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ABSTRACT In the field of face frontalization, the model obtained by training on a particular dataset often
underperforms on other datasets. This paper presents the Pre-trained Feature Transformation GAN (PFT-
GAN), which is designed to fully utilize diverse facial feature information available from pre-trained face
recognition networks. For that purpose, we propose the use of the feature attention transformation (FAT)
module that effectively transfers the low-level facial features to the facial generator. On the other hand, in
the hope of reducing the pre-trained encoder dependency, we attempt a new FAT module organization that
accommodates the features from all pre-trained face recognition networks employed. This paper attempts
evaluating the proposed work using the “independent critic” as well as ““dependent critic”’, which enables
objective judgments. Experimental results show that the proposed method significantly improves the face
frontalization performance and helps overcome the bias associated with each pre-trained face recognition

network employed.

INDEX TERMS Face frontalization, face pose normalization, face recognition, generative modeling.

I. INTRODUCTION

Face frontalization is the process of transforming a given
face image in non-frontal view to one in frontal view, which
is needed from various computer vision tasks. For instance,
when an individual has to be identified from images or videos
which are often taken non-frontally, face frontalization can
assist the duty or, in some cases, can be used to enhance the
accuracy of the recognition programs.

Recently, improvements have been made continuously
in face frontalization, for which deep learning techniques
such as generative adversarial networks (GANs) [1] have
been instrumental. They generate the frontal face image
from the given profile face image using an encoder-decoder
network, similarly to the image transformation technique
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of [2]. Typically, the face frontalization network is trained
employing the supervised learning approaches [3], [4], [5],
[6], [7], in which the model is successively updated to
minimize the loss function (consisting of the pixel-wise
and perceptual losses), ultimately enabling the generation
of realistic frontal face images. The model obtained by
training on a particular dataset often underperforms on other
datasets [3]. It is because the encoder is not robustly trained
to cover various identities, angles, and environments.

An alternative would be to use a pre-trained encoder. The
face normalization model (FNM) [8] employs pre-trained
face-expert networks such as LightCNN [9], VGGFacel [10],
and VGGFace2 [11] as the encoder to extract robust identity
features that are invariant to poses, lighting condition, etc.
However, with the identity-preserving loss function used in
the FNM, which is the perceptual loss between the input
profile and output generated face images, the frontalization
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performance is affected by the pre-trained face recognition
network used as the encoder.

To address the above challenge, we propose the Pre-trained
Feature Transformation GAN (PFT-GAN). It seeks to fully
utilize rich and diverse facial feature information available
from pre-trained face recognition networks. For that purpose
PFT-GAN develops the feature attention transformation
(FAT) module, which brings in the low-level features from
the intermediary layers of the face recognition networks
into the decoder. Those low-level features contain significant
geometric attributes of the input profile face image, but can
be difficult to process with a conventional decoder that is
composed of convolutional neural networks (CNNs).

We note that the facial features extracted by pre-trained
face recognition networks vary based on the network’s
structure, training dataset, and loss function [12]. For
instance, ArcFace [13] has shown superior performance
compared to FaceNet [14] in extracting facial features from
individuals with wavy hair. In response to this observation,
we expand the FAT module such that the decoder takes the
result of integrating the features from multiple pre-trained
face recognition networks. To our knowledge, this is a new
attempt, which turns out effectively reduce the pre-trained
encoder dependency in face frontalization.

So-called the ““dependent critic” [15] evaluates the model
with the same pre-trained face recognition network (say
N) that was used during the training, thus it is difficult to
discern the biases introduced by N. Since various studies on
face frontalization use evaluation metrics based on their own
recognition models, making objective comparisons between
them can be tricky. To address the above issues, for evaluating
the proposed work, we use the “‘independent critic” [15] as
well, which uses a third-party recognition model that was
not involved in the training process. The experimental results
(in particular Table 4 in Section IV) show that the proposed
frontalization model is objectively superior.

The main contributions of this study are summarized as
follows: (1) we introduce a new framework that integrates
multiple pre-trained face recognition networks effectively for
the task of face frontalization, and (2) we suggest utilizing
the independent critic for objective performance assessment
of face frontalization.

