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ABSTRACT The aim of this article is to investigate the optimization of electric vehicle charging and
swapping for green logistics, as well as path planning considering urban impedance. We improved a road
impedance function model suitable for urban road traffic in China to calculate the actual traffic time based on
real-time traffic data and the intricate urban road environment. Thismodel is then applied to address the deliv-
ery optimization problem. Furthermore, a robust computational approach is introduced to estimate battery
degradation costs, accounting for environmental temperature and depth of discharge. The logistics delivery
model is effectively tackled using genetic algorithms, and simulation results demonstrate the considerable
advantages of electric vehicle swapping, effectively mitigating energy wastage and environmental pollution.
Additionally, the integration of road impedancemodeling for path optimization proves to significantly reduce
logistics costs, time expenditures, and enhance logistics efficiency. A comprehensive sensitivity analysis is
also conducted to elucidate the factors influencing electric vehicle battery degradation, revealing a direct
correlation between higher temperatures, deeper discharge depth, and increased battery loss. The study
underscores the paramount significance of this research for the development and optimization of urban green
logistics systems.

INDEX TERMS Green logistics, road impedance function, electric vehicle, genetic algorithms, battery
degradation costs.

I. INTRODUCTION
As urbanization advances, the quandary of urban logistics has
garnered escalating attention. The burgeoning urban populace
has engendered a substantial demand for goods and com-
modities, precipitating a marked upsurge in the magnitude
of logistics transportation. This surge has not only exerted
immense strain on road traffic but has also compounded the
predicaments of urban traffic congestion and environmen-
tal degradation. Ineffective traffic organization and planning
within urban environs have engendered inefficiency and esca-
lated expenses in logistics and distribution [1]. The pervasive
deployment of conventional fuel-powered vehicles in urban
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logistics has engendered environmental quandaries, encom-
passing air and noise pollution, substantially impacting the
well-being and standard of living of urban denizens [2]. Con-
sequently, the urban logistics predicament not only curtails
the advancement of urban economies but also impinges upon
the residents’ quality of life and the sustainable development
of the environment. In light of such circumstances, the quest
for an environmentally sustainable and efficacious urban
logistics remedy has become imperative.

Sustainable logistics represents an inexorable trend in
contemporary societal progress, and electric vehicles, as piv-
otal agents of sustainable logistics, underscore the profound
import of optimizing their vehicle charging and swapping
routes. Primarily, the optimization of charging and swap-
ping routes can augment the transportation efficiency of
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electric vehicles. Through judiciously delineating the spa-
tial arrangement of charging and swapping stations, the
charging and swapping duration of electric vehicles can
be curtailed, thereby mitigating disruptions and lateness
in logistics distribution and enhancing the efficiency and
timeliness of logistics transportation. This holds momentous
implications for catering to the surging logistics requisites
in urban locales while attenuating traffic congestion and
environmental degradation [3]. Secondly, optimizing vehicle
charging and swapping routes can yield environmental and
societal dividends. The prevalence of electric vehicles can
abate tailpipe emissions and noise pollution, ameliorating
urban air quality and residents’ living milieu. Strategic place-
ment of charging and power exchange stations can avert
encroachment on residents’ daily lives, abate urban con-
gestion and vehicular mishaps, and elevate urban residents’
quality of life. Furthermore, optimizing vehicle charging and
swapping routes can galvanize the electric vehicle industry.
By judiciously orchestrating the establishment of charging
and power exchange stations, a more expedient and depend-
able infrastructure can be furnished for the propagation and
advancement of electric vehicles [4], fostering the robust evo-
lution of the electric vehicle industry, fostering the flourishing
progression of allied industries, and injecting fresh vitality
into the sustainable advancement of urban economies.

The concept of road impedance delineates the resis-
tance that vehicles encounter while traversing roads, bearing
substantial significance in the realm of logistics transport.
By accounting for road impedance, the optimal planning of
goods transport paths can be orchestrated, thereby enhancing
transport efficiency and curbing transport expenses. In con-
temporary logistics management, the employment of road
impedance theory facilitates a more precise evaluation of
the challenges posed by diverse roads, enabling the selection
of the most favorable transport routes, averting congestion
and vehicular accidents, and elevating the punctuality and
security of goods delivery [5]. Furthermore, the considera-
tion of road impedance can also galvanize the advancement
of sustainable logistics, as exemplified by the reduction of
vehicle mileage, thereby lessening environmental impact and
effectuating the greening of logistics transport [6]. Hence,
in the domain of logistics transport, judicious contemplation
of road impedance not only augments transport efficiency
and cost-effectiveness but also propels the logistics industry
towards a more sustainable and ecofriendly trajectory.

In summary, the incorporation of the urban road impedance
function in logistics and transport not only enhances the pre-
cision and applicability of path planning but also streamlines
vehicle routes, curtails expenses, and fortifies the adaptability
and flexibility of the system. Particularly in championing
green logistics and sustainable innovation, the employment
of the urban road impedance function is profoundly con-
sequential. Through optimizing path planning and reducing
vehicular mileage, it is feasible to diminish energy consump-
tion and carbon emissions, thereby fostering the advance-
ment of green logistics in alignment with the exigency for

sustainable development in contemporary society. Addition-
ally, amalgamating green innovation principles and the urban
road impedance function with intelligent traffic signals, elec-
tric vehicle charging stations, and other urban intelligent
infrastructure augments the efficiency of logistics and dis-
tribution, diminishes environmental impact, and actualizes
the eco-friendly transformation in the realm of logistics.
Hence, bolstering the research and integration of the urban
road impedance function in logistics and transport not only
meets the requisites of urban logistics development but also
propels the comprehensive realization of green logistics and
sustainable innovation.

II. RELATED WORK
In this section, the relevant research on green logistics tram
charging and swapping and path optimization considering
urban impedance was discussed.

