
Received 20 February 2024, accepted 6 March 2024, date of publication 13 March 2024, date of current version 20 March 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3377567

Unveiling YouTube QoE Over SATCOM Using
Deep-Learning
MATTHIEU PETROU 1,2, DAVID PRADAS1, MICKAËL ROYER 3, AND EMMANUEL LOCHIN 3
1Viveris Technologies, 31055 Toulouse, France
2ISAE-SUPAERO, 31400 Toulouse, France
3Fédération ENAC ISAE-SUPAERO ONERA, Université de Toulouse, 31000 Toulouse, France

Corresponding author: Matthieu Petrou (matthieu.petrou@viveris.fr)

This work was supported by Viveris Technologies.

ABSTRACT The importance of stored streaming video for current Internet traffic is undeniable, even in
the context of satellite communications (SATCOM). Therefore, Internet service providers aim to deliver
the highest quality of experience to their end users, although they are not able to assess it directly. Some
machine learning techniques proposed in the literature have demonstrated their ability to predict the quality
of experience based on traffic data analysis. However, these models cannot be directly applied in a SATCOM
context without considering the specific characteristics of satellite links. Furthermore, some of them may
not be suitable for real-time use. In this study, we monitored over 2,400 YouTube video sessions over an
emulated satellite network to develop models capable of predicting the initial delay, played resolution,
and stalling events. The collected dataset is available as an open source to the research community. The
primary objective of this research is to provide a functional model for real-time applications. To achieve
this, we reduced the required feature set to minimize computation time and resources, enabling a practical
real-time implementation of the model while assessing its feasibility. We show that we successfully achieved
a substantial reduction in the number of features while also observing a relative improvement in prediction.
Our results yield prediction performance comparable to that of other studies on terrestrial networks. Using
the reduced feature set, we present a real-time implementation and confirm the real-time viability of our
work.

INDEX TERMS Deep learning, HTTP adaptive video streaming, machine learning, network monitoring,
QoE, SATCOM.

I. INTRODUCTION
The Sandvine report of 2020 [1] revealed that video streaming
plays an important role in today’s internet, by representing
more than 57% of global traffic share. This report looked
specifically at satellite traffic as well and reported that video
streaming also represents a major part of it. Specifically,
YouTube represents more than 16% of the satellite traffic
share and Netflix more than 9%. Therefore, the Quality of
Experience (QoE) of video streaming application is important
for network operators and, consequently, is widely studied in
the literature [2].

The associate editor coordinating the review of this manuscript and

approving it for publication was Massimo Cafaro .

One of the main challenges for Internet Service Providers
(ISPs) is to provide the best QoE to end users. Nevertheless,
QoE evaluation is restricted to end user applications and is
not visible to ISPs, which can access only to Quality of
Service (QoS) metrics. Additionally, the encryption of most
today’s traffic prevents the IPSs from using Deep-Packet-
Inspection (DPI). Several previous studies have provided
methods and approaches to predict QoE of streaming video
in real time, based on QoS information. Nevertheless, to the
best of our knowledge, no studies have been conducted on
GeoSynchronous Orbit (GSO) satellite links.

GSO satellite links are an essential part of today’s global
connectivity, providing connections to isolated areas that
lack communication infrastructure. Satellite networks also
provide a vital solution for emergency communications,

39978


 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.
For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

VOLUME 12, 2024

https://orcid.org/0000-0003-1385-610X
https://orcid.org/0009-0007-6208-3015
https://orcid.org/0000-0002-6305-2188
https://orcid.org/0000-0003-1118-7109


M. Petrou et al.: Unveiling YouTube QoE Over SATCOM Using Deep-Learning

disaster-stricken areas, such as those affected by natural dis-
asters or war, and earth and global warming observations [3].
Because of the altitude of the satellite, connections over
GSO satellites suffer from a high latency, with a round-trip
time (RTT) over the satellite network of about 600ms.
Therefore, it is impossible to directly apply existing QoE
predictive models to satellite networks. This disparity stems
from the absence of terrestrial equivalents for the entire
physical and access layers within the SATCOM context.
Consequently, established standards, such as instance the ITU
standard for VoIP QoE assessment (ITU-T G1011), introduce
specific biases when applied to SATCOM, as highlighted
by the observed increase in ‘‘advantage factor’’ ranging
from 20 to 40 [4], [5]. Therefore, the unique characteristics
of SATCOM necessitate a comprehensive reevaluation and
adaptation of current QoE evaluation methodologies.

The main objective of this work is to provide a practical
solution for assessing the QoE for end users of YouTube
to GSO ISPs and to offer an open dataset to the research
community. To build the dataset, we monitored 2,400 video
sessions over emulated GSO satellite networks under various
scenarios, collecting QoE metrics from YouTube and QoS
metrics from traffic data. Our second objective is to select
the best Machine Learning (ML) algorithms, between Long
Short-Term Memory (LSTM) and Random Forest (RF),
which both have been considered in previous studies. The
emulated testbed is presented in Section III-A.
The selection of both RF and LSTM algorithms for

QoE evaluation results from the state-of-the-art presented
in Section II-C and summarized in Table 1. While much
recent research has employed RF, Loh et al. [6] demonstrated
promising results using LSTMs. This interest likely stems
from the popularity of LSTMs in handling time-series
data. LSTMs excel at capturing and learning temporal
dependencies, with a key advantage being their ability to
process sequential data points and retain information over
extended periods, making them well-suited for modeling
time-dependent patterns. Notably, RFs also demonstrate
efficiency in time-series regression [7], but with significantly
lower computational cost than LSTMs. Considering our
objective of developing a real-time solution (existing studies
typically disregard the transition from theory to practice) and
benchmarking against the state-of-the-art, we opted for this
dual-algorithm approach.

Next, we focus on the most effective machine learning
algorithm, specifically LSTM in our scenario, with the
objective of reducing computation time and resources
without significantly affecting performance. To achieve this,
we employ various techniques to decrease the number of
features and subsequently conduct a comparative analysis.
In the end, themodels using the smaller feature set achieve the
best performance, comparable to the state-of-the-art results
on other networks. Finally, we implement the best approach
in a real-time solution and confirm the real-time application
of our work.

The remaining part of the paper proceeds as follows:
Section II defines background details of stored video
streaming and summarizes related work. Section III describes
the methodology used to collect and process the data
and analyze the collected dataset. Section IV presents
both compared ML algorithms, RF and LSTM, their first
performance results, and concludes with a comparison of
these results. In Section V, we decrease the number of
features to reduce computation time and resources, and
compare the performance results of LSTM trained on various
feature set sizes. This section also compares the performance
results with those of previous studies. Section VI offers a
practical real-time implementation of our work and assesses
its feasibility and viability. Finally, Section VIII concludes
this study.

II. BACKGROUND
This section provides an overview of background knowledge
related to stored video streaming. In addition, this section
provides a review of previous studies on predicting video
streaming QoE.

A. STORED VIDEO STREAMING QOE
In stored video streaming, the audio and video content are
downloaded while being played to the user. Therefore, the
available downlink throughput must be sufficient to match
the video encoding rate. A video buffer is implemented
to prevent user experience issues in the event of short
mismatches between the download speed and the video
encoding rate. As long as the buffer remains non-depleted,
the video continues to play. Otherwise, a stalling event occurs
and the video pauses while the buffer refills.