Il. RELATED WORK

A. GENERATIVE ADVERSARIAL NETWORK

The GAN, proposed in [l], involves a generator that
produces synthetic data and a discriminator that evaluates the
authenticity of the data. The generator and discriminator are
trained adversarially to improve the quality of the generated
data. Deep Convolutional GAN [16] that was proposed as an
extension of the original GAN uses convolutional layers with
strides and transposed convolutional layers with fractional
strides. CycleGAN [2] enables the unsupervised image-to-
image translation between two domains without requiring
paired training data. To more reliably measure the difference
between the real and synthetic data distributions, the concept
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of a WGAN was introduced in [17] and [18], proposing
a gradient penalty term to ensure that the discriminator’s
gradient is bounded. As the GAN technology continues
to evolve, face frontalization techniques are becoming
increasingly sophisticated and useful.

B. DEEP LEARNING BASED FACE FRONTALIZATION

Deep learning-based face frontalization has seen sig-
nificant progress in recent years, with many notable
works proposed to enhance its performance and stability.
TP-GAN [3] considers both global structures and local
details for photorealistic frontal view synthesis. It effectively
addresses the ill-posed nature of the problem through a com-
bination of adversarial, symmetry, and identity-preserving
losses, outperforming state-of-the-art methods in large-pose
face recognition tasks. PIM [7], an advancement beyond
TPGAN, has achieved enhanced generalizability and reduced
overfitting through cross-domain adversarial training. HF-
PIM [19] has successfully incorporated 3D face UV map
and warping process into the GAN framework, resulting
in the generation of high-quality face frontalization. DA-
GAN [20] enhances face recognition performance through
the integration of self-attention mechanisms in the generator
and face-attention mechanisms in the discriminator. IPM [21]
utilizes a contrastive loss function for the encoder to
extract compact and relationship-preserving representations
from input faces. A cross-domain rectification module is
introduced to reduce representation discrepancies between
recognition and reconstruction domains, enhancing the
accuracy of reconstructed faces. It outperforms state-of-the-
art methods in extensive experiments on benchmark datasets,
demonstrating its effectiveness in handling images from
uncontrolled scenes with high fidelity.

Unlike above researches, which are supervised approaches,
there are also research efforts aiming to achieve general-
ization in face frontalization through unsupervised learning.
FNM [8] utilizes a well-designed GAN with a face-expert
network, pixel-wise loss, and face attention discriminators.
This approach generates photorealistic, frontal, and neu-
tral expression face images for face recognition, thereby
improving recognition performance on both controlled and
in-the-wild databases. Rotate-and-Render [22] introduced
an unsupervised framework, which demonstrates the ability
to synthesize photorealistic rotated faces from single-view
images, effectively overcoming the challenges posed by
the lack of high-quality paired training data in facial
image processing. DRCycleGAN [23] employs disentangled
representation learning and semantic-level cycle consistency
loss for face frontalization without paired training data,
achieving promising results and enhancing pose-invariant
face recognition performance.

C. PRE-TRAINED FACE RECOGNITION NETWORK IN FACE
FRONTALIZATION

In the field of face frontalization, extensive research has
focused on utilizing pre-trained face recognition networks
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FIGURE 1. Overall network architecture of our proposed method, PFT-GAN. The main part of PFT-GAN can be broadly divided into two parts: the
encoder E and the decoder D. The encoder E consists of one or several pre-trained face recognition networks, and the features output by each
network are passed through a normalization layer before being concatenated. The features from the encoder E are then fed into the decoder D to
reconstruct the frontal face. The dashed red lines represent the loss functions. Lrec, Lyqy. and L;, correspond to reconstruction loss, adversarial loss,
and identity preserving loss, respectively. Detailed explanations of these losses are provided in Section IlIl. The gray-colored networks are frozen

during the training phase.

in the learning process. In TP-GAN, inspired by perceptual
loss, a pre-trained LightCNN network [9] was integrated
into the training process using identity-preserving loss.
Subsequently, many face frontalization studies have applied
feature information from pre-trained face recognition net-
works to the training loss function. This approach distills
information from large-scale datasets into the frontalization
generator. In FNM, for unsupervised learning, the frontal-
ization generator employs an encoder based on a pre-trained
face recognition network. Hence, although FNM produces
qualitatively robust output images compared to previous
methods, its quantitative performance is dependent on the
performance of the pre-trained face recognition network
used as the encoder. In PM-GAN [24], there is feature
fusion between a trainable encoder and a pre-trained face
recognition network was employed to enrich the diversity of
the extracted features.

