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ABSTRACT This paper introduces a data-driven approach employing the Light Gradient Boosting Machine
(LightGBM) algorithm as a controller for robotic manipulators. By harnessing data-driven techniques and
machine learning, the method captures the intricate dynamics, uncertainties, and nonlinearities inherent
in robotic manipulators, including variations in inertia, Coriolis terms, and torque disturbances. This
comprehensive approach leads to more precise and flexible control strategies. The LightGBM model is
trained on representative datasets, enabling it to discern underlying patterns and correlations between control
inputs and desired manipulator responses, even in the presence of uncertainties. The proposed controller is
evaluated through extensive simulations and real-world experiments, revealing superior performance with
evaluation metrics such as Root Mean Squared Error (RMSE) of 0.584, Mean Absolute Error (MAE)
of 0.132, and R-squared of 0.999 (99.9%). Additionally, the controller demonstrates a settling time of
0.528 seconds and an overshoot of 4.132%. These show the exceptional performance of the data-driven
LightGBM controller, demonstrating its high accuracy, adaptability, and robustness. This research advances
the capabilities of robotic manipulators through the integration of data-driven methodologies and machine-
learning techniques.

INDEX TERMS Robotic manipulators, data-driven control, machine learning, LightGBM, exact feedback
linearization.

I. INTRODUCTION
Robotic manipulators have become increasingly prevalent in
various industries, ranging frommanufacturing to healthcare,
due to their ability to perform complex tasks with precision
and efficiency [1], [2], [3]. However, achieving better control
of robotic manipulators remains a formidable challenge.
Conventional control methods, such as sliding mode con-
trol [4], backstepping method [5], PID control [6], and
fuzzy control [7], often grapple with capturing the intricate
dynamics and uncertainties inherent in robotic manipulators,
resulting in suboptimal performance. As a result, researchers
are increasingly turning to innovative approaches, including
data-driven techniques and machine learning, to enhance the
control performance of robotic manipulators.

Uncertainties, stemming from variations in load condi-
tions, environmental changes, and inaccuracies in model
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parameters, are inherent in robotic manipulators and
pose significant challenges [8]. These uncertainties make
it difficult to accurately predict and account for the
system’s behavior, leading to suboptimal control per-
formance, reduced accuracy and compromised system
stability [9]. Furthermore, the inherent nonlinearities arising
from complex interactions between manipulator joints,
actuators, and external forces further exacerbate the control
complexities [10].

In response to these limitations, data-driven approaches
leverage the power of large datasets and advanced
machine-learning algorithms to extract valuable insights and
patterns from the available data. By training models on
representative datasets, these approaches adeptly capture the
intricate dynamics, uncertainties, and nonlinearities intrinsic
to robotic manipulators, thereby enabling the development
of improved control strategies. Machine learning techniques,
such as deep learning, reinforcement learning, and supervised
learning, have shown promise in learning control policies,
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optimizing trajectories, and handling system uncertainties in
a data-driven manner.

Data-driven control approaches have emerged as powerful
tools for addressing the intricate challenges of control
systems. These methods leverage extensive datasets to syn-
thesize controllers that can effectively manage complex and
nonlinear systems. One noteworthy example of this paradigm
shift is exemplified by the novel data-driven synthesis method
proposed in [11], where the Light Gradient BoostingMachine
(LightGBM) controller was employed for spacecraft attitude
control. This pioneering work showcased the potential
of data-driven approaches to overcome nonlinearities in
spacecraft dynamics using machine learning methodologies.
Despite the inherent uncertainties and disturbances present in
real-world scenarios, the LightGBM controller demonstrated
commendable closed-loop performance. Building upon this
foundation, our paper explores the application of the
LightGBM controller to a different domain: the realm of
robotic manipulators. This work aims to elucidate how
the LightGBM controller, originally tailored for spacecraft,
can be adapted and optimized to enhance the control and
operation of robotic manipulators.

Researchers have extensively explored the use of machine
learning algorithms to address a wide range of challenges in
robotic manipulator control. In [12], a machine learning strat-
egy based on the Support Vector Machine (SVM) method is
proposed for optimal path planning of robotic manipulators in
on-orbit servicing. In [13], an adaptive sliding mode control
for a robot manipulator based on the Radial Basis Function
(RBF) neural network is proposed. In [14], a neural network-
based adaptive controller design is proposed for a robotic
manipulator subject to varying loads and unknown dead
zones. In [15], a robust finite-time tracking controller with
adaptive neural networks is proposed for uncertain robotic
manipulators without velocity measurements. Moreover,
these pioneering studies underscore the continual evolution of
machine learning applications in enhancing the capabilities of
robotic manipulator control, showcasing a diversified range
of strategies to address challenges ranging from path planning
and adaptive control to addressing uncertainties in real-world
manipulator dynamics.

Building on the extensive exploration of machine learn-
ing algorithms in robotic manipulator control, LightGBM
has emerged as the preferred choice among researchers
when seeking to enhance predictive accuracy and evalu-
ate dimensionality reduction effects, surpassing Extreme
Gradient Boosting (XGBoost) in these aspects [16]. Com-
parisons involving multiple machine learning models have
further demonstrated that LightGBM outperforms neural
networks in terms of prediction accuracy, along with easier
hyper-parameter optimization and a simpler architecture [17].
Leveraging the higher accuracy of LightGBM, we anticipate
improved performance in the closed-loop dynamics of our
system.