A. ROAD TRAFFIC
Urban road impedance encompasses the hindrances to urban
traffic traversal arising from factors such as traffic flow,
intersections, speed limits, and other elements, exerting a
substantial influence on logistics transport. Research indi-
cates that the inclusion of urban road impedance can enable
logistics enterprises to enhance distribution path planning and
elevate transport efficiency. Within urban settings, the intri-
cate nature of road impedance and traffic congestion poses
myriad challenges to logistics and distribution. In response to
these challenges, scholars have scrutinized the factors influ-
encing road impedance in diverse urban locales, probing the
effects of traffic congestion, intersection density, and speed
limit demarcations. For instance, Wang et al. [7] employed
discrete-time Markov chains and real-time traffic monitoring
data to prognosticate the likelihood of traffic congestion and
discern the ramifications of highway traffic on distribution.
Xu et al. [8], on the other hand, leveraged the Davidson road
impedance function to compute transport durations. Further-
more, Zhang [9] proposed a method for managing congested
roadways based on traffic allocation to address urban traffic
congestion. Younes and Boukerche [10] devised a dynamic
and efficient traffic signal scheduling algorithm that adjusts
optimal green phase durations for each traffic flow based on
real-time traffic conditions around signalized intersections.
Additionally, Chen et al. [11] explored the impact of traffic
congestion on cold-chain logistics in former warehouses and
quantified congestion levels employing the congestion index.
Some researchers have undertaken comparative evaluations
of distinct road impedance models to ascertain which is best
suited for enhancing transport efficiency and reducing costs
within urban logistics and distribution models. Guo [12]
formulated a time-dependent model for the green vehicle
path problem with time windows in cold chain logistics,
accounting for the time-dependent influence of traffic con-
gestion. Similarly, Zhao [13] designed an electric vehicle
path problem model under time-varying traffic conditions for
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urban cold chain logistics planning, predicated on real-time
traffic intelligence and the intricate urban road milieu. Lastly,
Zhang [14] developed a mathematical model for optimizing
cold chain logistics and distribution paths, considering the
impact of road impedance.

B. GREEN LOGISTICS
Green logistics encompasses the adoption of environmentally
sustainable, energy-efficient, and low-carbon methodolo-
gies in the transportation and distribution processes within
logistics, aimed at mitigating environmental impact. This
encompasses strategies such as the integration of clean energy
sources, optimization of transport routes, and reduction of
packaging waste to foster eco-friendly logistics operations.
The evolution of green logistics has emerged as a signif-
icant trend within the global logistics industry, not only
alleviating environmental burdens but also enhancing cor-
porate reputation and competitiveness. Electric vehicle (EV)
transportation, as a facet of green logistics, has garnered
substantial attention. As electric vehicle technology contin-
ues to advance and governmental backing for clean energy
vehicles grows, the deployment of electric vehicles in logis-
tics transportation is on the rise. Electric vehicles offer the
advantages of zero emissions, low noise, and energy conser-
vation, thereby significantly contributing to the amelioration
of urban air quality and the reduction of noise pollution.
Nonetheless, electric vehicle transportation encounters chal-
lenges relating to charging infrastructure development, range
limitations, and cost management [15]. Presently, research
on EVs encompassing charging infrastructure, EV adop-
tion, thermal management systems, and routing issues has
emerged as a prominent thematic focus in recent years [16].
For instance, Li [17] constructed an analytical model to
examine the influence of EV anxiety and the environmental
advantages of EVs on optimal subsidy and pricing determina-
tions. İmre [18] conducted a study on the factors influencing
the preference for EV utilization, seeking to estimate their
prospective adoption rate in urban freight transport. Addition-
ally, Timilsina [19] meticulously explained the mechanisms
leading to battery degradation within electric vehicles, delv-
ing into the primary factors contributing to degradation
during vehicle operations and their implications for bat-
teries. With burgeoning environmental consciousness and
incentivization from governmental policies, electric vehicles
(EVs) are increasingly being integrated into logistics and
distribution operations. Considering green power trading and
carbon emissions, Qiang [20] addressed the green vehicle
routing problem (GVRP) and devised an EV routing model
with time windows to minimize overall costs. Moreover,
Zhou [21] formulated an EV routing problem (EVRP-BS-
MTW) accounting for battery replacement and hybrid time
window constraints. Shangguan [22] proposed EV battery
charging planning by factoring in the cost of charging facili-
ties for logistics vehicles and fuel consumption expenses.

C. SOLUTION METHOD
As planning models evolve and the scale of nodes expands,
traditional intelligent optimization algorithms exhibit certain
limitations in addressing vehicle routing problems (VRP).
Consequently, numerous scholars have delved into pro-
found investigations of intelligent optimization algorithms.
Many enhanced and hybrid optimization algorithms have
been devised to tackle the objective model. For instance,
Zhao et al. [23] delved into a multi-objective path optimiza-
tion model centered on cost, carbon emissions, and customer
satisfaction, devising an improved ant colony algorithm solu-
tion model utilizing a multi-objective heuristic function.
Zhang et al. [24] crafted an optimization algorithm amal-
gamating RNA computation and an ant colony algorithm
to surmount VRPs. Qin et al. [25] formulated a cold-chain
path optimization model focusing on minimizing customer
satisfaction costs, proposing a circular evolutionary genetic
algorithm to compute the model. Ren et al. [26] formulated
a multi-distribution-center cold-chain logistics path opti-
mization model considering soft time window constraints,
employing a hybrid algorithm of artificial fish swarms
and ant colonies to solve the model. Song et al. [27]
devised a specialized coding method to enhance the arti-
ficial fish swarming algorithm by considering the distinct
characteristics of various vehicle models. Zhu an Hu [28]
established a cold-chain logistics path optimization model
minimizing total cost while factoring in fuel consump-
tion and traffic congestion. A hybrid genetic-ant colony
algorithm based on response surface methodology was pro-
posed to tackle the model. Wang and Wen [29] presented
an adaptive genetic algorithm to address the low-carbon
cold-chain logistics distribution path problem. Moreover,
Chen et al. [30] scrutinized the robust global search capability
of the improved ant colony algorithm and the favorable local
search capability of the forbidden search algorithm, leading
to the development of a hybrid optimization algorithm to
resolve VRP.