Previous methods have focused on implicitly distilling
information from pre-trained face recognition networks in
the form of loss or extracting the enrich features from the
encoder. In this paper, we propose a method that directly
involves low-level features as well as high-level features from
pre-trained face recognition networks in the training of the
frontalization generator to enhance the performance of face
frontalization.

lil. METHODOLOGY

In this section, we detail our novel approach model.
The overall network architecture is depicted in Fig. 1.
Initially, we present the pre-trained feature transformation
module. Subsequently, we discuss the integration of multiple
pre-trained face recognition networks. The details of the loss
function and network will be introduced toward the end of
this section.
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A. NETWORK ARCHITECTURE OF PFT-GAN

PFT-GAN consists of four main components: an encoder E
for extracting the key features of a face, a decoder D
for reconstructing the frontal face from the key features
of a face, a discriminator D;; for adversarial learning,
and an identity feature encoder E;, for identity preserving
loss.

Firstly, the encoder E for extracting the key features
of a face is composed of one or more pretrained face
recognition encoders. The feature maps extracted from the
encoder E pass through normalization layers before entering
the decoder D. If multiple pretrained face recognition
encoders are used, the feature maps are combined before
entering the decoder D. We refer to the feature map that first
enters the decoder D (e.g., the 32 x 32 feature map in Fig. 1)
as the “‘seed feature” and the other feature maps (e.g., the
64 x 64 feature map in Fig. 1) as “non-seed features.”
Secondly, the decoder D for reconstructing the frontal
face is comprised of a Feature Attention Transformation
module (FAT module) and decoder blocks. The FAT module,
a module we proposed, includes spatial attention and is
effective in processing the feature maps coming from the
encoder E. More detailed workings and explanations are
provided in the following sections. The decoder blocks
consist of several ResNet blocks. Thirdly, the discriminator
Dj; for adversarial learning is a CNN network that takes a
frontal face as input and outputs whether it’s real or fake.
We referenced the architecture from StarGAN v2 [25]. Lastly,
the identity feature encoder E;, is a network designed to
ensure identity preservation by extracting identity features
from both the generated frontal face and the real frontal face
and using a distance loss function between them. The identity
feature encoder Ej;, uses the same encoder as the encoder E
for extracting the key features.
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B. FEATURE ATTENTION TRANSFORMATION MODULE
The feature transformation in our framework can be catego-
rized into two types: the self-transformation and the cross-
transformation.

1) SELF-TRANSFORMATION MODULE

The self-transformation module is responsible for transform-
ing the seed feature map. For a given seed feature map F €
RWXHXC, to facilitate the smooth generation of a frontal face,
the vertically flipped seed feature map F/? ¢ RWXHxC
is concatenated and passed through a self-attention module.
This module is a traditional self-attention component of a
transformer. The self-transformation, which computes the
transformed seed feature Fielf, can be summarized by (1):

F5U = Attention(FSW o, FEW g, FEW )
F¢ = Concat(F, F'r) 1)

2) CROSS-TRANSFORMATION MODULE

The cross-transformation module supplements the feature
restoring the frontal face with additional information derived
from the low-level feature of the profile face, which are
obtained from the pre-trained face recognition network.
As illustrated in Fig. 2, this module, distinct from the
aforementioned self-transformation module, treats features
from the previous decoder block solely as a query, with
the low-level features from the pre-trained face recognition
network serving as both key and value.

