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ABSTRACT Anomaly detection is of paramount importance in many real-world domains characterized
by evolving behavior, such as monitoring cyber-physical systems, human conditions and network traffic.
Current research in anomaly detection leverages offline learning working with static data or online learning
focusing on constant adaptation to evolving data. At the same time, lifelong learning represents an emerging
trend, answering the need for machine learning models that continuously adapt to new challenges in dynamic
environments while retaining past knowledge. Although this aspect could be beneficial to build effective and
robust anomaly detection models, lifelong learning research is mainly dedicated to proposing new model
update strategies in image classification and reinforcement learning domains. The limited scope addressed
by lifelong learning works thus far creates a gap in understanding whether such techniques and capabilities
can be fruitfully exploited in anomaly detection contexts, which represents the main motivation of this paper.
More specifically, anomaly detection provides unique challenges, such as an evolving normal class and
limited availability of anomalies, which significantly differs from the landscape and scenarios of lifelong
image classification and reinforcement learning. In this paper, we face this issue by exploring, motivating,
and discussing lifelong anomaly detection, as well as providing foundations with regard to scenarios,
strategies, and metrics. First, we explain why lifelong anomaly detection is relevant, defining challenges
and opportunities to design anomaly detectionmethods that deal with lifelong learning complexities. Second,
we formulate and characterize lifelong learning settings tailored for anomaly detection problems, and design
a scenario generation procedure that enables researchers to experiment with lifelong anomaly detection using
existing datasets. Third, we perform experiments with popular anomaly detection methods on proposed
lifelong scenarios, emphasizing the gap in performance that could be filled with the adoption of lifelong
learning. In summary, our efforts are directed at assessing the performance of non-lifelong anomaly detection
models in lifelong scenarios and how the adoption of lifelong learning impacts their learning capabilities.
Overall, we conclude that the adoption of lifelong anomaly detection is important to design more robust
models that provide a comprehensive view of the environment, as well as simultaneous adaptation and
knowledge retention.

INDEX TERMS Lifelong anomaly detection, lifelong learning, anomaly detection, continual learning,
continual anomaly detection.
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I. INTRODUCTION
Anomaly detection is the task of finding anomalous data
instances that represent a deviation from the normal
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conditions of a process [1], [2]. The capability to detect
anomalous behavior is of paramount importance in many
disciplines and real-world applications, such as intrusions
in network traffic [3], irregular behavior in cyber-physical
systems such as smart grids [4], as well as IoT environments
[5], or defects in manufacturing processes [6]. The most
widespread approach in machine learning is to model the
normal behavior of the system and identify anomalies as
data instances that significantly differ from the modeled
behavior [7]. This choice reflects the limited availability of
anomalies compared to the large availability of normal data,
which results in the inability to model the anomaly class
accurately. Moreover, it responds to the necessity of detecting
anomalies with varying morphology unknown at training
time [7], [8].

Most works in anomaly detection deal with the problem in
an offline (batch) or online (stream) manner [1]. In evolving
environments, models will become outdated and require
updates, either as a full retraining stage (batch models), or as
an online adaptation stage following concept drift detection
(stream models) [9].

Both types of approaches are equally valid depending on
the domain characteristics. For instance, offline approaches
are commonly used for tasks such as lesion detection in
medical images [10] and gravitational waves detection [11].
On the other hand, online approaches are common in domains
characterized by a temporal dimension, such as real-time
fatigue detection [12] and crowd anomaly detection [13].
Updating models allows them to adapt to the changing
conditions of the normal class. However, it is noteworthy
that updating the model has the side effect of gradually
leading to forgetting past knowledge [14], [15]. Forgetting
is a widely known phenomenon in data streams and online
learning, and it is considered to be a positive feature in some
scenarios as it allows models to focus on the most recent
data characteristics [16]. For instance, in crowd anomaly
detection [13], forgetting is suitable since it is assumed that
only the people present in the current monitored environment
(i.e., the most recent data) are the relevant ones to predict
anomalies within that particular environment and at that
particular time.

On the other hand, lifelong continual machine learning1

research shows that forgetting is a problem that negatively
affects models’ performance when previously experienced
conditions reoccur in the future [17], [18], [19], [20]. For
this reason, lifelong learning seeks to find a balance between
adapting to new knowledge while retaining past knowledge,
inspired by biology, neuroscience, and computer science [14],
[21], [22]. For instance, a popular example in lifelong
reinforcement learning is having an agent able to learn how to
play new games while not losing the ability to play previously
known ones.

1Terms ‘‘lifelong’’ and ‘‘continual’’ are used interchangeably in existing
literature. From now on, we will use the term lifelong to refer to this learning
setting.

FIGURE 1. General view of lifelong learning in terms of challenges (see
Section III), perspectives (see Section IV), and insights (see Section VI)
examined in our paper.

Despite the emerging interest in lifelong learning, current
research on this topic is mainly focused on computer vision
and reinforcement learning [14], [23], [24], [25], with new
trends including bridging active learning with open world
learning [26] and applications to robotics [27], as well
as online image classification [28]. In contrast, anomaly
detection problems are still poorly explored. In this paper,
we focus on lifelong learning from an anomaly detec-
tion perspective, showing that lifelong learning capabilities
can bring several advantages in many real-world settings.
We argue that considering them will yield more sophisticated
models that can detect anomalies while adapting to changing
environments and avoiding forgetting knowledge acquired in
the past. One of the domains where this capability is crucial is
cybersecurity [29]. For example, monitoring network traffic
has to deal with dynamic conditions such as changes in
the infrastructure, user behaviors, as well as new types of
traffic and protocols [30]. Other examples of domains that
we further describe in the paper include human condition
monitoring and fault detection in industrial settings, although
many more can be drawn.

Moreover, we leverage lessons learned in recent lifelong
machine learning studies to showcase the current limitations
of anomaly detection methods when exposed to lifelong
learning scenarios. To this end, we formalize lifelong
anomaly detection and devise the desiderata of models and
scenarios, building the foundations for future work.

Our analytical scope focuses on two main research
questions:

• RQ1: Do lifelong scenarios impact the performance of
non-lifelong anomaly detection models?

• RQ2: Does the adoption of knowledge retention capa-
bilities of lifelong learning provide a valuable improve-
ment in the learning capabilities of existing anomaly
detection models in complex lifelong scenarios?
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With the first research question, we aim to assess whether
current anomaly detection models are effective in lifelong
learning scenarios and if there is a gap that needs to be
addressed. With the second question, we aim to verify
whether adopting lifelong learning strategies can be benefi-
cial in anomaly detection contexts.

The contributions of this study can be summarized as
follows:
• Bridging the gap between anomaly detection and
lifelong learning, presenting the benefits of lifelong
anomaly detection over conventional anomaly detection,
which paves the way for new methods that are more
robust in real-world domains;

• Devising a characterization of anomaly detection sce-
narios from a lifelong learning perspective, which sheds
light on how to design and build more challenging
benchmarks for anomaly detection;

• An open-source2 implementation for scenario gener-
ation method, which can be applied to any anomaly
detection dataset, facilitating wider adoption of lifelong
learning in anomaly detection settings.