Videos are divided into segments and chunks. Segments
are regular time-slices of a few seconds, whereas chunks are
slices of data of regular-size. Chunks and segments are not
directly related because a single chunk may contain multiple
segments or fewer than one. At the network level, only one
chunk is requested and downloaded at a time. Nevertheless,
the video and audio chunks can be downloaded in parallel.
At the application level, the player updates the buffer with
complete segments, even from a chunk partially downloaded.
The video buffer stores multiple video segments. Depending
on the buffer state, the resolution of the next requested
segments can change. Indeed, if the buffer is not filled as
quickly as it is emptied, one solution to reduce the required
data rate is to reduce the requested resolution.

B. QUALITY OF EXPERIENCE
The quality of experience is the user’s subjective perception
and expectations toward a given service and is defined
by Qualinet White Paper [8] as ‘‘the degree of delight or
annoyance of the user of an application or service. It results
from the fulfillment of his or her expectations with respect to
the utility and / or enjoyment of the application or service in
the light of the user’s personality and current state.’’.

VOLUME 12, 2024 39979



M. Petrou et al.: Unveiling YouTube QoE Over SATCOM Using Deep-Learning

Previous studies [8], [9] proposed four categories of
Influencing Factors (IFs) that impact QoE: Human-related,
System-related, Context-related, and Content-related IFs.
From an ISP’s point of view, network related IFs, which are
system-related IFs, are the main Key Performance Indicators
(KPIs), i.e., packet loss, delay, latency, jitter, and throughput.
For stored video streaming, the main Key Quality Indicators
(KQIs) are stalling events, initial delay, and resolution [10]:

• ‘‘Initial delay’’ refers to the time between the first
request and the start of the video. In this study, both
page load time and video initial delay are considered.
Therefore, we use the first request to the YouTube
servers as the original timestamp.

• ‘‘Resolution’’ describes the quality of the application.
It is usually determined by the number of vertical pixels
that indicate the resolution in the image (144p, 240p,
360p, 480p, 720p, and 1080p). As previouslymentioned,
the resolution may vary during video playback. Such
variation also impacts QoE for the user. A previous
study [10] showed that users prefer a constant lower
resolution to several resolution changes.

• ‘‘Stalling’’ defines the interruption of video playback.
During this time, the application attempts to refill the
buffer with segments. These events have the strongest
negative impact on QoE. Previous study [11] showed
that increasing the initial delay can help reduce or
prevent stalling, which improves the QoE. Therefore,
applications such as YouTube or Netflix aim tominimize
and prevent stalling events from occurring, by reducing
the resolution or forcing a longer initial delay, which
provides more time to fill the buffer before the video
starts.

C. RELATED WORK
This section covers the different ML approaches and
methodologies used in prior studies to predict QoE for end
users based on QoS. Table 1 summarizes relevant previous
related studies that predict QoE KQIs. The table presents the
algorithm and platforms used, along with the predicted KQIs.
In addition, the table presents the number of video sessions
collected and the real-time compatibility of these previous
studies. As presented in Table 1, most of the predicting QoE
studies have targeted YouTube, either on desktop or mobile
devices.

Mazhar’s work [12] exploited features based on TCP flags,
and for QUIC flows they used network layer information
to create features. Gutterman’s study [13] used a chunk
detection system to process chunk-based features. These
chunk-based features predict the resolution, buffer filling
phase, and buffer warning, which is triggered when the
buffer is below a threshold of 20 seconds. In the same
vein, Bronzio & Schmitt’s study [14] also exploited segment
detection to add application-based features, for Netflix,
YouTube, Amazon, and Twitch videos. They showed that the
use of these features improves prediction accuracy for the
initial delay and the resolution compared with the use of only

FIGURE 1. Topology of the test bench. The user is connected to the
Internet through an emulated satellite link.

network layer and transport layer related features. Orsolic’s
and Wassermann’s studies [15], [16] are using network
related features processed over different time windows to
predict resolution and bit rate. Additionally, Wassermann’s
work also predicts the initial delay and stalling. For the
four KQIs, Wassermann’s study obtained high performance
with RF using 5-fold cross validation. Shen’s work [17] is
the only work cited here that also focused on the Bilibili
application, and the only one that used a Convolutional
Neural Network (CNN). Loh’s work [6] revealed that the
use of only uplink-related features gives predictions that
are reasonably as good as using both uplink and downlink
features, for the prediction of resolution, initial delay, buffer
filling phase, and stalling events.

III. METHODOLOGY
This section details the testbed and the scenarios used to
collect data. It also describes the processing of QoE and QoS
data, and provides an analysis of the collected dataset. This
dataset is available on github.1

A. EXPERIMENTAL SETUP
Our testbed relies on an emulated satellite link that connects
the user to the Internet. To emulate the satellite link,
we use OpenSAND [18], [19], an open-source end-to-
end satellite communication system emulator. OpenSAND
emulates SATCOM systems with a fair representation [20].
Three components compose the satellite link: a satellite
gateway, a satellite terminal, and a GSO satellite. The satellite
gateway is connected to the Internet. The user is connected to
the satellite terminal through a router and has Internet access
through the satellite emulated link. We choose not to set up
any Performance Enhancing Proxies (PEP) over the satellite
link, as theQUIC protocol, used byYouTube servers, does not
benefit from PEP optimization. Figure 1 depicts the testbed
topology.

The router enables us to add packet loss for specific
scenarios, for example, to emulate a Wi-Fi. In addition, for
specific scenarios, additional clients and servers are added

1https://github.com/viveris/satcom-qoe-dataset

39980 VOLUME 12, 2024



M. Petrou et al.: Unveiling YouTube QoE Over SATCOM Using Deep-Learning

TABLE 1. Overview of previous work relative to QoE prediction.

behind the satellite terminal and the satellite gateway to
generate congestion.

We orchestrate and launch the tests, including Open-
SAND, Firefox, packet capture, and congestion flows, using
OpenBACH [21], an open-source network metrology test
bench. An OpenBACH script collects YouTube metrics from
the SATboost plugin [22], which obtains information from
YouTube interface.2 We use only the YouTube collection
feature of SATboost, not the optimization features. The
user computer has an Intel(R) Core(TM) i3-3220 CPU with
4 core of 3.30GHz and a Intel HD integrated GPU. Tests
are performed with Ubuntu 20.04, Firefox version 97.0.1,and
Geckodriver 0.30.0 [23], the latter allows us to remotely
control Firefox. The uBlock Origin ad blocker plugin [24],
has been enabled in Firefox to prevent the collection of
advertising data. Traffic data are captured on the satellite
terminal, whereas YouTube data are collected on the user.

For the tests, we selected 40 unique videos with durations
ranging from 30 s to 17min 32 s to include a diverse
representation of the content available to users. Each video
is available in the same set of resolutions: 144p, 240p, 360p,
480p, 720p, and 1080p, and has between 24 and 30 frames
per second. To ensure a fair representation of available video
content on the YouTube platform, we choose videos from
various YouTube channels and of diverse styles.

With a total of 2, 400 monitored video sessions, our
dataset comprises a smaller number of sessions compared
to recent studies, as shown in Table 1. Nonetheless,
to align with users’ engagement patterns on YouTube,
we deliberately opt for longer videos. For example, the

2Data are collected from the ‘‘Stats for Nerds’’ interface.

Wasserman et al. dataset, which includes over 15, 000 videos,
consists of 4, 600, 000 time slots of one second, averaging
approximately 5 minutes per video. In contrast, our dataset
monitors 1,214,536 time slots of video playback, extending
to 1, 306, 761 time slots when accounting for initial delays.
Although our dataset contains 6.25 times fewer videos, the
total time slots are 3.8 times smaller. This deliberate choice
allows us to match users’ typical engagement on YouTube,
selecting video durations based on trending content to mirror
user use patterns.

