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ABSTRACT Effectively understanding the semantics of sophisticated sceneries is a key module in plenty
of artificial intelligence (AI) systems. In this article, we optimally fuse multi-channel perceptual visual
features for recognizing scenic pictures with complex spatial configurations, focusing on formulating a deep
hierarchical model to actively discover human gaze allocation. In detail, to uncover semantically/visually
important patches within each scenery, we utilize the BING objectness descriptor to rapidly and accurately
localize multi-scale objects or their components. Subsequently, a local-global feature fusion scenario is
proposed to dynamically combine the multiple low-level features from multiple scenic patches. To simulate
how humans perceiving semantically/visually important scenic patches, we design a robust deep active
learning (RDAL) paradigm that sequentially derives gaze shift path (GSP) and hierarchically learns deep
GSP features in a unified architecture. Notably, the key advantage of RDAL is the high tolerance of label
noise by adding an elaborately-designed sparse penalty. That is, the contaminated and redundant deep GSP
features can be implicitly abandoned. Finally, the refined deep GSP features are integrated into a multi-label
SVM for recognizing sceneries of different categories. Empirical comparisons showed that: 1) our method
performs competitively on six generic scenery set (average accuracy 2% ∼ 4.3% higher than the second
best performer), and 2) our deep GSP feature is particularly discriminative to our compiled sport educational
image set (average accuracy 7.7% higher than the second best performer).

INDEX TERMS Perceptual, feature fusion, local-global, active learning, deep architecture.

I. INTRODUCTION
Successfully recognizing the multiple labels belonging to
each scenery is an essential component in plenty of modern
AI infrastructures. Here we introduce some examples, for
intelligent navigation, it is necessary to calculate the shortest
path between the origin and the destination. In practice,
we want multiple scenery-related features,such the trans-
portation network topology, street direction, and urban
terrain, to optimize the calculation. Additionally, in the
existing public security systems, it is standard to extract
different scene-aware features ,e.g., road annotations and
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gradients, to enhance the real-time tracking of pedestrians
and vehicles. Generally, car crashes are highly probably
occurred at street intersections, while least likely occurred
on flat roads. By fast and accurately identifying various
scenic categories, in practice, we can install a multi-camera
surveillance system near the road intersection for precisely
inspecting abnormal vehicles and pedestrian behaviors.

In the literature, dozens of visual categorization/annotation
algorithms were proposed for describing scenic imageries
have various resolutions. Well-known models can be cate-
gorized as: 1) MIL (multiple instance learning)/CNN-guided
region localization by leveragingweak supervision [41], [42];
2) semantically-aware graph models for parsing [46], [47];
and 3) well-made hierarchical architectures for annotating
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FIGURE 1. An overview of our designed scenery categorization by perceptual feature fusion.

scenic photos [43], [44], [45]. However, to our best knowl-
edge, the current techniques fail to accurately represent scenic
pictures because of the following factors:
• Practically, we notice that there exists many attractive
objects or their parts in each high-resolution scenery,
as exemplified in Fig. 1. To discover those semantic
labels for each scenic picture, a biologically-inspired
algorithm is required to simulate human perceiving the
the visually prominent regions. Practically, building a
deep learning algorithm to jointly obtain the visually
prominent regions and refine the visual representation
to the above regions is difficult. Some possible chal-
lenges are: i) computing the path when human beings
sequentially allocating their gazes onto the attractive
image patches (such as the GSPs as presented in
Fig. 1), 2) avoiding the inherent noisy labels from
the massive-scale training samples, and 3) semantically
encoding labels at image-level into various image
patches in each scenic picture;

• To our best knowledge, semantically/visually important
regions within each scenery are practically described
by different low-level descriptors, each captures scenic
regions in a single channel. To fuse these low-level
features complementarily, it is necessary to intelligently
predict the weight of each feature channel. However,
mathematically deriving a solvable weighting scenario
is uneasy. Some practical difficulties are: i) how to
incorporate the local feature of spatially neighboring
regions inside each scenery, ii) how to preserve the
global compositional feature among the multiple inter-
nal scenic regions, and iii) how to adaptively adjust the
channel weights with respect to different scenic image
set.

