
Received 22 December 2023, accepted 7 March 2024, date of publication 13 March 2024, date of current version 21 March 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3377222

Decoding Errors in Difference-Invertible Bloom
Filters: Analysis and Resolution
EUNJI CHOI1, (Student Member, IEEE), JUNGWON LEE2, (Member, IEEE),
CHANGHOON YIM 3, (Senior Member, IEEE),
AND HYESOOK LIM 1, (Senior Member, IEEE)
1Department of Electronic and Electrical Engineering, Ewha Womans University, Seoul 03760, South Korea
2Department of Convergence and Open Sharing System, Seoul National University, Seoul 08826, South Korea
3Department of Computer Science and Engineering, Konkuk University, Seoul 05029, South Korea

Corresponding authors: Jungwon Lee (jungwon0736@snu.ac.kr) and Hyesook Lim (hlim@ewha.ac.kr)

The work of Jungwon Lee was supported by the National Research Foundation of Korea funded by the Ministry of Education under
Grant NRF-2021R1I1A1A01042218. The work of Changhoon Yim was supported by the National Research Foundation of Korea under
Grant NRF-2023R1A2C1004868. The work of Hyesook Lim was supported by the National Research Foundation of Korea under Grant
NRF-2023R1A2C1002611.

ABSTRACT An invertible Bloom filter (IBF) is a useful data structure for various network applications
because the difference IBF (d-IBF) of two IBFs programmed by two separate sets effectively identifies
distinct elements unique to each set. d-IBF eliminates common elements, and unique elements are listed
through a decoding process that utilizes pure cells, each of which stores a single element in a cell. However,
the definition of pure cells used for decoding an IBF is insufficient to decode a d-IBF. Composite cells in a
d-IBF can also satisfy the pure cell conditions defined for an IBF, and decoding composite cells adversely
affects d-IBF performance. This study mathematically analyzes the probability of decoding errors in a d-IBF
and proposes a new decoding method to resolve these errors. Experimental results confirm that the proposed
decoding method successfully detects and resolves the decoding errors. This enables accurate identification
of the difference between the two sets without generating any incorrect elements, even with a small IBF of
m = 2d regardless of set sizes, where m is the number of cells in the IBF and d is the size of the difference.

INDEX TERMS Bloom filter, invertible bloom filter, IBF, difference-IBF, set reconciliation.

I. INTRODUCTION
Bloom filters (BFs) [1] and their variants [2], [3], [4],
[5] are widely used in network applications [6], [7], such
as set reconciliation [8], [9], [10], cloud computing and
storage [11], [12], [13], [14], named data networking [15],
[16], [17], [18], [19], [20], network security [21], [22], [23],
[24], P2P networks [25], IP address lookup [26], [27], [28],
[29], sensor networks [30], [31], and network monitoring
and measurement [32], [33]. Although a standard BF is
typically used to provide a membership query, its variants
have additional functionalities. For example, counting BF
(CBF) [4], [34] enables element deletion by providing a
counter per cell. Ternary BF (TBF) [9], [35] avoids false

The associate editor coordinating the review of this manuscript and
approving it for publication was Abderrezak Rachedi.

negatives caused by the deletion of overflow cells in a CBF
and reduces the false positive rate.
One of the most interesting variants of a BF is the

invertible-BF (IBF) [2], [8], [9], [10], [19]. A useful
characteristic of an IBF is its ability to provide a difference
operation for two IBFs and decode the remaining elements.
In a difference-IBF (d-IBF) of two IBFs, each of which
is programmed using a set of elements, common elements
are removed and distinct elements included in each set
are retained. By decoding the remaining elements, distinct
elements that were exclusively included in each set were
identified. Hence, the union of two sets can be effectively
obtained by decoding a d-IBF; this process is called set
reconciliation [8], [9], [10], [36]. Set reconciliation has been
used in various applications that require distributed databases
to contain the same set of elements.

40622

 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 12, 2024

https://orcid.org/0000-0002-3826-6395
https://orcid.org/0000-0001-9857-937X

E. Choi et al.: Decoding Errors in Difference-IBFs: Analysis and Resolution

However, the decoding method shown in [2] and [10] has
the following problems:
• The definition of pure cells for IBF decoding is
necessary but not sufficient for d-IBF decoding.

• If the same procedure used to decode an IBF is applied
to decode a d-IBF, some of the distinct elements will not
be decoded, and incorrect elements can be erroneously
decoded.

To reduce the possibility of decoding errors, a large number
of cells with a large number of bits to each cell should be
allocated to an IBF despite the small difference between the
two sets [19]. Evenwith a large number of IBF cells, decoding
errors cannot be completely avoided if the conventional
decoding method used for IBF decoding is applied to d-IBF
decoding. This paper proposes a new and efficient method
for decoding a d-IBF. The contributions of this study can be
summarized as follows.
• The probability of decoding errors is mathematically
analyzed when the conventional decoding method used
for IBF decoding [2], [10] was applied for d-IBF
decoding.

• An additional pure cell condition is proposed that should
be considered for d-IBF decoding to avoid errors.

• However, because the additional pure cell condition
is not clearly identified from the cell values, the
decoding errors that occurred during d-IBF decoding are
classified.

• Solutions to these errors are provided by proposing a
new method to decode d-IBF.

• The experimental results demonstrate that the proposed
decoding method can accurately identify every element
included in a d-IBF without generating incorrect ele-
ments. Moreover, the proposed method achieves this
using a small number of IBF cells, which is proportional
to the total difference between the two sets, regardless of
the set sizes.

• Source codes programmedwithVerilog (used to enable a
performance comparison between the proposed method
and the conventional method) were made public for use
by other researchers.

The remainder of this paper is organized as follows.
Section II describes a BF, an IBF, and a d-IBF as related work.
Section III provides a theoretical analysis of d-IBF decoding
errors. Section IV classifies the errors in d-IBF decoding and
describes the proposed decodingmethod to resolve the errors.
Section V presents the results of performance evaluation.
Finally, Section VI concludes the study.

II. RELATED WORKS
A. BLOOM FILTER
A Bloom filter [1] is a probabilistic data structure that
determines whether an element belongs to a set. An array of
m bits, B[m], is used to store set S = {x1, x2, · · · , xn} of n
elements. All initial values of the array (before inserting any
elements) were zero. Using k hash functions, h1, h2, · · · , hk ,
each element of S maps to the k cells of the BF. The insertion

FIGURE 1. Invertible Bloom filter (IBF).

of element x is done to set the value of hashed cells to 1, i.e.,
B[hi(x)] = 1 for i = 1, 2, · · · , k .
When querying an input y, if B[hi(y)] = 1 for i = 1,

2, · · · , k , then input y is a member of the set, which represents
a positive result. However, if any B[hi(y)] = 0, input y is
not a member of the set, which represents a negative result.
A negative result of the BF result is always valid. However,
because of hash collisions, BFs can produce false positives
that return positive results when querying elements that have
not been inserted. The false positive rate f is related to the
size of the BF as follows [5].

f = (1− (1−
1
m
)kn)k (1)