B. SCENARIOS
We perform the tests using two bandwidths on the satellite
forward link: 1Mb/s and 12Mb/s. These bandwidths were
chosen on the basis of their representation of realistic public
satellite Internet access and in alignment with previous
studies [25], [26]. In both cases, the emulated satellite link
has a one-way delay of 250ms.

To diversify our dataset, we include other scenarios in
addition to these two baseline scenarios. Two of them are
without any degradation from loss on the link or congestion.
We add a scenario that adds pressure on the YouTube
application to induce some stallings. In this scenario, a regular
prioritized UDP flow is added, which uses 90% of the
available bandwidth for 1 minute every 2 minutes. The
prioritized UDP flow is generated using Iperf3 (v3.10.1) [27].
Two congestion scenarios are included, where one or two
additional clients use YouTube simultaneously with the main
user. A final scenario is added with losses over the satellite
link. To simulate a realistic satellite use case, we select a
Gilbert-Elliot model based on data collected from a railway

VOLUME 12, 2024 39981



M. Petrou et al.: Unveiling YouTube QoE Over SATCOM Using Deep-Learning

train, which was previously used in a study [28]. This Gilbert-
Elliot model, with parameters p = 0.016 and q = 0.938,
is applied to the emulated satellite link.

C. FEATURES
The previous section describes the scenarios used to collect
data. In this section, we provide an overview of the
computation of features for ML algorithms, based on the data
obtained from these scenarios. Features tuning is an essential
aspect of machine learning, as identifying the most important
features can improve performance and reduce computational
costs. This section provides details about the features used in
the ML algorithms.

We use ViCrypt paper [16] methodology to compute
features from packet capture, where we collect the size,
timestamp, and IP source/destination of packets. Their
method considers what has occurred over three different time
windows: the last second, the last 3 s, and the entire session.
Nevertheless, we made some modifications to their method.
For example, we completely removed the TCP and UDP
related features because they do not improve the accuracy of
our results. This approach produces a total of 199 features,
which include 66 features for each time window and an
additional feature equal to the number of the current time slot.

D. DATA ANALYSIS
We test 40 unique videos under six different scenarios, with
each test performed ten times. Hence, the dataset contains
2, 400 video sessions, for a total of 1, 306, 761 time slots of
one second that represents more than 15 days. This section
provides an analysis of the KQIs in the dataset.

1) INITIAL DELAY
It is noteworthy that we use the timestamp of the first
request to YouTube servers as the starting point of the
initial delay, and the beginning of the video as the end
time. Figure 2 represents a Cumulative Distribution Function
(CDF) of the collected initial delays. Consistent with the time
slot length used, the granularity for the initial delay is 1 s.
As shown in the figure, the shortest initial delays monitored
are 10 s. Over half of the videos monitored start within
27 s, which mainly consist of videos sessions with 12Mb/s
bandwidth. The average initial delay is 38.43 s, primarily
influenced by the longest 90th percentile of initial delays
exceeding 100 seconds. These initial delays are notably
lengthy compared with studies on terrestrial networks, which
generally have initial delays of approximately 2−3 s [6], [16].

2) RESOLUTION
The resolution played is information directly provided by the
YouTube interface. Nevertheless, when a resolution change
occurs, it is not possible to know the resolution played during
the last second because data from the YouTube interface are
collected every second. Therefore, and as done in previous
study [6], we remove the resolution label for time slots with

FIGURE 2. CDF of the initial delay.

FIGURE 3. Resolution proportions for each time slot.

resolution changes. Finally, resolution labels are also ignored
when a stall occurs.

Figure 3 provides the ratio of resolutions for each time
slot of the video sessions. In Figure 3, as the number of
time slots increases, the number of monitored time slots
decreases because of variations in the length of the video
sessions. What is striking about this figure is the variation in
the resolution distributions over time. Within the 100th first
time slots, 1080p resolution represents a significant portion
of the resolutions played. 360p and 720p resolutions are
under-represented in the first 250th time slots, and gain in
importance later on.

Table 2 summarizes the distribution of resolutions in the
dataset. We monitor video sessions with the ‘‘auto’’ mode
enabled, which means that the application determines itself
the downloaded and displayed resolution.

The table highlights an imbalance in the resolution dataset,
with more than 40% of time slots in 1080p. This value
can be explained by the data shown in Figure 3, where
1080p resolution accounts for more than 40% of the collected
data after the first 100 s, due to 12Mb/s scenarios. As the
video duration increases, the distribution of the collected

39982 VOLUME 12, 2024



M. Petrou et al.: Unveiling YouTube QoE Over SATCOM Using Deep-Learning

TABLE 2. Overview of resolutions in the dataset.

resolutions becomes more skewed. For instance, in a video
lasting 17 minutes and 30 seconds (1050 seconds), with only
100 seconds not at 1080p, approximately 90% of the video
uses 1080p. Even in a 10-minute video, where 500 seconds
out of the 600 (83.33%) are at 1080p. Given that half of
our collected videos use 12Mb/s, it is logical to observe that
1080p resolution constitutes 40% of the collected resolutions.

E. STALLING EVENTS
Unlike the resolution, the information on the stalling events
is not directly accessible from the YouTube interface.
Nevertheless, we monitor the number of frames read and the
frame rate of the videos. We label a time slot as a stalling
event when the difference between two consecutive seconds
of the number of frames read is less than 90% of the video
frame rate, and there are fewer than 20 seconds in the buffer.

As mentioned earlier, stalling events have the most
negative impact on KQIs on the QoE of end users. Over
the 1, 214, 536 time slots of video playback monitored, only
17, 022 (1.40%) are stalling time slots. Figure 4(a) represents
the number of stalling event distributions in the dataset. From
this figure, we observe that there is no stalling among 65% of
video sessions. About 20% of video sessions have only one
stalling event, and 95% of video sessions in the dataset have
fewer than 3 stalling events. Figure 4(b) provides the duration
of the stalling event distribution in the dataset. 25% of the
stalling events last one second, and half of them last less than
9 seconds.

IV. SELECTION OF MACHINE LEARNING ALGORITHMS
This section provides a detailed description of the various
machine learning algorithms used and compared in this
study. Next, we discuss the first results obtained. Finally,
we describe our proposals to reduce the computation time,
which are used for the rest of the paper.

A. COMPARISON OF THE MACHINE LEARNING
ALGORITHMS
To ensure the independence of the test dataset from the
training dataset, we select 8 unique videos from the
40 monitored videos and keep them aside as the test group.
The duration of these test videos is spread evenly over the

duration of the monitored videos. Therefore, we train the
machine learning models using a set of 32 distinct videos,
and subsequently evaluate their performance on a completely
separate set of 8 videos.

1) RANDOM FOREST
As mentioned in Section II-C, most of the previous stud-
ies [6], [13], [14], [15] used RF to predict KQIs. More
specifically, Wassermann’s [16] with ViCrypt also used RF.
Since we use their approach for calculating features, we also
decide to use RF, with the scikit-learn RF classifier [29], [30].
Table 3 summarized RF hyperparameters set for each KQI.
The chosen hyperparameters are selected following a search
by 5-fold cross-validation on the training dataset, using the
mean F1 score as the target metric. Usually, shuffling and
randomdivision of the training dataset are used. Nevertheless,
as the video session data are time-related, we choose not
to split the training dataset directly, but to split it by video
sessions to perform the 5-fold cross-validation.