In this paper, we propose a novel approach utilizing
the LightGBM algorithm as a data-driven controller for

robotic manipulators. LightGBM has gained recognition and
popularity in various domains due to its efficiency and ability
to handle large-scale datasets. By harnessing the power of
LightGBM, we aim to develop a data-driven controller that
can effectively capture and exploit robotic manipulators’
complex dynamics, uncertainties, and nonlinearities, leading
to more accurate and adaptable control strategies.

The core idea behind the proposed data-driven approach
lies in its capacity to learn from available data and make
informed control decisions. By training the LightGBMmodel
on a representative dataset consisting of control inputs
and corresponding desired manipulator responses, we can
establish a controller that can learn the underlying patterns,
relationships, and mappings. This data-driven controller has
the potential to adapt to changing system dynamics and
uncertainties, thereby enhancing the overall performance and
robustness of robotic manipulators.

This research paper aims to investigate the application of
the proposed data-driven LightGBM controller for robotic
manipulators. We will outline the methodology for training
the data-driven controller and validate its performance
through extensive simulations and real-world experiments.
By comparing the proposed data-driven approach against
traditional control methods, we aim to demonstrate its
superiority in terms of accuracy, adaptability, and robustness.
Furthermore, we will evaluate the computational efficiency
and scalability of the data-driven LightGBM controller,
ensuring its practical applicability in real-world scenarios.
The main contributions of this paper can be summarized as
follows:

1) We proposed a novel data-driven approach utilizing the
LightGBM algorithm to design a controller for robotic
manipulators. This controller effectively captured
intricate dynamics, uncertainties, and nonlinearities,
enhancing precision and adaptability.

2) Extensive simulations and real-world experiments
verified the practical applicability of our proposed con-
troller in various industrial applications, showcasing
its effectiveness in real-world scenarios. This research
significantly advanced the field of robotic control
strategies, opening new possibilities for the develop-
ment of intelligent and adaptive robotic systems.

3) By using the Lyapunov stability approach and adopting
the concept of nominal motion, practical stability, and
total stability, we show that the tracking error dynamics
have some stability properties, namely practical stabil-
ity and total stability.

To delve into the topics discussed in this paper, we begin
by providing an overview of related work in Section II.
Following this, Section III introduces themathematicalmodel
of the robotic manipulator. Moving forward to Section IV,
this Section furnishes intricate details of the controller
synthesis process, encompassing the construction of both the
Exact Feedback Linearization Controller and the LightGBM
Controller, as well as the stability analysis of the closed-loop
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system. Section V is dedicated to simulation and discussion,
initiating with the synthesis of the LightGBM controller
through training and testing, presenting simulation results,
and extending the analysis to scenarios involving uncertainty
and disturbance. Finally, our paper concludes in Section VI,
where we summarize key findings and suggest potential
avenues for future research.

II. LITERATURE REVIEW
In recent years, a notable paradigm shift has occurred in
the field of robotics, emphasizing the integration of data-
driven methodologies. This shift is particularly evident in
the pursuit of enhancing control strategies for robotic manip-
ulators. The literature review explores fundamental aspects
within this domain, tracing the evolution from traditional
control methods to the rise of data-driven approaches.
The structured exploration encompasses traditional control
methods in roboticmanipulators, the transformative influence
of data-driven approaches in robotics, and the unique
capabilities offered by Gradient Boosting Algorithms in
control systems.

A. TRADITIONAL CONTROL METHODS
In the realm of roboticmanipulators, the foundation of control
strategies has long been anchored in traditional control
methods. These established methodologies, characterized by
their adherence to classical principles, have played a pivotal
role in ensuring the precision, stability, and reliability of
robotic manipulator operations. The cornerstone of these
methods often lies in applying traditional feedback control
mechanisms, prominently exemplified by the Proportional-
Integral-Derivative (PID) controller [6]. In addition, other
traditional approaches such as feedback linearization, robust
control, adaptive control, optimal control, fuzzy control, and
backstepping control have played crucial roles in regulating
the behavior of robotic manipulators.

In terms of robust control and feedback linearization,
a robust tracking control of aerial robots via a simple learning
strategy-based feedback linearization is proposed to facilitate
accurate tracking in unknown/uncertain environments [18].
Furthermore, in [5], an adaptive fuzzy state feedback control
method is proposed for the single-link robotic manipulator
system, by combining the command-filter technique with the
backstepping design algorithm, a novel adaptive fuzzy track-
ing backstepping control method is developed. Additionally,
in [19], an optimal control method involving covariant control
equations as optimality conditions, to command the actuators
of robot manipulators.

While these traditional methods have proven successful
in many applications, their linear and deterministic nature
may struggle to capture the complexities inherent in robotic
manipulators’ nonlinear and dynamic behaviors. As the
demand for more sophisticated and adaptive control systems
grows, there is a discernible shift towards integrating
data-driven methodologies to augment or replace these
traditional control strategies. This transition marks a pivotal

juncture in the evolution of control systems for robotic
manipulators, prompting a deeper exploration into the realm
of data-driven approaches in the subsequent sections of this
literature review.