B. INVERTIBLE BLOOM FILTER
An invertible Bloom filter [2], [8], [9], [10], [19] provides
a useful operation to recover inserted elements in addition
to insertion, deletion, and query operations. The process of
recovering inserted elements is called decoding. Fig. 1 shows
an example of IBFwith six cells programmed by a set of three
elements, x1, x2, and x3. Each IBF cell has three fields: idSum,
sigSum, and count. idSum stores the sum of inserted elements,
sigSum stores the sum of the signatures of inserted elements,
and count stores the number of elements stored in a cell.
In this context, the sum used for element insertion or deletion
was obtained using exclusive-OR (XOR) operations instead
of additions. The XOR operation preserves the number of
bits after summation. Algorithm 1 describes the insertion
and deletion operations for an element; to insert (delete) an
element into (from) a cell, the element is XORed with the
idSum value of the cell, and the signature of the element is
XORed with the sigSum value of the cell. The count value
is incremented by one for each insertion and decremented by
one for each deletion. In this algorithm, g(x) is a function for
obtaining sigSum of element x.
The decoding process for recovering the inserted elements

depends on the pure cells. A pure cell, which is a cell with a
single stored element, satisfies two conditions: count = 1 and
g(idSum)= sigSum. In Fig. 1, the cells marked with red boxes
represent the pure cells. Algorithm 2 shows the decoding
process for IBF. idSum of a pure cell represents the inserted
element. By examining every cell in an IBF, pure_cell_list ,
which is composed of the indices of pure cells, is obtained.
The first step in the decoding process is to add the idSum of

VOLUME 12, 2024 40623

E. Choi et al.: Decoding Errors in Difference-IBFs: Analysis and Resolution

Algorithm 1 Insertion and Deletion of an Element

Function IBF_insert (x)
for i = 0 to k − 1 do

IBF[hi(x)].idSum = IBF[hi(x)].idSum ⊕ x
IBF[hi(x)].sigSum = IBF[hi(x)].sigSum ⊕
g(x)
IBF[hi(x)].count = IBF[hi(x)].count + 1

end
end
Function IBF_delete (x)

for i = 0 to k − 1 do
IBF[hi(x)].idSum = IBF[hi(x)].idSum ⊕ x
IBF[hi(x)].sigSum = IBF[hi(x)].sigSum ⊕
g(x)
IBF[hi(x)].count = IBF[hi(x)].count – 1

end
end

Algorithm 2 Decoding Process in an IBF

Function IBF_decoding (pure_cell_list)
while !pure_cell_list.empty do

idSump← IBF[pure_cell_list.front].idSum;
decode_list.end← idSump;
IBF_delete (idSump);
pure_cell_list.end←
IBF[new_pure_cell].index;

end
end

a pure cell to the decode list and then to delete the element
in the pure cell from the IBF. If an element in a pure cell is
deleted, new pure cells can be generated if the other accessed
cells had two stored elements. Newly generated pure cells are
added to the pure_cell_list , and deletions are then repeated
for the next pure cell until the pure_cell_list becomes empty.
Figure 2 shows an example of the IBF decoding process

of the IBF in Fig. 1. In Fig. 2(a), cells in indexes 0 and
5 satisfy pure cell conditions; hence, indexes 0 and 5 are
added to the pure_cell_list . x1 is added to decode_list in
Fig. 2(b). For the first index of pure_cell_list , Fig. 2(c) shows
the deletion of x1. From the cells in indexes 0, 3, and 4 of the
IBF, x1 was deleted by applying Algorithm 1. The cell with
index 3 became a new pure cell by deleting x1, and hence,
index 3 was added to pure_cell_list . The same process was
repeated for the first index in the pure_cell_list , which was 5.
The decoding process is terminatedwhen the pure_cell_list is
empty. The decoding process is considered successful if every
cell of the IBF became zero. Because the decoding process of
an IBF relies solely on pure cells, decoding fails if there are
no pure cells before all the elements have been decoded.

The appropriate number of hash functions used to build
an IBF can be experimentally obtained [10]. When a small
number of hash functions is used, there is a higher possibility

FIGURE 2. IBF decoding for x1 at index 0.

of generating a larger number of pure cells initially. However,
a few new pure cells may have been created during the
decoding process. However, when a large number of hash
functions are used, the probability of decoding failure
increases because of the inadequate number of initial pure
cells. The optimal number of hash functions for a d-IBF is
typically three or four according to [10].

C. DIFFERENCE-INVERTIBLE BLOOM FILTER
A difference-IBF (d-IBF) makes an IBF more useful in many
applications. In particular, for set reconciliation, d-IBF is
effectively used to obtain the union of two sets [9], [10],
[19], [36]. A d-IBF is obtained by subtraction of each cell,
as shown in Algorithm 3. If IBF1 and IBF2 programmed by
two sets S1 and S2, respectively, have the same size and use
the same hash functions hi for i = 1, 2, · · · , k , common
elements are programmed into the same cells in both IBFs.
Hence, every common element is eliminated by subtraction,
and only the distinct elements (which are unique elements
included in either of the sets) are retained in the d-IBF.

Algorithm 3 Obtaining a d-IBF

Function IBF_subtract (IBF1, IBF2)
for i = 0 to m− 1 do

d-IBF[i].idSum = IBF1[i].idSum ⊕
IBF2[i].idSum
d-IBF[i].sigSum = IBF1[i].sigSum
⊕IBF2[i].sigSum
d-IBF[i].count = IBF1[i].count – IBF2[i].count

end
end

Using a d-IBF is particularly effective when the number of
common elements in the two sets is considerably larger than
the number of distinct elements. Because common elements
are removed in a d-IBF, the number of cells in an IBF, m, can
be set in proportion to d regardless of the set size, where d is
the sum of the numbers of distinct elements included in each
set. Therefore, m = αd , and α ≥ 1.

40624 VOLUME 12, 2024

E. Choi et al.: Decoding Errors in Difference-IBFs: Analysis and Resolution

TABLE 1. Terms and notations.

Table 1 summarizes the terms and notations used in this
study. Algorithm 4 shows the deletion operation of an element
from a d-IBF. Because the count value could be 1 or -1, upon
deleting an element from a cell in a d-IBF, the count value of
the pure cell should be subtracted from the count value of the
cell, unlike Algorithm 1.

Algorithm 5 outlines the conventional decoding process
for d-IBF [10]. This process is similar to the IBF decoding
process, except for the handling of count values. For each
pure cell, the idSum value of the pure cell is added to the
decoded list of D1 or D2 depending on the count value of
the pure cell, and then the deletion operation described in
Algorithm 4 is performed. Assuming that hash indexes for
an element are distinct, if the count value of a cell is 1, the
idSum of the pure cell is an element belonging to set D1; if
the count value is -1, it is an element belonging to set D2.
When pure_cell_list becomes empty, the d-IBF needs to

be examined whether it is empty. If all the cell values of
the d-IBF are zero, this implies that every distinct element
included in either of the sets is successfully decoded.
Otherwise, the decoding process fails.