In summary, in the realm of logistics and transporta-
tion, research has predominantly centered on exploring the
influence of traffic congestion, speed, and real-time road
conditions on vehicle path optimization. However, the consid-
eration of road impedance in electric vehicle (EV) transport
studies has been scant. Road impedance directly impacts
actual transport time and indirectly influences the cost per
delivery in vehicle transport. Consequently, the assessment
of the impact of road impedance on green logistics transport
assumes paramount significance. Furthermore, within the
domain of green logistics, the investigation of electric vehicle
distribution and the intricacies of charging and switching
methods remains pertinent. Thus, this study aims to address
the lacuna by proposing a model for electric vehicle logistics
path optimization, taking into account road impedance, and
aiming to minimize the total cost while considering charg-
ing and switching modes. Additionally, a genetic algorithm
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is devised to tackle this Electric Vehicle Routing Problem
(EVRP) model.

III. ROAD IMPEDANCE FUNCTION ANALYSIS AND
IMPROVENMENT
The Bureau of Public Roads (BPR) function is the tra-
ditional model for calculating the impedance function of
a road section. The traditional BRP function serves as a
conventional model for computing the impedance function
of a road section. However, it exhibits certain limitations.
Firstly, it fails to depict the actual scenario of road impedance
when the traffic volume exceeds the capacity of the road
section. Furthermore, for road sections with low traffic vol-
umes, a higher parameter value leads to temporal impedance
approaching the free-flow time in an infinitely close manner.
The expression is

t = t0

(
1 + α

(
Q
C

)β
)

(1)

where t0 is the free passage time during zero flow on the road
segment, Q is the traffic volume on the road segment, C is
the traffic capacity on the road segment, and α and β are
parameters to be calibrated. The values recommended by the
U.S. Highway Department are α = 0.15 and β = 4.0.
The urban road impedance function consists of two parts:

roadway impedance and intersection impedance. The actual
travel time of urban road impedance is given by

T = T1 + T2 (2)

where T1 is the travel time of roadway impedance and T2 is
the travel time of intersection impedance.

To address the deficiencies of the BPR function and
ensure that traffic flow is not constrained by traffic capacity,
we adopt Wang’s [31] concept to enhance the BPR function.

By elucidating the interplay among the three urban-road
parameters (velocity, density, and traffic volume), one can
derive the relationship between density and traffic volume.
This relationship can be expressed linearly as follows:

Q = VK (3)

The linear relationship between velocity V and density in the
Greenshield model can be expressed as

V = Vf

(
1 −

K
Kj

)
(4)

where Vf is the speed of free travel, K is the traffic density,
and Kj is the density of road blockage at a vehicle speed of
zero.

Substituting Eq. (4) into Eq. (3) yields

Q = Vf K −
Vf
Kj
K 2 (5)

Let dQ/dK = 0. Then, when V = 0.5Vf ,K = 0.5Kj.Q has a
maximum value of 0.25Vf Kj,The traffic volume at this point
is the traffic capacity of the roadway. that is C = 0.25Vf Kj.

Substituting Eqs. (5) and C = 0.25Vf Kj into Eq. (1) yields

t = t0

1 + α

(
1 −

(
1 −

K
Kj

)2
)β


K ∈
[
0, 2Kj

]
(6)

From the above, the degree of saturation Q/C is replaced by
the density formula. Letting x = Q/C , we have

x = 1 −

(
1 −

K
Kj

)2

(7)

We used the road impedance function model proposed by
SPIESS [32]:

T1 = t0

(
2 +

√
β2 (1 − x)2 + γ 2 − β (1 − x) − γ

)
(8)

where γ =
2β−1
2β−2 , α > 0, β > 1, and the degree of saturation

is x = 1 −
(
1 − K/Kj

)2.
In China’s urban road intersections, which have different

forms, to facilitate the calculation, we assumed that the signal
intersection for a type. Among them, the Webster model is
a well-known model for calculating road signal intersection
delays [33]:

T2 =
c(1 − λ)2

2(1 − λx)
+

x2

2Q(1 − x)
− 0.65(

c
Q2 )

1
3 x(2+5x) (9)

where Z2 is the time impedance of vehicles (i.e., vehicle
delays), c is the signal cycle, x is the saturation level of
the road, λ is the ratio of green lights to signal lights, and
Q is the traffic flow arriving at the intersection. The first
part of this equation is the basic delay term resulting from
vehicles arriving at the intersection and stopping or queuing.
The second part is the random delay term. The third part is
the correction term for the random delay term.Webster’s later
study revealed that the third component was less weighted in
the overall model. Therefore, the equation can be simplified
as

T2 =
9
10

[
c(1 − λ)2

2(1 − λx)
+

x2

2Q(1 − x)

]
(10)

Therefore, the urban road impedance function is a function of
the traffic density K :

T = T1 + T2

= t0

(
2 +

√
β2 (1 − x)2 + γ 2 − β (1 − x) − γ

)
+

9
10

[
c(1 − λ)2

2(1 − λx)
+

x2

2Q(1 − x)

]
(11)

where x = 1−
(
1 − K/Kj

)2
, γ = 2β−1/2β−2, and α and β

are parameters to be calibrated. In this study, we used the U.S.
Highway Department recommended values of α = 0.15 and
β = 4.0.
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A. DATA COLLECTION
The section between the subway entrance of Central Street
and the Shenyang University of Technology in the Tiexi
District, Shenyang, was selected for an example analysis. The
data acquisition methods commonly used were the photo-
graphic method and the access method. Because the survey
road section is not obscured by shelters, the photographic
method was used to obtain relevant data such as road traffic
density.