2) LONG SHORT-TERM MEMORY
As data and prediction are time-dependent, LSTM algorithms
can be a potential solution, as performed in previous
work [6]. In this study, we use the LSTM from Pytorch
implementation [31]. Nevertheless, it is important to remem-
ber that LSTM algorithms require a longer training time
than RFs. In this study, each LSTM model is trained to
predict the three KQIs (initial delay, resolution, and stalling).
Thus, during the training process, the prediction errors are
aggregated by adding them together, leading to de facto
competition among the different predictions for these KQIs.
As is conventionally performed for the LSTM algorithm, the
features are standardized for the LSTM algorithms.

B. COMPARISON OF THE RESULTS
Table 4 presents an overview of the average F1 score for
stalling events and resolution prediction, as well as the
Mean Absolute Error (MAE) for initial delay, comparing the
performance of the LSTMandRFmodels. In the table, LSTM
demonstrates significantly superior performance compared
to RF across all predictions. When predicting the initial
delay, LSTM achieves a slightly lower MAE than RF,
indicating an improvement in accuracy of around 9%.
Regarding the resolution prediction, LSTM achieves an F1-
score approximately 5% higher than RF, while for stalling
prediction, LSTM’s F1-score outperforms RF by around
6%. These metrics clearly illustrate the efficiency of LSTM
over RF.

Considering the significant performance gap between
LSTM and RF, it is evident that RF falls behind, whereas
LSTM demonstrates superior predictive performance in our
scenarios. Consequently, for the remainder of this paper,
we focus on using LSTM. Nevertheless, LSTM models
generally require more time and computational resources

VOLUME 12, 2024 39983



M. Petrou et al.: Unveiling YouTube QoE Over SATCOM Using Deep-Learning

FIGURE 4. Distributions regarding stalling events.

TABLE 3. Random forest hyperparameters.

TABLE 4. Performances of LSTM and RF models for each KQI.

than RF models. Therefore, to mitigate these burdens,
we intend to reduce the feature set used in the LSTMmodels.

V. OPTIMIZATION RESULTS
This section describes the various approaches used to reduce
the number of features, and presents the performance results
of the LSTMmodels trained on these feature sets. We provide
details of the prediction results for the initial delay, resolution,
and stalling events in that order.

A. OPTIMIZATION OF LSTM FEATURES
We seek to reduce the computation cost to make our approach
more practical for a potential real-world implementation.
Hence, we attempt to identify features that we estimate as
less useful and remove them.

We choose four approaches:

• Fsyall : this approach contains the entire feature set;
• Fsy1: for this version, we exclude features related to ratios
(i.e., download/upload packets and bytes ratios) and
those related to variance when a corresponding feature

of standard deviation exists, as they are mathematically
related through a quadratic relationship;

• Fsy2: for this feature set, we take Fs
y
1 set and discard the

features related to the size of the downloaded packets.
We decide to discard these data because the downloaded
packet should have low variance in their length; and

• Fsy3: finally, for this approach, we dismissed the same
features as Fsy2 set and the one related covariance
between packet size and arrival time; i.e., the Temporal
Variance,Covariance Time-Size,MeanCumulative Size,
Mean Time, Slope, and Intercept, for both download and
upload packets, which are jointly calculated. Therefore,
by removing them, our objective is to reduce the number
of features by 12, hopefully without significantly
affecting the results.

In the Appendix , the Table 8 presents a comprehensive list
of the features included in our distinct approach.

Lastly, as LSTM has a feedback connection from previous
predictions, we want to reduce the number of features by
removing the different time windows. Therefore, we intro-
duce three more approaches:

• Fs3x : This approach has features from the three time
windows, i.e., the last second, the last 3 seconds and the
whole session; and

• Fs2x : This approach has features from two time windows:
the last second and the entire session. With this
approach, we expect to maximize the use of LSTM and
its short-term memory by removing the feature related
to the last 3 seconds; and

39984 VOLUME 12, 2024



M. Petrou et al.: Unveiling YouTube QoE Over SATCOM Using Deep-Learning

FIGURE 5. Box-and-Whisker Plot of the Mean Absolute Error in Initial
Delay Prediction. As a reminder, the boxes represent the lower and
upper quartiles (25th and 75th percentiles). The red line within the box
represents the median value (50th percentile). The whiskers (the two
lines outside the box) extend from the quartiles to the last data point
within 1.5 times the interquartile range (IQR) of the lower or upper
quartile. The circles ◦ represent the outliers, which are the values outside
the whiskers and the box.

• Fs1x : This approach has features only from the last
second. With this final approach, we aim to rely solely
on the LSTM memory and, in so doing, drastically
reduce the number of features.

By combining the reductions in the number of features,
based on the time windows and their types, we arrive at
12 feature sets. The Table 5 presents an overview of the
number of features in each approach.

B. COMPARATIVE ANALYSIS OF THE PERFORMANCE OF
FEATURE REDUCTION APPROACHES IN LSTM
This section presents the performance results of the LSTM
models trained on various feature sets.

As described in Section IV-A2, each LSTM model is
trained to predict the three previously defined KQIs: initial
delay, resolution, and stalling events. During the training
process, we calculate the prediction errors of each KQI and
sum them. As a result, all of these KQIs are aggregated into
a unique value without weighting one of them. This leads to
a compromise, as the model focuses on reducing the overall
error rate, which may lead to varying performance levels for
each specific KQI. Therefore, it is important to consider this
when comparing KQI-by-KQI performance.

To ensure a fair and unbiased comparison, we conducted
11 training iterations for each feature set. This approach
allowed us to consistently evaluate the performance of each
model and account for any variations or randomness in the
training process.

1) INITIAL DELAY
Figure 5 displays the whisker boxes representing the
completed MAE for each feature set. Notably, the poor per-
formance of the Fs1x models is evident, and they occasionally
yield a MAE greater than 3 seconds. Conversely, the model

trained using Fs2x demonstrates superior overall performance,
particularly for Fs2all and Fs

2
1.

To further investigate our performance, Figure 6 summa-
rizes the initial delay prediction results of themodel achieving
the median average F1-score, by showing the percentage
distribution of the absolute values of the prediction error.
Most of the models can accurately predict the start of videos
without any error in over 30% of the cases. Almost all models
can predict the start of the video in 90% of cases, with
an error of up to 5 seconds. Since about 10% of the cases
have an absolute error greater than 5 seconds may appear
significant; however, the longest 90% of the initial delays
exceed 100 seconds.

2) RESOLUTION
Figure 7 illustrates the whisker boxes presenting the average
F1-score achieved for each feature set. In contrast to the initial
delay prediction, the Fs2x models exhibit underperformance in
predicting resolution, especially Fs2all which fails to achieve
an F1-score of at least 70%. Conversely, the Fs1x models
demonstrate greater consistency, with F1-scores ranging
between 70% and 74%.

For both Fs2x and Fs3x , the results indicate that reducing
the number of features improves the quality of resolution
prediction. The peak of this effect is observed in Fs33,
which achieves comparable or even superior results compared
to Fs13.

3) STALLING EVENTS
Figure 8 displays the whisker boxes representing the average
F1-score achieved for each feature set in the prediction of
stalling events. The difference in F1-scores between models
is smaller compared to the F1-score difference observed in
the resolution prediction.

The Fs3all and Fs
2
all models exhibit the poorest performance

among all the models. Moreover, the feature sets Fs2x appear
to be less effective in predicting stalling events, whereas the
Fs1x approach yield better results. In terms of consistency in
predicting stalling events, theFsy1 models demonstrate greater
stability. In addition, theFs1x models exhibit more consistency
compared to the Fs2x and Fs

3
x models.

C. INTERPRETATION OF THE RESULTS
This section summarizes the performance results and presents
the best feature set approach. Table 6 summarizes the
performance metrics obtained for each median-performing
model of each Fsyx . Noted that the median value shown in
the previous graphic displays the medians for each metric
individually, rather than the median of all three metrics
collectively.

