programed intelligent actions. When the robot
recognizes the bell sounds, the robot reminds the user that a
guest or phone call is coming using generated voices in the
user’s language. When the robot recognizes a cough sound
continuously, the robot asks the elderly person whether he
or she is sick using hand gestures and language expressions.
On the other hand, if the result is ‘‘others’’, then no action
is executed. All these corresponding actions are programed
in the Pepper using dedicated program on robot operating
system (ROS). The proposed human care robot system auto-
matically performs the customization process and real-time
recognition to minimize intervention between expert and
user. In addition, the collection of custom sound samples is
performed by the human care robot without experts. Since
custom sound events have less variation in acoustic character-
istics for a fixed user, customization can be enabled with only
a small number of custom sound samples. So that, this data
collection process does not require a lot of time and expert
intervention compared to conventional SER systems without
customization.

FIGURE 5. Flowchart of training dataset preparation.

III. EXPERIMENTAL SETUP
A. DATA PREPARATION
For general sound dataset with four sound events (cough,
snore, doorbell and phonebell), we collect and refine
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audio data from various large-scale audio datasets. Google
AudioSet [37] is a large-scale dataset with manually anno-
tated 10-second sound event clips gathered from Youtube
videos. FSD50K [38] is the largest fully-open dataset of
human-labeled sound clips gathered from Freesound. The
SINS dataset [40] contains a continuous recording of one
person living in a vacation home over a period of one week.
Sound clips belonging to four events and others classes are
collected from these datasets in this work. Dishwashing,
glass breaking, knock, door slam, toilet flush, TV sound,
cooking, breathe, and speech occur frequently in domestic
environments, so we include them in ‘others’ class of the
dataset so that SER models could learn that they are not
target sound events. The overall process for collecting data
and constructing training dataset is shown in Figure 5. First,
we download audio data for five sound events from the sound
event datasets. However, the audio data from Audioset are
weakly labeled, and the time locations of sound events in
sound clip are unavailable. As we aim to train SER model
with 2-second inputs for real-time operation, we need time
location of sound events to make sure the 2-second inputs,
obtained by trimming 10-second audio clips, include tar-
get sound events. For cough, we use time locations labeled
in [41]. This time location labelling is qualified to be appro-
priate as it showed reasonable cough recognition performance
in previous studies [41], [42]. For snore, we find time loca-
tion by ourselves by manually locating vibrating sound and
excluding exhaling sound between vibrating sound which has
too low energy. For doorbell and phonebell, we trim the data
by manually listening to and locating the time location, and
additionally collect from theDCASE challenge [43], [44]. All
audio data is resampled to sampling rate of 16 kHz, and the
length of trimmed sound event dataset precisely containing
target sound events over all time span is shown in the 2nd col-
umn of Table 1. The SERmodel is trained with a spectrogram
of 2-second inputs, so it is necessary to modify each sound
clips in the training dataset into 2-second-long sound clips.
Audio clips shorter than 2 seconds are extended to 2 seconds
by padding random noise with −10 dB signal-to-noise ratio
(SNR) from the start and end of audio clips, and audio clips
longer than 2 seconds are shortened by randomly selecting
2-second-long interval within the clips. As this process is exe-
cuted for each training epoch, the randomness is differently
applied each epoch thus this process enhances robustness of
the trained SER model and ensures consistent performance.

For validation of trained SER model’s performance in
the actual environment where human care robot is operated,
we make a test dataset by recording cough, snore, phonebell,
doorbell, and others sound event data in the real domes-
tic environment (apartment rooms: living room, small and
large bedrooms, kitchen) which is shown in Figure 6. The
microphone is placed at six different points and the sound
sources are within 2 meters around the microphone points
to generalize dataset with various recording environments.
In addition, the human care robot should recognize sound
events regardless of position of the robot and the user, so we

TABLE 1. Length in seconds of training and test dataset in each event
class.

