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ABSTRACT Over the last decade, numerous research efforts have been dedicated to countering malicious
mobile applications. Given its market share, Android OS has been the primary target for most of these apps.
Researchers have devised numerous solutions to protect Android devices and their users, categorizing them
into static and dynamic approaches. Each of these approaches has its own advantages and disadvantages.
The hybrid approach aims to combine the benefits of both. This study closely examines the hybrid solutions
proposed between 2012 and 2023, highlighting their strengths and limitations. The objective of this study is to
provide a comprehensive review of existing research on Android malware detection using a hybrid approach.
Our review identifies several issues related to hybrid detection approaches, including datasets, feature
utilization and selection, working environments, detection order mechanisms, integrity of the detection step,
detection algorithms, and the use of automated input generation. Key findings of this study include: (i) the
majority of studies have not adequately addressed on-device detection and have overlooked the importance
of system usability, (ii) many studies rely on outdated datasets that do not accurately represent the current
threat landscape, (iii) there is a need for a methodology to detect zero-day attacks, and (iv) most research
has not paid attention to the impact of automated input generation on malware behavior and code coverage.
We also discuss some open issues and future directions that will help substantiate the hybrid approach study.

INDEX TERMS Android malware, heuristic-based detection, hybrid approach.

I. INTRODUCTION
Android is the leading operating system for smartphones,
powering a staggering 3.3 billion devices [1]. With a domi-
nant market share of 70.79%, Android surpasses other mobile
operating systems like iOS, KaiOS, and Windows [2], [3].
However, the widespread adoption of Android has made it an
attractive target for cybercriminals. In Q3 2022, over fivemil-
lion instances of mobile malware were reported by Kaspersky
Security Network [4], with new malware emerging daily [5].
Around 98% of mobile malware targets smartphones with
the Android operating system [6]. These malicious appli-
cations engage in activities such as unauthorized access,
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information theft, spying, downloading additional code, and
sending unauthorized messages.

To mitigate the risks posed by malware attacks, two pri-
mary detection methods are commonly employed: signature-
based and heuristic-based detection. Signature-based detec-
tion identifies known malware by comparing its unique
fingerprint. This approach offers efficiency, a low false
alarm rate, and ease of implementation. However, it has
limitations, including the inability to identify new or undis-
covered malware and the need for regular updates to the
signature database [7]. Heuristic-based detection overcomes
these limitations by using sophisticated techniques such
as rule-based systems or machine learning. This approach
involves code analysis or monitoring the behavior of running
applications [8].
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FIGURE 1. Malware detection techniques on Android environment.

Heuristic approaches need to rely on several features.
These features can either come from static analysis or
dynamic analysis. The set of features that result from stati-
cally analyzing the application is called static features, while
the set of features that result from the dynamic analysis of
the application is called dynamic features. The static analysis
is usually done through the unpacking and disassembling of
Android applications. The source code and configuration files
(manifest) are then examined without the need to execute
them. Static analysis is fast but has weaknesses, especially if
the code is obfuscated [9], [10]. The dynamic analysis is done
by running an Android app in the preconfigured environ-
ment while monitoring its behavior. This method is relatively
robust to obfuscation; however, it is time-consuming and
requires more computational resources. The two approaches
have their own pros and cons. However, research by Mar-
tinelli et al. andArora&Peddoju shows that the use of a hybrid
approach to the detection process can significantly improve
detection accuracy [11], [12]. Fig. 1 depicts a block diagram
of malware detection techniques in the Android environment.

Since the first study on hybrid approaches was pub-
lished in 2012 [13], [14], numerous research papers have
focused on malware detection using this combined method.
Table 1 provides a summary of some papers that review
hybrid approaches. However, despite this surge in research
activity, most of the existing review papers do not primar-
ily focus on examining hybrid approaches. For example,
Shu et al. [20], Koushki et al. [21], and Meijin et al. [22]
review papers include discussions on malware detection that
involve static, dynamic, and hybrid approaches. It is crucial
to have a focused review that considers the distinct charac-
teristics of hybrid approaches compared to other approaches,
such as static and dynamic approaches. Hybrid approaches
often cover specific aspects such as working environment,
detection order, and detection integrity, which may not be
addressed in other approaches.

Conversely, Shabir and Sabahat [15] reviewed articles
that utilize a hybrid approach. However, the review remains
incomplete due to several factors: it encompasses only five
articles, resulting in a narrow scope and lack of depth in
the discussion and analysis. This limitation in the breadth
and depth of coverage within review papers can hinder the
attainment of a comprehensive understanding of the current
landscape of hybrid approaches. Therefore, it is important to

review a sufficient number of papers to effectively observe
the current state of the art in hybrid approaches, identify any
existing gaps, discuss various proposed methodologies, and
address the challenges still faced by the research community.

The systematic literature review (SLR) is a type of lit-
erature review that identifies, evaluates, and interprets all
study findings in order to answer predetermined research
questions [16]. In this work, we will perform SLR to provide
a clear and comprehensive view of the state of the art of
Android malware detection using hybrid approaches. The
main contribution of this study are the following.
• We present a taxonomy of Android malware detection
using hybrid approaches.

• We provide a summary of existing studies on hybrid
approaches.

• We investigate the state of the art, identify the gaps, and
guide discussion by exploring the methodologies that
have been used in the field.

• We offer our evaluation of the current state of mal-
ware detection and highlight prospective challenges and
directions for future research.

The remainder of this paper is organized as follows:
Section II provides a brief description of the Android
architecture, application architecture, and security mecha-
nisms. Section III offers an overview of Android malware
analysis. In Section IV, we describe the review protocol.
Section V presents the findings of the reviewed studies.
Section VI discusses research directions and future work.
Finally, Section VII concludes the research.

II. ANDROID OVERVIEW
Malicious software, or malware, is just like any other app on
Android, except that it is intended to cause harm. Therefore,
it is essential to understand the architecture and components
of Android, which can subsequently be used as a knowledge
base to detect and avoid damage caused. Google launched
Android in 2007 as an open-source operating system and
officially released the first Android device in 2008. This
section offers an encompassing overview of the Android
environment, covering aspects such as system architecture,
application architecture, and the security mechanisms in
place to safeguard against malicious activities.

A. ANDROID OPERATING SYSTEM ARCHITECTURE
Android is a stack-based operating system formobile devices,
which consists of a Linux kernel, hardware abstraction layer,
library and runtime, application framework, and application.
Each layer has its distinct behavior and provides services to
the layers above it ([17]. Fig. 2 depicts the architecture of the
Android operating system.

Understanding the role of each component in the Android
architecture in crucial to understand how malware analysis
works. For instance, the Application System requires service
from the Linux Kernel component via system calls to estab-
lish an internet connection. In this scenario, system calls serve
as intermediaries between components. Within the context of
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TABLE 1. Comparison of reviews that overlap with this article.

FIGURE 2. Android architecture stack [18].

malware analysis, the frequent occurrence of sensitive system
call may indicate potential suspicious behavior within the
application. The technical description of Android architecture
that is depicted in Fig. 2 is explained in Table 2.

B. ANDROID APPLICATION ARCHITECTURE
In the previous section, we discussed the architecture of the
Android operating system. In this section, we will discuss
the architecture of an Android application and how it relates
to malware analysis. We will focus the discussion on two
main aspects of application architecture, namely application
configuration and application components.

1) APPLICATION CONFIGURATION
Android applications are distributed as APK files contain-
ing crucial components, including the configuration file and
source code. The AndroidManifest.xml file within an app’s

APK determines its behavior and runtime characteristics.
In malware analysis, sensitive information and indicators
of malicious activities can be extracted from this file. For
instance, scrutinizing permission requests helps identify
potentially over-privileged applications, which may indicate
malicious intent. Table 3 provides a detailed breakdown of
the content found within an APK file, shedding light on its
composition and relevance in the context ofmalware analysis.

2) APPLICATION COMPONENT
An Android application consists of multiple loosely con-
nected modules, each serving a specific purpose. Table 4
provides an overview of various components that an Android
app can contain. Unlike traditional applications, an Android
app can have multiple entry points. Each component within
the app can offer several entry points that can be accessed
or triggered in various ways. For instance, user interactions
or system events such as low battery or loss of internet
connection can activate specific entry points. However, the
app must register to listen for such events.

C. ANDROID SECURITY
Android incorporates a robust security mechanism to ensure
system integrity and user data privacy. Any endeavor to
bypass the imposed policies is regarded as an attack. The
Android security model comprises three keymechanisms: the
sandbox mechanism, permission framework, and application
signing. Table 5 provides a detailed description of these
components.
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TABLE 2. The android architectural stack and the role it plays.

TABLE 3. The files that are included within an APK package.

III. MALWARE ANALYSIS OVERVIEW
Heuristic-based malware detection demonstrates greater
resilience against attack variations compared to signature-
based detection. Furthermore, incorporating machine
learning techniques enhances the effectiveness of malware
detection. In the detection process, the heuristic approach
requires detection materials, also called features. There are
two sorts of features: static and dynamic, which are provided
via static and dynamic analysis, respectively.

TABLE 4. Component of an android application and the functionality it
provides.

In the following section, we will delve into the subject
of malware analysis. We will commence by providing an
overview of static analysis and the associated features. Then,
a discussion of dynamic analysis and the features it produces
will follow. In the last section, we look at the hybrid approach,
which combines two different features we discussed before.
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TABLE 5. Android security mechanism protects the system, user data,
and privacy.

TABLE 6. List of the static features that are obtained through static
analysis.