08 = Attention(Q, K, V)

i+1
0 = UpsampleResblk(F{"™* W g),
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FIGURE 2. Details of FAT modules. The left figure presents a
self-transformation module architecture and the right a
cross-transformation module architecture.
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3) CROSS-TRANSFORMATION MODULE FOR MULTIPLE
ENCODERS

We connected multiple cross-transformation modules in
parallel to integrate the features obtained from various
pre-trained face recognition networks. The aligned features
generated by each cross-transformation module were then
combined using an element-wise sum and passed on to

VOLUME 12, 2024

Feature from
Pre-trained Encoder B

+

Cross Transformation

x

8

= x

57} [5
£5 Module B k]
S5 o @
E 9 <5
g3 £3
20 %3
32 o8
£ 3 _ £o

3 Cross Transformation §

o Module A

t

Feature from
Pre-trained Encoder A

FIGURE 3. Example of multi-cross-transformation module for integrating
two pre-trained encoders.

the subsequent decoder block. Fig. 3 illustrates how the
cross-transformation modules function when two pre-trained
face recognition networks are integrated into the architecture.

C. LOSS FUNCTION

Similar to previous face frontalization methods, PFT-GAN
was trained using a combination of three loss functions:
reconstruction loss, adversarial loss, and identity-preserving
loss.

1) RECONSTRUCTION LOSS

The reconstruction loss L, encourages the network to
generate face images I that are identical to the ground-truth
images I ¢, at the pixel level. It is defined as follows:

Lyec = Hi _Igt 3

1
where ||-||; denotes the L1 norm.

2) ADVERSARIAL LOSS

By incorporating the adversarial loss L,gy, the decoder D is
encouraged to produce more realistic frontalized face images
that capture both the appearance and structural characteristics
of frontal faces. The discriminator D;; provides feedback to
the decoder D, thereby enhancing the quality and realism
of the generated frontalized images. The adversarial loss is
denoted by the following expression:

Laay = Ey,, [logDis(x)] + E; [1 — logDjs(x)] “)

We employ the vanilla GAN loss function [1] to assess the
performance of our model. Despite recent advancements in
GANs, such as WGAN [17], [18], which show superior
performance, using them for our purposes presents no issues.

3) IDENTITY PRESERVING LOSS

Identity preserving loss is a critical component in face
frontalization, aiming to maintain the characteristics of
the input face during the frontalization process. This loss
function works by minimizing the distance between the
features extracted from the generated face and those of the
corresponding ground-truth face image using a pre-trained
face recognition network. By reducing this distance, the
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model is encouraged to preserve the facial features and
identity of the input face, thereby ensuring that the generated
face image retains the essential characteristics of the original.
Identity-preserving loss can be expressed as follows:

Lip = [0 =ttt )|+ |0rth = #1005

where, ¢o(-) and ¢1(-) represent features extracted from the
last layer and the preceding layers, respectively, of a pre-
trained face recognition network used as an encoder E and
I-]l, denotes the L2 norm.

4) OVERALL LOSS

The final loss function was the weighted sum of the three
aforementioned loss functions. This can be formulated as
follows:

Liotal = MyecLyec + )\ipLip + AadvLaay (6)

IV. EXPERIMENTAL RESULT
In this section, we present the dataset and implementation
details.

A. EXPERIMENTAL SETTINGS

1) DATASETS

We used the CMU Multi-PIE face dataset [26] for our
training and testing set. The Multi-PIE dataset comprises
over 750,000 images of 337 individuals, captured under
15 viewpoints and 19 illumination conditions, showcasing
a variety of facial expressions. This dataset is widely
used for evaluating face synthesis and recognition in
controlled settings. In line with previous face frontalization
studies, we followed setting 2 for evaluating our model.
Setting 2 involves using neutral expression images from
all four sessions, encompassing 337 identities. For training,
we used images of the first 200 identities across 11 poses.
For testing, a frontal view image under normal illumination
was selected as the gallery image for each of the remaining
137 identities, while the other images served as probes.

2) IMPLEMENTATION DETAILS

The face images selected for training and testing were aligned
using the MTCNN face detector [27] and then cropped
to a resolution of 128 x 128 pixels. In the decoder D,
each block comprises six ResNet blocks and an upsampled
layer. Our network was implemented using PyTorch. For
training, Adam optimizer was used. The hyperparameters
employed for training included: Ir = 1074, ; = 0.5, 8 =
0.99, Aee = 1, Ajp =1, Agay = 0.1.