• Evaluating popular anomaly detection methods on our
proposed lifelong scenarios, emphasizing challenges
and limitations that occur in this setting.

We summarize challenges, perspectives, and insights in
Figure 1. Our contributions allow us to highlight the potential
of lifelong anomaly detection as a new, promising research
direction. The scenarios we designed and the experimental
results we obtained in our study help us showcase new
challenges, perspectives, and insights brought by lifelong
learning research in the context of anomaly detection.
By doing so, we aim to increase awareness of the potential of
lifelong anomaly detection while rationalizing and providing
foundations with regard to scenarios, strategies, and metrics.
Our study aims to streamline the adoption of lifelong anomaly
detection for researchers and practitioners.

The paper is structured as follows. Section II summarizes
related works in lifelong learning and anomaly detection.
Section III explores the transition from conventional to life-
long anomaly detection. Section IV describes the proposed
lifelong scenario design procedure. Section V discusses
the experimental results obtained in our study. Finally,
Section VII concludes the paper outlining directions of
interest for future work.

II. BACKGROUND
In this section, we first briefly introduce lifelong learning
along with the most popular types of methods. Second,
we provide an overview of the current landscape of anomaly
detection works.

A. LIFELONG LEARNING
Lifelong learning is a continuous process in which a series
of different problems, defined as tasks, are presented to a

2https://github.com/lifelonglab/lifelong-anomaly-detection-scenarios

learning method over time [14]. In the most common lifelong
learning settings, image classification, a few scenario types
built upon task characterization have been proposed. The
most popular ones are task-incremental, class-incremental,
and domain-incremental [31]. Both class-incremental and
task-incremental scenarios provide the model with new,
previously unseen classes that need to be incorporated by
the model [32], [33]. On the other hand, domain-incremental
scenarios provide new distributions of already known classes
[34]. Emerging trends involve online lifelong learning [35],
[36], simultaneous adaptation in terms of new instances and
new classes [37], and repetition of observed tasks [38].
In the lifelong setting, the general goal for the learner is

to be able to pick up new skills, adjust to newly presented
tasks, and draw on previously learned information to tackle
both new obstacles and the recurrence of previously seen
tasks [39]. The key difference between lifelong learning and
incremental/online learning is that, in lifelong learning, the
attention is not solely focused on adaptation but also on
knowledge retention and a model’s ability to simultaneously
handle all tasks, avoiding forgetting [18]. To this end,
lifelong learning strategies are inspired by diverse disciplines,
including neuroscience and biology [14]. Lifelong learning
approaches proposed thus far fall into three main categories.

Regularization-based strategies work by introducing
constraints on weight updates during the incremental training
of neural networks. One of the initial ideas is to prevent
updates for weights learned on previously trained tasks [40].
Another approach is to freeze the first layers in the

model architecture to mitigate forgetting previous tasks while
leaving the last fully connected layer unfrozen to be updated
with new tasks [41]. On the other hand, methods such as EWC
[18] and LWF [42] modify the regularization loss using a
knowledge distillation to prevent drastic changes in already
learned weights, which are important to solve previous tasks.

Dynamic architectures strategies adaptively manipulate
the model architecture during the learning process. Methods
usually expand the network by adding new neurons or layers
as they encounter new tasks [43].

More efficient methods augment dynamic adaptation with
pruning capabilities, which keep model capacity under
control by removing insignificant weights. Popular examples
are PackNet [44] andWinning Subnetworks [45], which splits
the model into independent sub-networks, each specialized
in addressing a different task. This type of approach is
also referred to as forget-free, which holds only under
assumptions such as the availability of task labels and
unlimited capacity.

Replay-based strategies ensure that the knowledge from
previously seen tasks is taken into consideration by the
updated model by recurringly incorporating a summarized
version of data from previous tasks in model updates. The
most standard replay-based techniques focus on preserving
knowledge by storing data samples from previously learned
tasks in a memory buffer and replaying them during model
update [14].
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There are a few strategies devised to select the most
relevant samples for every task, keep the replay buffer size
compact, and, in turn, limit resource usage [46]. The second
category leverages generative models to generate artificial
data samples from previous tasks each time the model is
updated [47]. By doing so, generative replay eases the burden
of storing data samples, reducing the impact of memory
occupation that affects conventional replay strategies.

B. ANOMALY DETECTION
We now turn our attention to anomaly detection. As we
noted in Section I, anomaly detection has become crucial for
decision support in many domains. For instance, the work
in [5] emphasizes the importance of anomaly detection in
IoT environments, such as transportation systems, health care
systems, smart objects, and industrial systems. Similarly,
anomaly detection in log sequences is critical for ensuring
operational and security integrity in heterogeneous systems
[48]. Another interesting example is Industry 4.0, with an
example of 3D printing [49], where early identification of
malfunctions is fundamental to limit economic losses.

In addition to the online vs. offline distinction mentioned
in Section I, anomaly detection methods can also be charac-
terized as supervised, semi-supervised, and unsupervised [7],
[50], based on data and labels availability.

Supervised methods require labels for both normal and
anomaly classes. They also need to be concerned about the
class imbalance problem, and they are generally limited by
the fact that they can only identify known anomalies rather
than discover new ones. Semi-supervised methods are trained
using exclusively normal data, and try to identify anomalies
in unseen data based on their difference with respect to the
learned data distribution of the normal class. Unsupervised
methods are different in that they make no assumptions about
labels in training data and are simply data-driven, i.e., they fit
the model based on all the available unlabelled data. Works
in the literature [50] suggest that semi-supervised methods
should be preferred if enough labeled normal data is available
in order to achieve more robust models.

Due to the peculiarities of the learning settings, semi-
supervised and unsupervised methods typically entail
one-class learning models. Relevant examples of one-class
learning anomaly detection methods are: i) Variational
Autoencoder (VAE) [51], a neural-network reconstruction-
based model with generative capabilities. The model is
trained in a one-class manner by minimizing reconstruction
error on training data, and the reconstruction error is used
as an anomaly score; ii) One-Class Support Vector Machine
(OCSVM) [52], which provides anomaly scores comparing
new data with a hyperplane-based decision boundary learned
during the training stage; iii)Local Outlier Factor (LOF) [53],
which yields an anomaly score based on the ratio between the
local density of new data samples with respect to the average
local density of its nearest neighbors; iv) Isolation Forest (IF)
[54], which provides ensembles of trees and considers the
length of the path from root to leaf to determine the anomaly

score of new samples: a shorter (or longer) path means
that a data point is more (or less) likely to be an anomaly;
v) Copula-based anomaly detection (COPOD) [55], which
predicts the degree of ‘‘extremeness’’ of data samples based
on tail probabilities of an empirical copula, a multivariate
cumulative distribution function.

However, while these methods are well-established and
perform well in a wide number of scenarios, they do
not provide simultaneous knowledge retention and model
adaptation, lacking lifelong capabilities. We can observe that
recent research works started addressing lifelong anomaly
detection. Examples include the adoption of meta-learning
to estimate parameters for multiple tasks in one-class
image classification [56], transfer learning in video anomaly
detection [57], change-point detection coupled with memory
organization [58], [59], and leveraging user feedback to
improve model performance [60], [61].