FIGURE 6. (a) An apartment used as real domestic environment where
test dataset for SER model is recorded. (b) 6 locations where microphone
and sound sources were placed during recording.

generate and record sound sources at various locations to
make a test dataset that mimics this situation. Human sounds
such as cough and snore are directly made by three people.
Doorbell and phonebell sounds are each recorded with for
two types of custom sounds to realize the actual environment
where specific individual uses the human care robot. For
others class, sounds of various events other than the four
specific classes are recorded. Each sound event is recorded in
2-second-long audio data with sampling rate of 16kHz. The
examples of recorded custom sounds are shown in Figure 1.
Total length of test dataset composed of the recoded sounds
is in 3rd column of Table 1, and they are used for test of
trained SER model. In particular, the doorbell and phonebell
are recorded for 48 seconds and 108 seconds for each
sound type, so a total of 96 seconds and 216 seconds were
recorded.
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B. DATA AUGMENTATION AND FEATURE EXTRACTION
Since our goal is to test practicality for application of sound
recognition system on human care robot, we need to test
SER model that is implemented on a robot. However, there
are various other noise sources interfering sound recognition
system. The robot tends to produces noises from mechanical
and electronic parts such as fans, servomotors, etc. In addi-
tion, it intentionally makes various sounds such as alarm and
artificial speech through an installed speaker for interaction
with users. Other than that, the domestic environments where
the robots are used involve various background noises. These
noises cause recognition error in the trained SER model.
Also, domestic environment induces various types of rever-
beration due to different room structures shown in Figure 1.
To solve these problems, various data augmentations are
applied to give training data the acoustic environment similar
to actual robot-running environment. We utilize a total of
30 minutes of domestic and office noise audio data from the
DEMAND dataset [45] as background noise, and the noise is
added to training data with a random SNR between 5 and 15.
Reverberation is applied to training data by convolving sound
event data with one of a total 60,600 simulated room impulse
responses for small, medium, and large rooms [46]. In each
epoch, additive noises and room impulse responses are ran-
domly selected for each data. The examples of background
noise and room impulse response are shown in (a) and (b) of
Figure 7. By convolving the room impulse response and
adding the background noise to the cough sound data as
shown in (c) of Figure 7, the result is audio that is similar
to acoustics in a real-world environment, as shown in (d) of
Figure 7. Thus, all data is applied with different noise and
reverberation every epoch, increasing the model’s robustness.

FIGURE 7. Examples of data augmentation process. (a) is spectrogram of
background noise in conference room, (b) is an impulse response in large
room, (c) is a spectrogram of cough sound, and (d) is a spectrogram of
cough sound with data augmentation by convolving room impulse
response and adding background noise with SNR of 6dB.

After data augmentation, we extract 64-dimensional
log Mel-spectrograms from the 2-second segment using

hamming window of width 25ms with step 10ms and
number of fast Fourier transform 512. Mean and variance
normalization is applied on every frequency bin of the Mel-
spectrogram. Normalized Mel-spectrograms are utilized as
input features of SER model.

C. SOUND EVENT RECOGNITION NETWORK
ARCHITECTURE
In this work, we select ResNet-34 [47] with Squeeze-and-
Excitation blocks [48], which is state-of-the-art network in
sound event recognition tasks [21], [49], [50] and speaker
recognition tasks [20], [51], [52], [53], in order to focus only
on the custom sound events and customization methods. The
detailed structure is described in Table 2. The channel sizes
are reduced to half from the original model for the computa-
tional efficiency. It also has temporal average pooling layer
to aggregate frame-level features. The last layer is a fully
connected layer with four nodes corresponding to four sound
classes (cough, snore, doorbell and phonebell). After the last
layer, sigmoid function is applied to make result nodes’ value
to be between 0 and 1, and each node represents presence
probability of each sound class. ‘‘Others’’ class refers to
background sound and other sound events, and we classify
output as ‘‘others’’ when none of four nodes are active.

D. DETAILS ON SER MODEL TRAINING AND EVALUATION
METRIC
SER models are trained on NVIDIA TITAN RTX using
PyTorch [54] in the server computer. Adam optimizer [55]
is used with weight decay of 5 × 10−5 and initial learning
rate of 0.001 which is decreased by a factor of 0.95 every
epoch. Binary cross-entropy is used to train SER models to
make them recognize sound events independently. Batch size
is fixed as 200, and the models are trained for 50 epochs.
These hyperparameters are optimized to achieve the best
recognition performance of the conventional SER model for
general sounds. For fine tuning themodel, parameters of other
layers except linear layers (Linear layer 1 and Linear layer
2) are frozen. The linear layers are tuned for 100 iterations
using binary cross-entropy loss with Adam optimizer. The
initial learning rate is 0.001, and it is decreased by a factor of
0.95 every iteration. During one iteration, the batch includes
all anchor data and all custom sound samples.