To tackle the aforementioned issues, a new scenery
categorization pipeline is proposed by deeply and actively
modeling human gaze behavior, wherein each scenic image
patch is represented by optimally fusing a variety of low-
level features. A description of the our work is shown in
Fig. 1. Concretely, supposing we have a rich set of scenic
images wherein the labels are potentially contaminated,
we first deploy the well-known binarized norm gradients
(BING) [50] for obtaining many object-aware patches inside
all the scenic images. To represent each scenic patch,

we formulate a low-level feature fusion algorithm that
simultaneously encodes the local and global sample geometry
structure. Subsequently, to stimulate human gaze allocation
during scene image perception, we propose a novel robust
deep active learning (RDAL) framework to jointly calculate
human gaze shift path (GSP) and learn the deep GSP
representation. Herein, one key advantage of the RDAL is
that the contaminated and redundant image labels can be
intelligently handled. Besides, RDAL is trained in a semi-
supervised mode, i.e., only a part of semantic labels are
required. Finally, using the deep GSP features learned by
RDAL, the training scenic pictures are combined into a image
kernelmachine, which is leveraged to train amulti-label SVM
for scenery categorization. Empirical evaluations on both the
six public scenery data set and our compiled sport educational
image set showed our method’s advantage.

Totally speaking, the novelties of this work are three-fold.
First, we formulate the RDAL framework that can actively
learn human gaze behavior and deeply calculate gaze-guided
visual feature simultaneously. Second, we deploy a advanta-
geous feature integration technique to dynamically calculate
the importance of different feature channel for each scenic
patch. Third, we drive an iterative algorithm to solve the
RDAL that is non-convex to its variables.

II. RELATED WORK
In computer vision community, lots of deep scene cat-
egorization models have been released. The hierarchical
CNNs coupled with carefully-designed deep structures can
effectively conduct scene recognition toward Internet-scale
scene images like the well-known ImageNet [33]. In [10],
researchers proposed to learn a massive-scale deep neural
network by leveraging part of the ImageNet [33] image
set. And they have received overwhelming categorization
accuracy. In practice, we notice that, despite the fact that
ImageNet-CNN are designed for generic visual modeling, the
generated deep representations can enhance many computer
vision tasks, such as video parsing and abnormal event
detection. In the past decade, standard ImageNet-based CNN
were updated from two aspects. On one hand, researchers
proposed to effectively obtain a large collection of samples
to improve the training of the multi-layer architecture.
For example, the pervasively-used selective search [34]
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incorporates the attributes of enumerative search and
semantics-level annotation into a unified framework.
A succinct set of category-independent patch samples
can be generated for deep learning. On the other hand,
the authors [35]proposed the so-called region-level CNN
(RCNN), aiming at effectively sampling a set of high quality
patch samples. The authors [9] upgraded the CNN-guided
scenery categorization by producing highly descriptive
training data. That is, an Internet-scale scenery-related
image set have been collected. Moreover, it is usually
ineffective to train a deep visual architecture using the entire
scenic picture or random scenic patches. In this way, the
authors [37] deployed a pre-learned hierarchical CNN for
producing local and representative scenic patches to optimize
the deep scene categorization learning. Moreover, in [4],
a multi-task and multi-resolution scenery categorization
algorithm is proposed by maintaining the intrinsic feature
distribution using a manifold-based regularizer. In [5], the
author proposed a scenery semantic annotation framework,
wherein a low-rank deep features is calculated to capture the
category-based posterior probability. Meanwhile, a Markov
probabilistic model is utilized to learn the contextual
feature for each scenery. The authors [6] formulated
a deep model by discovering the relationship between
different deep layers. Afterward, an unlabeled learning model
progressively learns the deep feature by leveraging the
scenery geometrical feature. Further in [39], the authors
seamlessly combine discriminative feature learning and weak
label learning into a unified scene analytical model. A so-
called stack discriminative sparsity autoencoder is designed
for calculating the high-level visual representations.