A. STATIC ANALYSIS
The static analysis provides static features that are obtained
by analyzing the app without executing it. To perform static
analysis, the app is initially unpacked to retrieve key items
such as the AndroidManifest.xml, classess.dex, res, asset,
and lib components. These components are then subjected to
advanced processing techniques to extract relevant features.
Table 6 presents a selection of features that can be obtained
from processing these items.

B. DYNAMIC ANALYSIS
Dynamic analysis involves executing the application in a pre-
configured environment to observe its behavior and extract

TABLE 7. List of the dynamic features that are produced by dynamic
analysis.

dynamic features. Researchers use various tools to monitor
and log the application’s activities to facilitate this analysis.
For example, tools like Strace can be used to record system
calls [41], Wireshark can capture network traffic [42], and
the Android Debug Bridge (ADB) enables monitoring of
memory and CPU consumption [43]. Table 7 provides an
overview of features obtained from dynamic analysis [40].

C. HYBRID ANALYSIS
Hybrid analysis involves the integration of both static and
dynamic analysis techniques. In this approach, the app is sub-
jected to both static and dynamic analysis using appropriate
tools and methodologies. A hybrid detection model would
then use features from both types. Studies have shown that
hybrid approaches achieve better accuracy than static and
dynamic ones [11], [12].
Hybrid detection can take advantage of the complemen-

tary strengths of the static and dynamic approaches. As an
illustration, malware can use obfuscation techniques to evade
static-based detection, yet harmful activity can still be found
using a dynamic approach. Likewise, malware that hides
malicious behavior during dynamic analysis can still be iden-
tified using a static approach by extracting and analyzing
application code.

IV. REVIEW PROTOCOL
The systematic literature review (SLR) is a review of the
literature that seeks to discover, assess, and interpret all
relevant study findings in order to answer specific research
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TABLE 8. The keywords and the domains that were used in the search
process.

questions [16]. In this study, we conduct an SLR following
the guidelines outlined by Budgen&Brereton [44]. The whole
process consists of three main phases as follows:
• Planning the SLR: The purpose of this phase is to
describe the goal and define the review protocols.
• Conducting the SLR process: This phase carries out the
key research material in this SLR, which consists of
several stages, i.e., define the research questions, search
strategy, and selection criteria.
• Reporting the result of SLR: The goal of this phase is to
fulfill the SLR.

A. RESEARCH QUESTION
In this study, we formulate the research questions, which
represent the foundation of the SLR. The research questions
of this study are as follows:
• RQ1 : What datasets have been used in this line of
research?
• RQ2 : What are the features that have been used for
Android malware detection?
• RQ3 : What feature selection algorithms have been used
in this line of research?
• RQ4 : What kinds of working environments have been
used in the hybrid analysis?
• RQ5 : What are the configurations for the step of detec-
tion order?
• RQ6 : What are the configurations for the integrity of
the detection system?
• RQ7 : What kind of algorithm is used for Android
malware detection?
• RQ8 : What is automated input generation used for
triggering malicious activity?

B. SEARCH STRATEGY
The search strategy employed in this study is designed to
identify high-quality and highly relevant refereed articles
from various sources such as journals, conferences, and other
scholarly materials including lecture notes, book chapters,
and posters. In Table 8, we display all of the keywords that
we used in our search and corresponding domains.

We use different search engines to find relevant articles
using our list of search keywords. Our search was further
restricted to articles discussing Android malware detection
using hybrid analysis. Furthermore, the publication date
needs to occur between 2012 and September 2023. Addi-
tionally, we expanded our search by examining the reference

FIGURE 3. Origins of the studied papers.

sections of the obtained articles. Below are some of the search
engines andweb publishers that were employed in our search:
• IEEE Xplore,
• ScienceDirect Elsevier,
• ACM Digital Library,
• Springer Link,
• DBLP, and
• Google Scholar.

C. SELECTION CRITERIA
The papers collected using a search engine with given key-
words will be evaluated according to inclusion and exclusion
criteria. As described in Table 8, four domains construct
the search keywords. The paper candidate must be at the
intersection of four domains, as indicated in Table 8, and
fulfill the following inclusion standard.
• The article must cover the hybrid analysis.
• The article’s analysis must focus on the Android plat-
form.

• The article is supported by a series of empirical experi-
ments.

Moreover, to filter search results from irrelevant articles
that don’t alight well with the objective of SLR, the candidate
article must be excluded in the following cases:
• If the article focuses on another operating system.
• If the article is not supported by proper analysis, detec-
tion technique, or empirical experiment.
• If the article performs analysis only on static analysis or
only dynamic analysis,
• If the article claims that they use a hybrid approach to
detection, but in reality, they only use either static or
dynamic features.

D. SELECTED PAPERS
Conducting the aforementioned search strategy produced
659 candidate articles. We then went over each one of them,
considering our selection criteria, which resulted in obtaining
88 of the most appropriate articles that can be reviewed and
included in this SLR. Fig. 3 depicts the distribution of the
collected articles based on their origin, indicating a balanced
representation between conferences and journals. In Fig. 4,
we show the distribution based on their publication year.
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FIGURE 4. The distribution of the studied papers over the years.

V. REVIEW RESULT
The purpose of this section is to present our findings from
looking at the primary studies. We will discuss the results
of this systematic literature review (SLR) in relation to
the research questions. We divide the discussion of the
review studies into five sections. To facilitate comprehension,
we will refer to Fig. 5. It gives a taxonomy of all the studies
we will discuss in this section.

A. DATASET
The availability of representative datasets plays a crucial
role in developing and testing malware detection models.
These datasets usually contain benign and malicious apps.
The dataset can be used to perform thorough and reliable
analysis, develop robust models, confirm hypotheses, iden-
tify emerging trends, and generate meaningful predictions
or recommendations based on empirical evidence. Access
to comprehensive datasets empowers researchers to explore
and uncover valuable insights, contributing to advancements
in their respective fields and supporting evidence-based
decision-making processes.

In this section, we will address RQ1 by examining
the datasets employed to train and test hybrid detection
approaches. Table 9 presents a compilation of the most com-
monly utilized Android datasets identified in the reviewed
articles. The datasets used in the hybrid approaches could be
categorized into private datasets, APK-based files, text-based
datasets, and image-based datasets.

1) PRIVATE DATASET
We discovered that certain researchers opted to utilize their
own datasets, which were not publicly available on the inter-
net. However, they provided insights into their data collection
methodologies. Generally, benign applications were obtained
from sources such as the Google Play Store, 9App Store,
APKpure, or other application stores. Malicious applications,
on the other hand, were collected from various groups, blogs,
GitHub, and other similar sources. In some cases, these
researchers combined their own private datasets with pub-
lic datasets. For example, Chen et al. merged their dataset
with a public dataset from MobiSec Lab and Contagio [64].
Jiao et al. constructed their datasets using apps sourced from

theGoogle Play Store, theAndroidMalwareGenome Project,
and third-party markets [65].

The utilization of private datasets has some obstacles due
to their lack of public accessibility, which restricts the ability
of other researchers to verify and corroborate the findings.
Moreover, several studies that employ private datasets fail to
verify the legitimacy of the applications encompassed inside
their datasets. In order to tackle this matter, it is possible to
utilize supplementary technologies like VirusTotal or alter-
native antivirus software to authenticate the condition of the
applications and guarantee their integrity.

2) APK-BASED DATASET
Most datasets that are publicly available on the Internet are in
the form of APK files. To generate a dataset, researchers col-
lect applications from various sources during a certain time
range and evaluate them utilizing specialized methods. The
subsequent step involves identifying and labeling Android
apps as either malicious or benign.

The Android Malware Genome is a popular dataset that
contains 1,200 malicious applications representing hundreds
of malware families. The apps were collected in the range
of August 2010 to October 2011 [110]. The Drebin dataset
contains samples collected from the Google Play store, Chi-
nese App stores, Russian Appmarkets, and other sources, i.e.,
forums, blogs, and websites from 2010 to 2012. Additionally,
Drebin also includes a dataset from the Malware Genome
Project [45].
While many datasets are publicly available, some cannot

be downloaded directly. Email authorization is required to
access datasets likeDrebin [111] andAndrozoo [112]. Access
controls are often used to protect data privacy, monitor dataset
consumption, or ensure that users understand and follow
usage rules. Nevertheless, it is important to consider some
obstacles that may arise, such as the incorporation of sup-
plementary protocols that might impact the duration of the
research project, as well as the potential risk of rejection due
to the regulations imposed by data providers.

3) TEXT-BASED DATASET
The datasets are available in text formats such as CSV
and JSON. These datasets are typically derived from the
analysis of APK files, both statically and dynamically. Stud-
ies conducted by researchers like Imtiaz et al. [99] and
Jannat et al. [66], which focus on malware classification or
feature selection, may find these datasets suitable for their
purposes.

However, text-based datasets may have inherent limita-
tions in terms of feature representation. A prime example
can be seen in datasets like MalDroid-2020 [113] and Kro-
nodroid [114], where system calls are represented using
frequency calculations. This approach may inadvertently dis-
card crucial information regarding the sequence of system
call operations. The chronological order of system calls can
serve as a significant indicator of malicious behavior. In such
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FIGURE 5. Taxonomy of hybrid malware detection.

TABLE 9. A summary of the datasets that were used by the studied works.

cases, relying solely on the frequency of system calls may not
provide an accurate depiction of malicious activity.

4) IMAGE-BASED DATASET
This kind of dataset is distinct from the others as it utilizes
visual representations as the foundation for its classifications.

Xu et al. [109] created their dataset by converting the network
flow into a grayscale image. The network flow data was
captured using Wireshark, a network dump software, and
represented in PCAP files.

However, converting network dataflow directly into
images may potentially incorporate extraneous components.
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FIGURE 6. The top ten most often used static features based on
88 different studies.