We collected traffic data from 06:00 to 21:00 on this road
section. In Figs. 1 and 2, the curves represent the trends in
traffic density and saturation from 06:00 to 11:00 and from
17:00 to 21:00, respectively. The trends of traffic density and
saturation from 6:00 to 11:00 and from 17:00 to 21:00 show
that the traffic density varies with saturation.

FIGURE 1. Change of saturation and traffic density.

FIGURE 2. Change of saturation and traffic density.

B. MODEL COMPARISON AND VALIDATION
Roadway data collected at 18:00 were taken as an example.
We obtained the traffic density of each road section K , and
intersection traffic volumes Q using a road blockage density

of Kj = 125vehicles/km and parameters α = 0.15 and
β = 4.0.

Utilizing the BPR road impedance function model, the
enhanced road impedance function equation proposed by
Wang [31], and the novel road impedance function model
developed in this study, we computed the travel time along
the road section from 06:00 to 21:00. Subsequently, the
results obtained from these three road impedance functions
were compared and validated against the actual driving time.
The comparative analysis revealed that the total travel time
estimated using the BPR function notably underestimates
the actual values. This discrepancy can be attributed to the
inherent limitation of the BPR road impedance function,
which fails to consider road node impedance. Conversely,
the travel time calculated using the enhanced road impedance
function model proposed by Wang exceeds the actual values.
Notably, the results obtained from the novel road impedance
function model developed in this study closely align with the
actual driving time, surpassing the performance of other road
impedance functions.

In the following sections, the actual travel time T under
road impedance conditions will be used as the actual transport
time of the vehicle.

FIGURE 3. Comparison of travel times.

IV. PROBLEM FORMULATION
A. PROBLEM DESCRIPTION
The conundrum of optimizing the green logistics charging
and switching path while taking into account the influence
of road impedance is delineated as follows: A singular dis-
tribution center and an ample fleet of electric vehicles are at
hand for distribution purposes. The geographic positioning
of each customer point in relation to the charging station
is known, as are the service time, time window, demand,
and customer point location. Notably, the vehicle’s point of
origin must be the distribution center. Furthermore, certain
assumptions are upheld: firstly, all electric vehicles adhere to
the same specifications, and both load and distance traveled
must not exceed the vehicle’s maximum capacity. Secondly,
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in addition to the power constraint, the distribution process
must also adhere to the time window constraint. Thirdly,
in instances where an electric vehicle lacks sufficient power
to meet the distribution requisites, the vehicle must journey to
the nearest charging station for recharging and replacement,
under the condition that the station is fully charged. Lastly,
the travel time of the vehicle during the transport process
is calculated in accordance with the enhanced urban road
impedance function model from the previous section. This
mathematical model for electric vehicle logistics path opti-
mization aims to minimize fixed costs, drive costs, electrical
energy consumption costs, and charging and replacement
costs.

B. BATTERY DEGRADATION ANALYSIS
Electric vehicles rely on power exchange and fast or slow
charging to replenish their electric energy. In logistics city
distribution, time efficiency is crucial. Hence, we separately
consider the charging and switching costs for fast charging
and power exchange modes. Electric vehicles handle dis-
tribution tasks, returning to the distribution center for slow
charging and discharging management. While generating
profits, the battery incurs wear and tear costs accordingly.

The actual battery life is influenced by several factors,
including the charging rate, state of charge, ambient temper-
ature, and depth of discharge [35]. The effects of ambient
temperature and depth of discharge are the primary consid-
erations when employing Vehicle-to-Grid (V2G) technology
for charging and discharging. In the case of lithium-ion bat-
teries, the main principle behind battery loss is attributed
to chemical reactions that take place within the battery,
resulting in the formation of an oxide film on the electrode
surface. Consequently, this leads to an increase in the internal
resistance of the battery. Moreover, the ambient temperature
directly impacts the rate of these chemical reactions occur-
ring inside the battery, which typically follows the Arrhenius
formula [35]

µ = Ae−
E
KT (12)

where µ is the reaction rate; A is the Arrhenius con-
stant in the same units as µ; E is the activation energy,
a temperature-independent constant; k is the Boltzmann con-
stant; T represents the absolute temperature, K .
Assuming the same time for each charge and discharge

cycle, denoted by 1t , Then the increase in the internal resis-
tance of the battery after a single cycle is obtained according
to the Arrhenius formula.

1r = r0Ae−
E
kT 1t (13)

where r0 is the increment of resistance value per unit time,
The unit is �.

According to the test standard of lithium-ion battery cycle
life, Combining with equation (2), the increase in internal
resistance of a lithium-ion battery over its full life cycle can

be obtained as follows.

rN = LN r0Ae
−

E
kTN

1t (14)

The subscript N is the quasi-side value under standard condi-
tions. It is known that at any temperature, T . The actual cycle
life of the lithium-ion battery is

L =
rN
µ

= e
E
k

(
1
T −

1
TN

)
LN (15)

where e
E
k

(
1
T −

1
TN

)
is the temperature correction factor for the

cycle life of the lithium-ion battery at temperature T , denoted
as ω.

The lifetime of Li-ion batteries is also dependent on the
depth of discharge (DOD) during each charge and discharge
cycle. The cycle life is shorter with a deeper depth of dis-
charge [36], [37]. The battery life test value is measured at
a 100% depth of discharge, implying that the actual battery
life exceeds the nominal value under the same ambient tem-
perature conditions. Additionally, an exponential relationship
exists between the actual cycle life and the depth of dis-
charge [38].

L = LND−0.795 (16)

where: D represents the depth of discharge, expressed as a
percentage; LN represents the cycle life of the Li-ion battery
under standard conditions (D = 1).
Therefore, -0.795 can be defined as the depth-of-discharge

correction factor for the cycle life of lithium-ion batteries at
any depth of discharge (D), denoted as ϕ.