Plenty of computational visual models were proposed
for analyzing aerial photos. In [40], the authors provided
a multi-modal learning algorithm to simultaneously anno-
tate the HR aerial imagery. The authors [17] provided
a novel multi-attention-based algorithm to calculate aerial
photos’ representation’s weights. In conclusion, the above
image-level visual models are practically utilized for classi-
fying multi-resolution aerial images. They cannot optimally
handle LR aerial image modeling because of the unavoidable
blurred tiny but discriminative objects. To precisely capture
discriminative objects with multiple scales, we require
an effective region-level modeling technique. In this way,
we can precisely localize those tiny/small objects inside
each LR aerial photograph. In [55], the authors designed a
so-called group sparsity regularizer for enhancing robustly
recognize human faces. They proposed an upper-bounded
function to upgrade the l1-norm to seek sparsity. This can
optimally tackle the negative influences of bias and outliers.
Further in [36], the authors formulated the incomplete
multi-view clustering into a incomplete similarity graphs
upgradation and complete tensor representation learning task.
To characterize an aerial image regionally, researchers [15]
designed a multi-layer deep learner for detecting multi-scale
important ground objects. In [52], researchers formulated

a focal-loss-based deep model to accurately localize various
cars within each LR&HR aerial photographs. In [54],
the authors designed a geographic object detection model
to handle HR aerial images by intelligently extracting
intersections as well as roads. In [53], the authors proposed
to combine feature engineering and soft-labels calculation to
form an effective visual detector for modeling aerial images.

III. OUR SCENERY UNDERSTANDING PIPELINE
A. EXTRACTING OBJECT-AWARE PATCHES
In the literature, many surveys in visual cognition and
psychology [48], [49] have revealed the fact that, when
humans perceiving different sceneries, their gazes will first
fixed onto those semantically/visually important regions.
That is to say, only a few discriminative scenic regions will
be selected for visual cognition. In practice, we believe that it
is necessary to incorporate such human gaze allocation into
scenery categorization. Here, an efficient object-aware patch
detection as well as a robust deep active learning (RDAL)
technique is designed to localize those semantically/visually
important scenic patches for mimicking human visual
perception.

In practice, human vision system tends to fix onto those
semantically/visually important objects or their parts, such
as vehicles and tall buildings. It is observable that, such
objects couple with the spatial distributions significantly
influence how human beings perceiving different scenic
pictures. In order to identify objects or their parts that
potentially attract human visual attention, we deploy the
well-known BING [50] objectness measure for extracting
a set of high quality object-aware patches within different
sceneries. Herein, we claim three key competitiveness of
BING. First, it achieves a super high object patch detection
effectiveness with very low computation. Second, the GSP
extraction can be substantially enhanced by producing s high
quality set of object-level patch. Third, BING exhibits an
optimal generalization capacity to unseen object categories.
This makes the trained scenery categorization model highly
adaptable to multiple data sets.

B. OPTIMALLY FUSING PATCH FEATURES
By enumeratively extracting the BING [50] object patches
inside a scenic picture, we practically obtain a set of
low-level features to characterize a scenic patch. Subse-
quently, we develop a multi-channel feature fusion algorithm
that optimally combines these low-level visual features.
In our work, a local-global feature fusion scheme is
employed, which has three impressive attributes: 1) the
patch local distribution in the low-level feature space should
be maximally kept since each patch is usually visually
similar to its neighbor, 2) the patch global distribution in
the low-level feature space should also be well maintained
since it determines the global scenery composition, and
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3) the feature weights are dynamically tuned toward each
scenic image set.

1) PATCH LOCAL DISTRIBUTION
Herein, we represent x ij as the visual feature from j-th scenic
patch in the i-th feature channel. And we denote x ij as well
as the L spatially adjacent ones as Xi

j = [x ij , x
i
j1, · · · , x

i
jL].

Meanwhile, Yi
j = [yij, y

i
j1, · · · , y

i
jL] is used to represent the

feature fusing result for Xi
j. On this basis, we can formulate

the task of maintaining the local distribution of L spatially
adjacent scenic patches as follows:

argminYij

∑L

l=1
||yij − y

i
jl ||

2(r ij )l, (1)

Herein, r ij denotes a M -dimensional vector describing the
correlation of scenic patch x ij and its spatially adjacent scenic

patch, i.e., (r ij )l = exp
(
−
||xij−x

i
jl ||

2

t2

)
, t represents the

variance of a Gaussian distribution.
Based on the derivations by us, we can reorganize the

aforementioned objective function into the matrix form:

argminYij tr(Y
i
jB
i
j(Y

i
j)
T ), (2)

Herein, matrix B = [−eTM , IM ]T diag(r ij )[−e
T
M , IM ] ∈

R(M+1)×(M+1). Noticeably, eM = [1, · · · , 1] denotes a
M -dimensional vector, matrix I represents anM×M identity
one, and matrix diag(r ij ) denotes anM ×M diagonal one and
the jj-th entity is r ij .
In a mathematical view, locally optimizing the H features

is represented as:

argminY={Yij}Hi=1,κ
∑H

i=1
κitr(Yi

jB
i
j(Y

i
j)
T ), (3)

Herein, κi measures the importance of each channel of
feature.