Algorithm 4 Element Deletion From a d-IBF

Function d-IBF_delete (x, c)
for i = 0 to k − 1 do

d-IBF[hi(x)].idSum = d-IBF[hi(x)].idSum ⊕ x
d-IBF[hi(x)].sigSum = d-IBF[hi(x)].sigSum ⊕
g(x)
d-IBF[hi(x)].count = d-IBF[hi(x)].count – c

end
end

III. THEORETICAL ANALYSIS OF D-IBF DECODING
ERRORS
The conventional decoding method [10] shown in Algo-
rithm 5, which relies on cells satisfying two pure cell
conditions, can cause decoding errors for a d-IBF. For
example, if a cell in IBF1 has two unique elements and the
corresponding cell in IBF2 has one unique element, the count
value of the corresponding d-IBF cell is one, but the idSum
of the cell is the composite value of three distinct elements.
If g(idSum) of the cell is not equal to sigSum of the cell,
the cell is identified as a non-pure cell. However, if they

Algorithm 5 Conventional Decoding in a d-IBF

Function d-IBF_decoding (d-IBF)
while !pure_cell_list.empty do

idSump← d-IBF[pure_cell_list.front].idSum;
countp← d-IBF[pure_cell_list.front].count;
if countp == 1 then

D1.end← idSump;
end
else if countp == -1 then

D2.end← idSump;
end
d-IBF_delete (idSump, countp);
pure_cell_list.end←
d-IBF[new_pure_cell].index;

end
if d-IBF.empty then

return Success;
end
else

return Fail;
end

end

are the same by chance, the decoding process using this cell
corrupts the d-IBF and causes errors. In [10], a large number
of bits were allocated to the sigSum field to reduce this type
of error. However, because every cell has a sigSum field,
allocating a large number of bits to sigSum requires a large
memory to implement an IBF. This is more beneficial when
an IBF has a space-efficient data structure and fits into a
small amount ofmemory.Moreover, as will be shown through
performance evaluation, a large number of bits allocated to
the sigSum field does not effectively reduce this type of error.
Hence, our motivation is to resolve decoding errors without
requiring a large number of bits for the sigSum field. This
section analyzes the probability of decoding errors when the
composite cells are used for d-IBF decoding.

Based on the notation in Table 1, S1 is composed of disjoint
sets D1 and S1 ∩ S2, i.e., S1 = D1 ∪ (S1 ∩ S2) and D1 ∩ (S1 ∩
S2) = ∅. Similarly, S2 consists of disjoint setsD2 and S1∩S2,
i.e., S2 = D2 ∪ (S1 ∩ S2) and D2 ∩ (S1 ∩ S2) = ∅. Let n1,
n2, and n3 represent the numbers of elements in D1, D2, and
S1 ∩ S2, respectively. Let N be the total number of elements
in S1 ∪ S2. Then N = n1 + n2 + n3. The sets of distinct
elements can be represented as D1 = {x1, x2, · · · , xn1} and
D2 = {y1, y2, · · · , yn2}. Let b be the number of bits used to
represent element x in S1 ∪ S2. Then, x can be stored as a
number in 0, 1, · · · , 2b− 1. Let H = {h1, h2, · · · , hk} be the
set of hash functions, where k is the number of hash functions.
Let A = {0, 1, 2, · · · ,m−1} be the set of indices (addresses)
in a d-IBF, where m is the number of cells in the d-IBF.
Let d-IBF[i].idSum be the idSum value at index i of the

d-IBF. Let d-IBF[i].sigSum be the sigSum for the index i of
the d-IBF. Let g(x) be the signature of x.

VOLUME 12, 2024 40625

E. Choi et al.: Decoding Errors in Difference-IBFs: Analysis and Resolution

A cell with index i is defined as a genuine pure cell in a
d-IBF if it satisfies the following conditions:

1) | d-IBF[i].count | = 1
2) g(d-IBF[i].idSum) = d-IBF[i].sigSum
3) d-IBF[i].idSum ∈ D1 ∪ D2
Compared with the pure cell requirement of an IBF,

an additional requirement (Condition 3) was added with a
d-IBF. Because Condition 3 cannot be directly identified from
the cell values, if a cell satisfies Conditions 1 and 2, it is
referred to as a candidate pure cell.

We then derived the probability that a cell in a d-IBF is a
candidate pure cell. Let O1,j be the event that a cell in IBF1 is
set j times using k hash functions with n1 elements in D1.
Similarly, letO2,j be the event that a cell in IBF2 is set j times
using k hash functions with n2 elements in D2. Events O1,i
and O2,j for any i, j are independent. Let Cj be the event in
which the count of a cell in d-IBF is j. Then, the events for
Condition 1, C1 and C−1, can be formulated as

C1 = (O1,1 ∩ O2,0)∪(O1,2 ∩ O2,1)∪· · ·∪(O1,n1∩O2,n1−1)

(2)

C−1 = (O1,0 ∩ O2,1)∪(O1,1 ∩ O2,2)∪· · ·∪(O1,n2−1 ∩ O2,n2)

(3)

Events O1,j and O2,j−1 are independent, and events O1,j−1
and O2,j are independent too. Hence

P(O1,j ∩ O2,j−1) = P(O1,j)P(O2,j−1) (4)

P(O1,j−1 ∩ O2,j) = P(O1,j−1)P(O2,j) (5)

where P(Oi) represent the probability of event Oi.
P(O1,j) and P(O2,j) can be calculated as

P(O1,j) =
(
kn1
j

) (
1
m

)j (
1−

1
m

)kn1−j

(6)

P(O2,j) =
(
kn2
j

) (
1
m

)j (
1−

1
m

)kn2−j

(7)

From (4), (6), and (7),

P(O1,1 ∩ O2,0) = P(O1,1)P(O2,0)

=

(
kn1
1

) (
1
m

)1 (
1−

1
m

)kn1−1

·

(
kn2
0

) (
1
m

)0 (
1−

1
m

)kn2

= kn1

(
1
m

) (
1−

1
m

)kn1+kn2−1

(8)

P(O1,2 ∩ O2,1) = P(O1,2)P(O2,1)

=

(
kn1
2

) (
1
m

)2 (
1−

1
m

)kn1−2

·

(
kn2
1

) (
1
m

)1 (
1−

1
m

)kn2−1

=
k2n1n2(kn1−1)

2

(
1
m

)3(
1−

1
m

)kn1+kn2−3

(9)

Similarly, from Eqs.(5), (6), and (7),

P(O1,0 ∩ O2,1) = kn2

(
1
m

) (
1−

1
m

)kn1+kn2−1

(10)

P(O1,1 ∩ O2,2)

=
k2n1n2(kn2−1)

2

(
1
m

)3 (
1−

1
m

)kn1+kn2−3

(11)

Events (O1,j ∩ O2,j−1) and (O1,j−1 ∩ O2,j) are disjoint.
Using (2) and (4),

P(C1) = P(O1,1 ∩ O2,0)+ P(O1,2 ∩ O2,1)

+ · · · + P(O1,n1 ∩ O2,n1−1)

=

n1∑
j=1

P(O1,j ∩ O2,j−1)

=

n1∑
j=1

P(O1,j)P(O2,j−1) (12)