C. SYMBOLS AND DECISION VARIABLES
M = {1, 2, · · · ,m} is the set of the number of EVs used.
N = {0, 1, 2, · · · , n} is the set of distribution centers and
customer points. W = {n, n + 1, · · · , n + m} is the set of
m charging stations. qi is the demand of customer i. P1 is
the fixed cost per unit of EV, P2 is the transportation cost
per unit of time of EV, P3 is the price per unit of electricity
consumption, P4 is the price per unit of time of fast charging
electricity, and P5 is the cost of single exchange of electricity.
Q,D denotes the maximum load and maximum distance of
electric vehicle respectively. aik , [Bi,Ei] denotes the time of
arrival of vehicle k at node i, and the time window of node i,
respectively. E0 is the expected minimum charge during the
driving of the electric vehicle. xkij denotes the 0 − 1 variable,
xkij = 1 when electric vehicle k is transported in section i, j,
otherwise xkij = 0. ykj denotes the 0−1 variable, if the electric
vehicle k delivers for customer point j, ykj = 1, otherwise
ykj = 0. zki denotes the 0 − 1 variable, zki = 1 when EV k
is charging and exchanging at i charging station, otherwise
zki = 0.

A mathematical model of EV path optimization with a
minimum total cost is constructed by considering charging
and discharging cases. The cost is composed of fixed costs,
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transportation costs, energy costs, charging and switching
costs, slow charging and discharging costs, and battery wear
and tear costs.

D. MODEL BUILDING
1) FIXED COSTS AND TRANSPORTATION COSTS

C1 = K × P1 + P2
m∑
k=1

n∑
i=0

n∑
j=0

tijkxkij (17)

where K is the number of vehicles used, m is the number of
vehicles available (k = 1, 2, · · · ,m ), and tijk is the travel
time of an electric vehicle in section i, j.

2) TRANSPORTATION COSTS
The energy consumption of electric vehicles is related to
the load, speed, and transport time. In a time-varying road
network environment. The power consumption of a vehicle
traveling on road section [i, j] is

Eijk =

n∑
t

P
(
Qik , vtijk

)
∗ tijk (18)

P (Qk , v) =
(Q0 + Qk) · g · f · v+

Cd ·A·v3
21.15

3600η
(19)

Therefore, the energy cost of electric vehicles is

C2 = P3
m∑
k=1

n∑
i=0

n∑
j=1

xkij tijkEijk (20)

where P (Qk , v) is the operating power, g is the acceleration
of gravity, A,Cd , f is the wind-blown area of the electric
vehicle, the air resistance coefficient and the friction resis-
tance coefficient of the car, η is the mechanical transmission
efficiency of the system, andQ0,Qk is the no-load and current
load of the electric vehicle, respectively.

3) FAST CHARGING OR POWER EXCHANGE COST
When the remaining power of the electric vehicle is not
enough to complete the distribution requirements to the next
service point, it needs to go to the nearest charging station for
quick charging. Charging costs are related to charging time.
Charging time is tcik =

Emax−Eik
rc

zki , charging costs is

C31 = P4
m∑
k=1

w∑
i=0

tcik · zki (21)

where Emax is the maximum battery capacity of the EV,
Eik is the power left in the EV at the charging station i, and
rc is the charging efficiency of the charging station.
The cost of power change is different from the charging

method. The cost of the electric logistics vehicle is related to
the number of times the electricity is changed. The cost of
power change is

C32 = P5
m∑
k=1

w∑
i=0

zki (22)

4) SLOW CHARGING AND DISCHARGING COSTS AND
BATTERY WEAR AND TEAR COSTS
Electric vehicles return to the distribution center after com-
pleting the distribution task. They can be charged and
discharged at the distribution center at a slow rate according
to the time-sharing tariff to obtain certain benefits. The cost
of charging and discharging is

C4 =

a T1∑
T0

PcWc − b
T1∑
T0

PdWd

 (T1 − T0) (23)

where Pc and Pb denotes the charging tariff and discharging
tariff respectively,Wc andWb denotes the charging power and
discharging power respectively. a and b denotes the charging
and discharging parameters respectively. When charging, a is
1 and b is 0. When discharging, a is 0 and b is 1. T0 and T1
denotes the start time and end time of charging and discharg-
ing respectively.

C6 =
Pb

ωϕLNEmax
(24)

In summary, the total cost of distribution and charg-
ing/discharging in the fast-charging mode of electric vehicles
is modeled as follows

C = K × P1 + P2
m∑
k=1

n∑
i=0

n∑
j=0

tijkxkij

+ P3
m∑
k=1

n∑
i=0

n∑
j=1

xkij tijkEijk + P4
m∑
k=1

w∑
i=0

tcik · zki

+

a T1∑
T0

PcWc − b
T1∑
T0

PdWd

 (T1 − T0)

+
Pb

ωϕLNEmax
(25)

The constraints are as follows
m∑
k=1

n∑
i=1

xkij ≤ m, i = 0 (26)

m∑
k=1

n∑
j=1

xkij =

m∑
k=1

n∑
j=1

xkji, i = 0, k = 1, 2, · · · ,m (27)

m∑
k=1

yki = 1, i = 1, 2, · · · , n (28)

n∑
i=1

qiyki ≤ Q, i ̸= j, k = 1, 2, · · · ,m (29)

n∑
i=0

n∑
j=0

dijxkij ≤ D, i ̸= j, k = 1, 2, · · · ,m (30)

aik + tik ≥ Bi (31)

aik + tik ≤ Ei (32)
m∑
k=1

w∑
i=0

Eaik
(
1 − zki

)
+ Emax
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=

m∑
k=1

w∑
i=0

E lik (33)

E0 ≤ Eaik ≤ Emax (34)

(26) states that the number of electric vehicles used for
distribution should be equal to or greater than the number
of distribution routes. (27) specifies that the starting point
for each distribution vehicle must be a distribution center
to complete its assigned distribution mission. (28) indicates
that each demand point can only be served by one electric
vehicle, and just once. (29) ensures that the total demand of
customer points in each distribution route must not exceed
the maximum carrying capacity of electric vehicles. (30)
mandates that the total distribution distance of each distribu-
tion path should not exceed the electric vehicle’s maximum
distribution distance. (31) and (32) represent the timewindow
constraints. (33) requires the electric vehicle to depart after
recharging at the charging station. (34) refers to the power
constraint for each electric vehicle at every customer point.

