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ABSTRACT Wavelet denoising plays a key role in removing noise from signals and is widely used in many
applications. In denoising, selection of the mother wavelet is desirable for maximizing the separation of noise
and signal coefficients in the wavelet domain for effective noise thresholding. At present, wavelet selection is
carried out in a heuristic manner or using a trial-and-error that is time consuming and prone to error, including
human bias. This paper introduces a universal method to select optimal wavelets based on the sparsity of
Detail components in the wavelet domain, an empirical approach. Amean of sparsity change (µsc) parameter
is defined that captures the mean variation of noisy Detail components. The efficacy of the presented method
is tested on simulated and experimental signals from Electron Spin Resonance spectroscopy at various SNRs.
The results reveal that the µsc values of signal vary abruptly between wavelets, whereas for noise it displays
similar values for all wavelets. For low Signal-to-Noise Ratio (SNR) data, the change inµsc between highest
and second highest value is ≈ 8− 10% and for high SNR data it is around 5%. The mean of sparsity change
increases with the SNR of the signal, which implies that multiple wavelets can be used for denoising a signal,
whereas, the signal with low SNR can only be efficiently denoised with a few wavelets. Either a single
wavelet or a collection of optimal wavelets (i.e., top five wavelets) should be selected from the highest µsc
values. The code is available on GitHub and the signalsciencelab.com website.

INDEX TERMS Wavelet selection, decomposition level selection, detail components, signal denoising,
sparsity, wavelet denoising, wavelet transform.

I. INTRODUCTION
Often, experimental signals are weak and are difficult to study
due to the presence of noise. Wavelet denosing is widely
used to improve the Signal-to-Noise Ratio (SNR) without
distorting the signal [1], [2], [3], [4], [5], [6]. Wavelet denois-
ing is known to have better performance over filtering based
denoising methods [3], [4] and has been applied to many
fields such as time series analysis [5], [6], [7], computed
tomography [8], [9], [10], magnetic resonance imaging [11],
[12], [13], fluorescence imaging [14], [15], [16], Raman
spectroscopy [17], [18], [19], speech recognition [20], [21],
[22], traffic volume prediction [23], [24], [25] and electron
spin resonance (ESR) spectroscopy [1], [26], [27].
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The efficacy of denoising depends on several factors
like selection of the mother wavelet, decomposition level
and thresholding criteria [28], [29], [30]. Currently, noise
thresholding and decomposition level selection for discrete
wavelet transforms are well developed. However, the mother
wavelet for effective denoising has been selected heuristically
and/or through trial and error. The mother wavelet plays
a crucial role in denoising and hence needs to be selected
carefully. Sub-optimal wavelet selection can lead to signal
distortion or inadequate noise reduction.

A mother wavelet that maximizes the magnitude of
the signal coefficient and minimizes the noise coeffi-
cient values in the wavelet domain would yield better
efficacy in denoising. Several methods have previously
been developed for optimal wavelet selection using cross
validation [31], Shannon entropy [32], cross correlation and
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FIGURE 1. Plot of the wavelet function and corresponding High-pass and Low-pass filters of (a, f) bior1.3, (b, g) coif2, (c, h) db2, (d, i) rbio1.3 and
(e, j) sym3 wavelets.

TABLE 1. Description of symbols used.

signal-to-noise-ratio [33], [34], [35], degree of energy vari-
ation [36], probabilistic neural network [37] and Nash
Sutcliffe criteria [38]. However, these methods are not
universal and focus only on specific types of signal [31], [32],
[37], [38], [39]. Also, the wavelet and decomposition level
selections are not performed in the wavelet domain. Instead,
they are obtained after comparing the denoised data, which
makes the method cumbersome, time consuming and difficult
to apply in real time.

In this paper, a generalizedmethod is presented to select the
optimal mother wavelet function for denoising. The method
uses a sparsity parameter [1], [40] to quantify maximum
separation between signal and noisy Detail coefficients of
the wavelet-transformed data. Subsequently, it calculates
the mean of sparsity change to identify a wavelet (or a
group of wavelets) that yields maximum separation across
decomposition levels. The sparsity change has been reliably
used to obtain the highest decomposition level [40], and hence
can be easily integrated into any wavelet denoising algorithm.
Using this sparsity criterion, an automated empirical method

TABLE 2. Wavelet sample space used for the optimal wavelet selection.

is developed that selects the optimal wavelet in real time for
a given noisy signal, without a priori knowledge.
The paper is organized as follows. In section II, we discuss

the importance of wavelet families and respective wavelets
used for this study. In section III, we provide the details of
effective decomposition level selection, sparsity calculation
and its use to select a decomposition level that separates
noisy and noise-free Detail components. In section IV,
we describe criteria used to select the optimal wavelets.
In section V, we explain the model data, including simulated
and experimental data, which is used to test and validate our
method. Section VI, discusses the results and Section VII
summarizes the method and findings in the Conclusion.