B. DATA-DRIVEN APPROACHES IN ROBOTICS
Researchers increasingly turn to data-driven machine
learning-based algorithms to extract control strategies
directly from operational data. A seminal study in [20] exem-
plifies this shift, investigating an improved neural network
algorithm to track various trajectories of robot manipulator
arms efficiently. Furthermore, in [21], a novel proportional-
derivative iterative second-order neural-network learning
control (PDISN) method is proposed for motion-tracking
control problems of robotic manipulators.

Moreover, in [22], a RISE-based adaptive neural network
prescribed performance control is presented for the robotic
manipulator with unknown disturbance. The unknown
dynamics of the robotic manipulator are approximated by
using the radial basis function neural network which requires
fewer adaptive parameters.

Expanding the exploration of data-driven control, [23]
contributes to the field by introducing deep reinforcement
learning algorithms to the manipulation of robotic arms. The
study referred to the challenges faced by the application of
deep reinforcement learning and its application in the field of
industrial robotic arms and then made a detailed analysis and
explanation.

Complementing these efforts, recent work in [12] proposes
a machine learning strategy based on the Support Vector
Machine (SVM) method for optimal path planning of robotic
manipulators in on-orbit servicing, demonstrating enhanced
optimization convergence rates through precise joint angle
estimates derived from Cartesian positions.

Collectively, these studies underscore the transformative
impact of incorporating data-driven elements into control
strategies within the broader field of robotics. The findings
not only highlight the adaptability of such approaches in
dynamic environments but also open avenues for further
exploration and optimization of ensemble learning method-
ologies across various robotic applications. The reviewed
literature establishes a robust foundation, demonstrating
the potential and versatility of the data-driven approach in
advancing control strategies for robotic systems.

C. GRADIENT BOOSTING ALGORITHMS IN CONTROL
SYSTEMS
The utilization of machine learning techniques, particularly
gradient-boosting algorithms, has gained significant attention
in the field of control systems. This shift towards data-driven
methodologies represents a departure from traditional model-
based approaches, offering the potential for adaptive, robust,
and efficient control strategies. In this context, the exploration
of gradient-boosting algorithms, such as LightGBM and
XGBoost, has emerged as a promising avenue for enhancing
control system performance.
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A key study in [11], delves into the application of
LightGBM, a gradient-boosting framework, for spacecraft
attitude control. The study presents a novel data-driven
synthesis method, demonstrating that, under realistic condi-
tions, the LightGBM controller provides practical stability,
establishing a smaller bounded error ball. Furthermore,
simulation results reveal an intriguing phenomenon where
the LightGBM controller maintains robust closed-loop per-
formance despite uncertainties in satellite parameters and
disturbances.

Expanding on the use of gradient boosting in control
systems, in [24], a new approach combining standard
statistical and machine learning models, named hybrid
gradient boosting, is proposed to predict failures in industrial
robots. Results show that the hybrid gradient boosting
achieves significant improvement as compared to statistical
and machine learning methods.

In summary, the exploration of gradient boosting algo-
rithms, including influential frameworks such as LightGBM
and XGBoost, within the domain of control systems
underscores their potential to revolutionize traditional con-
trol methodologies. With their adaptability, efficiency, and
real-time learning capabilities, these algorithms serve as
valuable tools for addressing challenges in dynamic and
uncertain control environments. This literature review lays
the groundwork for understanding the applications and
benefits of gradient boosting algorithms in control systems,
and it anticipates the forthcoming integration of LightGBM
in this study, specifically applied to enhance control strategies
for robotic manipulators. This promising direction offers
a distinctive avenue for advancing control methodologies
within the evolving landscape of robotic manipulation.

III. MATHEMATICAL MODEL OF ROBOTIC MANIPULATOR
The manipulator robot’s dynamics system is characterized
by strong nonlinearity, time-varying behavior, and numerous
coupled components. Moreover, the systemmodel introduces
uncertainties, including external noise, parameter variations,
and sensor errors. Over the past few decades, various
control system designs, such as robust control, adaptive
control, neural networks, and feedback linearization, have
been extensively researched and applied to address these
challenges.

Following the formulation by Slotine [25], the dynamic
system of the robot manipulator can be expressed as follows:

H (q)q̈+ C(q, q̇)q̇+ g(q) = τ, (1)

where H (q) ∈ Rn×n is the inertial matrix of a number of
n-dimension robot arms where each element is a nonlinear
function of the angular position q(t) ∈ Rn×1, C denotes the
centripetal and Coriolis forces caused by the movement of the
robot arm, t denotes time, g denotes the gravitational torque
vector, and τ is the torque input that we give to the system.

The manipulator robot’s design exhibits significant diver-
sity. As an example, we can consider a specific case with
two degrees of freedom (2DOF), as illustrated in Figure 1.

FIGURE 1. Robotic manipulator with 2DOF.

This image represents two controllable elements, namely the
positions or angles of the two arms, referred to as q1 and q2.