First, let us compare the results based on the number of
time windows considered (Fsy). If we summarize the results,
we can observe that Fs1x demonstrates the highest perfor-
mance for predicting stalling events and resolution, whereas it
shows poorer performance for initial delay prediction. On the

VOLUME 12, 2024 39985



M. Petrou et al.: Unveiling YouTube QoE Over SATCOM Using Deep-Learning

TABLE 5. Number of features in each feature set. In brackets, the relative percentage compared with the initial feature set (Fs3
all ). This ratio allows

weighing the decrease in the number of features.

FIGURE 6. Cumulative distribution of absolute prediction error of each feature sets.

TABLE 6. Prediction performance of the median-performing model for each Fsy
x .

other hand, Fs2x exhibits the best performance for initial
delay prediction, but it performs less effectively in predicting
stalling events and resolution. This result is unexpected,

as our initial hypothesis was that the feedback connections in
the LSTMmodels should effectively replace the data from the
trending window. Fs3x shows good performance for stalling

39986 VOLUME 12, 2024



M. Petrou et al.: Unveiling YouTube QoE Over SATCOM Using Deep-Learning

FIGURE 7. Box-and-whisker plot of F1-score in resolution prediction.

FIGURE 8. Box-and-whisker plot of F1-score in stalling event prediction.

events and initial delay prediction, but it yields relatively
weaker results for resolution prediction. Therefore, when
considering only the time window used to train the model,
the features derived from the last second (Fs1x) are the most
effective. This is particularly significant when considering
that stalling events have the most harmful impact on QoE.

Let us compare the results based on the features considered
within each time window (Fsx). The Fsyall models show
superior performance for initial delay prediction, but they are
theworst performingmodels regarding stalling and resolution
predictions. On the other hand, Fsy1 and Fsy2 models achieve
similar results within the same considered time windows,
with no clear advantage or significant weaknesses. As for
the Fsy3 models, they generally yield inferior results for
initial delay prediction, except for Fs13, which performs
comparably to Fs12 and Fs11; models have better results for
resolution prediction and stalling, except for Fs13, which
exhibits comparable results to Fs12 and Fs

1
1. Considering these

findings, we select Fsy3 as the preferred model.
Combining these two conclusions, we can determine that

the optimal approach for simultaneous prediction of initial
delay, resolution, and stalling events is the Fs13 feature set.
Furthermore, the Fs13 feature set also has the advantage of
having the fewest number of features; this characteristic will
facilitate real-time implementation in the future.

Now, let us present the performance of the median-
performing Fs13 model. The previous graphic displays the
medians for each metric individually, rather than the median
of all three metrics collectively. Table 7 provides the
prediction performance of the median-performingFs13 model.
In addition, Figures 9 present the confusion matrices for both
resolution and stalling event predictions. To summarize the
performance of this specific Fs13 model, it achieves a MAE of
2.477,s for predicting the initial delay, an average F1-score of
72.36% for predicting the resolution, and an average F1-score
of 84.25% for predicting stalling.

D. COMPARISON WITH PREVIOUS STUDIES
It is important to confirm the relevance of our work compared
with the state of the art on other networks. Therefore, this
section conducts a comparative analysis, contrasting our
performance results with those of the state-of-the-art.

As detailed in one of our previous papers [32],
Wassermann et al. [16] employed questionable practices
to generate their results. They employed a five-fold
cross-validation method to obtain their results. This well-
established method involves splitting the dataset into five
groups and training a model on four groups while testing
the model on the remaining group. This process is repeated
for each unique group, resulting in multiple models and
their corresponding predictions. By mixing video session
data, Wasserman et al. trained their models using time slots
from both past and future test datasets. While this approach
has improved their model performance on mixed data,
it introduces an issue regarding the independence between
the training and test datasets. As a result, their models may
not generalize well to video sessions that are not mixed with
their training dataset. Consequently, we will not make a direct
comparison between our findings and theirs in this particular
section.

First, let us compare the performance of predicting the
initial delay. Nevertheless, it is challenging to make a precise
comparison between our performance and that of previous
studies, primarily due to the use of different metrics to
measure accuracy in predicting initial delay. For instance,
Mazhar et al. [12] employed precision and recall as metrics,
but we consider these values to be irrelevant as they do not
accurately demonstrate the precision of predicting the start
of a video. On the other hand, Loh et al. [6] presented MAE
as a performance metric.

Loh et al. achieved an MAE of approximately 0.65 s in
predicting the initial delay, whereas ourmodels obtain aMAE
around 2.48 seconds. The disparity between our conditions
may explain this difference. The Loh et al. dataset has a mean
initial delay of 2.64 s, whereas our dataset, due to satellite
latency, has a mean initial delay more than ten times longer
(38.43 seconds). To make a fair comparison of these results,
our MAE corresponds to 6% of our average initial delay,
whereas theirs corresponds to 24% of their average initial
delay.

VOLUME 12, 2024 39987



M. Petrou et al.: Unveiling YouTube QoE Over SATCOM Using Deep-Learning

TABLE 7. Fs1
3 prediction performance.

FIGURE 9. Confusion matrices of Fs1
3 model for resolution and stalling event predictions.

To compare the predictive capabilities of our model and
those of previous studies in terms of resolution, we use the
average F1 score obtained. Some studies, such as Malzhar’s
and Orsolic’s [15], predict resolution based on categories
such as low or high, making it challenging to directly compare
our results with theirs. Nevertheless, most studies employ the
same resolution classification as we do. With an average F1
score of approximately 72%, our model’s performance falls
between that of Gutterman et al. [13] (66.69%, calculated
from the data they presented) and Loh et al. (78%).
In conclusion, Loh’s work demonstrates significantly better
results in resolution prediction than our approach.

To compare the performance of the stalling prediction,
we also utilize the average F1 score. Our performance is
similar to that of other studies, with an average F1 score
of 84.25%. This is comparable to Loh et al. study, which

achieved 87%.Mazhar’s work also demonstrated comparable
results for HTTPS flows with an average F1 score of
85.68% (calculated from the data they presented), but had
lower results for QUIC flows with an average F1 score of
77.93% (calculated from the data they presented). Shen et al.
study, on the other hand, obtained an average F1 score of
59.92% (calculated from the data they presented), which
is significantly lower than our results. In conclusion, our
model performs relatively well compared to state-of-the-art
approaches in predicting stalling events on other networks,
although Loh’s work shows slightly better performance in this
aspect.

To conclude this comparison with the state of the art,
although our model does not surpass all other studies, it is
important to point out that our results are comparable to other
studies that primarily focus on terrestrial networks, which

39988 VOLUME 12, 2024



M. Petrou et al.: Unveiling YouTube QoE Over SATCOM Using Deep-Learning

have been extensively studied by the research community.
Furthermore, we recall that we are working in the context
of a satellite network, which presents unique challenges and
characteristics. Therefore, considering the specific context of
satellite networks, these results hold significant value and
contribute to the understanding of performance prediction in
this particular domain.

VI. REAL-TIME IMPLEMENTATION
Because our goal is to offer a practical solution for ISPs, the
implementation of our work in the real world is a crucial
part of this work. Ensuring that our models can be applied in
real-time is an essential aspect of this endeavor. In addition,
it is vital to monitor and address any potential drift in the
application process to maintain the accuracy and reliability
of our models over time.

One of the major challenges in this real-time implemen-
tation is to efficiently process every packet while effectively
using the ML model without delaying the overall process.

This section is intentionally designed as a proof of concept
and not intended to serve as a benchmark for various
implementations. Instead, the focus is to showcase the
feasibility and viability of the proposed approach through a
basic implementation.