II. WAVELET SAMPLE SPACE
We created a sample space of most widely utilized
wavelets for denoising. These include Biorthogonal, Coiflet,
Daubechies, Reverse biorthogonal and Symlet families.
Within each wavelet family we used bior1.1-bior2.6, coif1-
coif5, db2-db11, rbio1.3-rbio2.8 and sym2-sym7, which have
different filter lengths and practical applications. We did not
consider db1 and rbio1.1, as they are the same as bior1.1 and
haar, but with different names. Figure 1 displays mother
wavelet families and their respective low and high pass filter
coefficients. Table 2 displays the list of wavelets used in the
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TABLE 3. Length of the detail coefficients, filter length, and ratio of LDj
/Lf of Coiflet wavelet family are shown in the table. LDj

: length of detail
component at jth decomposition level; Lf : filter length; Rj : ratio of LDj

/Lf .

TABLE 4. Details of the wavelet families and their wavelet numbers, filter length, effective decomposition level, and LDj
/Lf are presented in this table.

EDL: effective decomposition level; Lf : filter length; Rj : ratio of LDj
/Lf .

sample space. It is worth mentioning that other and/or new
wavelets can be added to the wavelet sample space.

III. DECOMPOSITION LEVEL SELECTION
A. EFFECTIVE DECOMPOSITION LEVEL
The maximum possible wavelet decomposition level
(= log2(length(X )), where X is the input signal) for
any signal is decided by its length. Yet, not all of them
contain noise or signal. The signal coefficients after a
certain decomposition level saturates, which suggests that
the wavelet filter dominates the Detail components instead
of the signal or noise coefficients. Thus, it can be calculated
by taking the ratio of the length of Detail component and the
length of the wavelet filter as given by;

Rj =
LDj
Lf

(1)

where LDj is the length of Detail component at the jth
decomposition level and Lf is the length of the wavelet filter.
Themaximum possible decomposition level is obtained when
Rj > 1.5 [40]. For instance, Table 3 shows Rj associated with
LDj and Lf for different wavelets in the Coiflet family at a
given signal length of 1024. It can be seen that LDj values
are different for each wavelet which is also reflected in Rj.
The Rj reflects the dominance of the wavelet filter in a Detail
component. Table 4 exhibits the effective decomposition level
and corresponding ratio cutoff (> 1.5) for each wavelet in
the wavelet sample space. It can be seen from Table 4, that

the effective decomposition level varies for different wavelets
based on their filter length.

B. SPARSITY
Sparsity captures the presence of noise in a Detail component,
enabling the separation of noisy and noise-free Detail
components. The Detail components with larger noise has
lower sparsity values, whereas Dj′s with lower noise has
larger sparsity [1], [40]. The presence of noise in Detail
coefficient decreases with increase in decomposition level,
which results in increase in sparsity. Sparsity (S) of Detail
coefficients (D) at each level for all wavelets is calculated as
per the following equation.

Sj =
max|Dj|∑qj
k=1 |Dj[k]|

, 1 ≤ j ≤ N (2)

where Sj, Dj and qj are the sparsity, Detail component and
length of the Detail component at jth decomposition level,
respectively. Figure 2a and 2b displays the sparsity plot of
sym2 and coif2 wavelets, of white Gaussian noise, noise-
free and noisy signal at SNR-30, respectively. It can be seen
that, at a lower decomposition level, the sparsity value of
the noisy signal is close to that of the sparsity value of only
noise, whereas the sparsity value of the noisy signal is close to
the sparsity value of noise-free data at higher decomposition
levels. This separation between noisy and noise-free Detail
components is highlighted by a vertical line in all the sparsity
plots shown in Figure 2. This feature is consistent across other
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FIGURE 2. The sparsity plot of wavelets (a, c) sym2, (b, d) coif 2 for white Gaussian noise, noise-free signal and noisy signal of (a, b) SNR
30 and (c, d) SNR 10. The vertical line denote the optimal decomposition level that separates noisy and noise-free Detail coefficients.

simulated signals, which can be seen in the sparsity plot of
SNR-10 data shown in Figure 2c and 2d for sym2 and coif2
wavelets respectively.