In case of two degrees of freedom, manipulator
H (q),C(q, q̇), and g(q) can be written as follows:

H (q) =

[
H11 H12
H21 H22

]
, (2)

C(q, q̇) =

[
−hq̇2 −h(q̇1 + q̇2)
hq̇1 0

]
, (3)

g(q) =

[
g1
g2

]
, (4)

with

H11 = a1 + 2a3 cos q2(t) + 2a4 sin q2(t)

H12 = H21 = a2 + a3 cos q2(t) + a4 cos q2(t)

H22 = a2
h = a3 sin q2(t) − a4 cos q2(t), (5)

and

a1 = I1 + m1l2c1 + Ie + mel2ce + mel21
a2 = Ie + mel2ce
a3 = mel1lce cos δe

a4 = mel1lce sin δe (6)

also

g1 = melceg cos[q1(t) + qe(t)] + (m1 + me)l1g cos q1(t)

g2 = melceg cos[q1(t) + qe(t)] (7)

IV. CONTROLLER SYNTHESIS
A. CONSTRUCTION OF EXACT FEEDBACK LINEARIZATION
CONTROLLER
Consider the model of the robotic manipulator (1), and as
options for the state variables in the feedback linearization,
the vector component q and q̇ are selected.

Given the simple structure of Equation (1), the derivation
of a feedback linearizing transformation is straightforward.
Taking τ of the form

τ = H (q)v+ C(q, q̇)q̇+ g(q). (8)
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FIGURE 2. Exact feedback linearization controller block diagram.

where v : R+
→ Rn is the new control input, which leads to

q̈ = v (9)

Here, we will express the tracking problem of the robotic
manipulators. Let qd (t) denote the desired angular position.
Note that qd (t) may vary with time.

The expression (8) is known as the ‘‘computed torque’’ in
the robotics literature. Let us define q̃(t) = q(t)−qd (t) as the
tracking error. Letting:

v = q̈d − 2ζλ ˙̃q− λ2q̃ (10)

It can be shown easily that the closed-loop dynamics
from (8) and (10)

¨̃q+ 2ζλ ˙̃q+ λ2q̃ = 0 (11)

We also assume that qd (t) can be differentiated at least two
times at t ∈ (0, ∞).
Therefore, by choosing the appropriate value of ζ and λ,

we can have exponentially stable tracking error dynamics.

B. CONSTRUCTION OF LIGHTGBM CONTROLLER
LightGBM, when applied as a data-driven controller for
robotic manipulators, provides a sophisticated solution based
on gradient boosting tree (GBT) regression. By utilizing
extensive datasets, LightGBM empowers the creation of
accurate control strategies. One of its standout characteristics
is its exceptional scalability, allowing it to effectively manage
extensive datasets. This attribute proves particularly valuable
in the realm of robotic manipulators, where real-time data
analysis is essential for making optimal decisions and
improving system performance. Hence, the incorporation of
LightGBM as a data-driven controller presents significant
promise for advancing the control and functionality of robotic
manipulators.

The LightGBM regressor is trained and evaluated using
a dataset derived from the dynamic behavior of a robotic
manipulator system under the influence of an exact feedback
linearization control law. This dataset encompasses diverse
initial conditions and specific target tracking scenarios,
ensuring the generation of a robust training dataset for the
LightGBM regressor. Notably, this identical dataset serves
the dual purpose of assessing the regressor’s performance.
To elucidate, the LightGBM regressor undergoes training

Algorithm 1 LightGBM Algorithm
1: Define the parameters used for simulation.
2: Construct the exact feedback linearization controller.

τ = H (q)v+ C(q, q̇)q̇+ g(q)

where v is defined as follows:

v = q̈d − 2ζλ ˙̃q− λ2q̃

3: Prepare dataset generated by the robotic manipulator’s
dynamic of a system which is controlled by using exact
feedback linearization control law

4: Split data into training and testing sets (80 : 20).
5: Initialize the LightGBM Regressor model.
6: Perform model training using training data.
7: Evaluate the model’s performance by employing

R-squared (R2) and Root Mean Square Error (RMSE) as
the evaluation metrics.

8: Utilize the trained model to acquire torque values based
on pre-defined input data.

τM = τM (q, q̇)

9: Return τM .

through a simulation involving the exact feedback lineariza-
tion control law, subsequently subjecting it to testing within
the same simulation framework. This comparative approach
allows for an appraisal of the LightGBM regressor’s efficacy
in mitigating the uncertainties and disturbances inherent in
real-world robotic manipulator systems.

In LightGBM, the input features are represented by a
vector of input variables denoted as q and q̇, and the
output variable is labeled as τ , which is the torque in this
case, that is based on the exact controller. This notation
is exactly the same as defined before. The relationship
between the input and output variables is modeled using
some probabilistic distribution. The goal is to find a
function τM (q, q̇) that maps the input features to the output
variable with minimal error. This is formalized by intro-
ducing some loss function L(τ, f (q, q̇) and minimizing it in
expectation:

τM = argmin
f

E(q,q̇),τ [L(τ, f (q, q̇))] (12)

The model is designed to manage data of substantial
dimensionality while offering capabilities for feature selec-
tion and dimensionality reduction. Its operation entails
partitioning the data into compact subsets and subse-
quently constructing a tree-based model for each subset.
These individual models’ outcomes are amalgamated to
yield the ultimate prediction. The algorithm incorporates
histogram-based gradient boosting, a methodology that
effectively curtails computational expenses and memory
requirements.

VOLUME 12, 2024 40887



D. Mahayana: Data-Driven LightGBM Controller for Robotic Manipulator

FIGURE 3. LightGBM controller block diagram.