For evaluation of the SER models, a sound event class is
predicted to exist in the input audio clip when the node corre-
sponding to that event yields value exceeding predetermined
threshold value. When none of four result nodes’ values
exceeds the threshold, none of target sound event class exists
thus the result becomes ‘‘others’’ class. We set the threshold
as 0.5 which is most commonly used values. Trained and
tuned SER models are evaluated with the test dataset, and the
performance is measured using precision, recall and F-score.
The precision, recall, and F-score are defined as:

Precision =
TP

TP+ FP
(1)
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TABLE 2. Configuration of ResNet-34 with squeeze-and-excitation for
sound event recognition.

Recall =
TP

TP+ FN
(2)

F − score =
2 × Precision× Recall
Precision+ Recall

=
2 × TP

2 × TP+ FP+ FN
(3)

where TP, FP, and FN denote the total counts of
true-positives, false-positives, and false-negatives, respec-
tively [56]. The result is true-positive when the label and the
system output both indicate the same event to be active. The
result is false-positive when the system output indicates an
event class as active while the label indicates as inactive. The
result is false-negative when the system output indicates an
event class as inactive while the label indicates as active.
The precision, recall, and F-score are calculated for four
event classes only because others class refers to situations
other than the specific four events thus true-positive does not
exist for others class. We compare the SER performance for
each event with precision, recall, and F-score, and the overall
performance of SER model with class-averaged F-score.

E. HUMAN CARE ROBOT SYSTEM IN INDOOR
ENVIRONMENT
In order to verify the proposed system for human care robot,
we implement the real-time sound recognition system with
customization process in a real domestic environment using
humanoid robot ‘Pepper’ as shown in Figure 8. Pepper has

FIGURE 8. Real-time sound event recognition system in domestic
environment. Human care robot and server are shown in the pictures. The
customized SER model was mounted on the server.

fourmicrophoneswith frequency range from 100Hz to 10kHz
and collects audio data from one center microphone for fast
operation. The server is equipped with Intel®Xeon® Silver
4116 CPU and NVIDIA® TITAN RTX GPUs is responsi-
ble for overall data processing. The human care robot and
the server exchange data with each other through wireless
communication. Based on the proposed system, the human
care robot recognizes sound events including custom sound
events. The pilot test environment is constructed similarly to
real environment by adding speech and other real-life noises.
We make sound events in-situ instead of playing recorded
event sounds to ensure that the test reflects a real situation
as much as possible.

IV. EXPERIMENTAL RESULTS
A. COMPARISON OF PERFORMANCE AND
COMPUTATIONAL TIME BETWEEN
CUSTOMIZED SER MODELS
We compare the sound event recognition performance of con-
ventional model and customized models based on overfitting
and transfer learning. The SER models are tested on a total
of two test datasets. The first test dataset consists of the same
types of sounds as custom doorbell 1 and custom phonebell
1 in, and the second test dataset consists of the same types
of sounds as custom doorbell 2 and custom phonebell 2 in
Figure 1. The data for cough, snore, and others classes are
the same. Precision, recall, and F-score of the SER models
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TABLE 3. Sound event recognition performance of conventional SER model and customized SER models for test dataset containing custom bell sound
1 and 2 sets.

FIGURE 9. Receiver operating characteristic (ROC) curve of sound event
recognition models for cough, snore, doorbell, and phonebell. The models
tested on the dataset containing custom bell sound 2 set.

for overall dataset are listed in Table 3. The conventional
SER model correctly recognizes events with high F-scores
of 0.953 and 0.918 for cough and snore, but it shows rel-
atively poor performances with low F-scores for doorbell
and phonebell. This result indicates that the conventional
SER model rarely recognize custom sounds. In contrast, the
overfitting-based customized SER models outperforms the
conventional SER model by achieving precision, recall, and
F-score of 1.000 or close to 1.000 for doorbell and phonebell.
For coughing and snoring, the scores are about 0.9 or higher,