Despite the clear advantages that lifelong learning could
provide in anomaly detection methods, the number of
published works is still rather limited. We attribute this
scarcity to the novel and emerging nature of the subject
and to the lack of established practices, protocols, and
guidelines. Our study attempts to fill this gap by increasing
the awareness of the potential of lifelong anomaly detection,
while rationalizing and providing foundations with regard to
scenarios, strategies, and metrics, which foster a simplified
adoption of the lifelong learning framework for researchers
and practitioners.

III. FROM ANOMALY DETECTION TO LIFELONG
ANOMALY DETECTION
In this section, we start by analyzing the challenges
arising in dynamic real-world scenarios and emphasizing
the limitations of currently adopted anomaly detection
approaches. Second, we discuss the advantages lifelong
anomaly detection could bring to the anomaly detection
landscapes.

A. WHEN IS NON-LIFELONG ANOMALY DETECTION NOT
ENOUGH?
Offline anomaly detection has shown to be useful in
different applications where it is possible to gather and
process background data, such as post-incident analysis [50],
breast cancer detection [10] and gravitational waves detec-
tion [11]. However, offline models are not sufficient for many
real-world dynamic applications as they do not consider any
change in the normal class.

Online anomaly detection methods partially address this
limitation, providing learning systems with continuous
updating capabilities. However, the underlying assumption
is that only the most recent information is required to
maintain satisfactory performance on the anomaly detection
task. In this context, forgetting is a desirable property that
allows the model to prevent obsolescence [62]. This behavior
is considered to be sufficient to deal with many dynamic
learning settings such as crowd anomaly detection [13]
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and fatigue detection [12]. It is also possible to detect
whether concept drift occurred by monitoring the statistical
properties or the model’s error rate, and updating anomaly
detection models to reflect the most recent conditions of the
environment [62]. However, methods coupled with concept
drift detection also follow the assumption that only the most
recent data is relevant for the anomaly detection task. As a
result, these methods are prone to forgetting past knowledge,
which is a shortcoming in domains with recurring tasks.

Many real-world domains may greatly benefit from the
adoption of lifelong anomaly detection, as they are inherently
characterized by dynamic and quickly evolving conditions,
as well as recurring conditions. These challenges require
model capabilities that foster simultaneous adaptation and
knowledge retention. In the following, we describe three
out of many possible real-world domains where such model
capabilities are required.

First, monitoring human conditions to detect harmful
states must be able to deal with many human activities,
each presenting a unique definition of the normal class.
In this setting, new life habits bring new activities that can
be assimilated as tasks to be learned by the model (e.g.,
jogging, characterized by a high heart rate that should not be
considered anomalous behavior). Forgetting activities carried
out in the past is not acceptable in this setting and brings a
number of practical disadvantages, which are systematically
described in Section III-B.

Another example is the detection of intrusions in a cloud
environment, which requires the ability to deal with a
dynamic environment where multiple virtual servers (cloud
instances) are added or removed over time. Such instances
have different characteristics of normal behavior that depend
on active services and user interactions. The system must
be able to adjust and detect anomalies in traffic patterns in
new cloud instances, but, at the same time, it should not
decrease its performance when analyzing traffic from already
monitored cloud instances.

Looking at a different domain, the identification of faults
and malfunctioning in cyber-physical systems, such as water
treatment plants or smart grids, is characterized by a very
dynamic environment with multiple operating conditions and
different uncontrollable inputs (e.g., geophysical factors in
nature) that change over time. Moreover, components also
age over time or are replaced with other components with
different specifications. In this context, the model should be
able to deal with tasks corresponding to different operating
conditions.

All these domains are characterized by challenges such as a
number of evolving emerging conditions that require prompt
model adaptation, as well as recurring conditions that require
the ability to preserve the knowledge of previously observed
conditions. This duality creates the ideal conditions for the
adoption of lifelong anomaly detection. However, to verify
this assumption, it is important to assess whether lifelong
scenarios impact the performance of non-lifelong anomaly
detection models (RQ1), and whether adopting knowledge

FIGURE 2. A scenario with four recurring tasks (T1, T2, T3, T4).
Conventional anomaly detection requires constant model updates and
results in detection delays. Lifelong learning mitigates this burden by
retaining knowledge of tasks.

retention capabilities actually results in an improvement for
such models in lifelong scenarios (RQ2).

B. LIFELONG ANOMALY DETECTION TO THE RESCUE
Figure 2 shows a representative scenario that compares
conventional anomaly detection with model updates to
lifelong anomaly detection. In the second iteration, lifelong
anomaly detection does not require model updates after a
recurrence of each task. In contrast, conventional anomaly
detection keeps updating the model, resulting in detection
delays, i.e., false predictions, until themodel has incorporated
the new task. Moreover, a scenario with 100 iterations would
require just 4 model updates for lifelong anomaly detection
vs. 400 model updates for conventional anomaly detection,
during which detection delays will occur. Many real-world
scenarios with recurrence could be mapped to it, including
sequences of human activities, geophysical phenomena such
as weather patterns, and operating conditions of cyber-
physical systems.

In Figure 3, we show a comparison between the con-
ventional anomaly detection approaches and a counterpart
for anomaly detection that entails lifelong learning. In this
example, normal class data evolves over time in a task-
sequential manner. As new tasks are presented, the model
is updated – either in an online manner, possibly following
concept drift detection, or in a lifelong learning manner.
It can be observed that the non-lifelong anomaly detection
with a model update approach entails forgetting as a way
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FIGURE 3. Comparison of training/update and inference for non-lifelong and lifelong anomaly detection in the scenario with four tasks
(T1, T2, T3, T4). In non-lifelong anomaly detection, the model forgets the previous tasks as soon as a new task is learned (left – top).
In contrast, the lifelong anomaly detection model aims to retain knowledge of all tasks (left – bottom). This characteristic has a serious
impact on the model’s behavior during inference (right). In non-lifelong anomaly detection, after learning task T4, the model
misclassifies data from previous tasks as anomalous since it considers only data from the current task as normal behavior (right – top).
On the other hand, the ideal lifelong anomaly detection model retains the knowledge of all tasks, preventing the misclassification of
normal data from previous tasks as anomalous (right – bottom). This difference in behavior between non-lifelong and lifelong anomaly
detection may lead to a discrepancy in their performance scores. .

to focus on the most recent data, leading to mistakenly
classifying normal data from previous tasks as anomalous.
On the other hand, the lifelong learning approach for model
update aims at adapting the model to incorporate new tasks
without forgetting previous tasks. The advantage is to exploit
knowledge from the combination of the different tasks to
provide a more comprehensive and robust anomaly detection
model, which correctly identifies normal data from all tasks
as normal behavior.