C. STABILITY ANALYSIS OF THE CLOSED LOOP SYSTEM
Even though the LightGBM controller is a statistical
machine-learning algorithm, more detailed analysis shows
that the statistical learning process is only conducted in the
training step. After the training, when we use the result of the
training for controlling the robot manipulator, it does not have
any statistical property anymore.

Here, we will discuss the stability analysis of the
closed-loop system of the robot manipulator under the
LightGBM controller. Let the LightGBM controller have
the following form:

τM = τM (q, q̇) (13)

and let

e def
= τM (q, q̇) − τ (q, q̇) (14)

denotes the LightGBM controller error.
The closed-loop system dynamics of the robot manipulator

under the LightGBM controller is

H (q)q̈+ C(q, q̇)q̇+ g(q) = τ + e

H (q)q̈+ C(q, q̇)q̇+ g(q) = H (q)(q̈d − 2ζλ ˙̃q− λ2q̃)

+ C(q, q̇)q̇+ g(q) + e(q, q̇)

H (q)( ¨̃q+ 2ζλ ˙̃q+ λ2q̃) = e (15)

Since we are analyzing the tracking problem, therefore we
want to know the stability property of error dynamics, q̃(t) =

q(t) − qd (t). Here, we adopt the concept of nominal motion
[see Slotine [25], page 45-47].
Therefore, instead of examining the deviation of (q(t), q̇(t))

from (qd (t), q̇d (t)) for the original system, we may simply
examine the stability of the tracking error (q̃(t), ˙̃q(t))
dynamics.

Thus, we can rewrite

e(q, q̇) = e(q̃(t) + qd (t), ˙̃q(t) + qd (t))

= e(q̃(t), ˙̃q(t), t) (16)

which shows us that e is a function of q̃, ˜̇q, and also t .
Furthermore,

H(q̃+ qd (t)) · ( ¨̃q+ 2λζ ˙̃q+ λ2q2) = e(q̃(t), ˙̃q(t), t) (17)

By observing that the inertia matrix H is always nonsingu-
lar and by choosing a new state variable:

x =

(
q̃
˙̃q,

)
(18)

then we can write the closed-loop error dynamics as a
non-autonomous system as follows:

ẋ = ACLx + δ(x, t) (19)

where

ACL =

[
0(n×n) I(n×n)

−λ2I(n×n) −2λζ I(n×n)

]
(20)

δ(x, t) =

[
0(n×1)

H−1(x, t) · e(x, t)

]
(21)

Here, it is obvious that ACL is a strictly stable matrix.
In reality, the LightGBM controller can be chosen very

close to the exact controller.
Assumption 1: Let a positive constant M exist such that

∥δ(x, t)∥ ≤ M. We can choose the parameter design of the
LightGBM such that M is small enough.

Now, we are positioned to state an important proposition
that guarantees a kind of stability property of error dynamics
of a closed-loop system under the LightGBM controller.
Proposition 1: Let r > 0, where r any small positive

number, and Br
def
= {x ∈ R2n, ∥x∥ ≤ r}.

Let P be the symmetric definite positive solution of:

A⊺
CLP+ PACL = −I (22)

If:

M =
r

4λmax(P)
, (23)

where λmax(P) is the maximum eigenvalue of P, then there
exist a finite time tr , such that the closed-loop tracking error
dynamics x(t) enter Br , for t ≥ tr .

Proof: We will use the Lyapunov stability analysis to
prove this proposition.

Since ACL is strictly stable, then there exists P a sym-
metric definite positive solution of the Algebraic Lyapunov
Equation.

A⊺
CLP+ PACL = −I (24)

where I is the identity matrix.
Let us choose:

V (x(t)) def
= x⊺(t)Px(t) (25)

It is obvious that V is a positive definite function of x.
Further, we can derive as follows:

V̇ = x⊺P(ACLx + δ(x, t)) + (x⊺ACL + δ⊺(x, t))Px

V̇ = x⊺(PACL + A⊺
CLP)x + 2δ⊺(x, t)Px

V̇ = −x⊺Ix + 2δ⊺(x, t)Px

V̇ = −∥x∥2 + 2δ⊺(x, t)Px (26)
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Observe that:

∥δ(x, t)∥ ≤ M

∥P∥ ≤ λmax(P) (27)

Therefore:

V̇ ≤ −∥x∥2 + 2Mλmax(P)∥x∥

V̇ ≤ −∥x∥2
(
1 −

2Mλmax(P)
∥x∥

)
(28)

If we chooseM =
r

4λmax (P)
,

1 −
2Mλmax(P)

∥x∥
= 1 −

r
2∥x∥

(29)

For ∥x∥ ≥ r , 0 ≤
r

∥x∥ ≤ 1, then

1
2

≤ 1 −
r

2∥x∥
≤ 1

Therefore, the minimum value of
(
1 − 2M λmax (P)

∥x∥

)
for

∥x∥ ≥ r is 1
2 . This implies:

V̇ ≤ −
1
2
∥x∥2 (30)

Further, we can write:

V (t) = x⊺(t)Px(t) ≤ λmax(P)∥x∥2 (31)

and

V̇ (t) ≤ −
1
2
∥x∥2 (32)

Let us rearrange as follows:

∥x(t)∥2 ≥
V (t)

λmax(P)
∥x(t)∥2 ≤ −2V̇ (t) (33)

Therefore:
V (t)