FIGURE 7. The utilization of dynamic features in the top ten of 88 studies.

Before transforming network dataflow into picture format,
a feature selection process is vital to identify only essential
characteristics and eliminate extraneous information. The
obtained feature set exhibits enhanced quality and accurate
calibration, augmenting the precision and efficiency of the
detection techniques.

B. FEATURE UTILIZATION
Hybrid approaches use features generated from the static and
dynamic analysis of the applications. Each type of analysis
produces features that can be used as detection material.
Researchers combine these detection materials to construct
their models. In this sub-section, we address RQ2 by explor-
ing the features utilized for Android malware detection.
In Fig. 6 and Fig. 7, we show the usage stats for these features.
In Table 10, we provide a summary of the usage of static and
dynamic features that were employed as detection materials
in 88 studies.

The work conducted by Faghihi et al. [61] presents a
notable departure from traditional detection methods. In con-
trast to alternative techniques, this research solely focuses
on static traits for the purpose of detection. The application
of dynamic analysis is carefully utilized to examine sus-
pected instances of malware that apply static evasion tactics.
Within this particular scenario, the dynamic analysis method
thoroughly examines call logs in relation to 400 permission-
protected Android APIs. This analysis encompasses both
Java and native code components. The only employment
of static characteristics has the benefit of accelerating the
process of detection. Nevertheless, it is crucial to recognize
that the aforementioned detection method may face diffi-
culties when dealing with malware-hardening strategies like
obfuscation and dynamic loading.

Algorithm 1 Custom Feature Selection Proposed by
Gera et al. [88]
1: Sc← Number of benign samples
2: Sm← Number of malware samples
3: 4: # calculate the sum of the frequency of each feature within
5: # the benign sample and then standardize the values
6: for x in (benign_samples_list) do

7: Normalized_Frequencybenign (fx )←
n∑
i=0

frequency(fi)/Sc

8: 9: # calculate the sum of the frequency of each feature within
10: # the malware sample and then standardize the values
11: for x in (malware_samples_list) do
12: Normalized_Frequencymalware (fx )←

∑
i=0

frequency(fi)/Sm

13: 14: # calculate the absolute difference
15: for x in (unique_feature_list) do
16: ← DiffNormalize_frequency (fx )Normalized_Frequencybenign(fx )

−Normalized_Frequencymalware(fx )
17: 18: # sort the difference of normalized frequencies in ascending order
19: Sort(DiffNormalize_frequency (f ))
20: 21: # select the top ‘k’ features from the sorted results of
22: # DiffNormalize_frequency as the dominant features
23: for k in (20, 40, 60, 80)) do
24: Select_Dominant_Features(k, DiffNormalize_frequency (f ))

C. FEATURE SELECTION
Hybrid malware detection techniques offer better results
than either static or dynamic approaches. However, hybrid
approaches have relatively high computational overhead and
require more time. This increase in computation and time is
due to the extraction and processing of a larger number of fea-
tures during and after development. By carefully choosing the
appropriate features, the computational burden and resource
requirements can be minimized, allowing for efficient and
effective detection of malware in on-device scenarios. The
selection techniques play a significant role in optimizing the
performance of the hybrid approach, ensuring that the chosen
features contribute the most to the detection process while
maintaining the system’s effectiveness.

1) FEATURE SELECTION ALGORITHM
Researchers have employed various feature selection algo-
rithms in hybrid malware detection. The information gain
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TABLE 10. A summary of feature utilization by all studied solutions.
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TABLE 10. (Continued.) A summary of feature utilization by all studied solutions.
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TABLE 10. (Continued.) A summary of feature utilization by all studied solutions.

algorithm has been used as a selection characteristic in studies
by Alzaylaee et al. [115], Dhalaria and Gandotra [118],
and Li et al. [122]. Meanwhile, Hadiprakoso et al. [47],
Hussain et al. [48], and Ahmed [43] opted for principal
component analysis (PCA). Additionally, manual methods
were also employed in some studies, such as removing spe-
cific strings [45], eliminating duplicate apps [118], removing
empty features [105], and threshold variation [56], [57]. It is
worth noting that a single researchworkmay employmultiple
feature selection techniques.

Some researchers have chosen to create their own custom
feature selection techniques in addition to using established

algorithms. For example, Gera et al. introduced a feature
selection approach tailored to identifying the most dominant
features [88]. The details of this method are explained in
Algorithm 1, which provides a comprehensive overview of
the researchers’ approach. The algorithm takes input in the
form of feature vector data derived from both benign and
malware samples and aims to identify and extract the list of
k-dominant features that are essential for further analysis and
processing.

Additional studies conducted by researchers such as
Faghihi et al. [61], Lemos et al. [87], and Arshad et al. [45]
have proposed custom or manual feature selection meth-
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TABLE 11. The feature selection technique was utilized in 48 different
studies.

FIGURE 8. Distribution of feature selection algorithm employed by
48 studies.

ods. The selection process in these techniques is heavily
influenced by the researcher’s understanding of the con-
textual relevance and domain-specific significance of the
traits. Nonetheless, these manual techniques are susceptible
to subjectivity and the potential inclusion of bias arising from
the researcher’s own interpretations, preferences, or precon-
ceived notions about the importance of certain characteristics.
In contrast, established feature selection algorithms operate
based on predetermined mathematical or statistical criteria.
These criteria provide a more objective and data-driven foun-
dation for feature selection, reducing the potential for bias
introduction.

In Fig. 8 and Table 11, we show the distribution of the
feature selection algorithms used in hybrid detection stud-
ies. Our analysis of these studies reveals that most of them
either did not use or did not explicitly mention any spe-
cific feature selection technique in their works. Out of the
88 studies reviewed, only 48 studies utilized feature selection
techniques.

2) FEATURE SELECTION MECHANISM
The feature selection mechanism in hybrid malware detection
can be applied in two ways: separately to static and dynamic
features or to their combined representation. The accuracy
and effectiveness of the resulting detection model can vary
based on the chosen approach. In the following discussion,
we will explore several feature selection techniques com-
monly used in hybrid malware detection.

TABLE 12. Summary of feature selection mechanisms.

1. Both features, but separated: in this approach, feature
selection is performed on static and dynamic features
independently, and the selected features are later merged.
Several studies, including those by Hussain et al. [48],
Li et al. [123], and Maryam et al. [52], are just a few
examples that utilized this feature selection mechanism in
their research.

2. Only static features: in this approach, the feature selec-
tion technique is only applied to the static feature.
Arshad et al. [45] opted for this approach as their pro-
posed scheme generated highly diverse features through
static analysis compared to dynamic analysis. Similarly,
other researchers, including Feng et al. [42], Shijo and
Salim [92], and Patel and Buddadev [79] chose this
approach to address specific challenges encountered in
their respective works.

3. Only dynamic features: in this approach, the feature
selection technique is only applied to dynamic features.
Liu et al. [41] utilized feature selection by clustering the
function call graph, which contains multiple dimensions.
The resulting clusters are then used as feature dimensions
to facilitate the subsequent classification process.

4. On the combination: in this method, the feature selection
technique is applied after the fusion of static and dynamic
features. This methodology has been used by a number of
researchers, such as Gera et al. [88], Lindorfer et al. [72],
Saif et al. [126], and others. Combining static and dynamic
features and applying feature selection enhances malware
detection accuracy by leveraging their complementary
strengths and selecting the most informative and discrim-
inative features.

Out of the 88 studies examined, 48 of them utilized a
feature selection mechanism. However, it is noteworthy that
13 of the 48 studies did not provide a clear description of
the feature selection techniques used. In Table 12 and Fig. 9,
we show the distribution of the selection techniques that were
used by the 35 studies.

In several studies, the feature selection process often
narrows down to a subset of attributes, often exclusively
focusing on static or dynamic features. For instance, studies
by Roy et al. [106], Li et al. [122], and Feng et al. [42] tend
to emphasize the selection of static features, while studies
by Anupama et al. [63], Liu et al. [41], and Arora and
Peddoju [12] direct their attention toward dynamic ones. The
primary concern arises from the fact that when the feature
selection algorithm is exclusively applied to one type of fea-
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FIGURE 9. The distribution of feature selection mechanism.

ture, it may overlook the intricate interplay and synergies that
exist between static and dynamic attributes. Consequently,
the algorithm may fall short of identifying the most optimal
features within the context of the combined feature set. As a
result, this approach may lead to the development of a detec-
tion system that is either less effective or less accurate.

D. WORKING ENVIRONMENT
The development of hybrid malware detection techniques
requires particular working environments and conditions. The
working environment entails the whole process, from feature
detection to extraction and processing. The working envi-
ronment can be any or a combination of the followings: an
emulator, a real device, a local computer, or the cloud. There
are several approaches proposed by researchers related to
choosing a suitable working environment for the research
objective. This section explains the types and configurations
of different working environments to answer RQ4.

In several studies, the specific context or working environ-
ment for the malware analysis and detection process is not
clearly described, marked as ‘‘Not Clear’’. It is worth men-
tioning that some studies, such as those by Imtiaz et al. [99]
and Oliveira et al. [104], utilized text-based datasets, which
do not require a specific working environment for analysis.

In Fig. 10 and Table 13, we present a summary of the
working environments utilized in the reviewed studies. The
findings indicate that local computers and emulators remain
the predominant choices for conducting research in this field.
However, it is noteworthy that six studies did not specify the
specific working environment used in their research.

1) LOCAL COMPUTER AND EMULATOR
In this approach, the static features are extracted from the
APK file on a local computer. On the other hand, the dynamic

TABLE 13. Summary of working environment.