2) PATCH GLOBAL DISTRIBUTION
As we introduced above, incorporating the global geometry
of object-aware patches within a scenic picture is an
important task. Herein, we hypothesize that Yi

j = YAi
j,

and matrix Ai
j = RN×(M+1) represents the selecting one.

It reflects that scenic patches are distributed locally to the
whole scenic patches inside an image. In this way, we can
upgrade objective function (3) as follows:

argminY={Y}Hi=1,κ
∑H

i=1
κitr(YAi

jB
i
j(A

i
j)
TYT )

= argminY={Y}Hi=1,κ
∑H

i=1
κitr(YDiYT ), (4)

We notice that B = [−eTL , IL]T diag(r ij )[−e
T
L , IL], by reor-

ganizing (4), the following equation can be received:

Di
= Ci

− Si, (5)

Herein, Ci represents a diagonal matrix. Each entity is
calculated as: Ci

jj =
∑

l[S
i]jl , S denotes an N × N matrix,

that is, [Si]uv = exp(− ||xu−xv||
2

t2
), and N represents how many

scenic patches inside a scenic picture. Notably, Ci denotes
the unnormalized Laplacian matrix [13]. To accelerate the
calculation, we introduce a normalization step to Di, that is,

Di
n = (Ci)−1/2Di(Ci)−1/2, (6)

Herein, Di
n represents a normalized Di.

In total, our local to global feature fusion scenario can be
formulated into the below objective function:

argminY,κ

∑H

j=1
κitr(YDj

nY
T ),

s.t., YYT
= I,

∑H

j=1
κj = 1, κj > 0. (7)

We observe that, the minimization of (7) makes κi = 1.
Here, we simply select multiple highly informative features.
In practice, using a hard constraint is a sub-optimal choice.
This is because we need multiple features be simultaneously
utilized for scenery categorization. Aiming at this objective,
we apply the trick in [16]. More specifically, we have the
following setup κi ← κoi and o > 1. Herein, the ideal
κi toward multi-channel features have to be dynamically
adjusted. In theory, each channel contributes uniquely toward
the resulting fused feature for optimally describing each
scenic patch.

C. ROBUST DEEP ACTIVE LEARNING (RDAL)
There exists an abundance of object patches (102 ∼ 104)
extracted by leveraging BING [50]. However, in practical
scenarios, human attention is generally directed to a few
objects within each scene. In order to reflect such actively
perceiving each scenery, a novel robust deep active learning
(RDAL) approach has been designed. This approach aims to
jointly identify L scenic patches for GSP construction, based
on which we compute the deep GSP representation. RDAL
cooperatively fuzes the following aspects: 1) scenery spatial
composition, 2) semantic descriptiveness of object patches,
and 3) those potentially contaminated semantic labels.

1) SPATIAL COMPOSITION OF DIFFERENT SCENERIES
It is widely recognized that an effective scenery categoriza-
tion algorithm is expected to describe scenic spatial com-
positions, specifically the relative positioning of foreground
and background regions. For quantifying this character, it is
reasonable to assume that a scenic patch is represented by its
spatially adjacent ones. In the representing process, we can
weight the importance of an object patch by optimizing the
below formulation:

argmin
E

∑N

i=1
||zi −

∑N

j=1
Fijzj||

s.t.
∑N

j=1
Fij = 1,Fij = 0 if zi /∈ N (zj), (8)

Here, {z1, · · · , zN } ∈ RN×A denotes deeply-learned features
calculated from the N scenic patches obtained through
BING [50] in each scenery. Here, A represents the dimension
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of each scenic patch’s deep representation, and the matrix Fij
indicates the importance of the i-th scenic patch to recover the
j-th scenic patch. Additionally,N (zi) encompasses the spatial
adjacent ones with respect to scenic patch zi.