B. EVALUATION METRICS

Akin to previous studies, we assessed the face frontalization
performance using the rank-1 recognition rate. It is calculated
by measuring the cosine distance between the feature vectors
extracted from the generated frontal faces and the gallery
images of the corresponding identities, using a pre-trained
face recognition network. Typically, previous studies
typically used the same face recognition network for both
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TABLE 1. Rank-1 recognition rate(%) for frontalized face images from 90°
profile face images using different pre-trained face recognition networks.

Trai Critic | [{ohCNN | VGGFacel | VGGFace2
ramn

LightCNN 72.76 6756 73.03
VGGFacel 58.65 65.01 6352
VGGFace2 68.34 69.32 77.38

the training stage and computing the rank-1 recognition rate.
However, using the same network for evaluation introduces
subjectivity and biases the results toward that specific
network. As demonstrated in Table 1, when LightCNN was
used as the critic encoder during training, the module using
it achieved the highest frontalization performance metric.
In contrast, when VGGFace2 was used as the critic encoder,
the module employing it exhibited superior performance in
terms of frontalization metrics. Therefore, the selection of
the evaluation encoder significantly impacts the performance
metrics of the frontalization module.

To objectively assess the performance metrics of the
frontalization module, we distinguished between two existing
measurement approaches: dependent and independent critics.
In terms of the facial recognition networks used for
training, we selected networks commonly utilized in facial
frontalization research, including LightCNN, VGGFacel,
and VGGFace2. The LightCNN used in our study is
the LightCNN-9 layers network trained on the CASIA-
WebFace [28] and MS-Celeb-1M [29] datasets. (Note that
LightCNN* and LightCNNJr used in previous papers are
the LightCNN-29 layers networks fine-tuned on Multi-
PIE dataset after being trained on MS-Celeb-1M dataset).
Additionally, we adapted the ArcFace network, which is
IResNet50 architecture [30] and utilizes additive angular
margin loss [13], trained with Glint360K [31] dataset.
For the independent critic measurement, we employed the
ArcFace* network, which is same architecture with the
ArcFace network, trained with MS-Celeb-1M dataset and the
FaceNet [14] network. The baseline performances of these
face recognition networks are detailed in Table 2.

TABLE 2. Rank-1 recognition rate (%) performance of pre-trained face
recognition networks on MultiPIE setting 2. Details of each encoder are
explained in Section IV-B.

Encoder |40° +15° £30° +45° +£60° £75° +90°

LightCNN*| - 98.59 97.38 92.13 62.09 24.18 5.51
LightCNNT| - 99.10 98.60 97.70 91.40 68.70 27.10
LightCNN [99.87 99.83 99.53 96.38 78.75 42.10 8.31
VGGFacel |98.78 98.52 96.51 92.33 80.70 60.59 30.73
VGGFace2 | 100 100 100 99.91 99.06 95.73 86.82
ArcFace | 100 100 100 100 99.93 99.71 92.61
ArcFace* | 100 100 100 99.97 99.27 95.89 53.03
FaceNet [93.98 92.33 87.37 75.00 52.24 31.53 13.85

C. THE QUANTITATIVE RESULTS OF VARIOUS
PRE-TRAINED MODELS

We assessed the performance of modules constructed using
various pre-trained face recognition networks in both single

VOLUME 12, 2024
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TABLE 3. Rank-1 recognition rate (%) performance of dependent critic with various pre-trained face recognition networks on MultiPIE setting 2.