FIGURE 10. Working environment statistic.

features are obtained by running the app on an emulator. Vari-
ous tools and techniques are employed to extract the dynamic
features from the emulator. For instance, Ahmed et al. [43]
utilized APK Tool software to decompile APK files, facilitat-
ing the extraction of resources like manifest files and Java
Archive (JAR) files. From these resources, static features
were derived, encompassing permissions from the manifest
file, network information, and suspicious text features from
the JAR file. Additionally, dynamic features were captured
to comprehend the application’s behavior in an emulator,
with system call features acquired through the Strace tool,
while CPU and memory usage features were collected via the
ADB monitor. The working environment scheme employed
by Ahmed et al. is illustrated in Fig. 11.
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FIGURE 11. The schema of the working environment employs a local computer and emulator used by Ahmed et al. [43].

In another study, Kapratwar et al. utilized Android Debug
Bridge (ADB) to execute app samples, MonkeyRunner to
trigger random events, and Strace to record monitored system
calls [50]. Jadhav et al. utilized AndroSandX to execute the
app, capturing system calls, file operations, network activity,
and other suspicious activities during dynamic analysis [119].
The predominant approach employed in hybrid analysis

across numerous studies involves utilizing a local computer
and emulator as the working environment scheme. One of the
main motivations for adopting this scheme is its ease of sys-
tem configuration. However, findings from studies conducted
by Sinha et al. [132] and Alzaylaee et al. [133] have raised
an important caveat. These studies suggest that executing
malware within an emulator does not yield results that surpass
those obtained on a real device. This phenomenon has the
potential to diminish the overall accuracy of the detection
system.

2) LOCAL COMPUTER AND REAL DEVICE
Monitoring executed apps on an emulator can pose chal-
lenges, as malware can detect and evade suspicious activity
in emulator mode. To overcome this, some researchers try
to execute the apps on real devices. Liu et al. utilized a real
device to generate logs and saved the feature vector to a file.
They used Android Debug Bridge (ADB), which was con-
nected to a local computer to monitor the app using the Strace
tool, and dynamic features were extracted using the Monkey
tool [73]. Alzaylaee et al. utilized DynaLog on a real device
to execute the app and employed various testing generation
tools to trigger malicious activities. The subsequent pro-
cesses, including feature selection with WEKA tools, were
performed outside the real device [115]. Arora&Peddoju used
a real device to run an app for three days to extract network
activity as dynamic features, and the Apktool was used to
extract static features such as permissions [12].

While dynamic feature extraction on real devices may
offer certain advantages compared to emulators [132], it is
important to note that hybrid working environment schemes
of this nature do not provide on-device protection. This
limitation arises because the extraction of static features and
the detection process continue to take place on the local
computer rather than being conducted directly on the device.

3) CLOUD AND EMULATOR
Hybrid malware detection can impose a significant computa-
tional burden, particularly when executed on the smartphone
side. To alleviate this workload for users or clients, the
analysis and detection processes are predominantly carried
out on the server or cloud side. Wen&Yu [58] conducted
the static analysis using Androguard, followed by dynamic
analysis using DroidBox. The results of both analyses were
combined and classified using the SVM algorithm. Con-
versely, Rodrigo et al. [105] performed malware analysis and
detection on Amazon servers, with clients responsible for
submitting samples and receiving analysis results.

The implementation of cloud computing into malware
detection schemes has the potential to alleviate the computa-
tional burden. Nevertheless, it is crucial to acknowledge that
extracting features frommalware by running it on an emulator
is not preferable to executing it on a real device.

4) CLOUD AND REAL DEVICE
To overcome the computational limitations ofmobile devices,
conducting a detection process on the cloud or remote servers
is a viable solution. However, dynamic analysis is still per-
formed on real devices to ensure effective detection and
prevent malware from evading analysis [76], [122].

Bhandari et al. [67] developed an anti-malware solution
that extracted dynamic features and some static features on
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TABLE 14. A summary of the configurations of detection order.

real devices. On the server, static analysis of DEX files was
performed to extract API calls, IP addresses, and URLs.
The server was also responsible for conducting the detection
process using various machine-learning algorithms. How-
ever, researchers have a way to perform the entire on-device
detection process. Nonetheless, DEX file analysis requires
extensive computational resources, necessitating its execu-
tion on the server. Nevertheless, researchers have the option
to implement multi-level detection, encompassing on-device
analysis for real-time protection and cloud-based analysis if
on-device detection fails to identify malware. Fig. 12 illus-
trates the working schema employed in the study.

E. DETECTION ORDER
In this section, we will explore the different detection con-
figurations used in the hybrid approach that combines static
and dynamic features. Specifically, we will explain how these
two types of features are incorporated into the detection
mechanism. The section will focus on the arrangement of
static and dynamic features during the detection phase.

As explained in the previous sections, static features and
dynamic features can be utilized separately or in combination,
depending on the specific situation. The decision to use either
approach or a combination of both depends on factors such
as the deployment environment and resource considerations.
The resulting detection models may vary in terms of accuracy
and performance. In this section, we describe the different
orders of detection used in the hybrid analysis, addressing
RQ5. The various approaches to detection order are presented
and summarized in Table 14 and Fig. 13. The hybrid analysis
employs several different detection orders, including combi-
nation, static-first, and running independently.

1) COMBINATION OR FUSION
Several studies have demonstrated that combining static fea-
tures and dynamic features in a single detection cycle leads
to better accuracy compared to using these features sepa-
rately [11], [12]. In this approach, the working environment
for feature extraction may vary. For example, Hussain et
al. employ an emulator to extract dynamic API calls and
analyze manifests for permissions and intents on a local

computer [48], while Bhandari et al. utilize a real device and
cloud infrastructure. Despite the variations in the working
environments, both types of features are combined through-
out the detection process [67]. In general, the illustration
of the combination of static and dynamic features in the
detection schema could be represented by the study of
Hussain et al. in Fig. 14.

The combination of all feature types within the malware
detection process may pose significant computational over-
head. Researchers often contend with the intricate challenge
of discerning the precise feature types to integrate into the
detection framework, a choice often swayed by subjective
factors. Remarkably, a notable paucity of academic literature
is dedicated to the systematic exploration of feature-type
combinations tailored for optimal computational efficiency.

2) STATIC FIRST
This approach employs static features for detection in the ini-
tial stage. If the malware is not detected, it then uses dynamic
features for detection in the second stage. The purpose of
this two-stage detection is to reduce computational costs.
Zhou et al. proposed a two-step Android malware detection
approach. In the first step, they relied on the permission list to
filter and classify apps as either benign or malware. However,
they found that some unknown malware can bypass this
filter. In the second step, they monitored the app’s behavior
through system calls to capture dynamic app behavior [14].
Taheri et al. used permissions and intents as static features,
while dynamic features were obtained from network flows
and API calls. They employed a layered detection approach,
where the first layer used static features to detect mal-
ware, and the second layer used dynamic features to identify
malware families [96]. Kandukuru&Sharma implemented a
two-step detection schema where they first extracted the list
of permissions from the manifest file and used Jaccard bit-
wise similarity to identify malware. If the similarity score
falls below a certain threshold, dynamic analysis is conducted
as the next step [70]. Fig. 15 illustrates the detection order
schema used by Kandukuru&Sharma.

Although static feature analysis requires fewer com-
putational resources than dynamic feature analysis, it is
noteworthy that most research still employs the traditional
method of conducting static feature extraction on a particular
computer. This observation underscores the prevailing focus
in many studies on enhancing detection performance rather
than delving into the practical implications of such research
for the protection of Android end users.

3) RUN INDEPENDENTLY
This approach involves running hybrid Android malware
detection using static and dynamic features separately.
Kapratwar et al. proposed an anti-malware method that per-
forms detection with static and dynamic analysis as separate
processes. At the end of each detection process, the app
is classified as benign if both static and dynamic analy-
sis indicate it is benign. If both analyses indicate the app
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FIGURE 12. Schema of working environment used by Bhandari et al. that utilize cloud and real-device [67].

FIGURE 13. A summary of the detection order approaches.

is malware, it is classified as malware. The app is classi-
fied as risky if the static and dynamic analysis results are
contradictory [50]. Jannat et al. developed a malware detec-
tion system with static and dynamic features that also run
as separate processes. Different machine-learning algorithms
were used to classify the features. The experimental results
showed that dynamic analysis achieved higher accuracy than
static analysis [66]. Arshad et al. employed SVM to analyze
Android malware and then implemented a rule-based system.
If both the static and dynamic analyses classify the app as

legitimate, it is considered benign. If both analyses classify
the app as malicious, it is categorized as malware. The app is
classified as risky if there is a discrepancy between the static
and dynamic analyses [45].

In situations where combining static and dynamic fea-
tures is not feasible, malware detection can be performed
by separating them. For example, Chaulagain et al. [84] use
sequences of API calls as static features and sequences of
system calls as dynamic features. The detection process is
conducted separately. Combining these two types of features
is challenging due to their distinct characteristics.

Within this schema, various studies conducted by
researchers such as Arshad et al. [45], Dhalaria and
Gandotra [118], Imtiaz et al. [99], and others should consider
combining static and dynamic features in their detection
processes, particularly when these features involve attributes
related to frequency or appearance. For example, attributes
like occurrences of some permissions, activity counts, and
system call frequencies. Combining static and dynamic fea-
tures in these scenarios has the potential to enhance detection
outcomes.

F. DETECTION SCHEMA
This section describes the integrity of the detection system
in order to answer RQ6. The detection scheme outlines the
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FIGURE 14. Static and dynamic feature combination in Hussain et al.’s
detection schema [48].