2) SEMANTIC REPRESENTATIVENESS OF SCENIC PATCHES
In addition to spatial encoding different sceneries, our
selected scenic patches’ semantic representativeness in
building GSPs is also significant. Utilizing the reconstruction
error defined in (8), the reconstructed scenic patches can
be represented as g1, · · · , gN . Thereafter, the L selected
scenic patches are identified by minimizing the subsequent
equation:

η(g1, · · · , gN )

=

∑L

i=1
||gqi − gqi ||

2
+ τ

∑N

i=1
||gi −

∑N

j=1
Fijgj||2,

(9)

Here, τ weights the regularizer, and gq1 , · · · , gqK represents
the set of L scenic patches selected by our RDAL. The first
term particularly minimizes the cost to fix the coordinates of
the selected samples. Simultaneously, the last term ensures
that the semantically reconstructed scenic patches highly
similar to the input. Overall, minimizing (16) yields a
collection of scenic patches that precisely reflect human
visually/semantically perceiving diverse scenes.

We define matrices A = [z1, · · · , zN ] and H =

[g1, · · · , gN ], and denote matrix 1 as an N × N diagonal
one encoding the selected scenic patches. In this context,
1ii = 1 if i ∈ {q1, · · · , qL} and 0 otherwise. This allows
upgrading the objective function (16) in the following:

η(Q) = tr((H− A)T1(H− A))+ τ tr(HTLH), (10)

Herein, we have L = (I − F)T (I − F). For optimizing (17),
we set η(H)’s gradient to zero, and thereby we have:

1(H− A)+ τLH = 0. (11)

In this context, we can compute the rebuilt scenic patches
as follows:

H = (τL+1)−11A. (12)

By leveraging the reconstructed scenic patches, we can
upgrade the reconstruction error as:

η(zq1 , · · · , zqK ) = ||Z−G||2F = ||Z− (τK+1)−11Z||2F
= ||(τK+1)−1τKZ||2F , (13)

Herein, || · ||2F represents the Frobenius norm for a matrix.

3) OUR RDAL FRAMEWORK
To semantically learn the visual descriptors within
each scenery, we hierarchically compute the hidden
scenery-related feature using a deep model. As illustrated in
Fig. 2, for an R-layer deep architecture, the proposed RDAL
decomposes the matrix of semantic labelsG into R+1 factor
matrices: V, UR, · · · ,U1. For convenient derivation of deep

FIGURE 2. Structure of the designed deeply and semantically GSP
encoding.

features of each scenery and the representation of new scenic
images, the first deep layer calculates features based on the
following equation: U1 = W1X. Importantly, in the RDAL,
we propose the fundamental idea rather than presenting a
sophisticated formulation. That is, we deploy multiple linear
combinations to deeply engineer the latent scenery features.
Theoretically, the hierarchial multi-layer architecture can be
expressed as:

G← PQR,

QR = URPR−1,

· · ·

Q1 = U1Y, (14)

Here, Ui represents the i-th layer’s transformation matrix,
P denotes the matrix containing the unobservable semantic
labels, and Qi is the calculated scene representation matrix
from the i-th deep layer. Y is a matrix comprises yi, which
is the B-dimensional fused feature from the i-th scenic
patch. For our proposed RDAL, the deep representation
corresponding to the top layer Q can be characterized by
Q = QL . Following (14), for the training of our deep model,
we focus on learning a factor P as well as R transformation
matrices UR, · · · ,U1.
In summary, the entire deep-model-guided active learning

can be mathematically represented as:

min
P,1U1,··· ,UR

1
2
||F− PQ||2F +

α

2
||P||2F +

α

2

∑R

i=1
||Ui||

2
F

+
β

2
||U||2,1, (15)

Herein, matrix F ∈ RR×N contains the semantic labels,
with Fij = 1 indicating that the i-th scenic image is labeled
by j, and Fij = 0 otherwise. Meanwhile, R counts the
unique semantic labels, α acts as the regularizer weight
to prevent overfitting, and β maintains the column-wise
sparsity in Ui. Recognizing that visual features may be
correlated, redundant, or even contaminated, it is necessary
to incorporate a sparse model with the l21-norm. This
effectively avoids the low quality noisy features. We present
the solution of (15) in the supplementary document.
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It is essential to highlight that, unlike the first two
visual feature (scenery spatial composition and patch-level
semantic description), our proposed RDAL framework is
executed in a semi-supervised mode. That is, model training
requires only a few semantic labels, as indicated in (15).
It is advantageous for modeling lots of images where many
semantic labels may be missing since manual labeling is
intractable.