Overall, even though the conventional anomaly detection
with model update approach would be, in principle, able
to re-learn previously forgotten tasks as they reoccur,
this has several drawbacks, as indicated above. From a
practical viewpoint, frequent model updates require addi-
tional computational resources in the presence of highly
recurring tasks. Moreover, delays in the responsiveness
of the model caused by the time difference between the
appearance of a recurring task and updating the model once
concept drift is detected can be costly in terms of false
or missed detections. We aim to verify this assumption
throughout an experimental analysis involving non-lifelong
anomaly detection models exposed to lifelong learning
scenarios (RQ1).
By analyzing the challenges pertaining to the lifelong

anomaly detection learning setting and by generalizing the
examples presented in Figure 2 and Figure 3, we identify the
following drawbacks of conventional anomaly detection with
constant model updates:

• By forgetting past knowledge and only adapting to
the new normal class distribution, the system may
trigger a large number of false positives when recurring
patterns are presented, leading to a dramatic decrease in
performance until a retraining phase is undertaken;

• Inability for the models to leverage skills learned in the
past in combination with recent skills to solve tasks in a
more compelling way;

• Experimental settings that are too simplistic to reflect
the complexity of many real-world challenges, which
usually involve the appearance of new conditions and
the recurrence of old conditions, requiring a more
comprehensive evaluation across all tasks;

• A consistent use of computational resources for data
processing and model training to deal with recurring
tasks;

• From a theoretical viewpoint, the model will not provide
a comprehensive view of the environment without the
possibility to leverage task similarity and knowledge
transfer across a combination of tasks to solve every
single task.

These drawbacks make current anomaly detection models
rather simplistic in comparison to sophisticated human-level
intelligence when faced with complexities and challenges
brought by lifelong anomaly detection scenarios (RQ1).
Intuitively, humans are exposed to different aspects of reality,
building up skills incrementally throughout their lifespan and
improving their general knowledge base. Introducing similar
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capabilities in models should allow them to provide a more
sophisticated behavior that translates into more reliable and
accurate predictions [63] (RQ2).

In practical terms, by leveraging discoveries in biol-
ogy, neuroscience, and computer science, lifelong learn-
ing enables the possibility of incorporating comprehensive
knowledge in models. Examples include the adoption of task
similarity, curriculum learning, yielding positive forward and
backward transfer across different tasks, as already demon-
strated in image classification [64], object detection [14] and
reinforcement learning problems [23].

Overall, we argue that the adoption of lifelong learning
in anomaly detection would yield the ability to consider the
combination of all these aspects, providing more complex
learning strategies that lead to more informed decisions.
Instead of constantly forgetting and learning each individual
condition, an ideal model could leverage past knowledge to
retain performance across all conditions.We aim to verify this
assumption by designing experiments that uncover whether
the adoption of lifelong learning knowledge retention strate-
gies can be beneficial for non-lifelong anomaly detection
models (RQ2).

In summary, the minimal set of advantages for the adoption
of a lifelong anomaly detection approach includes capa-
bilities such as: i) simultaneous adaptation and knowledge
preservation; ii) inference that exploits a more comprehen-
sive knowledge of the domain or environment at hand;
iii) resource-savvy model updates compared to conventional
anomaly detection methods with constant model updates;
iv) more realistic experimental settings and evaluation
schemes that consider all tasks in combination.

IV. LIFELONG ANOMALY DETECTION: SCENARIOS AND
EVALUATION PROTOCOLS
Given the novelty of lifelong anomaly detection, as shown by
the limited availability of research works on the subject, it is
important to devise procedures and guidelines to standardize
its adoption. This section aims to provide new perspectives
on how to address lifelong learning challenges in anomaly
detection. To this end, we devise a categorization of lifelong
learning scenarios, provide a scenario creation algorithm, and
evaluation protocols that can guide researchers interested in
the problem.

A. LIFELONG LEARNING SCENARIOS: AN ANOMALY
DETECTION PERSPECTIVE
Current lifelong learning approaches are focused on classifi-
cation tasks, where tasks are defined as sets of classes (e.g.,
in the MNIST dataset, any combination of two classes among
its 10 classes), and the learning workflow encompasses a
sequence of n tasks T = t1, t2, . . . , tn where the model is
challenged to learn new tasks without forgetting previous
tasks.

Another important element of comparison is the
type of learning scenarios. We recall that lifelong
image classification usually describes three types of

scenarios: task-incremental, class-incremental, and domain-
incremental [31]. These scenarios differ based on the
availability of task labels and task boundaries. For all scenar-
ios except domain-incremental, in the simple classification
example mentioned above (MNIST), task labels identify a
specific subset of 10 classes currently being presented to the
model, whereas task boundaries identify the beginning/end
of such task. On the other hand, in a domain-incremental
scenario, tasks represent a new distribution of already known
classes, where task labels identify specific distributions
and task boundaries indicate the moment when distribution
changes. The availability of the task labels and boundaries
depends on the degree of available domain knowledge [65].
A more detailed description of learning scenarios in lifelong
classification may be found in [31]. It is worth noting that
emerging scenarios are being proposed to account for the
limitations of previously existing ones. One example is the
consideration of the temporal dimension in online lifelong
learning scenarios [66].
The notion of a task in anomaly detection clearly

differs from the conventionally adopted definition in image
classification since we usually deal with two classes: normal
and anomaly. Tasks in this context represent various aspects
of the normal class, which is expected to evolve over
time. Moreover, the normal class may also change its role
depending on the context, i.e., what is normal in one
context can be anomalous in another, further increasing the
complexity of the problem. To differentiate lifelong anomaly
detection setting, we define a self-consistent behavior3 of
the normal class, alongside the specific anomalies occurring
with it, as a concept. For instance, in monitoring human
conditions to detect harmful states, the entire normal class can
be thought of as a set of concepts: resting, jogging, and eating,
all presenting different characteristics. In lifelong anomaly
detection, multiple consistent behaviors of the normal class
are presented over time instead of new classes as in class
and task-incremental scenarios, and we are focused on the
evolution of a single normal class instead of the evolution of
all classes as in domain-incremental scenarios. For example,
a high heart rate can be considered an anomaly in resting
conditions but is expected during jogging, and therefore it
does not represent an anomaly in this context. Therefore,
to deal with the inadequacy of lifelong image classification
scenarios in the context of anomaly detection, we define
distinctive scenarios for this setting. Following the example
of anomaly detection in human conditions, concept identifiers
define a consistent behavior of the normal class (a specific
activity), whereas concept boundaries represent explicit
information on whether the currently analyzed concept
(a specific activity) has changed. Concept identifiers and
concept boundaries may correspond to task labels and task
boundaries, respectively, in lifelong image classification.

3Abehavior could correspond to a new distribution, change of a performed
activity, or a new state of the environment, depending on the specific
analytical context considered.
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Based on this consideration, we identify the following
learning scenarios in increasing order of complexity:

• Concept-aware: Known concept identifier and concept
boundaries.

• Concept-incremental: Unknown concept identifier but
known concept boundaries.

• Concept-agnostic: Unknown concept identifier and
concept boundaries

In reference to our example of anomaly detection in human
conditions, a concept-aware scenario implies that the model
is aware of the currently processed activity and its lifespan
(at both training and inference time). On the other hand,
a concept-incremental scenario only provides an indication
that a change of activity has occurred without any identifying
information about the specific activities. Finally, a concept-
agnostic scenario is the most challenging, as it does not
provide any supporting information about the current activity
being performed and its lifespan. These notions are general
and can be adopted in any domain.