The total cost model of distribution and charging and dis-
charging in the electric vehicle switching mode is

C ′
= K × P1 + P2

m∑
k=1

n∑
i=0

n∑
j=0

tijkxkij

+ P3
m∑
k=1

n∑
i=0

n∑
j=1

xkij tijkEijk + P5
m∑
k=1

w∑
i=0

zki

+

a T1∑
T0

PcWc − b
T1∑
T0

PdWd

 (T1 − T0) (35)

The constraints are as above.

V. ALGORITHM RESEARCH
Addressing Charge/Transfer Electric Vehicle Routing Prob-
lem Models while accounting for road impedance leads
to a significant computational challenge. When employ-
ing an exact algorithm, the search process is characterized
by a sluggish pace. Therefore, heuristic algorithms are
commonly favored for tackling such NP-hard conundrums.
Notably, the genetic algorithm emerges as an efficient parallel
search technique, well-suited for resolving global optimiza-
tion predicaments. The distinct procedural steps of the genetic
algorithm in addressing the Electric Vehicle Routing Problem
are delineated as follows.

Step 1: Encoding and Decoding. When addressing the
Electric Vehicle Routing Problem, the selection of paths
necessitates the consideration of both the load impact and
the imperative to visit charging stations for recharging when
the electric vehicle’s power reserve is low. To articulate
the sequence of customer visitations within the instance,
customers are encoded using natural numbers, where each
customer is denoted by a unique number, 1, 2,. . . ,n. Mean-
while, the distribution center is assigned the number 0.
In scenarios featuring m charging stations, the charging
station numbers are allocated as n+1,. . . ,n+m. The initial

customer nodes are orderly arranged in an integer sequence,
with the distribution center 0 interposed among the customer
points in accordance with constraints such as the vehicle’s
maximum load and the demand at each node. Furthermore,
contingent upon the remaining power level of the electric
vehicle, a determination is made regarding the necessity to
journey to the nearest charging station for recharging. Should
recharging be deemed necessary, the corresponding charging
station number is subsequently inserted after the customer
point number.
Consider, for instance, the sequential arrangement of

integers (6,2,5,4,3,1,7,10,9,8) representing the order of cus-
tomer points. Following the insertion of the distribution
center in compliance with load and time window constraints,
the resulting arrangement is (0,6,2,5,0,4,3,1,7,0,10,9,8,0).
Subsequently, when the electric vehicle’s power reserve
is low, the charging station is inserted, leading to the
arrangement(0,6,2,11,5,0,4,12,3,1,7,0,10,9,8,0).The process
of decoding serves as the inverse of encoding, whereby the
path following the decoding of this chromosome unfolds as
follows:
Path 1: 0,6,2,11,5,0
Path 2: 0,4,12,3,1,7,0
Path 3: 0,10,9,8,0
This configuration signifies the utilization of three electric

vehicles for delivery, with a total of two recharging stops en
route.
Step 3: The fitness function is determined. The EVRP

model, designed for both deterministic conditions and robust
optimization, endeavors to minimize the total cost. As the
chromosome fitness value increases, so does the likelihood
of inheritance in the subsequent generation. Hence, the fitness
function is defined as the inverse of the objective function.
Step 4: Selection. Initially, the elite retention strategy

was employed for selection, wherein the fitness values are
sorted in descending order. The top 5% of chromosomes are
preserved as elite for the subsequent generation, while the
remaining 95% are chosen using the roulette wheel selec-
tion method. A subset of high-fitness chromosomes is then
earmarked for crossover and mutation to constitute the suc-
ceeding generation’s population.
Step 5: Crossover. In the process of chromosome coding

in the EVRP problem, the insertion of the charging sta-
tion number will occur, and crossover and mutation will be
performed. The original insertion position of the charging
station will be destroyed, and many inferior solutions will
appear in the offspring. Therefore, the inserted genes should
be removed before the crossover and mutation operations.
The crossover operation selects genes that are not duplicated
on the parent chromosome and puts them into the offspring
sequentially. For example, the parents P1 (1,2,3,4,5,6,7)
and P2 (6,4,2,3,7,1,5), after crossover, the offspring O1
(1,6,2,4,3,5,7,1) and O2 (6,1,4,2,3,7,5).
Step 6: Mutation. Genetic variation manifests consistently

during genetic manipulation to forestall premature local
convergence and uphold chromosome diversity. Mutating
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TABLE 1. Time-sharing tariff.

chromosomes is imperative in this regard. During the muta-
tion operation, a subset of gene positions on the parent
chromosome are randomly chosen and subsequently reorga-
nized, while the remainder of the positions remain unaltered.

Step 7: The evolutionary reversal operation serves to
enhance solution quality and expedite local convergence.
This operation is executed on chromosomes that have already
undergone selection and crossover mutation. During the
reversal operation, two random integers are generated to
determine the chromosome positions, and the sequence
between these positions is reversed to yield a new chromo-
some. For instance, given parent P1 (1,2,3,4,5,6,7), random
integers 3 and 6 produce offspring O1 (1,2,6,5,4,3,7) after
reversal. Importantly, only reversals resulting in heightened
fitness values are considered valid.

The algorithm is designed to terminate automatically after
500 iterations, ensuring that the output result is obtained
within this specified number of computational cycles.

VI. EXAMPLE ANALYSIS
A. DATA AND PARAMETER SETTINGS
The experimental data is retrieved from the figshare database
(https://doi.org/10.6084/m9.figshare.10288326). The simu-
lation data selected for analysis is the R-2-C-30 example,
comprising 30 customer points and 2 charging stations. Cus-
tomer nodes are represented by numbers 1 to 30, while the
distribution center is denoted as 0, and the charging stations
are represented by 31 and 32. The known information for each
customer point includes their demand, service time, and time
window.