From (6), (7), and (12),

P(C1) =
n1∑
j=1

(
kn1
j

) (
1
m

)j (
1−

1
m

)kn1−j

·

(
kn2
j− 1

) (
1
m

)j−1 (
1−

1
m

)kn2−j+1

=

n1∑
j=1

(
kn1
j

)(
kn2
j− 1

) (
1
m

)2j−1 (
1−

1
m

)kn1+kn2−2j+1

(13)

From (3) and (5),

P(C−1) = P(O1,0 ∩ O2,1)+ P(O1,1 ∩ O2,2)

+ · · · + P(O1,n2−1 ∩ O2,n2)

=

n2∑
j=1

P(O1,j−1 ∩ O2,j)

=

n2∑
j=1

P(O1,j−1)P(O2,j) (14)

From (6), (7), and (14),

P(C−1) =
n2∑
j=1

(
kn1
j− 1

) (
1
m

)j−1 (
1−

1
m

)kn1−j+1

·

(
kn2
j

) (
1
m

)j (
1−

1
m

)kn2−j

=

n2∑
j=1

(
kn1
j− 1

)(
kn2
j

) (
1
m

)2j−1(
1−

1
m

)kn1+kn2−2j+1

(15)

Let C̃1 be the event that a cell in a d-IBF satisfies Condition
1 of the pure cell, and p1 be the probability of C̃1. We obtain

p1 = P(C̃1) = P(C1 ∪ C−1) = P(C1)+ P(C−1) (16)

40626 VOLUME 12, 2024

E. Choi et al.: Decoding Errors in Difference-IBFs: Analysis and Resolution

ProbabilityP(C̃1) can be calculated using (13), (15), and (16),
which is not represented here because of space limitations.
The probability that no cell in the d-IBF satisfies Condition 1
can be obtained using (1 − p1)m. This is the probability that
d-IBF decoding ceased.

Let Op be the event that idSum of a cell in a d-IBF is set by
only one element of D1 ∪ D2, which satisfies Condition 3 of
a pure cell. If a cell has an event Op, then it is a genuine pure
cell, that is, it satisfies all the conditions of a pure cell. Event
Op is a subset of C1 ∪ C−1 in (2) and (3), yielding:

Op = (O1,1 ∩ O2,0) ∪ (O1,0 ∩ O2,1) (17)

From (8), (10), and (17),

P(Op) = P(O1,1 ∩ O2,0)+ P(O1,0 ∩ O2,1)

= kn1

(
1
m

) (
1−

1
m

)kn1+kn2−1

+ kn2

(
1
m

) (
1−

1
m

)kn1+kn2−1

= k(n1 + n2)
(
1
m

) (
1−

1
m

)kn1+kn2−1

(18)

Let C1,e be the event that the absolute value of the count
is one and g(idSum) is equal to sigSum in a cell of a d-
IBF. In other words, a cell with event C1,e would satisfy
Conditions 1 and 2. Let C1,ne be the event that the absolute
value of the count is 1 and the g(idSum) is not equal to
sigSum in a cell of a d-IBF. A cell with event C1,e satisfies
Condition 2, whereas a cell with event C1,ne does not satisfy
Condition 2. EventsC1,e andC1,ne are two disjoint (partition)
events of C̃1, i.e., C̃1 = C1,e ∪ C1,ne and C1,e ∩ C1,ne = ∅.
Event C̃1 can also be decomposed into two disjoint events (Op
and C̃1 −Op), i.e., C̃1 = Op ∪ (C̃1 −Op) = Op ∪ (C̃1 ∩Ocp),
where Ocp represent the complement event of Op.
The cell with event Op satisfies conditions of C1,e. There

might exist cells with events C1,e which do not satisfy the
event condition of Op. This case can occur when the absolute
value of the count is 1 (Condition 1), the idSum of a cell is
the result of XOR operations with multiple elements, and
g(idSum) is equal to the sigSum of the cell (Condition 2).
Hence Op ⊂ C1,e ⊂ C̃1. When idSum of a cell is the
result of XOR operations with multiple elements, this cell is
a composite cell, which is a non-pure cell.

We derive the probability of Condition 2 given Condition 1,
which can be formulated as

P(C1,e|C̃1) = P(C1,e|Op)P(Op|C̃1)+ P(C1,e|Ocp)P(O
c
p|C̃1)

(19)

Since Op ⊂ C1,e, Op ∩ C1,e = Op. Hence,

P(C1,e|Op) =
P(C1,e ∩ Op)

P(Op)
=
P(Op)
P(Op)

= 1 (20)

Since Op ⊂ C1 ∪ C−1 and Op ⊂ C̃1,

P(Op|C̃1) =
P(Op ∩ C̃1)

P(C̃1)
=
P(Op)

P(C̃1)
(21)

P(Ocp|C̃1) =
P(Ocp ∩ C̃1)

P(C̃1)
(22)

From (2), (3), (16), and (17), we obtain the following:

Ocp ∩ C̃1 = (O1,2 ∩ O2,1) ∪ · · · ∪ (O1,n1 ∩ O2,n1−1)

∪ (O1,1 ∩ O2,2) ∪ · · · ∪ (O1,n2−1 ∩ O2,n2) (23)

From (6), (7), and (23),

P(Ocp ∩ C̃1) =
n1∑
j=2

P(O1,j)P(O2,j−1)+
n2∑
j=2

P(O1,j−1)P(O2,j)

(24)

Let s be the number of bits allocated to the signature.
Because there are 2s possible cases with a uniform distribu-
tion of the sigSum field in a cell, we can write P(C1,e|Ocp) =
1/2s. From (19), (20), (21), (22), and (24), we formulate

P(C1,e|C̃1) =
P(Op)

P(C̃1)
+

1

2sP(C̃1)
(
n1∑
j=2

P(O1,j)P(O2,j−1)

+

n2∑
j=2

P(O1,j−1)P(O2,j)) (25)

SinceC1,e andC1,ne are partition events of C̃1, P(C1,ne|C̃1)
can be obtained as

P(C1,ne|C̃1) = 1− P(C1,e|C̃1) (26)

In (25), P(Op) can be calculated using (18), and P(C̃1) can
be calculated using (13), (15), and (16).

We consider the probability of Condition 2 of a composite
cell given Condition 1, which can be formulated as

P(C1,e − Op|C̃1) = P(C1,e|C̃1)− P(Op|C̃1) (27)

Let pde be the probability of the d-IBF decoding error using
composite cells. As there are k trials by k hash functions for
one element in d-IBF, pde can be calculated as follows:

pde = k · P(C1,e − Op|C̃1) (28)

From (21), (25), (27), and (28), the probability of the
d-IBF decoding error using composite cells for decoding pde,
is obtained as follows:

pde =
k

2sp1
(
n1∑
j=2

P(O1,j)P(O2,j−1)

+

n2∑
j=2

P(O1,j−1)P(O2,j)) (29)

IV. PROPOSED DECODING METHOD
To resolve d-IBF decoding errors, an additional step is
required to determine whether a cell satisfies Condition 3 (the
idSum of a cell is an element included in the union of D1 and
D2). If the idSum of a candidate pure cell belongs to neither
D1 nor D2, then the cell is not a pure cell.
This section classifies the d-IBF decoding errors described

in Section III into two types and then proposes a decoding
method to resolve these errors.