By learning the deep GSP representation for each scenic
image, following [24], a multi-label SVM is learned for
scenery categorization.

4) KERNEL-INDUCED SVM
Given that each scenic picture is characterized by a GSP
in R2, traditional classifiers such as SVMs, which require
1-D vector features, face a challenge in directly categorizing
scenes based on these paths. To address this, we introduce
a kernel machine that transforms the multidimensional paths
into 1-D vectors.

The effectiveness of the image kernel-induced feature
depends on calculating distances between scenic pictures
based on their GSPs. For each scenic picture, its paths P∗
are transformed into vectors a⃗ = [α1, α2, · · · , αN ], with each
element defined as:

αi ∝ exp
(
−d(y(P∗j ), y(P

i
j ))

)
, (16)

In this formulation, d(·, ·) is used to represent the Euclidean
distance between pairs of vectors, where y representations the
deep visual feature extracted from each GSP. The parameter
N counts the training scenic images.
Utilizing the feature vector derived as mentioned, we pro-

ceed to train a multi-class SVM [27] for scene categorization.
GivenR distinct scenery categories, our approach involves the
training of C2

R binary SVM classifiers to distinguish between
scenes from the p-th and q-th categories by establishing a
specific binary SVM for each pair.

max
β∈RNpq

ω(β) =
∑Npq

i=1
βi −

1
2

∑Npq

i=1
γiγjliljk(αi, αj)

s.t. 0 ≤ γi ≤ C,
∑Npq

i=1
γili = 0, (17)

In this scenario, γi ∈ RN represents the deep feature for
the i-th training scenic image, with li representing its class
label (where +1 corresponds to the p-th category and -1 to
the q-th category). The variable α describes the hyperplane
that distinguishes between scenic images belonging to the
p-th category and those in the q-th category. The parameter
C > 0 is utilized to balance the complexity of the model
against the proportion of scenic images that cannot be
discriminated, while Npq counts the training scenic images
from either the p-th or the q-th category. In practice,
given R distinct scenic categories in total, we will produce
(R− 1)R/2 binary SVMs to differentiate between the entire
R categories.

IV. EMPIRICAL ANALYSIS
Herein, we evaluate the efficacy of our scene classification
model by RDAL through four experimental evaluations.
We begin by presenting the experimental configurations
and introducing six benchmark scene datasets. Subsequently,
we conduct a comparative analysis with various shallow and
multi-layer recognizers. Next, we examine the impact of key
variables in our approach. Lastly, we leverage the deep GSP
feature learned by our model to improve education-related
sport scenery categorization.

In this work, our categorizationmodel and all the compared
baseline models are implemented using Python 3.10. The
computational platform includes four Nvidia A100 GPUs,
an Intel Xeon w9-3495X, and 256GB main memory.

A. DATA SETS AND SETTING
To extensively evaluate our categorization model, we conduct
experiments on six diverse scenic image sets, including two
standard as well as multiple recent ones. Example images
from the experimental scenery sets are illustrated in Fig.3.
The two standard data sets are Scene-15 [11] and 67 [12].

• Scene-15: This data set encompasses 15 categories,
with 13 released by Feifei [14]. Each scenery category
consists of 200 ∼ 400 scenic pictures, with an average
resolution of 320× 250. The images are mostly sourced
from COREL, individual pictures, and Google.

• Scene-67: This data set includes a rich set of indoor
scenic pictures, compiled based on three sources:
1) Picasa and Altavsta, 2) photograph sharing website,
and 3) the LabelMe images.

Besides, we four four more recent scenic picture sets,
namely ZJU aerial imagery [3], ILSVRC-2010 [33], SUN [7],
and Places [9]. Moreover, we also introduce an non-public
scenery set compiled by ourselves. This data set contains
massive-scale sport educational images (called MSEI), that
is, the sport sceneries are leveraged for educational purpose.
In detail, this dataset comprises 92,0000 images gathered
from nice sports types, namely basketball, football, volley-
ball, outdoor golf, athletics, table tennis, rowing, baseball and
equestrian. The snapshot of our collected dataset is presented
in Fig. 4. Specific statistics about our dataset can be found in
Table 1.

TABLE 1. Details of our sport educational image set.
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FIGURE 3. Some example pictures from the above six scene data sets.