Electric vehicles perform distribution tasks and subse-
quently return to the distribution center, where they interface
with the grid via batteries. They have the capability to both
draw electricity from and supply electricity to the grid,
enabling the sale of surplus electricity to the open market
with the objective of realizing profitable returns in accor-
dance with time-of-use tariffs. This decision-making process
leverages time-of-use tariff data sourced from pertinent lit-
erature [12], thereby optimizing charging and discharging
activities. The temporal structure is delineated into peak and
off-peak periods, which are delineated as time-of-day tariffs
in Table 1. Upon completing their distribution tasks, elec-
tric vehicles regroup at the distribution center to connect to
the grid via batteries. Here, they engage in either procuring

electricity from or feeding electricity into the grid, with the
ultimate goal of capitalizing on the time-of-use tariffs to yield
a profit. These decisions are informed by the time-of-use
tariff data gleaned from the pertinent literature [39].

The problem was tackled using a genetic algorithm on a
computer processor operating at a frequency of 2.20 GHz
and equipped with 4 GB of memory, while making use of
MATLAB (R2018b). The specific parameters employed in
this configuration are detailed in Table 2.

B. ANALYSIS OF THE RESULTS
In order to evaluate the effectiveness of considering the
impact of dozos impedance in EVRP and the proposed path
planning and charging/discharging management models, four
different scenarios were created for comparative analysis.
Scenarios 1 and 2 entail the use of power switching and fast
charging methods, respectively, to minimise costs through
path optimisation of distribution routes. Scenarios 3 and 4 are
derived from the logistics distribution of Scenarios 1 and 2,
and the influence of road impedance is considered in the
transport time, which is calculated by applying the improved
road impedance model in the above section. According to
the relevant information, the headway distance is set to 2 m,
and the average length of motor vehicles is set to 6 m.
Through real-time road development tools such as Baidu
Maps, it is determined that the theoretical blockage density
of a single lane, Kj, is about 125 vehicles/km. By analysing
the nature of the road between individual customer points,
the average traffic density K value of different road attributes
is derived. It is worth noting that the fast charging approach
takes into account the cost of battery depletion. Using a
genetic algorithm, we solved the R-2-C-30 instances for the
four cases. Figures 4 to 7 show the optimisation maps for the
EV distribution paths.

The depicted figure illustrates a notable reduction in the
frequency of intersections among EV distribution routes in
Cases 2 and 4 when compared to Cases 1 and 3. A higher
intersection count corresponds to elongated total logistics
and distribution paths, consequently leading to escalated
logistics and distribution expenses as well as extended charg-
ing durations. Specifically, the utilization of fast charging
during transportation in two models results in prolonged
charging periods in contrast to the model employing power
switching. This disparity in charging duration is attributed
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TABLE 2. Model parameter values.

FIGURE 4. Scenario 1.

to the intricacy and associated costs of fast charging rel-
ative to switching. Consequently, an elevated number of
path intersections contributes to amplified costs and temporal
requirements, culminating in augmented total distribution
expenses.

The experimental findings furnish insights into the fre-
quency and duration of charging and discharging activities
across four distinct scenarios. Notably, Scenario 4 exhibits a
heightened charge change frequency and duration in compar-
ison to Scenario 2. Similarly, Scenario 3 manifests a greater
frequency and prolonged aggregate charging duration than
Scenario 1. The charging durations (in hours) for Scenario
1 are recorded as 1.12, 1.14, 0.81, 0.43, 0.91, and 1.05,
while those for Scenario 3 are 1.34, 0.61, 1.05, 0.79, and
0.36. This variance primarily stems from the incorporation
of road impedance effects in Scenarios 4 and 3, whereas

FIGURE 5. Scenario 2.

FIGURE 6. Scenario 3.

Scenarios 1 and 2 are characterized by ideal travel velocities
and durations, translating to reduced transportation durations
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TABLE 3. Optimal vehicle routing.

TABLE 4. Optimal cost comparison.

FIGURE 7. Scenario 4.

and energy consumption. Consequently, energy consumption
is curtailed, and the frequency and duration of charging and
switching activities are diminished. Hence, the integration of
road impedance effects renders the transportation scenarios
more pragmatic and augments the efficiency of the outcomes.

The specific optimized path outcomes for Scenario 1 and
Scenario 3 are delineated in Table 3.

The experimental outcomes pertaining to each expense
category are detailed in Table 4. In this context, GC denotes
the fixed costs, YC signifies the transportation expenses,
NC represents the energy outlays, CC encapsulates the charg-
ing costs, HC embodies the fluctuating electricity expenses,
VC denotes the costs associated with slow charging and
discharging, DC encapsulates the battery depletion charges,
and TC encompasses the aggregate costs, all of which are
quantified in yuan.

Evidently, as illustrated in Table 3,
(1) A comparative analysis of the expenditure associated

with the two paradigms in Scenario 1 and Scenario 3 reveals
that the latter exhibits elevated transportation, energy, and
charging costs in contrast to the former. This disparity stems
from the fact that the derived transport duration, calculated
employing the road impedance function, surpasses the unim-
peded transport time in Scenario 1. Furthermore, all four
costing methodologies of the focal model in this investigation
are intertwined with the transport duration. The cost of slow
charging and discharging back to the distribution center is
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TABLE 5. Ambient Temperature Sensitivity Analysis.

TABLE 6. Discharge depth sensitivity analysis.

unaffected by the battery degradation in relation to the trans-
port time; hence, minimal alteration is observed between the
two scenarios. The disparity in total cost between Scenario
1 and Scenario 3 amounts to 21.64%, underscoring the sub-
stantial influence of accounting for road impedance in EV
logistics transport on the overall expenditure. Accordingly,
it is imperative to factor in the influence of road impedance on
transport, thereby aligning transport duration with real-world
constraints.