VOLUME 12, 2024 40627

E. Choi et al.: Decoding Errors in Difference-IBFs: Analysis and Resolution

FIGURE 3. T1: Case that a candidate pure cell is identified non-pure from
hashing indexes of idSum since the cell index is not included in the
hashing indexes of idSum.

A. T1: NON-PURE CELL, IDENTIFIED FROM HASHING
INDEXES
The first type, T1, is the case where a candidate pure cell that
satisfies Conditions 1 and 2 is identified as a non-pure cell
during the decoding process. For example, Fig. 3 shows the
T1 case. The cell at index 0 of the d-IBF has |count| = 1, and
if by chance the following holds true g(a1⊕b1⊕b2)= g(a1)⊕
g(b1)⊕g(b2), the cell is a candidate pure cell and will be used
for decoding. Assuming that the hash indexes of a1 ⊕ b1 ⊕
b2 do not include index 0 as shown in the figure, the decoding
process using the idSum of this cell will result in the insertion
of a1 ⊕ b1 ⊕ b2 to the second and the third cells, without
deleting any element. Hence, the decoding process performed
for a cell with a T1 case will result in corrupting the d-IBF by
inserting a composite element. Moreover, the insertion of a
dummy element into the d-IBF results in a reduced number
of pure cells and a higher probability of decoding failures.
T1 error can be easily resolved because the hash indices

of a pure cell do not include the index of the cell itself
(index 0 in Fig. 3). In the case of T1, the deletion process
using this cell should be aborted to avoid erroneous decoding.
It is noteworthy that the hash indexes of a candidate pure
cell, hi(idSum), serve as signatures in T1 cases similar to the
sigSum field. Algorithm 6 shows the decoding process for
resolving T1 errors.

Algorithm 6 T1 Error Resolving

Function T1_resolve(pureCellIndex, h[])
if pureCellIndex /∈ h[] then

pureList_erase(pureCellIndex);
return 1;

end
else

return 0;
end

end

FIGURE 4. T2: Case that a candidate pure cell is not identified non-pure
from hashing indexes of idSum since the cell index is accidentally equal
to one of hash indexes of idSum.

FIGURE 5. Decoding process when a T2 error occurs.

B. T2: NON-PURE CELL, BUT NOT IDENTIFIED BY
HASHING INDEXES
The second type, T2, is the case where a candidate pure cell
is not identified as a non-pure cell because one of the hashing
indices of the idSum of the cell is (accidentally) equal to its
index. For example, Fig. 4 shows the case in which a T2 error
occurs in the cell at index 3 of d-IBF. If g(a1 ⊕ a2 ⊕ b1) =
g(a1) ⊕ g(a2) ⊕ g(b1) and hi(a1 ⊕ a2 ⊕ b1) = {2, 3} by
accident, it cannot be determined whether this cell is genuine.
As shown through the simulation in Section V, T2 errors
occasionally occur because the size of an IBF is proportional
to the number of distinct elements and not to the total number
of elements in the union of the two sets.

Figure 5 shows the decoding process for the d-IBF in Fig. 4.
For the cell at index 3, idSum, which is a1 ⊕ a2 ⊕ b1, is added
toD1 (since count = 1) and deleted from hashed cells 2 and 3.
Figure 5(b) shows the resulting d-IBF after deleting a1⊕ a2⊕
b1 from the d-IBF. Note that the decoding process, performed
for a non-pure cell with a T2 case, is the same as inserting an
element into the d-IBF.

The cell at index 2 in Fig. 5(b) is also not a genuine pure
cell, which has an opposite count value, and the decoding

40628 VOLUME 12, 2024

E. Choi et al.: Decoding Errors in Difference-IBFs: Analysis and Resolution

process performed for the cell results in the d-IBF in Fig. 5(c),
which is the same as that in Fig. 5(a).

An important observation regarding the T2 error is shown
in Fig. 5. As shown in Fig. 5(c), the idSum of a composite cell
with a T2 error is added to the lists of both D1 and D2 after
performing the decoding process for the cell twice. In the step
shown in Fig. 5(b), because the idSum of a pure cell with
count = −1 has already been included in the list of D1, the
cell can be regarded as a non-pure cell with a T2 error. This
is because idSum with count = −1 should be in D2 and not
in D1. Hence, the decoding process performed for Fig. 5(a)
should be recovered by deleting a1⊕ a2⊕ b1 from the d-IBF
and decoded lists.

Algorithm 7 shows the procedure for resolving a T2 error.
For a given candidate pure cell and its hash indices, if count=
1 and idSum is already included in D2, this means that the
candidate pure cell is not genuine (because idSum with count
= 1 is an element of set S1). Likewise, if count = −1 and
idSum is included in D1, the candidate pure cell is not a
genuine pure cell (because idSum with count = −1 is an
element of set S2). For the non-pure cell, idSum should be
deleted from the d-IBF.

Algorithm 7 returns one if a T2 error has occurred and is
resolved, and returns zero, otherwise.

Algorithm 7 T2 Error Resolving

Function T2_resolve(pure_cell_list.front)
s← d-IBF[pure_cell_list.front].idSum;
c← d-IBF[pure_cell_list.front].count;
if c = 1 && s ∈ D2 then

pure_cell_list.remove(pure_cell_list.front);
remove s from D2;
d-IBF_delete(s, c);
pure_cell_list.end←
d-IBF[new_pure_cell].index;
return 1;

end
else if c = −1 && s ∈ D1 then

pure_cell_list.remove(pure_cell_list.front);
remove s from D1;
d-IBF_delete(s, c);
pure_cell_list.end←
d-IBF[new_pure_cell].index;
return 1;

end
else

return 0;
end

end

Algorithm 8 shows the decoding process of the d-IBF
proposed in this study. The decoding process continues only
when neither a T1 nor a T2 error occurs. After every element in
the pure_cell_list is decoded, if all the cells in the d-IBF have
a zero value, the decoding process returns Success; otherwise,
it returns Fail.

Algorithm 8 Proposed Decoding Algorithm

Function d-IBF_decoding(d-IBF)
while !pure_cell_list.empty do

type1← T1_resolve(pure_cell_list.front);
type2← T2_resolve(pure_cell_list.front);
if !(type1 || type2) then

idSump←
d-IBF[pure_cell_list.front].idSum;
countp←
d-IBF[pure_cell_list.front].count;
if countp == 1 then

D1.end← idSump;
end
else if countp == −1 then

D2.end← idSump;
end
d-IBF_delete(idSump, countp);
pure_cell_list.end←
d-IBF[new_pure_cell].index;

end
end
if d-IBF.empty then

return Success;
end
else

return Fail;
end

end

V. PERFORMANCE EVALUATION
This section compares the decoding performance of the
proposed d-IBF decoding algorithm (Algorithm 8) with
that of conventional decoding (Algorithm 5). Simulations
were conducted with Verilog using ModelSim (Prime Lite
Edition, software version 18.1) provided by Intel [37], and
source codes were made available for public use [38]. Non-
duplicated random numbers for each set were generated using
a linear feedback shift register (LFSR). Three hash indexes
are obtained for each element from a 32-bit cyclic redundancy
check (CRC-32) generator to program and decode IBFs
because multiple hash indexes of any length can be easily
obtained from CRC-32 [27]. While the simulation performed
in [10] has the constraint that the hash indices of an element
need to be distinct, we do not have such a constraint in our
simulation to cover more general cases. In other words, two
or three hash indices of an element can be identical in this
simulation.