FIGURE 4. Some example pictures from our sport educational image set.

For the Scene-15, we follow the default settings [11],
wherein 100 scenic images from each category are for
training and the rest are for testing. For the Scene-67,
following [12], 80 scenic pictures from each category are
employed for model training, whereas the rest are for model
evaluation. For the ZJU aerial imagery [3], we randomly
select half of the aerial photos within each category for
training and the rest are for model testing. For the ILSVRC-
2010 [33], there exists approximately 1.2 million training
scenic images, 50,000 validation scenic images, and 150,000
testing scenic images. For the SUN [7], we randomly select
50 samples for training and another 50 samples for testing,
following the experimental setups in the publication. For the
Places [9], it contains 1,803,460 training images in total. For
each category, the training image number varies from 3,068
to 5,000. Meanwhile, the evaluation set contains 900 images
per class.

Before carefully testing the baseline algorithms, we pro-
vide an overview of our approach’s empirical setups: 1) object

patches: The BING [50] scenic patches are consistently
set at 1000 toward the six scenic image sets. This ensures
effectively localizing all the potential objects. 2) spatial
neighbors: spatial neighbor number (L) is fixed at five.
3) low-level features: we employ three low-level features for
representing each object patch: a 16-D color moment [56],
a 64-D HOG [57], a 160-D edge and color histogram [8].
4) GSP’s internal regions: the number of GPS’s internal
regions, denoted as K , is fixed at five. This setup aligns with
the observation that humans practically attend to at most five
salient regions in a scene. 5) patch-level deep feature: the
dimension of our deep patch-wise feature is fixed to 212.

B. COMPARISON WITH OTHER RECOGNITION MODELS
1) SCENERY CATEGORIZATION TASK
To begin with, our perception-guided scenery categorization
model undergoes empirical comparison with four commonly
utilized shallow classification models. These models are:
1) fixed-length walk kernel (FWK) and its tree kernel version
(FTK) [18]. 2) multi-resolution histogram (MRH) [25].
3) kernel machine learning by SP, along with three variants:
LLC-SP [19], SC-SP [20], and OB-SP [21]. 4) image
representation by super vector (SV) [22] and supervised
image coding(SSC) [23]. In the comparative analysis, the
settings for each algorithm are standardized as follows: The
lengths of FWK and FTK are tuned within the range of two to
ten. For MRH, the scene images are pre-processed by RBF-
based smoothing, which is calculated using 12 gray scales.
For SPM and the upgraded versions, all the training scenic
pictures are decomposed into one SIFT descriptors extracted
using 16 × 16 grids. Subsequently, a 400-sized codebook is
trained by leveraging kmeans clustering.

In light of the remarkable performance achieved by
multi-layer recognizers recently, we carried out a comparative
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TABLE 2. Averaged categorization accuracies on the compared models on the aforementioned data sets.

TABLE 3. Derivations on the compared models on the aforementioned data sets.

study with a collection of deeply-learned scene recognition
models. In detail, we assess the below deepmodels: ImageNet
CNN (IN-CNN) [10], R-CNN [35], meta object CNN
(M-CNN) [37], deep mining CNN (DM-CNN) [26], and
spatial pyramid pooling CNN (SPP-CNN) [28]. With the
sole exception of [37], the deep recognition models’ source
codes are public, facilitating a direct assessment without
any modifications to the parameters. For [37], we started
by by selecting 192 to 384 region proposals from each of
the six image sets, generated by MCG [29]. We fix the the
regional visual representation at a dimension of 4096 from
the FC7 layer from the combined CNN [9]. Next, we produce
400 superpixels in each scenery by leveraging the well-
known SLIC [2]. The superpixels are optimized through

either pre-specified linear LDA (SP-LDA) or the selection
of the 120 visually attractive patches calculated by GBV [1]
(SP-GBV). For our method, we combiningmultiple low-level
features, then the RDAL selects semantically/visually salient
superpixels (referred to as GSPs) for building Graph-based
Superpixels (GSPs). They are integrated for calculating
the kernel machine to classify sceneries. The performance
of our BING-based rectangular patches and superpixels is
detailed in Tables 2 and 3. Remarkably, the BING-guided
rectangular patches outperform superpixels, indicating the
higher descriptiveness. Last but not least, a comparative study
is conducted with multiple recent scenery categorization
models by Mesnil et al. [30], Xiao et al. [31], and
Cong et al. [32].
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TABLE 4. Averaged precisions on the compared models on the aforementioned data sets.