Method (Training Encoder) | Critic | £0°  +15° £30° +45° 4+60° £75°  £90°
TP-GAN (LightCNN) [3] TighCNN* | - 9868 9806 0538 8772 7743 64064
PIM (LightCNNT) [7] LighCNNT | - 9930 9900 9850 9810 9500 86.50
HF-PIM (LightCNN*) [19] LighCNN* | -  99.99 9998 99.88 99.14 9640 92.32
DRCycleGAN (LightCNN*) [23] LighCNN* | - 9940 9870 9660 9340 83.60  66.80
CAPG-GAN (LightCNN*) [6] LighCNN* | - 9982 9956 9733 9063 8305 66.05
DA-GAN (LightCNN*) [20] LighCNN* | - 9998 9988 99.15 9727 9324  81.56
IPM (LightCNN*) [21] LightCNN* | - 100 100 9967 9950 9742 93.83
FNM (VGGFace2) [8] VGGFace2 | 9970  99.60 9870 97.10 9240 8040  62.00
PFT-GAN (LightCNN) [ighiCNN | 9992 9955 9885 9661 9137 8462 7276
PFT-GAN (VGGFacel) VGGFacel | 98.15 9695 9434 9014 8324 7608  65.01
PFT-GAN (VGGFace2) VGGFace2 | 99.97 9994 9962 9759 9218 87.07 77.38
PFT-GAN (ArcFace) ArcFace 100 100 99.99  99.98 99.56 98.27 92.69

. [ighiCNN | 99.78 9973 9951 O07.64 9438 8818 79.77
PFT-GAN (LightCNN, VGGFacel) | yGapacel | 9830 9776 9646 9373 8826 8113 7431

) [ightCNN | 99.63 9957 9856 9672 9169 8512  75.15
PFT-GAN (LightCNN, VGGFace2) | yGGracer | 99.97 9989 9938 9753 9197 8668 7777

) [ightCNN | 99.80 9984 99.76 9928 9658 92.08 84.99
PFT-GAN (LightCNN, ArcFace) ArcFace 100 100 100 99.99 9943 98.04 92.83

TABLE 4. Rank-1 recognition rate (%) performance of independent critic with various pre-trained face recognition

networks on MultiPIE setting 2.

Method (Training Encoder) | Critic | £0°  £15° £30° +45° +60° £75°  £90°
FNM (VGGFace2) [8] FaceNet 86.13 84.4 81.81 78.5 69.63 59.96 43.79
PFT-GAN (LightCNN) FaceNet 9245  90.25 87.46 81.60 74.88 67.75 57.17
PFT-GAN (VGGFacel) FaceNet 90.73 89.87 86.02 80.08 71.84 62.59 52.82
PFT-GAN (VGGFace2) FaceNet 91.95 91.97 90.43 85.02 79.95 74.22 60.72
PFT-GAN (ArcFace) FaceNet 93.13 9315 91.84 8893 83.73 77.78 67.35
PFT-GAN (LightCNN, VGGFacel) FaceNet 92.55 91.22 89.60 84.44 76.98 69.62 61.85
PFT-GAN (LightCNN, VGGFace2) FaceNet 9248  91.87 89.28 85.43 79.62 73.67 64.58
PFT-GAN (LightCNN, ArcFace) FaceNet 93.18 93.25 92.39 89.98 84.96 78.77 71.57
FNM (VGGFace2) [8] ArcFace* 98.50 97.94 96.30 92.37 82.92 66.88 44.76
PFT-GAN (LightCNN) ArcFace* 99.98  99.85 99.05 96.73 89.35 81.64 67.09
PFT-GAN (VGGFacel) ArcFace* 100 99.76 98.68 94.89 85.88 75.28 57.70
PFT-GAN (VGGFace?2) ArcFace* 100 99.93 99.62 97.52 92.10 85.18 70.47
PFT-GAN (ArcFace) ArcFace* 100 99.97 9997 99.67 9838 9585 88.13
PFT-GAN (LightCNN, VGGFacel) ArcFace* 100 99.96 99.76 98.75 94.33 87.94 75.64
PFT-GAN (LightCNN, VGGFace2) ArcFace* 99.98 99.93 99.64 98.53 94.46 88.70 76.32
PFT-GAN (LightCNN, ArcFace) ArcFace* 100 100 99.95 99.92 98.51 96.19 90.52

and integrated configurations, based on the dependent critic.
As depicted in Table 3, our proposed method exhibits high
performance even at extreme angles such as 75° or 90°.
Notably, when employing LightCNN or VGGFacel with the
PFT-GAN, the performance exceeded that of the original
pre-trained face recognition networks. For instance, the
performance of LightCNN at 90° improved from 8.31%
to 72.76%. Among the configurations of our proposed
approach, using ArcFace alone or integrating ArcFace and
LightCNN into the module yielded the most effective results.
The performance at 90° exceeded 92%, surpassing that of
previous state-of-the-art face frontalization methods.
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The performance evaluation based on the dependent critic,
as mentioned earlier, may not provide an entirely objective
assessment. Therefore, we also compared the performance
using an independent critic, which evaluates all the models
using the same third-party pre-trained face recognition
network. As illustrated in Table 4, it is evident that integrating
multiple pre-trained face recognition networks demonstrates
a superior ability in accurately restoring frontal faces
compared to using a single pre-trained network.