C. SPARSITY CHANGE (1S)
The sparsity change parameter is used to determine the
highest decomposition level that contains a noisy Detail
component. Sparsity value represents the magnitude of
noise present in a Detail component, whereas, the sparsity
change separates noisy and noise-free Detail components by
identifying an abrupt change in 1S value between adjacent
decomposition levels. The sparsity change (1S) is calculated
as

1Sj = Sj − Sj−1 (3)

where 1Sj is the sparsity change at jth decomposition level
and Sj, and Sj−1 are the sparsity at jth and (j − 1)th
decomposition level respectively. 1S1 = 0 as there is no
preceding level.

D. OPTIMAL DECOMPOSITION LEVEL (κ)
The optimal decomposition level (κ) that separates noisy and
noise free Detail components can be calculated subjectively
from change in sparsity plot or empirically through a
cutoff value [40]. In the subjective approach, the optimal
decomposition level j (=κ) is selected where the first

abrupt change in the 1Sj plot happens between j and j+1.
Empirically, a threshold of 5% with respect to 1 is selected
as cutoff between noisy and noise-free Detail components.
The optimal decomposition level (κ=) j-1 is selected where
1Sj > 0.05 in the first occurrence [40].

IV. WAVELET SELECTION
Selection of wavelets is done using the sparsity of the Detail
coefficients. The mean of 1S between adjacent levels is used
as the quantitative parameter to select optimal wavelet.

A. MEAN OF SPARSITY CHANGE(µSC )
The mean of 1S for each wavelet is calculated between
level-2 to one level after the optimal decomposition level
(κ + 1). 1S1 = 0 as there is no preceding level. Hence, the
mean of 1S for each wavelet is calculated between levels
2 to κ + 1 using equation 4. Now, µsc can be expressed as
the ratio of difference in sparsity between level κ + 1 and
level 1 to (κ − 1). The plot of µsc of white Gaussian noise,
noise-free signal and noisy signal of SNR-30 displayed in
Figure 3 demonstrates the variation of µsc among wavelets.
From the Figure 3, it can be seen that the µsc of noise is
lower, whereas, µsc for noise-free signal and noisy signal
are comparable. Such behavior demonstrates the efficacy of
the method to reduce effect of noise while selecting optimal
wavelet. It should be noted that the mean of sparsity for
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FIGURE 3. Stem plot of the mean of sparsity change of white Gaussian noise, noise-free and noisy simulated signals of SNR-30.

noise is calculated between the decomposition level 2 and
optimal decomposition level obtained corresponding to the
noisy signal.

µsc =

∑κ+1
j=2 1Sj

(κ + 1) − 2

=
1S2 + 1S3 + . . . + 1Sκ+1

κ − 1

=
(S2 − S1) + (S3 − S2) + . . . + (Sκ+1 − Sκ )

κ − 1

=
Sκ+1 − S1

κ − 1
(4)

B. WAVELET SELECTION CRITERIA
Optimal wavelets are selected utilizing the mean of sparsity
change. From Figure 3, it can be seen that µsc of only
noise has similar values for all wavelets. On the other
hand, µsc of noise-free signal for bior2.2 wavelet has
higher value compared to other wavelets. For a noisy
signal few wavelets have higher µsc value than others.
Such behavior demonstrates that, there can be only one
or two optimal wavelets for high SNR signal whereas for
low SNR signal there can be a few optimal wavelets. The
wavelet corresponding to the highest µsc is selected as the
optimal wavelet. Additionally, we have selected five wavelets
corresponding to highest µsc values. Mathematically, the
optimal wavelet and five optimal wavelets can be selected as

Optimal wavelet = wavelet{max(µ1
sc, µ

2
sc, · · · , µn

sc)}

Five optimal wavelets =

5∑
i=1

wavelet{max(µ1
sc, µ

2
sc, · · · ,

µn+1−i
sc )} (5)

where wavelet is the list of wavelets in the sample space, n
is the total number of wavelets, µn

sc is the mean of sparsity
corresponding to nth wavelet.