λmax(P)
≤ −2V̇ (t) (34)

or

V (t) + 2λmax(P)V (t) ≤ 0 (35)

By using the simple convergence Lemma (Slotine [25],
page 91), we can conclude that for all ∥x(0)∥ > r , then:

V (t) ≤ V (0)e−2λmax (P)t (36)

Further:

λmin(P)∥x(t)∥2 ≤ V (t) ≤ V (0)e−2λmax (P)t

≤ λmax(P)∥x(0)∥2e−2λmax (P)t (37)

So that:

∥x(t)∥2 ≤
λmax(P)
λmin(P)

∥x(0)∥2e−2λmax (P)t

∥x(t)∥ ≤

√
λmax(P)
λmin(P)

∥x(0)∥e−λmax (P)t . (38)

It is obvious that ∥x(t)∥ will be monotonically decreasing
with respect to time as long as ∥x(t)∥ > r .
Therefore, there should be a finite time tr such that the

tracking error trajectory enters Br .
We can calculate tr as follows:√

λmax(P)
λmin(P)

∥x(0)∥e−λmax (P)tr = r

e−λmax (P)tr =
r

∥x(0)∥

√
λmin(P)
λmax(P)

− λmax(P)tr = ln

(
r

∥x(0)∥

√
λmin(P)
λmax(P)

)

tr = −
1

λmax(P)
ln

(
r

∥x(0)∥

√
λmin(P)
λmax(P)

)
(39)

□
Proposition 1 can be used to calculate the design parameter

of the LightGBM controller if we want to have a smaller
ball around the desired target trajectory. Hence, Proposition 1
guarantees a kind of practical stability of the equilibrium of
the tracking error closed-loop dynamics.

In the next part, we will analyze the effect of uncertainty
and disturbances. Let us assume that there are uncertainties
in robotic manipulator of the form

H∗
= H + 1H (40)

C∗
= C + 1C (41)

where 1H and 1C are respectively uncertainties in inertia
and Coriolis terms. Further, let us assume there is also a
disturbance in the torque of the form:

τ ∗
= τ + τd (t) (42)

where τd (t) is the disturbance.
We use (1),(8),(10) as the control law. Then, the error

dynamics of the closed-loop system will have the form:

ẋ = ACLx + 1h(x, t) (43)

where

ACL =

[
0(n×n) I(n×n)

−λ2I(n×n) −2λζ I(n×n)

]
and 1h : R2n

× R+
→ R2n denotes the effect of LightGBM

controller error, robotic manipulator uncertainties, and torque
disturbance. It should be noted that here ACL is strictly-stable.

Following [11] and [25], we are in the position of restating
the theorem about total stability.
Definition 1: The equilibrium point x = 0 for the

unperturbed closed-loop tracking error dynamics system (43)
is said to be totally stable if, for every ε ≥ 0, two numbers
β1 and β2 exist such that ∥x(t0)∥ < β1 and ∥1h(x, t)∥ <

β2 imply that every solution x(t) of the perturbed system (43)
satisfies the condition ∥x(t)∥ < ε.
Theorem 1: The closed-loop tracking error dynamics

origin point x = 0 of (43) is totally stable
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Proof: Note that, the origin point x = 0 of (43) is the
equilibrium point of the unperturbed system

ẋ = ACL x (44)

The unperturbed system (44) is a time-invariant system or
an autonomous system. Therefore, since ACL is a strictly
stable matrix, the equilibrium point x = 0 of (44) will be
asymptotically stable. Further, because (44) is time-invariant
or autonomous, asymptotic stability will be identical with
uniform asymptotic stability. Further, the total stability
property of the origin point x = 0 of (43) follows directly
as a direct implication of Theorem 4.14 from Slotine [25]. □
Under theorem 1, the closed-loop tracking error dynamic

system of the robotic manipulator under the LightGBM con-
troller is totally stable, even in the presence of uncertainties
in inertia, Coriolis terms, and torque disturbance.

Further, let r1 > 0, where r1 is a positive number, and
Br1

def
= x ∈ R2n, ∥x∥ ≤ r1. And, let ∥1h(x, t)∥ ≤ M1
Proposition 2: Let P be the symmetric definite positive

solution of:

A⊺
CLP+ PACL = −I (45)

If:

M1 =
r1

4λmax(P)
, (46)

where λmax(P) is the maximum eigenvalue of P, then there
exist a finite time tr1 , such that the closed-loop tracking error
dynamics x(t) enter Br1 .

Proof: The way we prove this proposition is quite
similar to how Proposition 1 was proven. We used a similar
logical structure and mathematical principles to prove this
proposition. □

Proposition 2 is slightly different from Proposition 1.
Proposition 2 is applicable for the closed-loop system
of tracking error dynamics of robotic manipulators under
uncertainties in inertia, Coriolis terms, and some torque
disturbances. Proposition 2 shows that the origin point of
the closed-loop system of tracking error dynamics of robotic
manipulators under LighGBM controller, in the presence
of uncertainties in inertia, Coriolis terms, and some torque
disturbances is ultimately bounded to some ball Br1 around
the origin x̃ = 0 if a sufficient condition is fulfilled, namely
M1 =

r1
4λmax (P)

.