B. SCENARIOS DESIGN
In the following, we propose a scenario design procedure that
applies to most datasets and enables researchers and prac-
titioners to transition their current scenarios and evaluation
setup toward lifelong anomaly detection.

Algorithm 1 presents a general pseudo-code for scenario
design. It requires users to define a few parameters, which
determine the creation of diverse scenarios: the number of
desired concepts c, Normal (N), and Anomaly (A) data
from a given dataset, and three functions: φ, γ , and λ. The
algorithm leverages concept creation functions φ and γ to
create normal and anomaly concepts based on normal and
anomaly data, respectively. Their goal is to transform the
original dataset into self-consistent sets of data points having
common characteristics. An example implementation for φ

and γ is a clustering algorithm of choice, based on user
preferences. The assignment function λ matches each normal
concept with an anomaly concept, leading to a combined
concept containing one normal and one anomaly concept,
which allows formodel training and evaluation. The sequence
of these combined concepts defines the complete scenario.
An example implementation for λ is mapping an anomaly
cluster to its closest normal cluster.

Focusing on Algorithm 1, first, we create concepts for
the normal class through a concept creation function φ

(Line 1). The concept creation function can leverage any
aspect or feature value that allows us to delineate the
boundaries of one concept. Second, we create concepts
for the anomaly class through anomalous concepts creation
function γ (Line 2). Third, for each normal concept CNi ,
we select a corresponding anomaly concept CAj using a
function λ (Line 3-5). The combination of CNi and CAj is
a concept added to the lifelong scenario (Line 6). Each time a
concept is built, the selected anomaly concept CAj is removed
from the set of available anomaly concepts CA so that it

Algorithm 1 Scenario Design Protocol
Input: c – Number of desired concepts
Input: N,A – Normal/Anomaly data
Input: φ – Concepts creation function for normal data
Input: γ – Concepts creation function for anomalies
Input: λ – Assignment function

1 CN ← φ(N , c) // Create concepts
{CN0 ,CN1 , . . . ,CNc}

2 CA← γ (A, c) // Create concepts {CA0 ,CA1 , . . . ,CAc}
3 T ← ∅ // Result scenario
4 for CNi ∈ CN do
5 j← λ(CA,CNi ) // Match anomaly-normal

concepts
6 T ← T ∪ (CNi ,CAj ) // Add concepts to scenario
7 CA← CA−CAj // Remove used anomaly concept
8 end
9 return T

FIGURE 4. Lifelong evaluation protocol. The model handles a sequence of
concepts i = 1, 2, 3. For each concept i , the model is trained on training
set Ti (learning phase). After each learning phase, the evaluation phase is
triggered, where the model anomaly detection performance (in terms of
ROC-AUC) is evaluated on all testing sets Ej from all concepts (previous,
current, and future). The evaluation protocol creates a matrix R, in which
the entry Ri,j represents model performance in terms of ROC-AUC on
concept j after learning concept i . This matrix is used to compute final
metric values, such as Lifelong ROC-AUC, BWT, and FWT.

appears only once throughout the scenario (Line 7). The
algorithm returns the resulting scenario as a sequence of
concepts (Line 9), each of which may need to be separated
into training and evaluation data depending on the learning
settings, e.g., unsupervised or semi-supervised.

The proposed method allows us to create diverse scenarios
depending on the user selection of φ, γ , and λ. For
example, it is possible to leverage k-Means to cluster normal
and anomaly concepts (leveraging φ, and γ functions)
and assign each anomaly concept to the closest normal
concept (leveraging λ function). Alternative scenarios can
be designed by customizing φ, γ , and λ, paving the
way for a wide range of possible scenarios. To simplify
this task, our code is publicly available and can be
used to easily generate scenarios for any dataset chosen
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Algorithm 2 Pseudo-Code of the Evaluation Protocol
Input: T – Sequence of N training sets
Input: E – Sequence of N testing sets
Input: L – Learning model
Input: ρ – Evaluation function computing ROC–AUC

1 RN×N = {} // Initialize results matrix NxN
2 for Ti ∈ T do
3 L ← update L with Ti // Train/update model
4 for Ej ∈ E do
5 Ri,j← ρ(L,Ej) // Evaluate L on Ej
6 end
7 end
8 return R

by users: https://github.com/lifelonglab/lifelong-anomaly-
detection-scenarios. We note that different choices of φ and
γ may lead to concept imbalance, i.e., some concepts may
present significantly fewer samples than others. This situation
may be problematic in some settings, or exacerbate the
learning complexity for some anomaly detection models.
In these cases, consideration of strategies for imbalanced
learning such as resampling [67], cost-sensitive learning, and
special-purpose algorithms [68]. It is worth noting that, in our
experiments, we did not experience high imbalance ratios for
concepts generated with our protocol.

C. MODEL EVALUATION
Lifelong learning scenarios require a continuous evaluation
across all concepts. To realize this goal, we adopt a lifelong
learning evaluation protocol that considers the performance
of all concepts across a learning scenario.

Algorithm 2 provides a general overview applicable to
a vast number of use cases. Without loss of generality,
the protocol can be modified to accommodate specific
requirements, e.g., recurring concepts, time-based concepts,
unsupervised learning, etc. Moreover, our protocol can
support any base model of choice, and any data preprocessing
step, such as data augmentation and missing data treatment,
to deal with specific data challenges.

First, the evaluation protocol initializes a matrix R to
accommodate anomaly detection results for specific tasks
(Line 1). Second, the protocol iterates over training sets
for all concepts (Line 2). For each concept, the model is
trained/updated (Line 3) and evaluated on all testing sets for
all concepts (Lines 4-5), i.e., previous, current, and future
concepts. Our protocol yields a matrix R, where entries
Ri,j define the ROC-AUC metric of the model evaluated on
concept j after learning concept i. A graphical representation
of this protocol is shown in Figure 4.
The matrix R can be used to directly compute lifelong

learning metrics, such as backward and forward transfer.
These metrics allow us to assess model behavior more

extensively than standard performance metrics by taking

into account the model’s performance on different concepts
(previous, current, and future).

Inspired by [69], we propose a Lifelong ROC-AUC – a
lifelong variant of ROC-AUC that can adequately assess
models’ performance on all concepts after learning every
new concept, instead of models’ performance on just a single
concept. It is defined as:

Lifelong ROC-AUC =

∑N
i≥j Ri,j

N (N+1)
2

(1)

The metric is computed considering previously learned
concepts, including the current concept, which corresponds
to averaging over N (N+1)

2 entries from lower triangular.
We favor ROC-AUC over threshold-dependent metrics such
as Precision, Recall, and F–Score, since it allows us to
evaluate the model’s performance more comprehensively.
ROC–AUC may be swapped with other metrics of choice
without impacting the validity of the protocol.