FIGURE 15. Utilization of static-first features in detection order schema
by Kandukuru&Sharma [70].

relationship between different processes involved in acquir-
ing the APK file, extracting features, processing them, and
making detection decisions. There are two types of detection
schemes: integrated and non-integrated.

1) INTEGRATED SCHEME
In an integrated scheme, all processes are tightly integrated
and interconnected, facilitating a seamless flow of informa-
tion and decision-making. This approach ensures efficient

communication and coordination between different stages
of the detection process. The integrated approach often pri-
oritizes system usability by presenting a simplified user
interface that hides the underlying complexity. For instance,
Rodrigo et al. employed a client-server architecture for their
detection system [105], enabling users to interact with it
through a mobile app. The client submits an APK file to the
server for analysis and verification, and the server processes
the APK, returning the results to the client.

In their study, Sun et al. [76] performed static and dynamic
feature extraction on real devices. Nevertheless, the prac-
tical implementation of this approach poses challenges for
end-users, primarily due to the requirement for specialized
or root-level access to facilitate system call extraction. The
detection process is performed on the server due to compu-
tational cost considerations. However, there is a chance to
do on-device detection by removing features that consume a
significant amount of resources. An alternative approach that
merits consideration involves the adoption of a multi-tiered
detection strategy, commencing with on-device detection uti-
lizing static features, followed by dynamic feature detection
within a cloud-based infrastructure.

2) NON-INTEGRATED SCHEME
Malware detection involves multiple processes, such as fea-
ture extraction, feature processing, classification, and related
tasks. In non-integrated detection schemes, these processes
often require human intervention to establish connections
between them. As a result, the processes do not operate
automatically and seamlessly. This leads to fragmented com-
munication and coordination among different components,
which is in contrast to integrated schemes wherein all oper-
ations are seamlessly interconnected to optimize efficiency.
Researchers who do not clarify the interconnections between
processes often resort to non-integrated detection methods.

Sugunan et al. [53] extract both static and dynamic fea-
tures from different locations, with static feature extraction
carried out on a local computer using APK Tool software
and dynamic features derived from a separate device using
an emulator and Droidbox software. In order to proceed
further in the classification process, human intervention is
required to extract and transform both static and dynamic
features into text or CSV formats and integrate them into
the Weka software environment. As shown in Fig. 16, this
non-integrated method requires human intervention to detect
malware.

The primary objective of the research that uses a
non-integrated scheme is to conduct experimental experi-
ments with the goal of improving the outcomes of detection
processes. Although numerous studies have achieved a com-
mendable level of accuracy, surpassing 90% [45], [85], [126],
demonstrating significant effectiveness in reducing malware
risks, the exclusive focus on detection performance and accu-
racy can result in overly complex solutions that are difficult to
implement in real-world scenarios. Despite its relative effec-
tiveness, this approach underscores the continued importance
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FIGURE 16. Sugunan et al. [53] employ a non-integrated scheme that
involves human intervention at each step.

of human involvement in non-integrated detection methods.
As a result, the practical relevance of the non-integrated
approach in real-world protection scenarios becomes less
significant.

The distribution of the detection schema is shown in
Table 15 and Fig. 17. Our analysis reveals that the majority
of the studied papers, 95.45% (84 papers), focused on the
non-integrated scheme for malware detection. In contrast,
a smaller portion of the papers employed an integrated detec-
tion scheme.

G. DETECTION ALGORITHM
This section provides an overview of the detection approaches
employed by various studies addressing RQ7. The choice of
detection approach is influenced by several factors, including

TABLE 15. Summary of detection schema.

FIGURE 17. Detection schema summarization.

TABLE 16. The distribution of the machine learning algorithms that are
used as part of the hybrid detection solutions.

the availability of the dataset, accuracy, and the ability
to detect new malware. The distribution of the detection
approaches is summarized in Table 16 and depicted in Fig. 18.

1) KNOWLEDGE-BASED
In this approach, experts create preconfigured and predeter-
mined attack patterns to determine the maliciousness of a
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FIGURE 18. The distribution of the detection algorithms used in the
hybrid approaches.

program. Several studies have employed this method. For
instance, Arora&Peddoju developed NTPDroid, a system
that uses both permission and network activity features as
combined attributes for malware detection [12]. First, they
generated frequent patterns by combining traffic features
and permissions for malware and benign datasets. They then
employed malware scores and benign scores to quantify the
similarity of an app being tested to the malware and benign
databases. Next, they analyzed whether any patterns derived
from the app being tested corresponded to the frequent pat-
terns in the malware and benign databases. The malware
and benign scores were adjusted based on these compar-
isons. Finally, the application was classified as malicious
if the malware score exceeded the benign score; otherwise,
it was classified as benign. Algorithm 2 provides a detailed
explanation of Arora&Peddoju’s knowledge-based detection
approach.

Eder et al. introduced ANANAS, an Android malware
analysis framework [68]. The framework utilized various
plugins to generate logs for malware analysis. In the static
analysis phase, the researchers extracted crucial informa-
tion from the manifest file, including permissions, services,
receivers, and package names. Additionally, they monitored
and recorded file system changes by comparing the file sys-
tem before and after running the app on an emulator. The
researchers captured system calls, API calls, and network
activity for dynamic analysis while the app was executed
on the emulator. The framework also included a plugin for
searching the APK file’s hash in VirusTotal for additional
analysis and detection. In this study, an app is classified as
malware if its behavior matches the patterns identified by
Eder et al. and exhibits characteristics typical of malicious
activity, such as unauthorized access to sensitive data, sending
unauthorized text messages, or suspicious network activity.

The implementation of a knowledge-based detection
system employing a rule-based approach, as exemplified

Algorithm 2 Knowledge-Based Detection Method Proposed
by Arora&Peddoju [12]
1: # Load benign frequent patterns
2: benign_freq_pattern← Load_Frequent_Patterns(benign_db)
3: 4: # Load malware frequent patterns
5: malware_freq_pattern← Load_Frequent_Patterns(malware_db)
6: 7: # Measure the relative frequency of occurrence
8: # of a pattern in the dataset
9: normalized_sprt← FP_Growth(dataset)
10: 11: # Extract static & dynamic features from the app
12: apk_file← ‘‘com.example’’
13: permission_ft← Extract_Permission(apk_file)
14: network_ft← Extract_Network_Act(apk_file)
15: 16: # Combine static and dynamic features
17: combination_pattern← Combine(permission_ft,network_ft)
18: 19: # Set initial score values for malware and benign
20: benign_score← 0
21: malware_score← 0
22: 23: # Calculate the score for benign and malware
24: for pattern in(combination_pattern) do
25: 26: # Check if the pattern matches frequent patterns
27: # in the benign database
28: if pattern == benign_freq_pattern do
29: benign_score← increment(benign_score) +normalized_sprt
30: 31: # Check if the pattern matches frequent patterns
32: # in the malware database
33: if pattern ==malware_freq_pattern do
34: malware_score← increment(malware_score)+normalized_sprt
35: 36: # Classify the app as malware or benign
37: if malware_score> benign_score then
38: print ‘‘Malware’’
40: else
41: print ‘‘Benign’’

by the works of Jang [120], Patel&Buddadev [79], and
Arora&Peddoju [12], offers the advantage of enabling experts
to precisely and transparently define the attributes of appli-
cations categorized as malware. However, these systems
face a series of challenges, particularly in the realm of
handling unstructured data, and they exhibit a degree of
inflexibility when addressing scenarios that do not conform
to pre-established rule sets.

2) SUPERVISED LEARNING
In this approach, a detection model is built using a known
and labeled dataset. The learning process involves providing
pairs of inputs and targets to train the model. The goal is to
generalize the training data and develop an effective detec-
tion model. Several studies have utilized supervised learning
algorithms in the detection process. Taheri et al. [96] have
developed a two-tier detection process that utilizes the Ran-
dom Forest algorithm as a classifier. In the first phase, they
employ static features, which include permissions and intents,
comprising a total of 8,115 distinct features. These static
features are then used as input to the Random Forest classifier
to identify potentially suspicious software. Suppose the first
tier determines that the tested application exhibits suspicious
characteristics. In that case, it proceeds to the second tier,
where a more comprehensive analysis takes place to classify
the malware category and family. This second tier involves
the use of dynamic features, such as network flow and API
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FIGURE 19. The detection schema, as proposed by Taheri et al.
in reference [96], incorporates the use of the Random Forest classifier.

calls, which consist of a set of 991 features. Fig. 19 illustrates
the detection schema used by Taheri et al., which incorporates
the Random Forest classifier.

Alazab et al. employed a combination of permissions for
static features and API Calls for dynamic features in their
malware detection approach. They tested five machine learn-
ing algorithms, namely random forest, J48, random tree,
kNN, and Naïve Bayes, using 10-fold cross-validation. The
F-Measure results were 94.3%, 90.9%, 89.1%, 87.9%, and
91.8%, respectively [134]. Sugunan et al. utilized a combina-
tion of permissions andAPICalls and employedNaive Bayes,
Random Forest, SVM, and J48 algorithms. The detection
performance improved when feature selection was applied to
the feature combination [53].
Surendran et al. employed a combination of permissions

and API Calls as static features and System Calls as dynamic
features for classifying Android malware. Their study inves-
tigated the interdependency between the static and dynamic
features used in machine learning to address multicollinearity
issues. The machine learning algorithm utilized in their work
was the Tree Augmented Naive Bayes [54].