Three experiments have been performed using different set
sizes: ExpA, ExpB, and ExpC. Table 2 shows the number
of elements included in each set and the total number of
distinct elements, d . Table 2 also shows the number of bits
allocated to each field. Simulations performed in [10] used
32 bits for each idSum and sigSum to reduce erroneous cases
where sigSum of a composite cell is equal to g(idSum). In our
experiments, we provided two simulations for conventional

VOLUME 12, 2024 40629

E. Choi et al.: Decoding Errors in Difference-IBFs: Analysis and Resolution

TABLE 2. Simulation setup.

TABLE 3. Decoding results.

decoding methods: Conventional 1, allocating 32 bits to
each of the idSum and sigSum fields as in [10], and
Conventional 2, allocating the minimum number of bits to
idSum and sigSum fields to reduce the memory requirement.
The proposed decoding method uses the same number of bits
as in Conventional 2.

Note that three hash indices are used for each element, and
the different combinations of hash indices of an element can
be used to differentiate one element from the others. Hence,
we believe that it is unnecessary to allocate a large number
of bits to the sigSum field. Therefore, four bits were allocated
to the sigSum field for the Conventional 2 decoding method
and our proposed decoding method, as shown in Table 2. The
number of bits allocated to the count field was 16 bits for
all cases to avoid overflow. The number of cells in an IBF
or d-IBF is m = αd , where α is a size factor. For each size
factor, the decoding performance of our proposedmethodwas
compared with that of the conventional methods.

Table 3 presents a comparison of the decoding results
based on α. Successful decoding must satisfy two conditions:
every distinct element is decoded, and after the completion of
the decoding process, the d-IBF is empty, which means that
every cell of the d-IBF has zero values [10]. For conventional
decoding methods, all decoding processes are aborted and
failed because there are no candidate pure cells before the
d-IBF becomes empty for every α value. By contrast, the
decoding process of the proposed method is successful for
α = 1.5, 2, and 2.5 cases in ExpA and for α = 2 and 2.5 cases
in ExpB and ExpC.

Table 4 compares the detailed numbers after decoding. Ed
is the number of decoded elements, Er denotes the number of
right(correct) distinct elements among the decoded elements,
Ew is the number of wrong elements among the decoded

FIGURE 6. Decoding result comparison for ExpA.

FIGURE 7. Decoding result comparison for ExpB.

FIGURE 8. Decoding result comparison for ExpC.

elements, and Em denotes the number of missing distinct
elements that are not decoded.

Figures 6-8 compare the decoding results graphically in
terms of Er , Em, and Ew, related to the total number of distinct
elements d . Even though the two conventional methods
decode many more elements than d , the number of correct
elements (Er) is less than d , meaning that there are a number

40630 VOLUME 12, 2024

E. Choi et al.: Decoding Errors in Difference-IBFs: Analysis and Resolution

TABLE 4. Number of decoded elements.

TABLE 5. Number of T1 or T2 occurrences.

of non-decoded elements, as shown in Em and a number of
incorrectly decoded elements, as shown in Ew for every case.
On the other hand, our proposed algorithm decodes exactly
d correct elements if the decoding is successful (α = 1.5, 2,
and 2.5 in ExpA and α = 2 and 2.5 in ExpB and ExpC.)
When comparing the two conventional decoding cases,

there was not much difference in the decoding results. Hence,
it is not necessary to allocate a large number of bits to
idSum or sigSum. As shown in Figures 6-8, the conventional
methods have incorrect elements incorrectly decoded as
distinct elements for every experiment. This implies that
elements that are not included in any of the sets have been
mistakenly decoded as distinct elements (owing to T1 or
T2 errors). Even when every distinct element is decoded,
Ew is not equal to zero; hence, the resulting d-IBF after the
completion of the decoding process is not empty. In the cases
of α = 2 and α = 2.5 in ExpB and ExpC of the conventional
decoding methods, Er is larger than d . This implies that
distinct elements are duplicated during decoding.

In contrast, when the proposed decoding method is
successful, every distinct element is decoded accurately,
and there are no incorrectly decoded elements. Decoding is
perfect in that every distinct element is decoded correctly,
as indicated by Er , and no incorrect element is decoded,
as indicated by Ew. In other words, with the proposed
decoding method, decoding completion confirms that every
distinct element is identified without any incorrectly decoded
elements. Consequently, every cell of the resulting d-IBF
(after decoding was completed) had zero values.

These results imply that resolving T1 and T2 errors has
a significant impact on the overall decoding performance.
Furthermore, because element deletion is performed through
a XOR operation (as shown in Algorithm 1), deleting an

un-inserted element is the same as inserting an element.
Hence, deleting a composite cell with a T1 or T2 error is
equivalent to inserting an element. As more elements are
inserted into a fixed-length d-IBF because of T1 or T2 errors,
the probability of the occurrence of candidate pure cells
decreases. Because the proposed decoding method avoids
erroneous deletion, it is more likely to generate new candidate
pure cells during decoding. As a result, the decoding process
can be successful even for a d-IBF with a small number of
cells and a small number of bits in each field.

Table 5 lists the number of T1 and T2 occurrences
according to α. The Sne column shows the number of cases
where a cell with |count| = 1 is identified non-pure because
the sigSum field of the cell is not equal to g(idSum). There
is little difference between the two conventional decoding
cases, even though Conventional 1 uses significantly higher
number of bits than Conventional 2. n(T1) and n(T2) columns
represent the number of T1 and T2 occurrences, respectively.
As shown, n(T1) is larger than Sne for every case, which
implies that identifying composite cells using T1 cases is
much more effective than using the sigSum field. T1 cases are
clearly identified if the hash indices generated by the idSum
value do not include their own cell index. However, because
T2 cases are not identified during decoding, the number of
T2 cases is not shown when conventional decoding methods
are used.

Once T1 or T2 errors occur, the decoding process of
conventional decoding progresses differently from that of
our proposed decoding method. The number of T1 errors
was much smaller with our method. When our proposed
decoding method was used, no T2 error occurred for every
α value of ExpA. It is noteworthy that our algorithm does
not perform decoding if T1 occurs. For T2 occurrences

VOLUME 12, 2024 40631

E. Choi et al.: Decoding Errors in Difference-IBFs: Analysis and Resolution

TABLE 6. Decoding time (ns).

FIGURE 9. Theoretical probability (pde) (Eq. (29)) and experimental
results of the d-IBF decoding error because of composite cells satisfying
Conditions 1 and 2. ExpA: n1 = 10, n2 = 30; ExpB: n1 = 5000, n2 = 5000;
ExpC: n1 = 500, n2 = 500.