Similar to the dependent critic cases, the results show that
frontalization significantly enhances facial recognition per-
formance. For instance, our method using ArcFace improves
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FIGURE 4. The frontalization results produced by variations of PFT-GAN on the extreme pose.

the performances of FaceNet and ArcFace* at 90° from
13.85% and 53.03% to 67.35% and 88.13% respectively.
Furthermore, although the performance difference between
the module using ArcFace alone and the module integrating
ArcFace with LightCNN was minimal when evaluated by the
dependent critic, a notable improvement was observed in the
both independent critic evaluations (e.g., an increase from
67.35% to 71.57% at 90° with FaceNet critic and 88.13% to
90.52% at 90° with ArcFace* critic).

In conclusion, the traditional approach in facial frontal-
ization research using a dependent critic, which relies on
various face recognition networks as benchmarks, poses
challenges for objective comparisons. However, by assessing
performance using the same face recognition network as the
independent critic, we were able to confirm the significant
contribution of our proposed approach in restoring frontal
faces.

D. QUALITATIVE RESULTS

We demonstrate that our proposed method effectively main-
tains identities in the Multi-PIE test set, which is similar the
training data environment in Fig. 4. Notably, when combining
high-performance networks such as LightCNN and ArcFace,
the results at an extreme angle over 75° bear a remarkable
resemblance to real frontal photos.

We also compare our proposed PFT-GAN with several
state-of-art methods, including IPM [21], DA-GAN [20],
FNM [8], CAPG-GAN [6], and TP-GAN [3] on the
Multi-PIE test set in Fig. 5. We note that recent researches
on face frontalization often do not share their models or make
their code publicly available. Therefore, we are evaluating our
results by comparing them with the images provided in those
papers. The comparison results clearly show that TP-GAN
and CAPG-GAN struggle to preserve the identity of the
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input face with large facial angles, unlike PTF-GAN, which
successfully maintains it. Additionally, PTF-GAN excels in
retaining the local features of the input face for small facial
angles, enabling the restoration of a frontal face that closely
resembles the actual frontal face.

We further highlight out method’s superior ability to
consistently reconstruct frontal faces in the unconstrained
LFW dataset [32], compared to two state-of-the-art methods,
FNM and IPM, which have previously exhibited robust
performance on the Multi-PIE test set in Fig. 5. The results
clearly demonstrate that our approach more effectively retains
the facial features (such as expressions and skin tone, etc) of
the input face than FNM, which is trained using unsupervised
methods. On the other hand, IPM tends to overly preserve
the local features of the input face, leading to improperly
generated frontal faces that appear distorted. Notably, our
PFT-GAN, despite being trained on the constrained Multi-
PIE dataset, exhibits robust results on other datasets. This
indicates that our model does not overfit to the specific char-
acteristics of the training dataset, showcasing its versatility
and effectiveness in diverse scenarios.

E. ABLATION STUDIES

We conduct ablation studies to assess how different com-
ponents of the proposed method affect the frontalization
performance.

1) THE EFFECTS OF FAT MODULE

To evaluate the effectiveness of the FAT module, we con-
structed two types of networks: one incorporating the FAT
module and the other without it. Networks that do not
utilize the FAT module add non-seed features, which emerge
from the middle of a pre-trained encoder, directly into the
decoder after only passing through a normalization layer.

VOLUME 12, 2024



W. Choi et al.: Integrating Pretrained Encoders for Generalized Face Frontalization

IEEE Access

Profile Frontal (GT) PFT-GAN (Ours)

IPM [21]

DA-GAN [20] FNM (8]

CAPG-GAN [6]

TP-GAN [3]

FIGURE 5. The frontalization results from various methods on the Multi-PIE dataset.