(2) As above, a comparison of the costs of the two models
from Scenario 2 and Scenario 4 shows that Scenario 4 has
higher transport costs, energy costs, and power change costs
compared to Scenario 2. Scenario 4 has one more power
change. Therefore, the cost of power change is higher. Other
cost reasons are similar to the comparison of scenarios under
fast charging. The percentage difference between the total
cost of Scenario 2 and Scenario 4 is 16.88%, which indicates
that whether or not to consider the road impedance situation
has a relatively small impact on the total cost of distribu-
tion in the power exchange scenario. This is also related
to the fact that power exchange is more efficient than fast
charging.

(3) The costs in Cases 2 and 4 are $43.2 lower than
those incurred in slow charging and discharging in Cases
1 and 3. This divergence primarily stems from the replen-
ishment of power during the distribution process facilitated
by the switching method, obviating the necessity to factor
in battery depletion resulting from charging and discharging.
In contrast, charging entails expenses associated with bat-
tery depletion, which are predominantly influenced by the
depth of discharge. Consequently, the superiority of employ-
ing slow charging and discharging at the distribution center
becomes more conspicuous in the switching mode, eliminat-
ing concerns about battery depletion.

(4) The optimal solution for all four scenarios entails the
utilization of four electric vehicles for delivery. Among these
scenarios, the total delivery cost is lower in Scenario 2 than

in Scenario 1. This discrepancy is primarily ascribed to the
extended duration spent on fast charging during transporta-
tion and the imperative for multiple charging occurrences
stemming from varying degrees of battery aging. Within the
model, transportation costs are predominantly influenced by
the duration of transport, resulting in escalated overall trans-
portation expenses. Furthermore, the necessity for multiple
trips to the charging station for recharging incurs additional
energy costs. Although the cost of a single switch surpasses
the average cost of a single switch, the disparity in switch-
ing costs to accomplish the final distribution task is not
substantial owing to the quantity of switches involved. Con-
sequently, the choice of power exchange mode for logistics
and distribution in Case 1 proves to be more economically
efficient.

C. BATTERY LOSS SENSITIVITY ANALYSIS
The efficacy of electric vehicle batteries during discharge to
the grid is chiefly influenced by ambient temperature and
depth of discharge. The empirical results are delineated in
Table 5 and Table 6, with the effects of ambient temperature
and depth of discharge on battery degradation illustrated in
Figures 8 and 9.

From the graph above, it is evident that the depth of
discharge remains constant.With the rise in ambient tempera-
ture, the battery loss cost also increases. The trend of the curve
indicates that higher temperatures lead to a smaller magnitude
of increased cost loss. This is mainly due to the fact that the
higher the temperature, the lower the temperature correction

factor ω = e
E
k

(
1
T −

1
TN

)
and the smaller the magnitude of

the curve. Similarly, at a constant ambient temperature of
20 degrees Celsius The deeper the discharge depth is, the
lower the correction factor σ = D−0.795 is, and the mag-
nitude of the reduction is not significant. Consequently, the
greater the depth of discharge, the higher the cost of battery
deterioration.
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FIGURE 8. Trend of temperature on battery.

FIGURE 9. Trend of depth of discharge on battery loss.

While prolonged charging and discharging may indeed
impact battery longevity, tailored charging and discharg-
ing tactics can be tailored to individual tariff periods in
order to meet specific revenue objectives. This approach
serves to mitigate base loads and redistribute peak loads
during periods of heightened power consumption, thereby
markedly alleviating grid load fluctuations. The simulation
data expounded in this paper pertains to a singular inves-
tigation within the small-scale distribution domain of the
logistics sector. Nevertheless, the charge/discharge manage-
ment model explicated in this paper possesses the potential
for extrapolation to large-scale logistics distribution services,
thereby optimizing power efficiency and substantially dimin-
ishing peak-to-valley load differentials.

VII. CONCLUSION
In recent years, with the acceleration of urbanisation and the
enhancement of environmental awareness, the development
of green logistics systems has become a research priority in
the field of urban logistics. In this framework, electric vehi-
cles, as a model of clean energy, have received widespread

attention. In this paper, road impedance is applied to the
charging and path optimisation problems of green logistics
vehicles, which is of great significance for improving logis-
tics efficiency, reducing transport costs and improving urban
environment. The results of this paper are as follows: (1) In
comparison with the fast charging mode, the switching mode,
complemented by distribution path planning, diminishes path
complexity and the overall cost of concurrent deliveries. (2)
The power switching mode of electric vehicles presents lower
distribution costs under specific conditions, particularly in
locales with high urban impediments. (3) The integration
of a road impedance model into green logistics vehicle
charging, switching, and path optimization can effectively
enhance distribution efficiency, reduce transportation costs,
and exert a positive influence on urban environments. (4)
The results from the refined genetic algorithm evince that the
green logistics vehicle charging and path optimization model,
accounting for road impedance, can more accurately mirror
the actual conditions of urban thoroughfares and improve
the feasibility and precision of path planning. (5) The costs
stemming from electric vehicle battery degradation increase
with declining ambient temperatures and uniformly escalate
with rising discharge depths.

In the future based on this research the following directions
can be extended: firstly, enhancing the charging and path
optimisation models for green logistics vehicles to enable
more complex and tailored path planning to suit different
attributes of different cities and road networks. Secondly, with
the integration of real-time traffic data and the distribution
of charging infrastructure, exploring charging, switching and
path optimisation for green logistics vehicles using big data
and artificial intelligence techniques will enhance the intel-
ligence and immediacy of planning and decision-making.
Finally, charging and switching strategies for various types of
electric vehicles (including pure electric vehicles and plug-in
hybrids) under urban impedance conditions are explored and
comparatively assessed in terms of distribution efficiency and
cost with conventional fuel vehicles.
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