Backward Transfer for ROC–AUC (BWT ) measures
the impact of learning new concepts on the performance of
all previously learned concepts. Negative backward transfer
suggests that the model is prone to forgetting. A strongly
negative value is also sometimes regarded as catastrophic
forgetting. On the other hand, positive backward transfer
suggests that learning new concepts benefits models’ perfor-
mance on previously learned concepts. Backward transfer is
computed over all concepts as:

BWT =

∑N
i=2

∑i−1
j=1 Ri,j − Rj,j
N (N−1)

2

(2)

The impact of learning each concept on the model’s
performance on future concepts is measured by Forward
Transfer for ROC–AUC (FWT ). Forward transfer can also
be thought of as the zero-shot model performance on future
concepts since it assesses model performance on unseen
concepts. It partially depends on concept similarity (task
similarity) and the model’s knowledge transfer ability. It is
computed as:

FWT =

∑N
i<j Ri,j

N (N−1)
2

(3)

It is noteworthy that the protocol slightly differs based
on the learning setting. Specifically, in concept-aware and
concept-incremental scenarios, batches Ti (training) and Ei
(evaluation) correspond to the single i−th concept. As for
concept-agnostic settings, a batch does not necessarily
correspond to a single concept since the setting assumes that
no explicit concept boundaries are provided to the lifelong
algorithm. As a result, the evaluation may require considering
multiple batches as belonging to the same concept or a single
batch including data for more than one concept.

V. EXPERIMENTS
Our experiments are directed at answering two main research
questions: i)Do lifelong scenarios impact the performance of
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FIGURE 5. Lifelong scenarios variants based on different choices of concept creation functions γ and λ: i) clustered anomaly concepts assigned to the
closest normal concept (CC), ii) clustered anomaly concepts assigned randomly to normal concepts (CR), and iii) anomalies randomly assigned to normal
concepts (R).

non-lifelong anomaly detection models?; ii) Does adopting
lifelong learning provide a valuable improvement in the
learning capabilities of anomaly detection models in lifelong
scenarios? We empirically address these two questions in the
following two subsections and provide insights on anomaly
detection performance, forgetting, and task similarity. To
answer the above question, we design three lifelong scenario
variants based on different choices:
• CC: clustered anomaly concepts assigned to the closest
normal concept, where γ and φ leverage a clustering
function, and λ maps a given normal concept to the
closest anomaly concept.

• CR: clustered anomaly concepts assigned randomly to
normal concepts, where γ and φ leverage a clustering
function, and λ assigns a random anomaly concept to a
given normal concept.

• R: anomalies randomly assigned to normal concepts,
where γ leverage a clustering function, φ creates
anomaly concepts using random sampling, and λ assigns
a random anomaly concept to a given normal concept.

For all scenario variants, we use k-Means as the clustering
function. These scenarios are conceptually represented
as two-dimensional plots in Figure 5. In our experiments,
we extract between 5 and 20 concepts depending on the
complexity and the size of each dataset.

In our experiments, we employ a diverse set of datasets
encompassing cybersecurity and smart grids.
• NSL-KDD [70]: Widely adopted dataset containing
records of network traffic gathered during the DARPA
Intrusion Detection Systems evaluation program;

• UNSW-NB15 [71]: The dataset containing records of
network traffic describing hybrid real modern normal
and contemporary synthesized attack activities;

• Energy [72]: Sensor-based anomaly detection in photo-
voltaic/solar power plants. The data was collected from
power plants located in Italy (17 plants, 2.5 years);

• Wind [4]: Wind power production dataset, contain-
ing anomalous patterns occurred in eolic/wind parks
(Wind). The data was modeled using the Weather

Research & Forecasting (WRF) model (5 plants,
2 years).

All datasets present fairly different feature representations
and represent data collected by heterogeneous systems. They
also present different types of anomalies and complexity
levels.
We use five popular anomaly detectionmodels described in

Section II: One-Class Support Vector Machines (OC-SVM),
Local Outlier Factor (LOF), Isolation Forests (IF), Variational
Auto-Encoders (VAE), and Copula-based Outlier Detection
(COPOD).
We leverage the following learning strategies:
• Naive lifelong: models are updated as new data becomes
available, without any smart lifelong learning strategy to
tune adaptation and knowledge retention. By updating
the model only based on the new data, a reasonable
expectation is that the model will gradually or catas-
trophically forget knowledge of previously presented
data. It can be considered as a lower-bound non-lifelong
baseline learning strategy.

• Multiple Single-Task Experts (MSTE): a way to
simulate upper-bound model performance in a non-
lifelong scenario. In this strategy, a pool or ensemble of
models, each of which is an expert for a single concept,
is adopted. Whenever a new concept is presented,
a new model is trained on the new data and added
to the pool. We note that this is an unrealistic setting
since, in real-world scenarios, it requires extremely
high computational resources to deal with a poten-
tially infinite number of models, and the availability
of concept identifiers, which are not available for
concept-incremental and concept-agnostic scenarios.

• Replay: a replay-based method that preserves selected
data samples from previous concepts in a memory
buffer, which is limited in size by a parameter known as
a budget. When the model faces a new task (concept),
the replay buffer is updated to include the data from
the new concept. As a result, the replay buffer contains
knowledge of all concepts presented so far. The replay
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buffer is then used while updating the model to mitigate
forgetting [46]. The expectation is that, by providing a
summarized representation of all concepts, the model
should, in principle, be able to preserve a satisfactory
performance on all concepts, without a significant
degree of forgetting for any of the concepts. In our
experiments, we use a simple balanced replay buffer
with a very constrained budget of 3,000 data samples.

To this end, we adopt the learning evaluation workflow in
Algorithm 2, which provides the model with the challenge of
adapting to new data while retaining knowledge of previously
observed data. Technically, we create a matrix where the
performance of the model is measured on all concepts after
learning each single concept. Metric computation takes place
according to Equations 1-3.

We address RQ1 by devising experiments to assess
whether non-lifelong anomaly detection methods are
impacted by the challenges brought by lifelong scenarios.
To this aim, leverage the two mentioned strategies (Naive
lifelong and MSTE) to showcase if there is a gap between
models’ performance in non-lifelong scenarios vs. lifelong
scenarios, which would suggest the need for adopting
lifelong learning strategies. Particularly, we are interested
in observing whether MSTE achieves higher performance
values in terms of ROC-AUC, BWT, and FWT compared
to Naive. This expectation is motivated by the observation
that Naive only adapts to new data without any knowledge
retention mechanism, while MSTE does not experience
forgetting due to the creation of a single expert model for
each task.

We address RQ2 by devising experiments to assess
whether the adoption of lifelong learning strategies has
the potential to increase the performance of non-lifelong
anomaly detection models in lifelong scenarios. To this
aim, we analyze the impact of the adoption of a lifelong
Replay strategy on the performance of all base models to
show that the adoption of lifelong learning strategies may
be beneficial to improve model performance in a lifelong
anomaly detection scenario. Experimental results4 are shown
in Tables 1, 2.

VI. RESULTS DISCUSSION
In this section, we discuss results alongside two main
perspectives: the impact of lifelong scenarios on non-lifelong
anomaly detection problems, and the impact of the adoption
of lifelong learning strategies providing knowledge retention
capabilities.