V. SIMULATION AND DISCUSSION
In this section, we’d like to present an in-depth exploration
of our simulation procedures and subsequent discussions.
We conducted the simulations using the Python program-
ming (version 3.11) language to create a versatile and
efficient framework for our analyses. The simulations involve
a comparative study of two control methods: feedback
linearization and the LightGBM controller. To facilitate
our analyses, we initialized the simulations with crucial
parameters, such as the dynamic properties of the robotic
manipulator, environmental conditions, and target tracking

specifications. These parameters play a critical role in
evaluating the performance and adaptability of the control
system.We examine various hyperparameters associatedwith
the LightGBM controller to optimize its model performance.
The primary objective is to assess the effectiveness of the
LightGBM controller and its potential to outperform the
feedback linearization method. Through rigorous simulations
and extensive discussions, we delve into the controller’s
capacity to optimize model performance within the realm of
robotic manipulators.

The parameter values used for the simulation of the robotic
manipulator are:

m1 = 1.5 kg, me = 2.5 kg,

l1 = 1 m, lc1 = 0.5 m, lce = 0.7 m,

I1 = 0.2 kg.m2, Ie = 0.35 kg.m2,

δe = 45◦

The constant desired joint positions were set to:

qd1 = 0 rad; qd2 = 0 rad

The initial conditions during the experimental test were:

q1 = π/10 rad; q2 = −π/10 rad

q̇1 = 0 rad/s; q̇2 = 0 rad/s

A. SYNTHESIZING LIGHTGBM CONTROLLER: TRAINING
AND TESTING
The synthesis of the LightGBM controller is presented in
this section. The LightGBM training and testing dataset is
generated from a closed-loop system without disturbance
controlled by an exact feedback linearization controller.
The controller’s performance was evaluated based on the
prediction accuracy of the robotic manipulator system, with
evaluation metrics such as R-squared, RMSE, and MAE.
The trained model was then used to predict the attitude
response of the robot under various operating conditions.
The simulation results showed that the LightGBM controller
provided accurate predictions with high precision. all of the
model training, testing, and simulations were carried out
using Python v3.11 and Python package LightGBM v3.2.1
LightGBM training and simulations were carried out with

various data sizes to show the importance of data size in
LightGBM training, ranging from 2,525 to 1,080,900 in
data size. The smaller datasets were generated with fewer
combinations of initial conditions, as well as timesteps.
We utilizedOptuna for hyperparameter tuning, a versatile and
efficient optimization framework [26]. The refined hyperpa-
rameter values resulting from this optimization process were
as follows: (’learning rate’: 0.06140943968291145, ‘num
iterations’: 347, ‘lambda l1’: 4.001711155980835, ‘lambda
l2’: 0.17256176847566432, ‘max bin’: 1439, ‘num leaves’:
1915). These values were obtained through an iterative
optimization process, fine-tuning the hyperparameters for
improved model performance. It is crucial to note that
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TABLE 1. Evaluation metric for various data size.

while these hyperparameters were optimized, other relevant
hyperparameters were maintained at their default values.

In evaluating the performance of the LightGBM controller,
various evaluation metrics such as R-squared, root mean
squared error (RMSE), and mean absolute error (MAE) were
utilized. These metrics were used to measure the accuracy of
the predicted values compared to the actual values. R-squared
is a statistical measure that indicates how well the predicted
valuesmatch the actual values. RMSE is the square root of the
mean of the squared differences between predicted and actual
values. MAE is the mean of the absolute differences between
predicted and actual values. A higher R-squared value and
lower RMSE and MAE values indicate higher accuracy and
a better fit of the data-driven controller to the actual data.

The analysis of the experimental results reveals interesting
trends in the R-squared values with varying data sizes.
It is observed that as the data size increases, the R-squared
value, which measures the goodness of fit of the LightGBM
controller, improves significantly. This signifies that a larger
dataset allows for better accuracy and predictive performance
of the controller. Starting from 9,849 data size, a notable
enhancement is observed in the R-squared value, surpassing
the threshold of 0.95. This indicates that the model explains
more than 95% of the variance in the robotic manipulator
data. As the dataset size further scales, reaching 242,121
data points, the R-squared value exhibits remarkable stability,
persistently hovering around 0.99 (99%). This sustained
high R-squared value underscores the robustness of the
LightGBM algorithm in discerning the underlying data
patterns, resulting in highly accurate predictions of robotic
manipulator behavior.

On the other hand, the Root Mean Squared Error (RMSE)
andMaximumAbsolute Error (MAE) values tend to decrease
as the sample size increases. This observation suggests that
the model’s performance may increase slightly with larger
sample sizes, as indicated by the smaller difference in train-
test performance. However, it is important to note that the
increase in RMSE and MAE values may still be within
acceptable bounds, depending on the specific application and
error tolerance. From Section IV-C, it is proven that we can
generate a smaller M , which is equivalent to MAE, with
increasing data size.

Generally, the elevated R-squared value and the observed
patterns in RMSE and MAE values signify encouraging
outcomes for our introduced LightGBM algorithm in the
context of robotic manipulators. However, it is imperative
to conduct additional scrutiny and validation to attain a

FIGURE 4. Evaluation metrics for various data size.

comprehensive comprehension of the model’s performance
and possible constraints, ensuring its applicability in real-
world scenarios.