(because there is no way to avoid decoding), the proposed
algorithm performs decoding for T2 occurrences. However,
our proposed algorithm detects and resolves errors by
invalidating the decoded elements generated by T2 errors.
Figure 9 shows the probability of decoding errors gener-

ated by the composite cells satisfying pure cell conditions 1
and 2 shown in Section III. The theoretical results are
calculated using (29). The simulation results were compared
with the theoretical results when the decoding process was
completed without error. Hence, the simulation results of the
proposed method for cases with α = 2 and α = 2.5 are
shown, and they are calculated using (n(T1)+n(T2))/kd . The
simulation results and theoretical analysis results exhibit
similar trends.

Table 6 compares the decoding times, assuming a clock
period of 10 ns, which is equal to a clock frequency of
100MHz. The conventional decoding algorithm is faster for
small α values with decoding failures because the decoding
process is aborted if no pure cells remain. However, the
proposed method is faster than the conventional method,
in which decoding is completed without errors. The proposed
method includes the time required to resolve both types of
errors, whereas the conventional method includes the time
required to decode the wrong elements, which is larger than
the time required to resolve T1 or T2 errors.

VI. CONCLUSION
For two given sets, each programmed into an invertible
Bloom filter (IBF), a difference-IBF (d-IBF) is employed
to remove common elements and detect unique elements
exclusively present in each set, using a decoding process. The
d-IBF is especially effective when the number of common
elements is significantly larger than the number of distinct
elements. This is because the size of the IBF can be set
proportional to the sum of the distinct elements of the two
sets and not to the entire number of elements. However, if the
same decoding algorithm as that used for IBF decoding is
used for d-IBF decoding, incorrect elements (which do not
belong to either of the sets) are decoded. This occurs because
of the errors during decoding. This study asserts that an
extra pure-cell condition is necessary for d-IBF decoding.
Two types of errors were identified that occurred during the
conventional decoding process of a d-IBF and an efficient
decoding method was proposed that addressed these errors.
The simulation results show that the proposed method can
decode every distinct element without incorrectly decoded
elements, even with a small sized IBF.

REFERENCES
[1] B. H. Bloom, ‘‘Space/time trade-offs in hash coding with allowable

errors,’’ Commun. ACM, vol. 13, no. 7, pp. 422–426, Jul. 1970.
[2] M. T. Goodrich and M. Mitzenmacher, ‘‘Invertible Bloom lookup tables,’’

in Proc. 49th Annu. Allerton Conf. Commun., Control, Comput. (Allerton),
Sep. 2011, pp. 792–799.

[3] J. Qian, Q. Zhu, and H. Chen, ‘‘Multi-granularity locality-sensitive Bloom
filter,’’ IEEE Trans. Comput., vol. 64, no. 12, pp. 3500–3514, Dec. 2015.

[4] W. Liu, Z. Xu, J. Tian, and Y. Zhang, ‘‘Towards in-network compact
representation: Mergeable counting Bloom filter vis cuckoo scheduling,’’
IEEE Access, vol. 9, pp. 55329–55339, 2021.

[5] H. Byun and H. Lim, ‘‘Learned FBF: Learning-based functional Bloom
filter for key–value storage,’’ IEEE Trans. Comput., vol. 71, no. 8,
pp. 1928–1938, Aug. 2022.

[6] A. Broder and M. Mitzenmacher, ‘‘Network applications of Bloom filters:
A survey,’’ Internet Math., vol. 1, no. 4, pp. 485–509, Jan. 2004.

[7] S. Tarkoma, C. E. Rothenberg, and E. Lagerspetz, ‘‘Theory and practice
of Bloom filters for distributed systems,’’ IEEE Commun. Surveys Tuts.,
vol. 14, no. 1, pp. 131–155, 1st Quart., 2012.

[8] D. Eppstein and M. T. Goodrich, ‘‘Straggler identification in round-trip
data streams via Newton’s identities and invertible Bloom filters,’’ IEEE
Trans. Knowl. Data Eng., vol. 23, no. 2, pp. 297–306, Feb. 2011.

[9] S. Lee, H. Byun, and H. Lim, ‘‘Set reconciliation using ternary and
invertible Bloom filters,’’ IEEE Trans. Knowl. Data Eng., vol. 35, no. 11,
pp. 11885–11898, Nov. 2023.

[10] D. Eppstein, M. Goodrich, F. Uyeda, and G. Varghese, ‘‘What’s the
difference? Efficient set reconciliation without prior context,’’ ACM
SIGCOMMComput. Commun. Rev., vol. 41, no. 4, pp. 218–229, Oct. 2011.

40632 VOLUME 12, 2024

E. Choi et al.: Decoding Errors in Difference-IBFs: Analysis and Resolution

[11] C. Yang, Y. Liu, X. Tao, and F. Zhao, ‘‘Publicly verifiable and efficient fine-
grained data deletion scheme in cloud computing,’’ IEEE Access, vol. 8,
pp. 99393–99403, 2020.

[12] C. Guo, R. Zhuang, C.-C. Chang, and Q. Yuan, ‘‘Dynamic multi-keyword
ranked search based on Bloom filter over encrypted cloud data,’’ IEEE
Access, vol. 7, pp. 35826–35837, 2019.

[13] L. Ferretti, M. Marchetti, M. Andreolini, and M. Colajanni, ‘‘A symmetric
cryptographic scheme for data integrity verification in cloud databases,’’
Inf. Sci., vol. 422, pp. 497–515, Jan. 2018.

[14] J. Jeong, J. W. J. Joo, Y. Lee, and Y. Son, ‘‘Secure cloud storage service
using Bloom filters for the Internet of Things,’’ IEEE Access, vol. 7,
pp. 60897–60907, 2019.

[15] R. Zhang, J. Liu, T. Huang, T. Pan, and L. Wu, ‘‘Adaptive compression trie
based Bloom filter: Request filter for NDN content store,’’ IEEE Access,
vol. 5, pp. 23647–23656, 2017.

[16] J. Lee, M. Shim, and H. Lim, ‘‘Name prefix matching using Bloom filter
pre-searching for content centric network,’’ J. Netw. Comput. Appl., vol. 65,
pp. 36–47, Apr. 2016.

[17] J. H. Mun and H. Lim, ‘‘Cache sharing using Bloom filters in named data
networking,’’ J. Netw. Comput. Appl., vol. 90, pp. 74–82, Jul. 2017.

[18] J. Lee, H. Byun, and H. Lim, ‘‘Dual-load Bloom filter: Application for
name lookup,’’ Comput. Commun., vol. 151, pp. 1–9, Feb. 2020.

[19] W. Fu, H. B. Abraham, and P. Crowley, ‘‘Synchronizing namespaces with
invertible Bloom filters,’’ in Proc. ACM/IEEE Symp. Architectures Netw.
Commun. Syst. (ANCS), May 2015, pp. 123–134.

[20] S. Jang, H. Byun, and H. Lim, ‘‘Dynamically allocated Bloom filter-based
PIT architectures,’’ IEEE Access, vol. 10, pp. 28165–28179, 2022.

[21] I. A. Khan, D. Pi, Z. U. Khan, Y. Hussain, and A. Nawaz, ‘‘HML-IDS:
A hybrid-multilevel anomaly prediction approach for intrusion detection
in SCADA systems,’’ IEEE Access, vol. 7, pp. 89507–89521, 2019.