showing high performance level similar to the conventional
model. Meanwhile, we compare the performance of the
transfer learning-based customized model depending on the
number of anchor data. The transfer learning-based cus-
tomized model is a retrained version of the conventional
model’s classifier layers that improves precision and recall
of conventional model for doorbell and phonebell, achiev-
ing overall F-scores of 0.95. However, when the number of
anchor data is reduced to 10, the recognition performances
for doorbell and phonebell decreases. In addition, the transfer
learning method actually decreases the precision of cough
and recall of snore for the conventional model that is orig-
inally good at recognizing cough and snore, resulting in a
lower F-score. As the number of anchor data increase, the
recall of cough and the precision of snoring improve, and
these metrics converge from over 30 anchor samples. Finally,
the transfer learning-based customized model with 40 anchor
data achieves a good average F-scores of 0.934 for custom
bell sound 1 set and 0.938 for custom bell sound 1 set.
Thus, both overfitting-based and transfer learning-based cus-
tomized models show better recognition performance for
doorbell and phonebell than the conventional SER model.
The overfitting-based customized model outperforms the
transfer learning-based customized model using 40 anchor
data for coughing and snoring, so it achieves the best per-
formance with average F-scores of 0.955 and 0.969 for
test datasets, respectively. Moreover, we also compare the
receiver operating characteristic (ROC) curves of SER mod-
els to confirm how sensitive the model is to recognizing
each event. The ROC curve shows the correlation between
the true-positive rate and the false-positive rate when the
threshold to determinewhether or not each event has occurred
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TABLE 4. Computation time comparison of different customization
methods.

TABLE 5. F-scores with different overlap proportion in pilot test.

is between 0 and 1. The curves of the conventional model and
the customized models tested on dataset containing custom
bell sound 2 set are shown in Figure 9. The customized
models have area under curves (AUCs) almost 1.0 for all
events, which means they are close to perfect classifiers
that correctly distinguish the probability of each event being
present into only 1 or 0. However, the conventional model
has AUCs of 0.806 and 0.701 for doorbell and phonebell,
while AUCs almost 1.0 for cough and snore. These results
indicate that the customized methods improve classification
ability for doorbell and phonebell while maintaining perfect
classification ability for coughs and snoring with AUCs of
almost 1.0. These results of ROC curves and AUCs are the
same as the comparison with the previous three precision,
recall, and F-score.

The customization process takes place after the human
care robot enters into a specific environment and collects
custom sound samples, so it is necessary to compare not
only sound event recognition performance but the computa-
tion time required for the customization process. We derive
the computation time of the overfitting-based and the trans-
fer learning-based customization methods depending on
the number of anchor data, as shown in Table 4. For
transfer learning-based customization, the computation time
increases as the number of anchor samples increases, and it
took 74.69 seconds using the 40 anchor samples. Unlike this,
the overfitting-based customization method trains the model
with the reconstructed dataset instead of just a few samples,
resulting in a computational time that is about 123 times as
long. The size of reconstructed training dataset is the same as
the dataset for training the conventional SER model, so the
computation time is almost the same as about 9,213 seconds
required to train the conventional SER model. In summary,

FIGURE 10. An illustration of input audio signals and real-time sound
event recognition results of (a) doorbell and (b) phonebell with various
overlap proportions of 0%, 50%, and 75%. The red area indicates the
sound event occurrence section, and the dotted lines indicate the
boundary of sound buffers stacked in audio packets. Every one buffer in
the case of 0% overlap, every two buffers in the case of 50% overlap, and
every four buffers in the case of 75% overlap are defined as
2-second-long packets indicated by solid arrows. Label ‘P’ denotes
phonebell, label ‘D’ denotes doorbell, and label ‘A’ denotes absence.

the overfitting-based method has the best performance, but
it takes a long computation time to customize, while the
transfer learning-based method has the trade-off of being less
performant but can be customized in less computation time.
We focus on the sound recognition performance and utilize
the overfitting-based method for the real-time acoustic event
recognition system, with a detailed discussion of the reasons
for this choice in Section V.