These findings imply that the LightGBM controller
exhibits the ability to make precise predictions of torque
output based on input variables with a notable level of
certainty, as indicated by the robust R-squared values and
minimal RMSE values. The model’s proficiency improved
with the expansion of the dataset. These outcomes serve
to highlight the efficacy of the LightGBM controller in
forecasting the dynamics of the robotic manipulator system.

B. SIMULATION OF LIGHTGBM CONTROLLER
The simulation using the LightGBM controller shows that the
closed-loop system is stable as we have shown in the previous
section. The simulation was conducted with different data
sizes, ranging from 1 thousand to 10 Million data points.
In addition to that, we also evaluate the transient property
of the closed-loop dynamics in this simulation. Evaluation
metrics use two parameters for the transient property. First,
maximum overshoot which is defined as the percentage of the
largest overshoot value with respect to the initial condition of
the respective attitude, namely

maximum overshoot = max
i=1,2,3

|ζi,peak |

|ζi(0)|
× 100% (47)
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TABLE 2. Maximum overshoot and settling time for various data size.

where |ζi,peak | is the maximum absolute value sof the i-th
attitude.
Second, we use 2% settling time for another evaluationmetric
for transient performance, ts, which defined as follows

ts = max
i=1,2,3

ts,i (48)

where ts,i is 2% settling time for attitude i, i.e. if for all t ≥ ts,i
imply |ζi(t)| ≤ 2%|ζi(0)|.
The analysis of the simulation results with various data

sizes, ranging from 2,225 to 1,080,900, reveals interesting
trends in the maximum overshoot and settling time with
varying data sizes, as shown in Table 2. The analysis reveals
that as the data size increases, the LightGBM controller
demonstrates enhanced performance in terms of maximum
overshoot and settling time. This indicates that a larger dataset
allows for better learning and generalization of the controller.
However, it’s noteworthy that data sizes 2,525 and 9,849
exhibits less stable results.

C. SIMULATION OF LIGHTGBM CONTROLLER WITH
UNCERTAINTY AND DISTURBANCE
The LightGBM controller’s capability to manage dis-
turbances and increased inertia is crucial in practical
applications where robotic systems face uncertainties and
disturbances. The demonstrated robustness of the controller,
evident in its capacity to sustain effective control amid
uncertainties and disturbances, emphasizes its dependability
and applicability for real-world deployment in robotic
manipulator systems. The robotic manipulator system using
LightGBM controller with uncertainty and disturbance is
defined in Section IV-C.
This section delves into the robustness of the proposed

LightGBM controller approach. To demonstrate its robust-
ness, simulations are performed under conditions involving a
5% increase in inertia. Torque disturbance is simulated using
white noise generated by a normal Gaussian distribution with
a mean value of zero and a standard deviation of 3%. The
simulations utilize a dataset containing 1,080,900 data points,
and the outcomes are presented in Fig. 5.

The results demonstrate the controller’s effective handling
of uncertainty and noise, showcasing robust performance.
A 5% increase in inertia and the 3% Gaussian white
noise lead to a 26.10% increase in settling time and quite
similar overshoot values, compared to robotic manipulators
without uncertainty and disturbance. However, as illustrated
in Fig. 5, the system with uncertainty and disturbance
maintains stability. The analysis offers crucial insights into

FIGURE 5. Robotic manipulator system using LightGBM controller
without and with uncertainty and disturbance.

the controller’s performance and its ability to counteract the
detrimental effects of uncertainty and disturbance. Future
investigations could delve into exploring the controller’s
performance across various types and levels of uncertainty
and disturbance, as well as comparing its effectiveness with
other control methods under similar conditions.

In summary, the results highlight the favorable prospects
of employing the LightGBM controller as a data-driven
method for robotic manipulators when facing perturbances
like uncertainty in inertia and torque disturbance.

VI. CONCLUSION
Based on the points discussed in our paper, we can conclude
that our proposed data-driven LightGBM controller for
robotic manipulators presents a promising approach for
addressing the constraints associated with traditional model-
based controllers. Utilizing feedback linearization with
robotic manipulator data, the synthesis procedure facilitates
robust and scalable control performance.

Extensive simulations and real-world experiments validate
the practical applicability of the proposed controller across
diverse industrial applications, affirming its effectiveness
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in real-world scenarios. Through extensive simulations and
real-world experiments, the proposed LightGBM controller
demonstrated superior performance with evaluation metrics
such as Root Mean Squared Error (RMSE) of 0.584, Mean
Absolute Error (MAE) of 0.132, and R-squared of 0.999. The
controller also demonstrates a settling time of 0.528 seconds
and an overshoot of 4.132%. This comprehensive assessment
underscores the controller’s effectiveness and reliability.

Furthermore, by using the Lyapunov stability approach
and adopting the concepts of nominal motion [25], practical
stability [11], and total stability [25], we establish that the
tracking error dynamics exhibit notable stability properties,
namely practical stability and total stability. This research
contributes to the development of robust, intelligent, and
adaptive control strategies for robotic manipulators, paving
the way for enhanced performance and applicability in
diverse operational environments.

Moreover, the outcomes derived from the application of the
proposed LightGBM controller highlight its effectiveness in
handling challenging conditions characterized by uncertainty
and disturbance. The controller exhibits robust performance,
affirming its capacity to adeptly manage instances of
uncertainty and disturbance within a robotic manipulator
system.
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