[22] C. E. Rothenberg, P. Jokela, P. Nikander, M. Sarela, and J. Ylitalo, ‘‘Self-
routing denial-of-service resistant capabilities using in-packet Bloom
filters,’’ in Proc. Eur. Conf. Comput. Netw. Defense, 2009, pp. 46–51.

[23] A. Sánchez-Macián, P. Reviriego, J. A. Maestro, and S. Liu, ‘‘Single event
transient tolerant Bloom filter implementations,’’ IEEE Trans. Comput.,
vol. 66, no. 10, pp. 1831–1836, Oct. 2017.

[24] P. K. Vairam, P. Kumar, C. Rebeiro, and V. Kamakoti, ‘‘FadingBF:
A Bloom filter with consistent guarantees for online applications,’’ IEEE
Trans. Comput., vol. 71, no. 1, pp. 40–52, Jan. 2022.

[25] J. Risson and T. Moors, ‘‘Survey of research towards robust peer-
to-peer networks: Search methods,’’ Comput. Netw., vol. 50, no. 17,
pp. 3485–3521, Dec. 2006.

[26] S. Dharmapurikar, P. Krishnamurthy, and D. E. Taylor, ‘‘Longest
prefix matching using Bloom filters,’’ in Proc. Conf. Appl., Technol.,
Architectures, Protocols Comput. Commun., Aug. 2003, pp. 201–212.

[27] H. Lim, K. Lim, N. Lee, and K.-H. Park, ‘‘On adding Bloom filters to
longest prefix matching algorithms,’’ IEEE Trans. Comput., vol. 63, no. 2,
pp. 411–423, Feb. 2014.

[28] H. Song, S. Dharmapurikar, J. Turner, and J. Lockwood, ‘‘Fast hash table
lookup using extended Bloom filter: An aid to network processing,’’ ACM
SIGCOMMComput. Commun. Rev., vol. 35, no. 4, pp. 181–192, Oct. 2005.

[29] J. H.Mun andH. Lim, ‘‘New approach for efficient IP address lookup using
a Bloom filter in trie-based algorithms,’’ IEEE Trans. Comput., vol. 65,
no. 5, pp. 1558–1565, May 2016.

[30] E. Tong, W. Niu, G. Li, D. Tang, L. Chang, Z. Shi, and S. Ci, ‘‘Bloom filter
-based workflow management to enable QoS guarantee in wireless sensor
networks,’’ J. Netw. Comput. Appl., vol. 39, pp. 38–51, Mar. 2014.

[31] G. Li, L. Guo, X. Gao, and M. Liao, ‘‘Bloom filter based processing
algorithms for the multi-dimensional event query in wireless sensor
networks,’’ J. Netw. Comput. Appl., vol. 37, pp. 323–333, Jan. 2014.

[32] Y. Lu, A. Montanari, B. Prabhakar, S. Dharmapurikar, and A. Kabbani,
‘‘Counter braids: A novel counter architecture for per-flowmeasurement,’’
ACM SIGMETRICS Perform. Eval. Rev., vol. 36, no. 1, pp. 121–132,
Jun. 2008.

[33] A. Kumar, J. Xu, and J. Wang, ‘‘Space-code Bloom filter for efficient per-
flow traffic measurement,’’ IEEE J. Sel. Areas Commun., vol. 24, no. 12,
pp. 2327–2339, Dec. 2006.

[34] L. Fan, P. Cao, J. Almeida, and A. Z. Broder, ‘‘Summary cache: A scalable
wide-area web cache sharing protocol,’’ IEEE/ACM Trans. Netw., vol. 8,
no. 3, pp. 281–293, Jun. 2000.

[35] H. Lim, J. Lee, H. Byun, and C. Yim, ‘‘Ternary Bloom filter replacing
counting Bloom filter,’’ IEEE Commun. Lett., vol. 21, no. 2, pp. 278–281,
Feb. 2017.

[36] S. Schildt, J. Morgenroth, and L. Wolf, ‘‘Efficient false positive free
set synchronization using an extended Bloom filter approach,’’ Comput.
Commun., vol. 36, nos. 10–11, pp. 1245–1254, Jun. 2013.

[37] Modelsim. Accessed: Aug. 1, 2022. [Online]. Available: https://www.intel.
com/content/www/us/en/software-kit/665990/intel-quartus-prime-lite-
edition-design-software-version-18-1-for-windows.html

[38] Source Code. Accessed: Feb. 24, 2024. [Online]. Available: https://github.
com/hyesooklim/d-IBF-Decoding-Implementation

EUNJI CHOI (StudentMember, IEEE) is currently
pursuing the bachelor’s degree with the Depart-
ment of Electronic and Electrical Engineering,
Ewha Womans University, Seoul, South Korea.
Her research interest includes bloom filter appli-
cations to various distributed algorithms.

JUNGWON LEE (Member, IEEE) received the
B.S. degree from the Department of Mechatron-
ics Engineering, Korea Polytechnic University,
Gyeonggi-do, South Korea, in 2011, and the
M.S. and Ph.D. degrees from the Department
of Electronics Engineering, Ewha Womans Uni-
versity, Seoul, South Korea, in 2013 and 2017,
respectively. From 2017 to 2018, she was a
Postdoctoral Researcher with Ewha Womans Uni-
versity. From 2018 to 2020, she was a Research

Professor with Ewha Womans University. She joined as a Senior Researcher
with the Inter-University Semiconductor Research Center, Seoul National
University, in 2021, where she is currently a Research Assistant Professor.
Her research interests include named data networking (NDN), blockchain,
physical unclonable function (PUF), and bloom filter (BF).

CHANGHOON YIM (Senior Member, IEEE)
received the B.S. degree from the Department of
Control and Instrumentation Engineering, Seoul
National University, South Korea, in 1986, the
M.S. degree from the Department of Electrical
and Electronics Engineering, Korea Advanced
Institute of Science and Technology, in 1988, and
the Ph.D. degree from the Department of Electrical
and Computer Engineering, University of Texas at
Austin, in 1996. He was a Member of Technical

Staff with Sarnoff Corporation and Bell Labs, Lucent Technologies. He was
the Principal Engineer of Samsung Electronics. Since 2003, he has been
a Professor with the Department of Computer Science and Engineering,
Konkuk University.

HYESOOK LIM (Senior Member, IEEE) received
the B.S. and M.S. degrees from the Depart-
ment of Control and Instrumentation Engineering,
Seoul National University, Seoul, South Korea, in
1986 and 1991, respectively, and the Ph.D. degree
from the Electrical and Computer Engineering,
University of Texas at Austin, in 1996. She was a
Member of Technical Staff with Bell Labs, Lucent
Technologies, for three and half years. She was a
Hardware Engineer with Cisco Systems, for two

years. Since 2002, she has been a Professor of electronic and electrical
engineering with Ewha Womans University, Seoul. She was the Dean of
the College of Engineering, from 2018 to 2020. She was the first female
President of the Institute of Electronics and Information Engineers, in 2020.
She was the Minister of Science and ICT of the Republic of Korea, for a year
in May 2021. She is a member and also the Division Chair of the Electrical
and Electronic Division, National Academy of Engineering of Korea.

VOLUME 12, 2024 40633