Most research utilizing supervised learning techniques for
threat detection has consistently produced positive results.
However, it is important to highlight that these studies often

neglect to consider the potential impact of adversarial attacks.
Adversarial attacks have the ability to deceive pre-trained
models, introducing the possibility of undetected malicious
threats. The vulnerability of models employing supervised
learning to adversarial attacks was thoroughly examined in
a study conducted by Rafiq et al. [108]. Through a com-
prehensive series of tests encompassing mimicry attacks,
FRA, and MFRA, it became evident that these models were
susceptible to such adversarial tactics. Rafiq et al. have pro-
posed several potential solutions tomitigate this vulnerability.
These include the implementation of adversarial training
techniques, the adoption of multiple classifier systems, and
the incorporation of input randomization strategies.

3) UNSUPERVISED LEARNING
In this method, the unsupervised learning algorithm operates
independently, discovering the most suitable model that fits
the given dataset on its own. This technique is commonly
used in clustering problems. Arora et al. [117] employed
the K-Medoids algorithm to construct a model of data clus-
ters. The feature vector was created using permissions and
network activities. Due to the presence of feature vectors
containing strings, the researchers chose to use K-Medoids
instead of K-Means. In their work, the algorithm divided
the feature vector into two distinct clusters. The researchers
utilized the Manhattan distance and Levenshtein distance
formulas to assess the similarity between vectors.

However, Arora et al. do not provide explicit informa-
tion regarding the dataset used, which raises concerns about
potential bias in their research. Inadequate dataset size may
hinder the clustering model’s ability to detect significant
patterns within the data. Furthermore, manually selecting
the value of K may introduce bias. For instance, choosing
a K value that is disproportionately large compared to the
available data may result in uninformative clusters. Con-
versely, opting for an excessively small K value may lead
to the inclusion of clusters with substantial data variations.
To mitigate bias, determining the optimal K value can be
aided by machine learning techniques.

4) ANOMALY DETECTION
This method involves detecting anomalies, which refer to
variations from normal behavior [135]. These anomalies are
identified based on data and hypotheses regarding the under-
lying mechanism. In their study, Wang et al. [57] integrated
anomaly detection into their detection system. They trained
the One-Class SVM exclusively with benign applications
and utilized a combination of features. The One-Class SVM,
designed to separate normal data from anomalous data, maxi-
mizes themargin between normal data points and the decision
boundary. The underlying algorithm identifies a hyperplane
that includes normal data points while excluding anomalous
data points.

The One-Class SVM algorithmwas implemented using the
sklearn.svm.OneClassSVM module within the scikit-learn
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FIGURE 20. Anomaly Detection Schema by Wang et al. [57].

library. When an unknown app is submitted, its feature vec-
tor is provided as input to the classifier, which determines
whether it is malware or non-malware. If the unknown app
is classified as anomalous and not recognized as known
malware, a LinearSVC classifier is activated to classify it
and determine its malware family. Fig. 20 illustrates the
utilization of the anomaly detection schema employed by
Wang et al.

In another research, Wang et al. utilized a combination of
misuse detection (Linear SVC) and anomaly detection (One-
Class SVM) in their work. They used a combination of static
and dynamic features for detection [56]. The static features
were obtained from the manifest file and disassembled code,
including hardware components, activities, intents-filter, per-
missions, and the application’s native code. The dynamic
features included file access, register receiver, executed com-
mands, content resolver queries, telephony manager listener,
‘‘find resource’’, dynamic suspicious calls, SMS, phone
event, data leak, and network operations.

The efficacy of anomaly detection, particularly when
employing the One-Class SVM algorithm, could be influ-
enced by the composition or distribution of the dataset.
In their investigation, Wang et al. [57] employed a bal-
anced dataset wherein the number of samples across different
classes is roughly equivalent. Within such a balanced dataset,
theOne-Class SVM tends to yield favorable results. However,
a study conducted by Dreiseitl et al. [136] indicates that in
imbalanced datasets, where instances of anomalies constitute
aminority, the One-Class SVMmay outperform the two-class
SVM. Consequently, the careful selection of algorithms and
their alignment with the dataset’s specific characteristics
emerges as crucial considerations in the development of an
effective anomaly detection system.

5) DEEP LEARNING
Deep learning, which is based on artificial neural networks
with multiple layers, has gained significant attention in

recent years for its potential in various fields, including
Android malware detection. Researchers have proposed deep
learning-based approaches to improve detection accuracy.
For instance, Zhang et al. [60] created the CoDroid system,
which uses a CNN-BiLSTM model to analyze both opcode
sequences as static features and system call sequences as
dynamic features. To accomplish this, word embedding is
employed to transform the sequences into low-dimensional
vector representations, effectively capturing both semantic
and syntactic similarity. Specifically, the opcode sequence is
fed into the CNN layer, which employs convolutional filters
to extract essential patterns and structures from the opcode
data. Meanwhile, the system call sequence is directed to the
BiLSTM layer, which captures contextual information and
dependencies between individual system calls.

The outputs of the CNN and BiLSTM layers are combined
through an attention mechanism, which emphasizes the sig-
nificant features in the sequences. This mechanism prioritizes
the elements that have a greater impact on the classification
of benign or malware and subsequently directs the output to
a fully connected output layer for classification, making pre-
dictions about whether the application is benign or malicious.
Fig. 21 provides a visual representation of the CNN-BiLSTM
model employed by Zhang et al. in their detection system.

Xu et al. developed a hybrid-based malware analysis
using deep learning techniques [93]. They utilized static fea-
tures derived from permissions, API calls, intent filters, and
providers, while dynamic features were obtained from sys-
tem calls. The static features were transformed into vectors
and trained using deep neural networks (DNN), while the
dynamic features were represented as a graph and processed
using a graph kernel. The outputs from the DNN and graph
kernel were combined into a kernel matrix and input into a
support vector machine (SVM) for classification. The result-
ing model achieved an impressive accuracy of 94.7%. This
demonstrates the effectiveness of deep learning in improving
Android malware detection.

Xu et al. represent system calls as n-gram graphs, with
n values ranging from 1 to 4. The findings indicate that
an n value of 4 achieved the highest level of accuracy,
reaching 87.3%. However, it’s imperative to acknowledge
that inaccuracies in selecting the appropriate n value can
result in the truncation of information with varying degrees
of precision. The challenge arises when certain system
calls exhibit a higher frequency of occurrence compared to
others, potentially occurring within sequences of sensitive
system calls. This situation raises concerns about informa-
tion distortion and potential inaccuracies during the analysis
process. In light of these challenges, implementing a strategic
approach involving the categorization of system calls based
on their specific functionalities [137] emerges as a viable
solution to address this issue.

Yuan et al. conducted Android malware detection using a
combination of static and dynamic features [82]. The static
features included permissions extracted from the Android
manifest file, while sensitiveAPI calls were obtained from the
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FIGURE 21. Utilizing the CNN-BiLSTM model for Android malware detection in the CoDroid system proposed by Zhang et al. [60].

classes.dex file. On the other hand, the dynamic features were
derived from system calls, which provide insights into the
application’s behavior. The researchers generated a total of
202 feature vectors by analyzing the app’s static and dynamic
characteristics. These feature vectors comprised 120 vectors
from the manifest file, 64 vectors from classes.dex, and
18 vectors related to behavioral aspects. Yuan et al. employed
a two-phase approach to leverage the power of deep learn-
ing. The first phase involved unsupervised pre-training using
Deep Boltzmann Machines (DBM), which aimed to learn
meaningful representations of the data. In the second phase,
supervised learning was performed using a back-propagation
algorithm to fine-tune the model and optimize the classifica-
tion performance. The experiments demonstrated that their
proposed deep learning algorithm achieved an impressive
accuracy of 96%, surpassing other popular machine learning
algorithms such as SVM, C4.5, Naïve Bayes, Linear Regres-
sion, and MLP.

However, the researcher should employ cross-validation
techniques as an effective means to mitigate the risk of
overfitting. This measure holds particular relevance given the
dataset’s modest size, comprising only 500 samples across
two distinct classes. Moreover, the inclusion of supplemen-
tary performance metrics, in addition to accuracy, permits a
more thorough evaluation of the constructed models. The uti-
lization of this comprehensive assessment methodology aids
in uncovering any potential shortcomings in the model and
provides a deeper understanding of its effectiveness within
the context of the specific classification task.

H. AUTOMATED INPUT GENERATION
In heuristic-based malware detection, malware is executed
either on an emulator or a real device, allowing researchers
to observe and record its behavior. Specific configurations
are used to simulate user interaction with the malware.
This involves providing various inputs such as text input,
swiping gestures, touch interactions, double taps, and more.
Automated input generation tools play a crucial role in

triggering and capturing the malicious activity exhibited by
the malware.

These tools are designed to automatically generate and
inject inputs into the running malware to stimulate its behav-
ior and uncover any malicious actions. By utilizing these
automated input generation tools, researchers can effectively
analyze the malware’s response to different scenarios and
uncover its hidden functionalities. The use of such tools
enables researchers to explore the capabilities and actions of
malware in a controlled environment, facilitating the detec-
tion and analysis ofmalicious behavior. By generating diverse
and targeted inputs, these tools aid in identifying potential
threats and contribute to developing effective countermea-
sures against malware. This section describes the automated
input generation tool used to trigger malicious activity to
answer RQ8.

Researchers employ various approaches to generate input
for heuristic-based malware detection. One approach is man-
ual interaction, as demonstrated by Lin et al. [124]. This
method involves a human intervention to interact with the
running application, allowing for more natural input gener-
ation. Although this method can produce realistic and diverse
inputs, it may pose challenges when dealing with large
datasets due to the manual effort required. Fig. 22 illustrates
the process of researchers providing manual input to the
application under execution.