V. DATA COLLECTION
A. SIMULATED DATA
Simulated ESR data is obtained using the Lorentz func-
tion written in MATLAB. The data generated has length
of 1024 having identical peaks of height approximately
0.2753 with separation between the peaks of around
185 index values and the space between positive and negative
peaks is 13 index values. The amplitude of the signals
are symmetric and oscillates between positive and negative
values with zero mean. Noise-free (red line) and noisy (blue
line) simulated signal of SNR-10 are displayed in Figure 4.
To generate signals of various SNRs, additive white Gaussian
noise is added to the signal. Signals of SNRs 5, 10, 30,
and 50 are generated through this method and the SNR is
calculated utilizing the formula given in equation 6. Noiserms
is calculated from the first 200 index values of the input signal
and the region is highlighted inside the rectangle in Figure 4.

SNR =
Signalpeak
Noiserms

(6)

B. EXPERIMENTAL DATA COLLECTION
The results obtained from simulated data are tested
on an experimental signal recorded through continuous
wave-Electron Spin Resonance (cw-ESR) spectroscopy
experiments. CW-ESR is used extensively to study unpaired
electrons to understand the dynamics and structure of
biomolecules, and is the most commonly used ESR tech-
nique [41]. The cw-ESR spectrum is acquired in the magnetic
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FIGURE 4. Plot of the simulated noise-free and noisy signal of SNR-10.
The region inside rectangle is used for calculation of Noiserms.

field (B0) domain, which is linearly swept, i.e. B0 = B0(t),
increasing in magnetic field over time. The samples are
irradiated continuously with microwave frequency radiation
till a resonance condition is achieved, where the energy
supplied by the microwave radiation is sufficient for the
unpaired electron to switch its spin state from aligned to
anti-parallel, generating the signal at the detector. In cw-
ESR, a number of parameters are optimized simultaneously,
to increase SNR without distorting the signal. Magnetic
field sweep time, the time constant/ spectrometer response
time (which filters out noise, at the risk of broadening or
filtering out the signal), and the number of scans are few
such parameters. An additional oscillating magnetic field is
superimposed which oscillates with a 1B of a few Gauss
at 100kHz. This ‘modulation frequency’ is responsible for
improving the SNR by ensuring phase-sensitive detection,
where only the 100kHz oscillations are captured by the
lock-in amplifier. Depending on the applied amplitude of
this modulating field, a range of signals are detected in the
spectrum, and resulting in a first derivative mode spectrum.
If the modulation amplitude is too high relative to the signal
linewidth, it will broaden the signal. The microwave power is
adjusted such that the signal is generated without saturating
the signal, which also causes broadening effects. Also present
in cw-ESR is a baseline signal, which varies depending on the
spectrometer and resonator used, and in the case of nitroxide
spectra, it represents a small fraction of the signal measured.

The ESR experiments were carried out at 20oC using
a commercial spectrometer (BRUKER ELEXYS-II E500)
operated at a microwave frequency of 9.4GHz corresponding
to a static magnetic field of 0.34 Tesla. The sample
consists of 4 µL of a 100 µM aqueous solution of the
commonly used spin-probe molecule Tempol (4-Hydroxy-
2,2,6,6-Tetramethylpiperdine 1-oxyl) [41], [42], [43], [44],
which helps form a stable but ESR-active adduct. The
magnetic field was then swept over a range of 60 G
corresponding to the resonant spectral range which took
2 minutes, and a 82 ms time constant was used. The spectral
data consisted of 4096 points along the magnetic field sweep.

In addition, small coils placed at the sides of the resonator
provided a small magnetic field modulation of ±0.02 G at
a frequency of 100 kHz. The first derivative of absorption
signal was recorded using a lock-in detector locked at 100 kHz
frequency [41]. Low power (0.2 mW ) microwave radiation
was used to avoid saturating the ESR signal. Multi-scan
experiments were performed with a delay of 4 s between
scans. The results of these scans were then averaged. For
reference, ESR data collected from the spectrometer averaged
at 500 scans is shown in Figure 5a. The characteristic
three-line spectrum arises from the interaction between the
electrons and the nitrogen-14 nucleus of the nitroxide sample.