In this section, we employ the median-performing
Fs13 model, discussed in Section V-C where its performance
is presented. As a reminder, this model only uses 28 features,
which represents the lowest number of features considered in
our analysis.

First, this section provides an overview of the implemen-
tation process and discusses potential bottlenecks that may
impede the efficiency of the system. Second, this section
presents the monitored information within these bottlenecks
and offers a comparison between the predictions and the
ground truth.

A. IMPLEMENTATION OVERVIEW
This section discusses the implementation choices, specif-
ically how we processed the previously collected dataset.
During the processing of the collected dataset, as described
in Section III-C, we intentionally processed each packet
separately, treating them as received in real-time. Further-
more, we ensure that the feature set is dynamically updated
in real-time for each packet. Therefore, the processing of
packets for real-time implementation poses no issue for us,
as we have already implemented the necessary procedures
during the dataset processing phase.

The implementation of our system is relatively simple,
consisting of three parallel threads:

1) Packet Sniffer: this thread collects IP packets and
places them in the queue for the second thread.
By assigning a dedicated thread for packet collection,
we can guarantee that all packets are properly gathered;

2) Packet Process: the second thread processes the
packets, examining their source and destination IP
addresses, size, and timestamp. It processes the packets

individually and sends the data to the third thread after
a one-second interval;

3) MLPrediction: this thread normalizes the data received
from the second thread and predicts the KQIs.

From this implementation, two potential bottlenecks
emerge. The first potential bottleneck arises at the entrance to
the second thread, where a queue of packets may form if the
packet processing speed is cannot keep up with the incoming
packet rate. The second potential bottleneck lies in the ML
processing phase, particularly if it exceeds the allocated one-
second timeframe.

B. MONITORING AND ANALYSIS OF REAL-TIME
IMPLEMENTATION
This section presents and analyzes the monitored results of
the implementation.

We maintain the topology as presented in Section III-A
and illustrated in Figure 1. Furthermore, the prediction
process occurs at the same location where the traffic data are
collected, specifically on the router. It is worth noting that the
implementation is performed on a virtual machine with two
CPU cores of 2.6GHz, 4GB of RAM, and no GPU.

First, this section examines the packet queuing aspect at
the entrance of the second thread. Second, it assesses the
processing time of machine learning predictions in the third
thread. Finally, it presents examples of curves that illustrate
the relationship between the predictions and the collected
truth.

1) PACKET QUEUING
To verify the queue length, we monitor it at regular intervals
of 10ms during a video session. To stress the system, the test
uses a capacity of 12Mbps, ensuring no loss on the link and
no congestion. In addition, we select a video with a frame rate
of 30 fps, which is long enough to observe different phases.

Figure 10(a) presents the packet queue behavior through-
out the entire video session. From the figure, we can observe
that at the start of the video session, the traffic is notably high.
Around the 1000th second mark, the traffic comes to a halt
as the video concludes, causing the packet flow to stop and
subsequently filling the buffer. Notably, a peak is observed
around the 400th second, with the queue size exceeding
175 packets.

Figure 10(b) provides a zoomed-in view of the beginning
of the video, where the traffic density is the highest. Contrary
to the initial assumption derived from the unzoomed figure,
this newfigure reveals that the number of packets in the queue
occasionally falls below a 10-packet length. Specifically,
we observe that the queue size experiences periodic growth,
reaching a range of 75-100 packets within a 10ms interval;
however, it quickly decreases in the subsequent 10 ms
interval.

Figure 10(c) provides a zoomed-in view of the highest
peak observed during the video session. From this figure,
it is evident that the peak, surpassing 175 packets, is rapidly
absorbed and does not persist for more than 10ms.

VOLUME 12, 2024 39989



M. Petrou et al.: Unveiling YouTube QoE Over SATCOM Using Deep-Learning

FIGURE 10. Packet queue analysis during a video session: overall dynamics, session start, and peak behavior.

FIGURE 11. CDF of ML prediction time during video sessions (logarithmic
scale y-axis).

Overall, these figures demonstrate that the packet rate
can experience significant increases; however, despite these
challenges, the implemented packet processing mechanism
exhibits the capability to efficiently manage and absorb any

peaks or dense traffic. This demonstrates the effectiveness of
the implemented packet processing approach in maintaining
a low real-time drift of the system.

2) MACHINE LEARNING PREDICTION TIME
Following the methodology described in Section VI-B1,
we monitor the ML prediction time.

Figure 11 presents the CDF of the prediction time for the
ML model. The data are collected from four video sessions,
consisting of a total of 4111 predictions, with each prediction
corresponding to a one-second time slot. To improve data
visualization, a logarithmic scale is applied to the x-axis. The
prediction time exhibits a notable range of variance, spanning
from a minimum of 0.5ms to a maximum of 342ms, with
a standard deviation of 9.7ms. From the data in the figure,
it is clear that 20% of the predictions are completed within
1ms, while 50% of the predictions are realized within 1.6ms.
Moreover, in approximately 90% of the cases, the predictions
are completed within 10ms; however, it is worth noting that
a small fraction of predictions, less than 1%, exceed 100ms.

39990 VOLUME 12, 2024



M. Petrou et al.: Unveiling YouTube QoE Over SATCOM Using Deep-Learning

FIGURE 12. Real-time prediction vs. ground truth of a video session over a 12 Mbps satellite link.

Even in rare instances where the prediction time reaches
its longest duration of 342ms, its impact on meeting the
schedule for subsequent predictions remains insignificant.
Nevertheless, if we want to implement this for multiple
clients on the same connection, the process may get out
of schedule when there are many concurrent predictions.
A potential solution to address potential obstructions to
the ML prediction process is to allocate a dedicated CPU
specifically for ML predictions. By doing so, we can ensure
that no other processes interfere with or hinder the execution
of the ML algorithms.

3) CHECKING THE QUALITY OF PREDICTION
The performance prediction aspects are addressed in
Section V; however, in this section, we compare the real-time
monitored ground truth with our predictions. As a result,
this section presents a comparison between the ground truth
and prediction for a video session conducted over a satellite
link with a capacity of 12Mbps. Figures 12 illustrate the
comparisons between the monitored ground truth and the
prediction during a video session over a satellite link with a
capacity of 12Mbps. No congestion or loss is introduced in
this scenario, and as a result, there are no figures representing
stalling events because no such events occurred or were
predicted.

Figure 12(a) and Figure 12(b) provide a comparison
between the start of the video and the corresponding
prediction of the start of the video. The second figure is a
zoomed-in view of the first 30 s, focusing on the crucial
moment of the video playback initiation. Upon analyzing
these figures, it becomes evident that the beginning of the
video is accurately predicted, with no delay. The predicted
start time aligns perfectly with the actual start time of the
video playback.

Figure 12(c) displays the video resolution and predicted
video resolutions throughout the video session. Meanwhile,
Figure 12(d) zooms in on the first 100 s of the data,
which encompasses the resolution switches. The predicted
resolutions are not considered relevant before the prediction
of the start of video playback. These figures indicate that there
are no major issues with predicting the 1080p resolution.
Nevertheless, the challenge lies in accurately predicting the
timing of the resolution switches. In these cases, resolutions
are overpredicted before actual changes occur.

VII. LIMITATIONS
This section outlines the limitations of the experimental
approaches employed in this study to evaluate and contex-
tualize the results effectively.

In this paper, we construct our dataset and the models over
emulated satellite link use cases for a specific application,

VOLUME 12, 2024 39991



M. Petrou et al.: Unveiling YouTube QoE Over SATCOM Using Deep-Learning

TABLE 8. Overview of the features used in a single time window and their presence in each reduced version of our tests.