TABLE 5. Averaged recalls on the compared models on the aforementioned data sets.

Examining Tables 2 and 3, we perform a quantitative
comparison across the aforementioned deep or flat visual
recognizers. Each experiment undergoes 20 repetitions,
wherein the corresponding standard deviations are presented.
As shown, our method performs the best in both the
classification accuracy and stability.More importantly, on our
compiled MSEI image set, the RDAL performs overwhelm-
ingly, i.e., the categorization precision is over 8% higher than
the second best performer. Besides, more details results are
shown in Tables 4, 5, 7, and 6.

C. PERFORMANCE BY ADJUSTING PARAMETERS
Totally, our designed perception-guided deep recognizer
incorporates several important parameters impacting the

effectiveness of scenery categorization. Herein, we assess
our method’s performance by tuning these parameters, and
suggest optimal setups based on the outcomes. Herein, we test
three parameters: i) L, counting the neighbors for rebuilding
an object patch, ii) K , counting the selected object patches
in a GSP, and iii) weights for regularization terms α, β, γ .
Our experimentation is conducted on the Scene-15 [11]
because of the impractical time consumption of experiments
on larger data sets. Next, L counts the neighbors utilized for
rebuilding a scenic patch. Maintaining the locality of object
patches during our designed feature fusion is crucial. Herein,
we vary L from one to 15 progressively. Correspondingly,
the average recognition precisions across the 15 scenery
categories are reported. As illustrated in Fig. 6, the precision
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TABLE 6. Averaged F1 scores on the compared models on the aforementioned data sets.

TABLE 7. Confusion matrix of our method on the MSEI.

FIGURE 5. Categorization precision by adjusting L.

increases and reaches its peak when L falls within the range
of three to five. Subsequently, the accuracy steadily declines.
It means that having three or five spatially adjacent scenic
patches is can effectively reconstruct each scenery. In our
observations on Scene-15, we noticed that, following the
extraction of scenic patches, each patch tends to be spatially
neighboring to an average of three to five scenic patches.
This implies that employing three to five neighbors toward a
target patch is adequate. Additionally, as illustrated in Fig. 6,

FIGURE 6. Categorization precision by adjusting M.

if an excessive number of potentially irrelevant scenic patches
is considered, the reconstruction precision decreases. Also,
it spends more time. Thirdly, we examine the impact of α,
β, and γ on categorizing sceneries. We maintain all of them
at 0.1 and adjust each one individually. In particular, we vary
α from 0 to 0.95. As shown in Table 8, scene classification
accuracies consistently increase and reache its peak at
α = 0.25. Subsequently, the performance experiences a
significant decline. The potential reason is that enhancing one
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TABLE 8. Categorization precision by adjusting α.

TABLE 9. Categorization precision by adjusting β.

TABLE 10. Categorization precision by adjusting γ .

term helps the overfitting phenomenon. However, excessive
emphasis on this term will apparently diminish the influences
of sparisity control and the semantics of scenic patches. Based
on this, we set α = 0.25. Simultaneously, we report the
scenery categorization by tuning β and γ individually. The
performances are detailed in Tables 9 and 10. Similar to the
evaluation of α, we respectively determine the optimal β and
γ as 0.3 and 0.2.

V. CONCLUSION
Effectively categorizing scenes into distinct classes has
significant value in many AI applications. This work
introduces a novel method, called the robust deep active
learning (RDAL), which learns a descriptive image kernel
by jointly uncovering and representing human gaze shifting.
Starting with an large collection of scene images, we employ
a local to global feature fusion to combine dfiferent features

for characterizing each region. Subsequently, the RDAL
algorithm is employed to identify visually and semantically
attractive regions within each scenic picture, constructing a
gaze shifting path (GSP), and calculating its deep represen-
tation. Lastly, the deep GSP representations are encoded into
a kernelized vector for scenery recognition. Plenty of testing
results showed the effectiveness of our biologically-guided
deep categorization pipeline.

Noticeably, this paper cannot handle other technical
challenges like the spectral discrepancy between aerial
photos. In the future, we plan to build a unified and
comprehensive low-resolution aerial photo understanding
system supporting many modules, each of which can handle
one of the aforementioned problems.
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