B. REAL-TIME SOUND RECOGNITION SYSTEM
DEPENDING ON OVERLAP PROPORTION
We examine how SER performance changes with differ-
ent overlap proportions and determined the optimal value
of the overlap proportion. The pilot test is conducted to
evaluate the performance of the proposed system in a real
domestic environment. The test is performed by making
30 sounds for each sound event with the real-time sound
recognition system in the domestic environment shown in
Figure 8. The system is tested with different overlap pro-
portions (0%, 50%, and 75%), and corresponding F-scores
are listed in Table 5. For doorbell and phonebell sound
events, the proposed real-time SER system shows F-score of
1.000 regardless of the overlap settings. We display the pilot
test results of doorbell and phonebell depending on the over-
lap proportions, and the results are shown in Figure 10. There
are 2-second-long packets completely consisting of doorbell
or phonebell, and the events are accurately recognized for
these sections. In general, doorbell and phonebell are longer
than 2 seconds because they are mainly melodic sounds.
When doorbell or phonebell rings, SER model would receive
at least one 2-second segment that fully contains the acoustic
characteristics of bell sound. So that, the proposed system
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FIGURE 11. An illustration of input audio signals and real-time sound
event recognition results of cough with various overlap proportions of
0%, 50%, and 75% in (a) well-recognized case and (b) poorly-recognized
case. The red area indicates the sound event occurrence section, and the
dotted lines indicate the boundary of sound buffers stacked in audio
packets. Every one buffer in the case of 0% overlap, every two buffers in
the case of 50% overlap, and every four buffers in the case of 75%
overlap are defined as 2-second-long packets indicated by solid arrows.
Label ‘C’ denotes cough and label ‘A’ denotes absence.

recognizes doorbell and phonebell regardless of overlap pro-
portions. However, the accuracy of onset and offset, which
are directly related to appropriate service provision time,
is different depending on overlap proportions. The result of
75% overlap proportion determine the onset and offset within
a smaller margin of error compared to the actual onset and
offset than the results of 0% and 50% overlap proportions.
Since the system with 75% overlap proportion recognizes
sound events every 0.5 second, the error of onset and offset is
within 0.5 second, which is consistent with the result. Thus,
75% overlap proportion is suitable for real-time recognition
of doorbell and phonebell in terms of accurate recognition
and onset/offset determination.

On the other hand, cough and snore sound events show
relatively low performances when overlap is not applied. For
snore sounds, we define the inhalation region, where the
sound is caused by nasal friction occurs in the entire sound,
as the snore event, and perform event recognition and time
localization. As overlap proportion increases, the F-score
increases drastically from 0.909 to 1.000 and from 0.723 to
0.929.We display the well-recognized and poorly-recognized
cases among the pilot test results depending on the overlap
proportions, and the results are shown in Figure 11 for cough
and Figure 12 for snore sound events. In the well-recognized
case, whole sound events of cough and snore appear within
2-second-long packets, and the SER model accurately recog-
nizes the events. However, in the poorly-recognized case, the
events are truncated at the end of 2-second-long packets, and
these packets are recognized as ‘absence’. Actually, cough
is an impulse-like sound, and it has a very short duration.
Snore sound cannot be longer than time taken to breathe
in, which is usually shorter than 2 seconds. Thus, there is

FIGURE 12. An illustration of input audio signals and real-time sound
event recognition results of snore with various overlap proportions of 0%,
50%, and 75% in (a) well-recognized case and (b) poorly-recognized case.
The red area indicates the sound event occurrence section, and the
dotted lines indicate the boundary of sound buffers stacked in audio
packets. Every one buffer in the case of 0% overlap, every two buffers in
the case of 50% overlap, and every four buffers in the case of 75%
overlap are defined as 2-second-long packets indicated by solid arrows.
Label ‘S’ denotes snore and label ‘A’ denotes absence.

a high probability that 2-second-long packets will contain
short part of cough or snore events, rather than whole events.
This leads to low real-time recognition performance in short
overlap proportions. In addition, the systems with 0% and
50% overlap proportions recognize every 2 seconds and
1 second, so even if the events are recognized, the errors
of onset and offset are large. For this reason, long overlap
proportion is required for accurate real-time SER of cough
and snore sounds, and we choose 75% overlap proportion
which shows the best performance with average F-score of
0.982 and accurate onset/offset in this experiment.

C. PILOT TEST OF REAL-TIME SOUND RECOGNITION
SYSTEM IN HUMAN CARE ROBOT
Finally, we test the proposed real-time sound recognition
system, and the waveform of sound captured by the human
care robot and the result of real-time SER using proposed
real-time sound recognition system are shown in Figure 13.
Illustrated example is recorded in the same test setting. A total
of eight sound events are made in real-time, two of each
for four sound event classes (cough, snore, doorbell, and
phonebell) in single take. It can be seen that not only accurate
SER but also reasonable onset and offset are indicated. There-
fore, through the pilot test, we confirm that the proposed
real-time sound recognition system for human care robot
with customization process provides accurate real-time SER
performance in real environment.