39992 VOLUME 12, 2024



M. Petrou et al.: Unveiling YouTube QoE Over SATCOM Using Deep-Learning

i.e., YouTube. Nevertheless, each stored video streaming
application has its own Adaptive Bit Rate (ABR) streaming
algorithms that affect the displayed resolution, initial delay,
and stalling event occurrences. Furthermore, each application
can use different rules for video encoding. For example,
YouTube offers encoding recommendations but leaves some
liberties to video creators on the matter. Netflix re-encodes
available videos, to optimize throughput and QoE for users.
Therefore, if we expect that it is possible to apply the
same feature processes to other stored video streaming
applications, such as Netflix, Amazon Prime, and Disney+,
specific datasets tailored to those applications need to be
built.

Additionally, the dataset used to create the model consists
of 40 videos with amaximum resolution of 1080p and a frame
rate per second between 24 and 30. Nevertheless, YouTube
currently offers videos with resolutions up to 2160p (also
known as 4K). Moreover, YouTube is experimenting with a
‘‘1080p Premium’’ resolution for paying users, providing an
‘‘enhanced’’ 1080p version, which is encoded with a higher
bit rate, resulting in a better QoE [33]. Therefore, to adapt the
model, we would need to collect data with a wider range of
video characteristics.

Furthermore, the dataset we collected was based on
specific scenarios, whichmay not cover all possible use cases.
For example, a change in the maximum packet size would
significantly impact most features, thus affecting the predic-
tion. Similarly, a very different available throughput from the
considered scenarios could also impact the prediction quality.
Finally, any evolution in the YouTube encoding policy or
their ABR algorithm would require collecting another dataset
and training new models. Therefore, to enable models to
adapt to changes over time, a data collection system must be
implemented and run to frequently update the model.

VIII. CONCLUSION
This study aims to predict QoE KQIs, i.e., initial delay,
resolution, and stalling event occurrences, of YouTube
sessions over a geosynchronous satellite network.

For this purpose, we monitor 2,400 YouTube video
sessions and the resulting packet traffic. The collected dataset
is available as an open source to the research community.
We compare two ML models, RF and LSTM, trained to
predict the QoE KQIs based on packet traffic data using an
adjusted tried-and-tested approach from Wassermann et al.
study [16]. Next, we focus on reducing the required feature
set to optimize efficiency, considering both the prediction
performance and the computation time.

The results show that the LSTM approach significantly
outperforms the RF models, specifically in the prediction
of resolution and stalling events. Although the RF is a less
complex solution with a shorter computation time compared
to the LSTM, the difference in performance is too important
to be balanced by this gain. Regarding the optimization of the
feature sets for the LSTM training, we demonstrate that we
can eliminate multiple irrelevant features fromWassermann’s

approach. First, the results show that models have better
performances when using only features from the last second,
and not from the three considered time windows. Second,
within the time windows, it is possible to significantly reduce
the feature considered and achieve relatively the same level of
performance. Using the smallest feature set, with a reduction
in the number of features from 199 to only 28, we achieved
performance comparable to the state of the art on terrestrial
networks, demonstrating its applicability and effectiveness in
the context of GEO satellite networks.

This study also tackles the real-time implementation of
our model, and the potential risks associated with ensuring
smooth real-time functioning. After identifying two potential
bottlenecks, we show that they are not significant issues for
real-time functioning.

In future work, we wish to apply this approach to other
popular applications, such as Netflix, Twitch, and Teams.
Furthermore, another objective is to combine our models
with a reinforcement learning agent capable of dynamically
applying actions to enhance the QoE for end users.

APPENDIX. USED FEATURES AND THEIR PRESENCE IN
REDUCED FEATURE SETS
See Table 8.

ACKNOWLEDGMENT
The authors wish to thank Victor Perrier for his help.

REFERENCES
[1] Sandvine. (2020). The Global Internet Phenomena Report COVID-19

Spotlight. [Online]. Available: https://www.sandvine.com/covid-internet-
spotlight-report

[2] K. Bouraqia, E. Sabir, M. Sadik, and L. Ladid, ‘‘Quality of experi-
ence for streaming services: Measurements, challenges and insights,’’
IEEE Access, vol. 8, pp. 13341–13361, 2020. [Online]. Available:
https://ieeexplore.ieee.org/document/8954623/

[3] T. Pecorella, L. S. Ronga, F. Chiti, S. Jayousi, and L. Franck, ‘‘Emergency
satellite communications: Research and standardization activities,’’ IEEE
Commun. Mag., vol. 53, no. 5, pp. 170–177, May 2015.

[4] B. Tauran, E. Lochin, J. Lacan, F. Arnal, M. Gineste, and N. Kuhn,
‘‘Scheduling flows over LEO constellations on LMS channels,’’ Int.
J. Satell. Commun. Netw., vol. 38, no. 5, pp. 407–424, Sep. 2020. [Online].
Available: https://hal.science/hal-02535708

[5] A.M. Cipriano, P. Gagneur, G. Vivier, and S. Sezginer, ‘‘Overview of ARQ
and HARQ in beyond 3G systems,’’ in Proc. IEEE 21st Int. Symp. Pers.,
Indoor Mobile Radio Commun. Workshops, Sep. 2010, pp. 424–429.

[6] F. Loh, F. Poignée, F. Wamser, F. Leidinger, and T. Hoßfeld, ‘‘Uplink vs.
downlink: Machine learning-based quality prediction for HTTP adaptive
video streaming,’’ Sensors, vol. 21, no. 12, p. 4172, Jun. 2021. [Online].
Available: https://www.mdpi.com/1424-8220/21/12/4172

[7] B. Goehry, H. Yan, Y. Goude, P. Massart, and J.-M. Poggi.
(Feb. 2021). Random Forests for Time Series. [Online]. Available:
https://hal.science/hal-03129751

[8] K. Brunnström et al., ‘‘Qualinet white paper on definitions of quality of
experience,’’ in Proc. Qualinet Meeting, Mar. 2013, pp. 4–8. [Online].
Available: https://hal.archives-ouvertes.fr/hal-00977812

[9] P. Juluri, V. Tamarapalli, and D. Medhi, ‘‘Measurement of quality of
experience of video-on-demand services: A survey,’’ IEEE Commun.
Surveys Tuts., vol. 18, no. 1, pp. 401–418, 1st Quart., 2016. [Online].
Available: http://ieeexplore.ieee.org/document/7035000/

[10] M. Seufert, S. Egger, M. Slanina, T. Zinner, T. Hoßfeld, and P. Tran-Gia,
‘‘A survey on quality of experience of HTTP adaptive streaming,’’ IEEE
Commun. Surveys Tuts., vol. 17, no. 1, pp. 469–492, 1st Quart., 2015.
[Online]. Available: https://ieeexplore.ieee.org/document/6913491/

VOLUME 12, 2024 39993



M. Petrou et al.: Unveiling YouTube QoE Over SATCOM Using Deep-Learning

[11] T. Hossfeld, S. Egger, R. Schatz, M. Fiedler, K. Masuch, and C. Lorentzen,
‘‘Initial delay vs. interruptions: Between the devil and the deep blue sea,’’
in Proc. 4th Int. Workshop Quality Multimedia Exper., Jul. 2012, pp. 1–6.
http://ieeexplore.ieee.org/document/6263849/

[12] M. H. Mazhar and Z. Shafiq, ‘‘Real-time video quality of experience
monitoring for HTTPS and QUIC,’’ in Proc. IEEE Conf. Comput.
Commun. (INFOCOM), Apr. 2018, pp. 1331–1339.