In another set of experiments, an ESR signal was acquired
from a sample prepared in a different environment to obtain
a complex spectrum. It was obtained on a home-built
(ACERT) 95GHzESR spectrometer [44] with a DCmagnetic
field of 3.3 Tesla at 25oC . The sample here contained ca.
5 µL of phospholipid vesicles doped with 0.5% of a lipid
spin label: 16−PC (1-acyl-2-[16-(4,4-dimethyloxazolidine-
N-oxyl)stearoyl]-sn-glycero-3-phosphocholine) in the fluid
phase that has been suspended in water. It was placed in
a disc-like sample holder utilized for millimeter-wave ESR
methodology [44]. This nitroxide sample contains the same
three-line spectrum, however it has it’s motion restricted
in the lipid vesicle, revealing the orientation dependence
of the spectrum, and this is further resolved by measuring
at a high magnetic field. The acquisition parameters were:
sweep width of 250 G, sweep time of 2 minutes with a
time constant of 100 ms. The millimeter-wave power was
16 mW and the spectrum consists of 512 points. The field
modulation parameters were: 6 G modulation amplitude and
100 kHz modulation frequency. The time between scans was
3 seconds. Reference ESR signal recorded from the in-house
built spectrometer is displayed in Figure 5b.

VI. RESULTS AND DISCUSSION
A. SIGNAL WITH VARIABLE NOISE
Sparsity, sparsity change and mean of sparsity change
are used for optimal wavelet selection. µsc is used as a
quantitative parameter to select the optimal wavelets. The
method is first tested on simulated signals with variable SNR
of 5, 10, 30 and 50. Figure 6a and 6b displays the white
Gaussian noise generated to achieve signal SNR of 5 and
30 respectively. The difference in noise level is clearly visible
in Figure 6c and 6d which exhibits the simulated signal of
SNR 5 and 30 respectively. The sparsity plot of simulated
white Gaussian noise (generated to achieve SNR-5), noise-
free signal and noisy signal of SNR-5 for bior1.1 is shown
in Figure 6e. Bior1.1 is obtained as the optimal wavelet that
maximizes the difference between noisy and noise-free Detail
components for the simulated signal of SNR-5. It can be seen
from the sparsity plot in Figure 6e that the sparsity values
of noise-free and noisy signals are converging at a higher
decomposition level, which demonstrates that the noise in
the signal is represented by the first few Detail components
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FIGURE 5. ESR signals obtained from (a) a Bruker X Band (9.4 GHz) spectrometer averaged at 500 scans and (b) in-house built (ACERT) W
Band (95 GHz) spectrometer averaged at 18 scans.

TABLE 5. Table represents the first five wavelets corresponding to the highest µsc , their optimal decomposition level and the µsc values for simulated
signals of various SNRs.

and the signal by the next few Detail components. Also the
sparsity values at decomposition level 8 are similar for all
three cases, which demonstrates that, at higher decomposition
level the filters dominate the Detail components instead of the
signal. The optimal decomposition level for wavelet bior1.1,
when applied to the signal of SNR-5 is found to be 3, which
is indicated by a vertical line between level 3 and 4 in
Figure 6e. The sparsity values for noise and a noisy signal at
decomposition level 3 are similar, whereas the sparsity value
at level 4 for a noisy signal is higher and is also close to
the sparsity value of a noise-free signal. This demonstrates
the optimal decomposition level obtained for the selected
wavelet maximizes separation between noisy and noise-free
Detail components. For a signal of SNR-30 the optimal
wavelet from our method is found to be bior2.6. The optimal
decomposition level obtained using the bior2.6 wavelet for a
signal of SNR-30 is 2. Again similar behavior is observed in
the case of signal of SNR-30 andwavelet bior2.6 as illustrated
previously. From Figure 6f, it can be seen that, the sparsity
values after optimal decomposition level (κ = 2) are closer
to the sparsity value of a noise-free signal and are similar
ti the sparsity value of noise before level-2. This reiterates
the fact that the optimal decomposition level for the selected
wavelet effectively distinguishes noisy and noise-free Detail
components. It should be noted that a similar trend in sparsity
is observed for all other simulated and experimental signals.