TABLE 5. The frontalization results from various methods on the LFW dataset.

Profile

FNM [8]

IPM [21]

PFT-GAN (Ours)

Both networks were configured with an identical seed feature
size of 32 x 32. The quantitative performance results for these
two networks are presented in Table 6. Notably, there was a
performance difference of 2.51% at the extreme angle of 90°,
illustrating the impact of the FAT module.

The effectiveness of the cross-transformation module,
which is a component of the FAT module, is visually

VOLUME 12, 2024

presented in Fig. 6. The second row, showing the results
from the network without the FAT module, reveals that the
facial features were not adequately frontalized in extreme
facial pose. In contrast, the third row, representing the
results from the network with the FAT module, clearly
demonstrates proper face frontalization. This indicates that
the FAT module’s effectiveness in transforming low-level
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TABLE 6. Rank-1 recognition rate (%) performance of FAT module on
Multi-PIE setting 2.(pre-trained encoder: LightCNN).

Module | £0° £15° £30° £45° +£60° £75° £90°

with FAT

w/o FAT |99.87 99.80 99.48 97.66 91.37 82.78 69.83
99.92 99.55 98.85 96.61 91.37 84.62 72.76

Profile

wlo
FAT Module =

with
FAT Module

FIGURE 6. The frontalization results at different angles, comparing
outcomes with and without FAT modules.

feature maps extracted from the pre-trained face recognition
network. Overall, these results underscore the significant
role of the FAT module in accurately frontalizing faces
and effectively transforming low-level feature maps obtained
from pre-trained face recognition networks.

2) THE EFFECTS OF SEED FEATURE SIZE

To determine the optimal seed feature size, modules with
varying seed feature dimensions were conducted. For a seed
feature size was 8 x 8, the self-transformation module was
designed for the 8 x 8 seed feature, accompanied by three
cross-transformation modules for 16 x 16, 32 x 32, and
64 x 64 seed features, totaling four transformation modules.
Similarly, for seed feature sizes of 16 x 16 and 32 x 32,
three and two transformation modules were constructed,
respectively.

The findings of these experiments are summarized in
Table 7. The results indicated that the performance of the
frontalization module was most effective when the seed fea-
ture size was 32 x 32 across all facial angles. This observation
led to the conclusion that as features from pre-trained face
recognition networks become more high-level, they tend to
exhibit bias toward the dataset on which the face recognition
network was trained, resulting in information loss through
compression. The 32 x 32 seed feature size emerged as the
most suitable for facial frontalization training. Consequently,

TABLE 7. Rank-1 recognition rate (%) performance of seed feature size
on Multi-PIE setting 2.(pre-trained encoder: LightCNN).

Seed Feature
Map Size
8x8 36.90 34.44 31.04 27.46 23.09 20.13 16.20
16x16 [59.93 57.61 54.26 47.66 40.55 35.18 29.85
32x32  199.92 99.55 98.85 96.61 91.37 84.62 72.76

+0° £15° £30° £45° +£60° £75° £90°
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we fixed the seed feature size to 32 x 32 for all subsequent
experiments.

V. CONCLUSION

In this paper, we proposed the PFT-GAN, a new framework
for face frontalization that is built on pre-trained face
recognition networks. The novelties associated with the
PFT-CAN can be summarized as: (1) the use of the FAT
module and (2) the integration of multiple pre-trained face
recognition networks.

The FAT module is a bifurcation from the traditional
autoencoder-based approaches. It adopts attention-based
mechanisms to incorporate low-level feature maps from
pre-trained face recognition networks, by which the proposed
model can produce sharper frontalized results and preserve
facial textures better compared to the conventional methods.

Although utilization of individual pre-trained face recogni-
tion network has been attempted as in [8], a scheme that can
benefit from multiple pre-trained face recognition networks
has not be explicitly proposed yet. The proposed integration,
although it is a simple concatenation of each recognition
network output, significantly enhances the frontalization
performance when evaluated objectively, and addresses the
overfitting problem commonly observed when convention-
ally employing a pre-trained face recognition network.
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