To address the challenges of working with large datasets,
automation tools are necessary to provide input to the applica-
tion under execution. Several studies, such asWang et al. [57],
Lu et al. [74], and Saif et al. [126], have utilizedMonkeyRun-
ner as an automated input generation tool. MonkeyRunner
allows researchers to create scripts that generate specific
inputs for testing purposes. By composing scripts, researchers
can simulate various user interactions and systematically
generate input patterns. However, it is essential to consider
that each application possesses a distinct user interface. Con-
sequently, the input necessary for testing one application
may not be universally applicable to others. This discrepancy
implies that employing MonkeyRunner for extensive testing
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FIGURE 22. Researchers providing manual input to simulate the
interaction between the user and the app under execution in
Lin et al. [124] study.

endeavors may encounter challenges in terms of generating
tailored and application-specific input for each case.

Understanding when and how these inputs are generated
is crucial for effective malware analysis. Wang et al. [56]
employed the Robotium tool, which follows a similar strat-
egy. This approach allows researchers to write test scripts
that interact with the application under analysis, generating
different types of input, such as text input, touch gestures, and
button clicks. However, it is important to note that Robotium,
as a gray-box testing tool, necessitates the instrumentation
of APK files. This specific feature renders it more sus-
ceptible to malware defense techniques like anti-tampering,
wherein malware can inspect the integrity of APK files [138]
and evade detection if any unauthorized modifications are
detected.

Another method involves using Monkey software to
generate random inputs. Unlike MonkeyRunner, which
requires careful planning of input timing and delivery, Mon-
key randomly generates inputs without specific scripting.
This approach has been employed by researchers such as
Khoda et al. [51], Sun et al. [76], Zhao et al. [94], and
others, allowing them to simulate a variety of user interactions
without the need for precise scripting.

Researchers can easily simulate user interaction using
Monkey by sending commands through ADB. For instance,
if researchers need a thousand user interactions, Monkey will
generate a thousand random inputs to the application under
execution. These inputs may include various actions, such as
touch, swipe, scroll, and more. Fig. 23 illustrates how studies
employ Monkey to simulate user interaction by providing
random inputs to the app under execution.

Eder et al. [68] took a combined approach by using
Monkey tools along with scripts managed over Telnet. This
combination allowed for greater flexibility in generating
inputs and controlling the behavior of the application during
testing. By leveraging Monkey tools and additional scripting
capabilities, researchers can generate a wide range of random

FIGURE 23. Monkey generates random inputs to simulate user
interaction with the app under execution.

inputs and customize the testing process according to their
specific requirements.

The Monkey tool provides a convenient, lightweight, and
highly scalable testing solution. Nevertheless, it is imperative
to acknowledge that malware possesses a nuanced under-
standing of user interface interactions. This understanding
can activate self-defensemechanisms like anti-analysis [139],
typically responsive to specific inputs or events rather than
arbitrary or random inputs [140], [141].

Other researchers, such as Alzaylaee et al. [115], employed
a different approach to generate inputs. They used the Droid-
bot tool, which can provide input automatically according to
the context of the application. Meanwhile, Wang et al. [129]
used a different tool called APE.

Several studies indirectly utilize input generation meth-
ods by employing frameworks that already incorporate such
methods. For instance, the Andrubis framework utilizes
the Monkey tool as its input generation method, enabling
researchers to automatically generate random inputs for test-
ing purposes [72]. Similarly, the CopperDroid framework uti-
lizesMonkeyRunner as its input generation method, allowing
for the generation of specific inputs through scripting [100].
The utilization of automated input generation in malware

detection is summarized in Table 17 and depicted in Fig. 24.
However, it is noteworthy that many researchers did not
explicitly mention the use of an input generation method in
their works. Additionally, studies that employed text-based
datasets, such as CSV and JSON, were not included in the
summary. Out of the total 88 research papers reviewed, only
37 (42.04%) were found to have employed automated input
generation in their work.

VI. DISCUSSION AND FUTURE WORK
Malware poses a significant challenge to cybersecurity, and
researchers are actively working to address these issues, par-
ticularly in the field of heuristic-based malware detection
using hybrid approaches. Numerous studies have proposed
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TABLE 17. A summary of the automated input generation methods.

FIGURE 24. A summary of the automated input generation methods that
were used in the works that we studied in this paper.

a wide range of hybrid techniques that combine static and
dynamic approaches to enhance detection capabilities. In this
section, we will delve into various aspects and issues related
to hybrid approaches in malware detection and also provide
insights into future research directions in this field.

A. DATASETS
The utilization of a high-value dataset is essential for obtain-
ing valuable insights and ensuring that the findings accurately
reflect the real-world phenomenon under study. However,
many studies rely on datasets that are over five years old,
which may fail to accurately represent the current land-
scape of malware attacks. According to the study conducted
by Allix et al., datasets with more recent samples tend to
enhance the performance of malware detection. Neverthe-
less, it remains imperative to strike a balance between older
and newer datasets to ensure a more comprehensive repre-
sentation of malware threats [142]. Therefore, developing
and regularly updating malware datasets is crucial to enable
researchers to contribute to uncovering new opportunities,
advancing knowledge, developing new theories or models,
and staying abreast of the dynamic nature of malware threats.

In addition, the study by Allix et al. reveals that a diverse
dataset has demonstrated a positive impact on malware detec-
tion. Dataset diversity assists detection tools in maintaining

consistent and high-performance levels over time, especially
concerning precision, and enhances the tool’s ability to iden-
tify common characteristics that emerge in various types of
malware. This finding is of significant importance in address-
ing the dynamic range of Android malware categories, hence
enhancing the effectiveness of security measures against
diverse forms of attacks [142].

Furthermore, certain public datasets seem to be inacces-
sible for direct download. These obstacles may impact the
project’s timeline and outcome, underscoring the importance
of thorough planning and effective data management.

B. FEATURE UTILIZATION AND SELECTION
Malware detection using a combination of static and dynamic
features has the potential to enhance detection accuracy [11],
[12]. However, combining all of these features introduces
additional challenges, such as increased complexity, higher
computational resource requirements, and longer processing
times. To address these challenges, it is essential to conduct
a comprehensive feature selection study to identify the most
relevant and informative combination of static and dynamic
features.

Furthermore, it is important to investigate the relationship
between feature selection and on-device detection perfor-
mance. Balancing accuracy and computational resources is
crucial, and more research is required to understand how
feature selection impacts on-device detection performance.
By addressing these challenges, researchers can enhance
the effectiveness and efficiency of hybrid malware detection
systems.

In essence, while researchers frequently select feature
types based on their expertise, the lack of comprehensive
studies that systematically evaluate the computational effi-
ciency and effectiveness of different feature combinations
is a significant limitation in the field of malware detection.
There is an opportunity for future research to bridge this gap
by providing insights into the optimal feature combinations
that balance detection accuracy and computational resource
utilization. Such studies would contribute significantly to
advancing the state of the art in malware detection.

C. UTILIZATION OF EMULATOR VS REAL DEVICE
This aspect relates to the machine choice used in developing
detection models. It is observed that the majority of research
studies rely on emulators for feature extraction. However,
it is important to note that using an emulator device may
not be as effective as using a real device in the detection
process [133]. This highlights the need for researchers to
pay more attention to the choice of machine and consider
the potential limitations and implications it may have on the
accuracy and effectiveness of the detection models.

D. ARCHITECTURE SYSTEMS COULD REDUCE
COMPUTATIONAL COST
In the working environment, one potential approach is
to adopt a tiered layer system architecture to address
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computational resource challenges. This involves perform-
ing detection based on static features on the real device,
while dynamic feature detection is carried out in the cloud.
However, it is crucial to conduct further investigations to
determine if the reduced computational cost aligns with other
important factors. It is necessary to assess whether this cost
advantage is balanced with considerations such as detection
accuracy and end-user usability. Future research endeavors
should aim to address these questions and provide insights
into the optimal trade-offs in designing hybrid detection
systems.

E. PRACTICAL ASPECTS FOR END USERS
Our findings reveal that only a limited number of studies
have addressed these issues. Firstly, the prevalent use of local
computers and emulators indicates that many researchers
have not sufficiently considered the practicality of detection
tools for end-user purposes. Secondly, we found that no
research has conducted the entire detection process in a real
device environment, commencing from feature extraction and
feature processing to the detection process itself. On-device
detection technology is pivotal, as it enables the continu-
ous monitoring of suspicious activities and behaviors. This
functionality, in turn, enables the immediate identification of
cyber threats and the timely implementation of preventive
actions. Therefore, this foundational technology is essential
for providing real-time protection against potential cyberat-
tacks andminimizing the risk of further damage to the device.
A study conducted by the Ponemon Institute found that the
ability to prevent attacks in real-time is considered one of the
most important aspects of technological instruments [143].

To ensure real-time protection, it is crucial to monitor
sensitive data simultaneously. This is typically done using
dynamic taint analysis tools such as TaintDroid [144] or
its derivatives, like DroidBox [145]. Dynamic taint anal-
ysis involves tracing the flow of sensitive data within an
application during real-time execution in Android application
security testing. Some studies within the hybrid approach
scope have adopted this approach, including the works of
Liu et al. [41], Yang et al. [59], and Yuan et al. [82]. However,
it is worth noting that implementing dynamic taint analy-
sis for regular users is currently not feasible as it requires
customization of the user’s device. Additionally, the need
for code instrumentation in the process of tracking sensitive
data gives rise to malware defense methods such as anti-
tempering. It should also be noted that the studies referenced
were not conducted on the actual devices used by everyday
users but rather in controlled laboratory settings.