[13] C. Gutterman, K. Guo, S. Arora, X. Wang, L. Wu, E. Katz-Bassett, and
G. Zussman, ‘‘Requet: Real-time QoE detection for encrypted YouTube
traffic,’’ in Proc. 10th ACM Multimedia Syst. Conf., 2019, pp. 48–59.
[Online]. Available: https://dl.acm.org/doi/10.1145/3304109.3306226

[14] F. Bronzino, P. Schmitt, S. Ayoubi, G. Martins, R. Teixeira, and
N. Feamster, ‘‘Inferring streaming video quality from encrypted traffic:
Practical models and deployment experience,’’ in Proc. ACM Meas. Anal.
Comput. Syst., Dec. 2019, vol. 3, no. 3, pp. 1–25. [Online]. Available:
https://dl.acm.org/doi/10.1145/3366704

[15] I. Orsolic and L. Skorin-Kapov, ‘‘A framework for in-network QoE
monitoring of encrypted video streaming,’’ IEEE Access, vol. 8,
pp. 74691–74706, 2020.

[16] S. Wassermann, M. Seufert, P. Casas, L. Gang, and K. Li, ‘‘ViCrypt
to the rescue: Real-time, machine-learning-driven video-QoE monitoring
for encrypted streaming traffic,’’ IEEE Trans. Netw. Service Man-
age., vol. 17, no. 4, pp. 2007–2023, Dec. 2020. [Online]. Available:
https://ieeexplore.ieee.org/document/9250645/

[17] M. Shen, J. Zhang, K. Xu, L. Zhu, J. Liu, and X. Du, ‘‘DeepQoE: Real-time
measurement of video QoE from encrypted traffic with deep learning,’’
in Proc. IEEE/ACM 28th Int. Symp. Quality Service (IWQoS), Jun. 2020,
pp. 1–10.

[18] Opensand. Accessed: Mar. 2024. [Online]. Available: https://
www.opensand.org/

[19] E. Dubois, N. Kuhn, J. B. Dupé, P. Gélard, F. Arnal, C. Baudoin,
A. Delrieu, and D. Pradas, ‘‘OpenSAND, an open source SATCOM
emulator,’’ in Proc. Kaconf, 2017.

[20] A. Auger, E. Lochin, and N. Kuhn, ‘‘Making trustable satellite exper-
iments: An application to a VoIP scenario,’’ in Proc. IEEE 89th Veh.
Technol. Conf. (VTC-Spring). Kuala Lumpur, Malaysia: IEEE, Apr. 2019,
pp. 1–5. [Online]. Available: https://hal.archives-ouvertes.fr/hal-02191751

[21] Openbach. Accessed: Mar. 2024. [Online]. Available: https://www.
openbach.org/

[22] SATboost Add-On. Accessed: Mar. 2024. [Online]. Available:
https://github.
com/CNES/satboost/

[23] Geckodriver. Accessed: Mar. 2024. [Online]. Available: https://github.
com/mozilla/geckodriver/

[24] Ublock. Accessed: Mar. 2024. [Online]. Available: https://github.
com/gorhill/uBlock

[25] G. Romain, P. David, P. Guillaume, and K. Nicolas, ‘‘Recommendations
on using VPN over SATCOM,’’ 2021, arXiv:2111.04586.

[26] N. Kuhn, F. Simo, D. Pradas, and E. Stephan, ‘‘Evaluating BDP FRAME
extension for QUIC,’’ 2021, arXiv:2112.05450.

[27] iperf3. Accessed: Mar. 2024. [Online]. Available:
https://software.es.net/iperf/

[28] N. Kuhn, F. Michel, L. Thomas, E. Dubois, E. Lochin, F. Simo, and
D. Pradas, ‘‘QUIC: Opportunities and threats in SATCOM,’’ Int. J. Satell.
Commun. Netw., vol. 40, no. 6, pp. 379–391, Nov. 2022. [Online].
Available: https://onlinelibrary.wiley.com/doi/abs/10.1002/sat.1432

[29] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas,
A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay,
‘‘Scikit-learn: Machine learning in Python,’’ J. Mach. Learn. Res., vol. 12,
pp. 2825–2830, Nov. 2011.

[30] Scikit-Learn—Random Forest Classifier. Accessed: Mar. 2024. [Online].
Available: https://scikit-learn.org/stable/modules/generated/sklearn.
ensemble.RandomForestClassifier.html

[31] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin,
A. Desmaison, L. Antiga, and A. Lerer, ‘‘Automatic differentiation in
PyTorch,’’ in Proc. NIPS-W, 2017.

[32] M. Petrou, D. Pradas, M. Royer, and E. Lochin, ‘‘Forecasting YouTube
QoE over SATCOM,’’ in Proc. IEEE 97th Veh. Technol. Conf. (VTC-
Spring), Jun. 2023, pp. 1–5.

[33] M. Clark. YouTube Says It Isn’t Messing With 1080p—‘1080p
Premium’ is Higher-Bitrate. Accessed: Jul. 2023. [Online]. Available:
https://www.theverge.com/2023/2/23/23612647/youtube-1080p-
premium-subscription-bitrate

MATTHIEU PETROU received the M.Sc. degree
in embedded system engineering from the Uni-
versity of Versailles Saint-Quentin-en-Yvelines,
in 2019, and the Ph.D. degree from ISAE-
SUPAERO, in 2023. His current research interests
include the quality of experience over satellite
communication, transport protocol, and machine
learning in networks.

DAVID PRADAS received the M.Sc. degree
in telecommunications engineering from UPC,
in 2006, and the joint Ph.D. degree from
ISAE-SUPAERO and UAB, in 2011, co-funded
by CNES and UAB. During the Ph.D. degree,
he focused on cross-layer designs and method-
ologies for broadband satellite networks and
he participated in several international research
projects (MOVISAT and Sat-NEx I & II). He is
currently the Research and Development Manager

of network/telecom activities with Viveris Technologies. In the frame of his
activity with Viveris, since 2012, he has contributed to OpenSAND and
OpenBACH and he has led more than 30 research & technology (R&T)
projects for the CNES and other industrial partners, and he is currently
involved in the HE COMMECT Project. His current research interests
include the optimization of higher layers on hybrid satellite/5G systems and
new satellite constellations.

MICKAËL ROYER received the master’s degree
in aeronautical engineering (telecommunication
specialization) from ENAC, in 2004, and the
Ph.D. degree from Paul Sabatier University—
Toulouse III, in May 2016. He was an Associate
Professor with the ENAC Research Laboratory,
more precisely in the Telecommunication Team.
In parallel, he is currently the Head of the Science
and Engineering Department, ENAC.

EMMANUEL LOCHIN received the Ph.D. degree
from the LIP6 Laboratory of Pierre and Marie
Curie University—Paris VI, in December 2004,
and the Habilitation Thesis (Habilitation Diriger
des Recherches) degree from Institut National
Polytechnique de Toulouse (INPT), in October
2011. From July 2005 to August 2007, he held
a researcher position with the Networks and
Pervasive Computing Research Program, National
ICT Australia, Sydney. Then, he was a Full

Professor with ISAE-SUPAERO, from September 2007 to March 2020, and
he has co-founded SPEERYT, in July 2018, to stimulate the development and
diffusion of an on-the-fly coding scheme named Tetrys. Before SPEERYT,
this technology was transferred by TTT to a world leader in internet content
distribution. He has been a Full Professor with ENAC, since April 2020. He is
also a member of the TSA Laboratory and a Computer Networking Expert
in the TeSA Scientific Committee.

39994 VOLUME 12, 2024