A. IMPACT OF LIFELONG SCENARIOS ON NON-LIFELONG
ANOMALY DETECTION
In this subsection, we focus on providing insights on how
non-lifelong anomaly detection methods are impacted by the
challenges brought by lifelong scenarios (RQ1).

4We note that our results are obtained by averaging multiple executions
with different hyperparameter values (see Appendix ) to showcase the
reliability of the results, similarly to a cross-validation evaluation [73], [74].

We present the experimental results in Table 1. The
general trend that can be observed across all methods
and datasets is that there is a gap between the anomaly
detection performance in terms of ROC-AUC achieved
by widely adopted anomaly detection methods and the
hypothetical upper-bound defined by multiple single-task
experts (MSTE). Notably, with the Energy dataset, base
models with a Naive learning strategy are significantly
outperformed by the MSTE approach (for example, for
Isolation Forest, CC: 0.64 vs. 0.88—CR: 0.65 vs. 0.97 — R:
0.59 vs. 0.97). This is not an isolated case but applies to the
other datasets as well.

It is noteworthy that MSTE achieves very high perfor-
mance inmost cases, highlighting that the scenario generation
procedure decomposes each dataset’s complexities into sub-
complexities (concepts), which aremuchmoremanageable to
learn in isolation but much more challenging when provided
as a lifelong scenario. This phenomenon has been observed
in [65] in the context of non-lifelong one-class classification.
Overall, it looks clear that non-lifelong anomaly detection
methods are penalized in lifelong scenarios, leading to
sub-optimal performance scores, as evident by the low
ROC-AUC values. We present a graphical illustration of this
phenomenon in Figure 8, which shows a clear performance
gap between non-lifelong and lifelong strategies.

Another lifelong metric worth analyzing is the backward
transfer (BWT) as it allows us to analyze how learning new
tasks affects model performance on previous tasks. We recall
that negative values of BWT indicate that learning new tasks
introduces forgetting in previously learned tasks, whereas
positive values are indicative of effective knowledge transfer
capabilities across tasks (see Section IV-C). We observe that
all base models with Naive strategy present negative values
of BWT, e.g., with Wind (R), models showcase values from
−0.11 to −0.52, which shows that they are affected by
a degree of forgetting (from mild to catastrophic). This
phenomenon is more clearly visible in Figure 6 (VAE) and 7
(LOF), where the performance on C0 drops from 1 to 0.69
(VAE) and from 0.99 to 0.41 (LOF) after the last concept
C4 is learned. Negative backward transfer is also observed for
C2, where model performance gradually drops from 0.99 to
0.5 (VAE) and from 0.99 to 0.34 (LOF) after learning C3.
Subsequently, learning C4 leads to increased forgetting of
C2, and the performance on C2 drops to 0.078 (VAE) and
0.098 (LOF). Another exciting aspect that can be observed
is a positive backward transfer, which indicates that learning
a new concept improves the performance of the model on a
previous concept. This is emphasized by the performance on
C0 before and after learning C2. Results show that learning
C2 increases the performance on C0 from 0.51 to 0.96 (VAE)
and from 0.42 to 0.55 (LOF). It means that the model
can leverage the knowledge acquired while learning C2 to
present better anomaly detection capabilities on concept C0
by leveraging similarity between concepts (task-similarity).
By analyzing BWT, we uncover concept similarity rela-
tionships and measure models’ ability to retain and reuse
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TABLE 1. Experimental results for Naive lifelong strategy with all methods (IF, LOF, COPOD, OC-SVM, and VAE) and datasets (Energy, NSL-KDD, UNSW,
Wind) in the three concept-incremental scenarios (CC, CR, R), according to ROC-AUC, BWT, FWT metrics. For ROC-AUC, we also report results obtained with
multiple single-task experts (MSTE) in parenthesis (upper bound).

TABLE 2. Experimental results for Replay strategy with all methods (IF, LOF, COPOD, OC-SVM, and VAE) and datasets (Energy, NSL-KDD, UNSW, Wind) in
the three concept-incremental scenarios (CC, CR, R), according to ROC-AUC, BWT, FWT metrics.

FIGURE 6. Concept-level ROC-AUC performance for the lifelong learning
scenario. Each row i = 0, 1, . . . represents the performance on all
concepts observed so far after learning the concept Ci (WIND (R) dataset;
Naive lifelong strategy; VAE base model).

knowledge for improving its overall performance across all
concepts.

FIGURE 7. Concept-level ROC-AUC performance for the lifelong learning
scenario. Each row i = 0, 1, . . . represents the performance on all
concepts observed so far after learning the concept Ci (WIND (R) dataset;
Naive lifelong strategy; LOF base model).

Finally, moving our focus to Forward Transfer (FWT ),
we can observe values from 0.24 – UNSW (CR) with
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COPOD to 0.91 – Wind (R) with COPOD. This result
suggests a moderate-to-high concept similarity that could be
leveraged by models. Interestingly, these values are higher
than those commonly seen in image classification since the
one-class learning setting is inherently different from multi-
class classification. Specifically, since we compute FWT
using ROC-AUC as a base metric, the random reference value
is 0.5, whereas, in image classification, it is the ratio between
1 and the number of classes in the single task. This difference
exacerbates the complexity of a comparison of FWT in these
two settings. However, we argue that interpreting FWT in
this context requires additional in-depth research focused
on leveraging concepts similarity for one-class anomaly
detection.

In summary, we observed a gap in ROC-AUC performance
(Naive lifelong vs. MSTE) alongside with the presence of
forgetting (emphasized by negative values of BWT) and
degrees of concept similarity (observed via BWT and FWT ).
These phenomena show that lifelong learning scenarios
generated with our approach allow us to adapt non-lifelong
datasets to lifelong anomaly detection scenarios, introducing
lifelong challenges which yield more demanding conditions
for models (RQ1).

Additionally, our results show that tackling anomaly
detection problems from a lifelong learning perspective can
enable amore comprehensive evaluation ofmodels, including
measuring the impact of forgetting and task transferability
on models. Concept-level granularity in results also allows
us to uncover relationships between concepts in the learning
scenario, as well as highlight specific concepts for which
models are challenged more than others, enabling a more
comprehensive evaluation and in-depth model analysis.

B. IMPACT OF THE ADOPTION OF A REPLAY-BASED
LIFELONG LEARNING STRATEGY
In this subsection, we analyze the impact of the adoption
of a lifelong knowledge retention strategy (Replay) on the
performance of anomaly detection models. Our effort is
aimed at verifying whether the adoption of lifelong learning
strategies may be beneficial to improve model performance
in a lifelong anomaly detection scenario (RQ2).