V. DISCUSSION
A. CUSTOMIZING SOUND EVENT RECOGNITION MODEL
The conventional sound recognitionmodel shows poor recog-
nition performance for custom sounds that differ from general

42290 VOLUME 12, 2024



S.-H. Kim et al.: Real-Time Sound Recognition System for Human Care Robot

FIGURE 13. An illustration of the SER results over time. (a) a waveform
plot of sound recorded by human care robot, (b) Mel-spectrogram of
recorded audio data, and (c) sound event recognition results using
proposed real-time sound recognition system for human care robot. The
solid line indicates onset and offset points at which the event occurred
and ended.

FIGURE 14. Confusion matrices of (a) overfitting-based customized
models and (b) transfer learning-based customized models tested with
dataset containing general doorbell and phonebell sounds.

acoustic characteristics of events. To improve the recog-
nition performance for custom sounds, we propose two
methods to customize the sound event recognition model
depending on the user: overfitting-based customization and
transfer learning-based customization. These two customiza-
tionmethods accurately recognize custom sound events while
maintaining performance for general sound events. This
result indicates that the proposed customization methods can

help human care robots recognize custom sound events. For
high quality human care robot, not only high recognition
performance but also short customization time are required
to provide accurate services quickly from the first time the
robot enters the user’s environment. The overfitting-based
customized model showed the best recognition performance,
but it requiresmuchmore customization time compared to the
transfer learning-based customized models. The performance
of transfer learning-based customizedmodel can be improved
by utilizing more anchor data, but over 30 anchor data, the
performance increasement is minimal and rather only the
computation time and custom sound samples collection time
are constantly increased. There are advantages and disadvan-
tages to each of these methods, making it difficult to choose
the best one for human care robot. So, we focus on the exact
meaning and purpose of customization. An important point of
customization is not only to quickly adapt to a specific user,
but also to respond only to the customized user. If the robot
recognizes other sound samples containing general sounds as
user’s event, it risks providing services that the user doesn’t
want. We perform an additional recognition test with sounds
other than those of specific user to determine whether the
customized model has the ability to respond only to the cus-
tomized user. The models customized to custom bell sound
1 and 2 sets are tested with general doorbell and phonebell as
shown in Figure 14. The overfitting-based customizedmodels
recognize doorbell and phonebell sounds as others class, but
the transfer learning-based customized models recognize the
general bell sounds as custom sounds of specific user or other
class. This means that the recall (related to false-positive) for
the others class is close to 1 for overfitting-based customized
models and lower for transfer learning-based customized
models. While the overfitting-based customization method
trains all layers of SER network on custom sound events,
the transfer learning-based customization method trains only
clarifier layers on custom sound events. The sound event
feature extractor of transfer learning-based customizedmodel
is specialized for general sounds, so it lags behind the feature
extractor of overfitting-based customized model in its ability
to extract discriminative features for custom sound events.
Thus, the transfer learning-based models have the potential
to recognize other bell sounds as specific user’s bell sounds.
We believe that recognizing only custom sound events is
important for the human robot to provide accurate services,
so the overfitting-based customization method is applied to
the real-time sound recognition system of human care robot.
If a fast customization process is important, then the transfer
learning-based customization method could be utilized in this
case.

B. REAL-TIME SOUND EVENT RECOGNITION
For human care robots to perform accurate sound event
recognition and time localization, we design the real-time
sound recognition system using the segments overlapping
method. Sound event recognition is performed by stack-
ing sound buffers collected from the human care robot for
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2 seconds and using the stacked packets as input to the
customized SER model. In this process, recognition and
time localization performance are compared when receiving
segments every 2 seconds, 1 second, and 0.5 seconds with
0%, 50, and 75% of overlap proportions between packets,
respectively. The results show that the recognition perfor-
mances for doorbell and phonebell remain the best with an
F-score of 1.0 regardless of overlap proportions. However,
the performance of time-localization deteriorates because
smaller overlap proportion results in longer intervals between
recognizing events. Similarly, for cough and snore, the perfor-
mance of time-localization degrades with a smaller overlap
proportion, and furthermore, the recognition performance
also degrades. The reason for this result is that cough and
snore are events that appear for a shorter duration than 2 sec-
onds, which is the length of recognition segment, and if the
recognition cycle is longer, the events are present at the end
of the segments and cannot be recognized. Doorbell and
phonebell have sufficiently long event lengths that recog-
nition performance is not affected by overlap proportion.
Therefore, a high overlap proportion is required to improve
the performance of time-localization for all events and to
improve performance for short events. However, if the recog-
nition cycle becomes shorter than the recognition time due
to too high overlap proportion, real-time recognition cannot
be achieved, so it is necessary to consider the specifica-
tions of the server computer together. In our system, it is
confirmed through the pilot test that 75% of overlap pro-
portion is sufficient to secure accurate event recognition and
time-localization performance while maintaining a real-time
process. These results indicate that human care robots can
accurately recognize custom sound events and provide accu-
rate services using the proposed real-time sound recognition
system with customization.