While various studies have demonstrated impressive
results in controlled laboratory settings, the practical imple-
mentation of these solutions on real mobile devices presents
several challenges. The potential trade-off between priori-
tizing detection performance or accuracy might lead to the
development of excessively complex processes that pose
computing challenges when implemented in real-world situa-
tions. This complexity often deters researchers from utilizing

real devices as their primary detection environment. Addi-
tionally, the use of certain features, such as system call
features, commonly employed by researchers may require
device rooting or customization, which can be a daunting task
for the average end-user.

However, these limitations can be overcome by carefully
selecting features that do not require significant computa-
tional resources and can be obtained without customizing
the end-user’s mobile device. Bhandari et al.’s study [67]
extracted relatively simple features that can be used on
low-resource real devices. The static features extracted are
related to the AndroidManifest.xml file, while dynamic fea-
tures are related to system process information that does not
require device rooting or customization, such as CPU info,
memory info, and file operations. However, it is worth noting
that this study chose to perform the malware classification
process in a cloud environment rather than on the device
itself. While this approach may offer certain advantages, it is
important to recognize that cloud-based detection may not
always be a reliable option, as not all users have consistent
internet connectivity [146], potentially leaving security vul-
nerabilities.

The study conducted by Krzysztoń et al. [147] demon-
strated the feasibility of on-device detection through the
extraction of static features from the AndroidManifest.xml
file and the design of neural network classification models
tailored to themobile platform and available resources on real
devices. Similarly, Arp et al. [148] not only analyzed theman-
ifest file but also utilized a lightweight dex class disassembler
for on-device detection. Renjith&Aji [149] developed a
system for on-device detection by adapting the optimized
liblinear incremental classification algorithm to the Android
environment [150], and their study further highlights the
effectiveness of on-device detection with careful computa-
tional consideration. These studies provide strong evidence
that detection systems can be successfully implemented with
judicious use of features and classification models on the
device.

Another significant challenge in on-device detection is the
establishment of a dynamic analysis environment for execut-
ing and examining mobile applications. The direct execution
of suspicious applications on the user’s device poses a risk of
infecting the device itself. To address this critical issue and
ensure the security of the user’s device, the implementation of
container technology is essential. This technology serves as
a crucial solution to address the challenge and safeguard the
user’s device by creating a segregated environment dedicated
to malware analysis, isolated from the user’s regular sys-
tem environment. Within this controlled space, the analysis
of malware takes place, minimizing the likelihood of any
detrimental effects on the user’s device resulting from the exe-
cution of potentially malicious or questionable applications.

Several container technologies are available to facili-
tate this segregation, including C-Android, a development
by Chau&Jung [151], and Condroid, as devised by
Xu et al. [152]. While these technologies offer promising
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solutions to the challenge at hand, dynamic malware anal-
ysis within container systems remains largely understudied.
Further research is needed to better understand this area
and improve on-device malware detection. This research
gap necessitates a deeper exploration of dynamic malware
analysis within container systems, which promises to enhance
the efficacy of on-device malware detection techniques and
contribute to the security of mobile devices.

In order to create more practical and effective solu-
tions for end-users, future research should focus on devel-
oping on-device malware detection methodologies. This
research should consider various factors, including efficiency,
resource allocation, user experience enhancement, and secu-
rity considerations. By doing so, the balance between tech-
nical advancements and practical usability can be achieved,
ensuring that the solutions are both effective and feasible.

F. USE OF DEEP LEARNING
The utilization of deep learning in hybrid approaches for
solving detection problems has gained significant popularity.
However, non-deep learning techniques continue to dominate
the field. Therefore, there is a need to promote and encour-
age the adoption of deep learning in hybrid analysis, as it
has the potential to greatly enhance detection accuracy and
performance. Additionally, attention should be given to the
availability of high-quality and diverse datasets for training
and evaluating deep learning models. It is important to note
that, as indicated in Table 9, only a small portion of the
existing datasets consists of more than 100,000APK samples.
This highlights the importance of expanding the volume and
diversity of datasets to effectively train deep learning models
and ensure their robustness in addressing the evolving land-
scape of malware attacks.

G. DEALING WITH ZERO-DAY ATTACK
The staggering number of new Android malware threats,
with thousands of unique variants discovered daily [5],
necessitates the development of robust and adaptable secu-
rity measures. Failure to address this growing problem can
leave users vulnerable to data breaches and other security
risks. A report by mobile security vendor Zimperium [153]
uncovered a concerning trend: 31% of all zero-day attacks
in 2021 targeted mobile devices. This represents a massive
466% increase compared to the previous year. Remarkably,
the aforementioned attacks remain undetected for an average
duration of 312 days [154], contributing to a substantial 80%
of security breaches, resulting in an average cost of 1.2 mil-
lion dollars for each attack [143].

However, the information presented in Table 16 high-
lights that only a limited number of studies have explored
approaches to address zero-day attacks. Future research
should focus on creating resilient algorithms and techniques
to effectively identify and counter the risks presented by these
dynamic and formidable threats.

In light of these alarming statistics, it is crucial to prioritize
allocating resources toward formulating and implementing

effective strategies to mitigate zero-day attacks. The incor-
poration of an algorithm specifically designed to mitigate
these risks is one of the key components of this undertaking.
Anomaly detection emerges as a prospective approach to
address this issue [155].
One of the major challenges encountered in the field of

zero-day detection is the limited availability of datasets.
Because zero-day malware remains undisclosed until an
attack is discovered, it poses difficulties in providing a fair
evaluation and benchmarking process [156].

H. TRIGGERING MALWARE BEHAVIOR
Future research in the area of malware detection should
focus on improving input generation techniques to effec-
tively trigger and expose malicious behavior. While most
studies rely on tools like Monkey, which uses a random
approach to generate input, it is important to address the limi-
tations of suchmethods.Malware equippedwith anti-analysis
defense mechanisms can remain concealed without specific
input [139]. Hence, there is a need for advanced input genera-
tion methods that provide specific and natural input, enabling
the identification of hidden malicious behavior in malware.

Another challenge in real-world implementation, partic-
ularly for on-device detection, pertains to the utilization
of automated input generation. In dynamic malware anal-
ysis, suspected apps are executed on specific devices and
receive input from automated input generation tools. How-
ever, a practical challenge arises when attempting to control
automated input generation because it typically requires
instructions to be provided from outside the device used for
execution. This may not be feasible for real-world scenarios
on user devices.

One promising solution is the utilization of container tech-
nology, exemplified by C-Android [151] and Condroid [152].
Containerization enables anti-malware software installed on
a user’s device to effectively provide the necessary input
instructions to applications being executed within the con-
tainer. However, it is noteworthy that there is a scarcity
of studies that have integrated container technology with
automated input generation tools for in-depth analysis of mal-
ware applications. Future research endeavors should focus on
investigating the unexploited potential of container technol-
ogy when combined with automated input generation tools
to further refine and improve the capabilities of on-device
malware detection.

I. CODE COVERAGE
It is crucial to prioritize code coverage over execution speed.
While fast input generation methods based on randomness,
such as random-based testing, offer efficiency, they may fall
short in covering all possible execution paths of an appli-
cation. This limitation hinders the activation of potentially
malicious code that is triggered only under specific paths
or conditions. To overcome this challenge, future research
should explore contextual input generation techniques. Con-
textual input generation aims to provide inputs that are
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specific to the application’s context, thereby increasing the
likelihood of activating targeted code and exposing potential
malicious behavior. By emphasizing contextual input gener-
ation, researchers can augment the effectiveness of hybrid
approaches by uncovering concealed malware and improving
the overall code coverage.

VII. CONCLUSION
The rapid evolution of malware threats targeting Android-
based operating systems necessitates the development of
effective detection methods. Numerous works have been
done on heuristic-based detection methods with the hybrid
approach to overcome these threats. This study presented a
state-of-the-art analysis of the hybrid detecting techniques.
We provided an in-depth evaluation and discussed the aspects
related to the hybrid detection approach between the years
2012 and 2023. The discussion covered various aspects of
hybrid analysis, which include the used datasets, the selection
of features, the working environment, the detection order and
schema, the detection methods, and the employment of input
generation tools.

In addition to the retrospective analysis, this study has
discovered several key findings that have significant impli-
cations for the field of hybrid Android malware detection.

Firstly, there is a need for on-device detection systems
that provide on-device protection against malware threats
and offer real-time protection to minimize the risk of further
damage to the device. This requires further research into
resource-efficient computation for mobile devices, including
selecting efficient features and algorithms, along with focus-
ing on enhancing the user experience.

Secondly, many studies rely on outdated datasets that
do not accurately represent the current threat landscape.
It is important to regularly update malware datasets so that
researchers can discover emerging threats, develop new the-
ories, formulate novel models, and create more effective
countermeasures against malware threats. An iterative pro-
cess of dataset updating maintains synchronization between
the research community and the ever-changing and evolving
nature of malware threats.

Thirdly, there is a need to develop an effective method-
ology for detecting zero-day attacks to protect users from
emerging malware threats. This involves the utilization of
specialized algorithms, including anomaly detection algo-
rithms, and the creation of a dedicated dataset for zero-day
attacks in the Android malware domain.

Fourthly, it is crucial for future research to study the impact
of contextual automated input generation on the triggering
of malware behavior and the enhancement of code coverage.
Furthermore, additional studies should focus on the practical
implementation of containers in dynamic analysis, especially
when integrated with automated input generation techniques.
This research is particularly relevant in addressing the com-
plexities of on-device malware detection.

In conclusion, this study has provided a comprehen-
sive analysis of hybrid detection techniques in the context

of Android malware. We have identified research gaps
and highlighted open issues that need to be addressed to
improve the accuracy, efficiency, robustness, and scalability
of hybrid detection systems. By addressing these challenges
and advancing research in this field, we can enhance the
security of Android-based systems and mitigate the evolving
threats posed by malware.
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