In order to assess the impact of introducing Replay
strategy, we compare anomaly detection performance
(ROC-AUC) and backward transfer (BWT) for Replay
(Table 2) and the Naive lifelong strategy (Table 1). We can
observe that the Replay strategy brings various levels of
improvement, as shown by higher values of ROC-AUC and
BWT. In some cases, the improvement margin is particularly
high. For example, in Energy (CC), the Replay strategy can
improve ROC-AUC by 0.18 (IF). There are also many cases
in which the improvement margin is moderate. For example,
in Wind (CC), Replay yields a ROC-AUC improvement of
0.08 (IF). Finally, the improvement margin is quite limited
in cases such as UNSW (CC), in which Replay improves
the performance of Naive by just 0.02 (IF). Similar patterns
can be observed across all base models (IF, LOF, COPOD,

OC-SVM, VAE). A summarized visual perspective of these
results is shown in Figure 8, which emphasizes the differences
between Naive, Replay, and MSTE.

Results in Table 2 show that in the majority of cases (54
out of 60), the simple Replay strategy achieves better results
in terms of ROC-AUC than the Naive lifelong approach.
Most of the exceptions regard the UNSW (R) scenario.
We attribute this result to the concept complexity in UNSW
and the simplicity of the Replay strategy. In this scenario, it is
evident that more complex lifelong strategies are required to
outperform the Naive baseline.

The improvement in performance is also supported by
the observation of a decrease in forgetting, as shown by
improvements in Backward Transfer (BWT) results when
comparing Naive lifelong and Replay. Improvements are
considerable, for example, in UNSW (R), where BWT for
VAE goes from −0.46 to −0.08 for VAE, as well as in Wind
(CR), where BWT goes from−0.46 to−0.18. Improvements
with the Replay strategy compared to Naive lifelong can also
be observed in Figure 9 in comparison to Figure 6, where we
observe a significant increase in performance and a decrease
in forgetting in all cases except two (performance on C0 after
learning C2, and performance on C1 after learning C1). These
two cases highlight that, although the Replay strategy is
expected to improve the average model performance due
to consideration of all concepts, it also provides additional
challenges for the model, which is tasked to learn multiple
concepts. As a result, minor decreases in performance for
specific concepts should be expected.
We note that there is still a gap between Replay results and

simulated upper-bound MSTE results. We can observe that
MSTE presents better results than Replay in most cases (56
out of 60). There are 4 cases in which the Replay strategy is
better than MSTE. The reason behind this phenomenon can
be attributed to the fact that whileMSTE can build specialized
models for each concept, it cannot leverage knowledge
from multiple tasks, thus exploiting task similarity, which,
in contrast, is supported in a basic form by Replay.
The improvements in ROC-AUC and BWT observed

with Replay when compared with Naive suggest that
adopting lifelong learning techniques and learning strategies
referenced in Section II, as well as designing new ones, will
be beneficial for the advancement of anomaly detection in
lifelong learning scenarios (RQ2). At the same time, the
discussed gap in performance between Replay and MSTE
suggests that more robust lifelong strategies may be devised
to further improve model performance in complex lifelong
anomaly detection scenarios.

C. SUMMARY OF GAINED INSIGHTS
In summary, our experimental analysis discussed above led
us to learn the following insights:

• A performance gap exists between non-lifelong and
lifelong learning strategies in lifelong anomaly detection
scenarios (comparing MSTE vs. Naive) (RQ1). This
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FIGURE 8. Summary of experimental results for all datasets (Energy, UNSW, Wind) in three scenario types (CC, CR, R) comparing non-lifelong
(Naive), lifelong (Replay), and upper bound (MSTE) learning strategies. This figure illustrates the performance gap between non-lifelong and
lifelong strategies in lifelong anomaly detection scenarios.

FIGURE 9. Concept-level ROC-AUC performance for the lifelong learning
scenario. Each row i = 0, 1, . . . represents the performance on all
concepts observed so far after learning the concept Ci (WIND (R) dataset;
Replay strategy; LOF base model).

gap was systematically observed across all scenarios
and datasets, and needs to be addressed to increase the
reliability of anomaly detection models.

• In such scenarios, the adoption of (even simple)
lifelong learning strategies such as Replay enables an
improvement in anomaly detection performance when

compared to non-lifelong models (comparing Replay vs
Naive) (RQ2).

• Forgetting was broadly observed for many anomaly
detection base models when exposed to the complexity
of lifelong scenarios, as emphasized by negative values
of BWT. This phenomenon suggests that there is an
opportunity to build more robust models that simulta-
neously deal with adaptation and knowledge retention
(RQ1, RQ2).

• Our in-depth lifelong evaluation of model perfor-
mance revealed cases of positive concept similarity
(task similarity). This aspect translates in high values
of the forward transfer metric (FWT), leading to
above-random anomaly detection performance when
models are faced with data from not yet learned
concepts. Concept similarity is also leveraged bymodels
to improve performance on previously learned concepts
after learning a similar concept, resulting in improved
values of backward transfer (BWT).

VII. CONCLUSION
In this paper, we addressed lifelong learning in the context
of anomaly detection. In general, our contribution stands in
the definition of a common ground for research on this topic
and showcasing challenges, perspectives and insights brought
by lifelong learning for anomaly detection. Specifically,
we devised a learning setting characterization that could be
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TABLE 3. Hyperparameters for all the anomaly detection models
considered in our experiments. All models are trained and evaluated five
times using all hyperparameter values in the sets shown in the table, and
the final results are averaged.

useful to adopt lifelong learning in the context of anomaly
detection. Moreover, we designed a procedure for scenario
generation that can be used to create lifelong learning scenar-
ios adopting any standard anomaly detection dataset. Insights
from our experiments revealed that anomaly detection in
lifelong learning scenarios is a challenging problem, and
that there is a performance gap between non-lifelong and
lifelong learning strategies, indicating that lifelong scenarios
are challenging for commonly adopted non-lifelong anomaly
detection methods. Moreover, we observed that lifelong
learning strategies such as Replay have the potential to tackle
these challenges. Overall, we advocate that lifelong learning
is essential in anomaly detection to further bring real-life
complexity to the experimental setting, providing advantages
compared to static and online scenarios currently adopted
in the literature. We identified a number of domains, such
as cybersecurity, human activity, and industrial processes,
where such capabilities can be fruitful due to their dynamic
characteristics. We showed that lifelong learning metrics and
concept-level performance observed in the learning scenario
enable a more detailed model evaluation that uncovers the
impact of forgetting and task transferability.

Aswe provided an overview of lifelong learning challenges
from an anomaly detection perspective, we believe that our
work will enable other researchers to take action by working
on open problems that are relevant in lifelong anomaly
detection. To start with, anomaly detection researchers
may adopt the scenarios (e.g., concept-aware, concept-
incremental) in their benchmark datasets to expose anomaly
detection models to new complexities. Moreover, they can
adopt lifelong metrics (Lifelong ROC-AUC, BWT, FWT),
as well as the evaluation protocol proposed in this paper.
In the future, efforts should be directed at designing or
improving lifelong scenarios and metrics, so that they reflect
the real-world anomaly detection complexities even better.
Avenues for future research also include the design of
different types of lifelong learning strategies beyond replay-
based, such as regularization and architectural, which are
popular in image classification, and could be tailored to
lifelong anomaly detection.

APPENDIX. HYPERPARAMETERS OF THE DIFFERENT
BASE MODELS
For reproducibility, Table 3 shows the five hyperparameter
configurations for all models considered in our experiments.
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