The mean of sparsity change of noise-free signal shown
in Figure 3 displays abrupt variation for different wavelets.
However, the µsc of only noise have similar values. Such
behavior demonstrates that the analysis with few wavelets

perform better in separating noise and signal in the wavelet
domain. The stem plot of the µsc of all the wavelets for
simulated data of SNR- 5, 10 and 30 shown in the Figure 6g
manifests an overall increase in the µsc value with increase in
SNR of the data. The increase in theµsc value for higher SNR
data can be be attributed to the decrease in κ , that separates
noisy and noise-free Detail coefficients. The mean of 1S
calculated across levels averages out the sparsity of noisy and
noise-free Detail components between decomposition levels.
This can be confirmed from Table 5, which demonstrates
the decrease in κ of wavelets with an increase in SNR of
the data, barring a few outliers. Wavelets with the highest
µsc values are chosen as the optimal wavelets because it
magnifies the separation between noisy and noise-free Detail
components at a lower decomposition level. Consequently,
noise-free components will represent the maximum signal
and have the minimal effect of the filter function. Here,
we have selected five wavelets corresponding to the highest
µsc as our optimal wavelets. Table 5 displays the selected
wavelets based on the highest µsc values and corresponding
decomposition level and the µsc values.

B. EXPERIMENTAL DATA
The method developed for wavelet selection is validated on
averaged ESR signals at different scans recorded through
commercial and in-house built spectrometers. Signals of
varying SNR collected from the commercial spectrometer are
averaged at 1 scan, 4 scans and 500 scans and in-house built
spectrometer averaged at 1 scan, 4 scans and 18 scans are
shown in Figure 5a and 5b respectively. It can be seen from
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FIGURE 6. Generated Gaussian noise to achieve (a) SNR-5 and (b) SNR-30. Signal of (c) SNR-5 and (d) SNR-30 after addition of noise.
The sparsity plot of noise, noise-free signal and noisy signal of (e) SNR-5 and bior1.1 and (f) SNR-30 and bior2.6 wavelets. Red vertical
line in the sparsity plot indicates the separation between noisy and noise-free Detail components. (g) Stem plot of the µsc of the
simulated data for SNR-5, 10 and 30. Top five selected wavelets are highlighted corresponding to their number inside circles.
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FIGURE 7. Signals averaged at various scans collected from (a) the commercial spectrometer, (b) in-house built spectrometer. Stem plot of
the µsc of all scans for signals recorded from (c) the commercial spectrometer and (d) in-house built spectrometer. Top five selected
wavelets are highlighted corresponding to their number inside circles.

VOLUME 12, 2024 45377



G. R. Sahoo et al.: Optimal Wavelet Selection for Signal Denoising

TABLE 6. Table represent the first five wavelets corresponding to the highest µsc , their optimal decomposition level and the µsc of experimental signals
averaged at different scans collected using the commercial spectrometer.

TABLE 7. Table represents the first five wavelets corresponding to the highest µsc , their optimal decomposition level and the µsc of experimental signals
averaged at different scans collected using the in-house built spectrometer.

the Figure that the SNR of the signal increases when averaged
at higher scans. µsc plots of all three signals recorded from
the commercial spectrometer shown in Figure 7c exhibits
an increase in µsc with the signal averaged at higher scans.
Figure 7d displays the stem plot ofµsc for signals averaged at
1 scan, 4 scans and 18 scans collected using the in-house built
spectrometer. The trends for µsc seen in the simulated data
are also visible here. Similar to simulated data, this increase
inµsc can be attributed to the increase in SNR of the averaged
signal.

The optimal wavelets, corresponding κ and normalizedµsc
obtained from each experimental signal are shown in Table 6
and 7 for data collected from the commercial and in-house
built spectrometer, respectively. Again, the higher µsc values
for high SNR signal can be due to the averaging over too few
levels.

VII. CONCLUSION
In this work, we present a sparsity based method for the
optimal wavelet selection of noisy data. The algorithm uses
the mean of sparsity change (µsc) as a quantitative parameter
and facilitates the selection of optimal wavelets for effective
denoising. The following conclusions are drawn from this
work:

• The mean of sparsity change of noise has similar values
for all wavelets, whereas the µsc for signal displays a
larger value for one wavelet compared to others in the
wavelet sample space.

• The mean of sparsity change increases with increase in
SNR of the signal which can be attributed to the decrease
in optimal decomposition level that separates noisy and
noise-free Detail components.

• For low SNR signal, Biorthogonal wavelets perform
better in separating noise and signal in the wavelet
domain.

The technique presented here is advantageous over time con-
suming standard trial-and-error practice of wavelet selection.
We have tested the method on simulated data and validated

over experimental signals. The technique can be integrated to
any wavelet based algorithms as a preprocessing tool for the
selection of wavelets.
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