C. OVERALL SOUND EVENT RECOGNITION SYSTEM WITH
CUSTOMIZATION PROCESS FOR HUMAN CARE ROBOT
The proposed system objectively has the limitation that it
requires additional time and effort in the processes of custom
sound samples collection and customization compared to the
conventional SER system. For customized sound data collec-
tion, we find that the SER models customized with a small
number of custom sound samples achieved high performance
due to custom sound events’ acoustic characteristic, which
have less variation for a fixed user. The robot only needs
to collect a small number of users’ custom sound samples.
For customization process, we minimize user intervention
by automating the customization process and the real-time
sound event recognition process. So that, the minimum effort
to collect users’ custom sound samples is performed initially
by the robot, and most processes are automated and rarely
require an expert, which compensates for the limitations of
the proposed method. Furthermore, the proposed system has
the significant advantage of performing accurate recognition
for custom sound events compared to the conventional SER
systems. From the user’s usability perspective, it is reasonable

to provide more accurate services with less effort. Therefore,
accurate custom sound recognition of the proposed system
can fully compensate for its limitation.

VI. CONCLUSION
In this paper, a real-time sound recognition system with cus-
tomization process for human care robot is proposed. There
are gaps in acoustic characteristics between general sound
events utilized in the conventional SER studies and custom
sounds occurring in real-life environments where human care
robots are applied. The custom sounds are events that users
can change to various sounds such as music according to their
preferences, and the acoustic characteristics are different to
the general sound events. However, the conventional SER
models were overgeneralized on the sound events, so the
performance of conventional SER model is degraded for
custom sound events. To address this problem, we propose
the real-time sound event recognition systemwith customiza-
tion process for human care robot. The overfitting-based and
transfer learning-based customizationmethods utilize custom
sound samples used by a specific user, taking advantage of
the fact that the user and usage environment of the human
care robot hardly change. Overfitting-based customized SER
models significantly improve average F-scores compared
to the conventional SER model from 0.580 and 0.576 to
0.955 and 0.969 for two test dataset containing custom bell
sounds. Transfer learning-based customization SER models
also improve recognition performance on custom sounds,
but they lag slightly behind the overfitting-based customized
models and have issues recognizing sounds as events that
do not belong to the specific user. Since it is reasonable to
recognize only the events of a specific user to provide accu-
rate services in precise situation, we design a real-time sound
recognition system with overfitting-based customization pro-
cess. After the automatic customization process, the human
care robot performs real-time event recognition using cus-
tomized SER model. The robot sends audio buffers to server
which stacks audio buffers into 2-second-long segments with
75% overlap, thus yielding audio segments every 0.5 second.
The reason is that the system with 75% overlap showed high
performance with F-scores of 1.000 and 0.929 for cough
and snore which have impulsive acoustic characteristics with
short-duration compared to 2-second. The server computer
recognizes if sound events exist from audio segments using
customized SER model. Proposed real-time sound recogni-
tion system show the best real-time recognition performance
with average F-score of 0.982 in the pilot test. In addition,
the pilot test verifies that proposed system accurately recog-
nizes sound events including custom sound events in actual
domestic environment. Therefore, the human care robot using
the proposed real-time sound recognition system with cus-
tomization process can understand situations of the user in
the domestic environments and efficiently assist elderlies by
providing appropriate services at the right time.

As future works, the proposed customization process and
the real-time sound recognition system will be verified to
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perform accurate recognition for a larger number of events.
In addition, a big assumption of the proposed system is that
a user and the custom sounds are rarely unchanged from the
moment the human care robot is deployed, but in real-world
application, problems may arise where custom sound events
change or are added that deviate from this assumption. In this
case, new custom sound samples need to be collected and
customize the SER system anew. Thus, it is necessary to
develop an automated process of re-customization through
communication between the user and the human care robot
in order for human care robot to address these issues by itself
without external help.
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