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ABSTRACT Ovarian cancer is one of the three most common types of gynecological cancer globally,
with high-grade serous ovarian cancer being the most common and aggressive histological type. Guided
treatment of high-grade serous ovarian cancer typically involves platinum-based combination chemotherapy,
necessitating the assessment of whether the patient is platinum resistant. This study proposes a deep
learning-based method to determine whether a patient is platinum resistant using multimodal positron
emission tomography/computed tomography images. In total, 289 patients with high-grade serous ovarian
cancer were included in this study. An end-to-end Squeeze-Excitation–Spatial Pyramid Pooling–Dense
Convolutional Network model was built by adding a Squeeze-Excitation Block and Spatial Pyramid Pooling
Layer to a Dense Convolutional Network. Multimodal data from positron emission tomography/computed
tomography images of regions of interest were used to predict platinum resistance in patients. Through
five-fold cross-validation, the Squeeze-Excitation–Spatial Pyramid Pooling–Dense Convolutional Network
achieved a high accuracy rate and area under the curve of 92.6% and 0.93, respectively, for predicting
platinum resistance in patients. The importance of incorporating the Squeeze-Excitation Block and Spatial
Pyramid Pooling Layer into the deep learning model and considering multimodal data was substantiated by
performing ablation studies and experiments with single-modality data. The classification results indicate
that our proposed deep learning framework performs better in predicting platinum resistance in patients,
which can help gynecologists make more appropriate treatment decisions.

INDEX TERMS CNN, ovarian cancer, PET/CT, platinum resistance, SE Block, SPP Layer.

I. INTRODUCTION
Ovarian cancer is the third most common type of gyneco-
logical cancer worldwide, with approximately 313,959 new
cases and 207,252 deaths, ranking eighth in incidence and
mortality among female cancers worldwide [1]. There are
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five main histological types of ovarian cancer, of which high-
grade serous ovarian cancer (HGSOC) is the most common
and aggressive histologic type [2]. Treatment guidelines for
HGSOC have been suggested by the National Comprehen-
sive Cancer Network, which involves the removal of the
tumor followed by platinum-based combination chemother-
apy [3]. However, because some patients are resistant to
chemotherapy, they are at high risk of recurrence and require
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further treatment. Generally, the indicator of whether a
patient is resistant or sensitive to subsequent platinum-based
chemotherapy is based on the length of the platinum-free
interval, which is defined as the time interval between the
completion of platinum-based combination chemotherapy
and disease progression [4]. After initial treatment, patients
are considered ‘‘platinum-sensitive’’ if they relapse after
6 months or more and ‘‘platinum-resistant’’ if they relapse
within 6 months. Patients who are platinum-resistant typi-
cally have a low response rate to subsequent chemotherapy
(<15%), with a progression-free survival of 3-4 months and
a median survival of <12 months [5].
Despite great advancements in precision medicine, proac-

tively and accurately predicting whether a patient is
platinum-resistant remains a challenge. If a patient is likely to
be platinum-resistant, it is possible to treat the patient more
effectively than the standard of care involving platinum-based
combination chemotherapy. For example, the approach and
timing of surgery can be optimized for secondary cytore-
ductive surgery, thereby limiting the development of a
drug-resistant subclonal tumor population [6]. Simultane-
ously, patients with drug-resistance can be tested more
frequently to detect tumor recurrence without delay. In addi-
tion, platinum resistance is a simple indicator of sensitivity to
poly (ADP-ribose) polymerase inhibitors [7]. Hence, accu-
rate prediction of platinum resistance in patients reduces
the need for unnecessary and cumbersome clinical testing.
Therefore, if patients with platinum resistance are accurately
identified, they can take full advantage of the benefits of
precision medicine.

Currently, most methods for predicting platinum resistance
use biomarkers, expression of specific genes or proteins,
and tumor immunohistochemistry. Kuhlmann et al. predicted
platinum resistance in patients with ovarian cancer using
excision repair cross-complementation group 1-positive cir-
culating tumor cells as a predictive biomarker of platinum
resistance [8]. Wu et al. found that the risk of plat-
inum resistance was 60-fold higher in patients with high
co-expression levels of glutathione peroxidase (GPX4) and
cystine/glutamate antiporter solute carrier family 7, mem-
brane 11 (SLC7A11) than in those with low co-expression
levels [9]. They determined platinum resistance by assess-
ing whether patients had high co-expression of GPX4 and
SLC7A11. However, these methods are associated with high
costs, invasiveness, and additional time delays. In contrast,
in this study, we adopted 18F-2-fluoro-2-deoxy-D-glucose
(18F-FDG) positron emission tomography (PET)/computed
tomography (CT), which can non-invasively and more effec-
tively obtain basic information about the tumor, such as the
size and location of the primary and metastatic lesions, and
used the images to determine whether the patient had plat-
inum resistance. This eliminates the labor-intensive process
of manual extraction and detection required by traditional
methods, as well as the impact of operator error.

Herein, we propose a deep learning-based approach to
predict the presence of platinum resistance in patients using

PET/CT medical images. To the best of our knowledge, this
is the first use of PET/CT medical images for this purpose.
Our method offers improved detection efficiency compared
to that by conventional approaches because it follows an
end-to-end workflow. Ablation studies demonstrate that the
proposed deep learning model can improve the classification
accuracy by integrating the Squeeze-Excitation (SE) Block
and Spatial Pyramid Pooling (SPP) Layer to prioritize and
pool important information at multiple levels. A comparison
of single- and multi-modality studies has demonstrated the
importance of PET images. Ultimately, the Dense Convo-
lutional Network (DenseNet) model with the SE Block and
SPP Layer (SE–SPP–DenseNet) demonstrated the highest
precision for predicting platinum resistance in patients.

II. METHODS
A. PATIENTS
This retrospective study was approved by the Radiology
Review Committee of the Sheng Jing Hospital of ChinaMed-
ical University and adhered to the principles and requirements
of the Declaration of Helsinki. The requirement for further
consent was waived. This study involved a retrospective anal-
ysis of prospectively collected data from 289 patients with
high-grade plasma ovarian cancer who were admitted to our
hospital between January 2013 and December 2017.

B. PET/CT DATA
Patients who had fasted and refrained from food and drinking
for more than 6 hours were administered a 1-hour intravenous
infusion of 161-361 MBq of 18F-FDG before undergo-
ing PET/CT scanning (GE Discovery; GE Healthcare, Inc.
Milwaukee, WI, USA). A three-dimensional PETmodel with
a matrix size of 512×512 and an exposure time of 2 minutes
per bed was utilized. Following attenuation correction with
CT (120 kV, 80 mA), the PET images were reconstructed
using a time-of-flight and point-spread function algorithm
that incorporated two iterations and 20 subsets.

C. DATA PREPARATION
In our study, physicians delineated the regions of interest
(ROIs) in the PET and CT images of the patients. The
image data were imported into MATLAB 2021b (Math-
Works, Natick, MA, USA), and the ROIs were extracted
and stacked into two-dimensional data for each channel. The
resulting data were used as inputs for the deep learning net-
work. The data preparation process is illustrated in Fig. 1. The
extracted ROIs are shown in Fig. 2 (a) for platinum-sensitive
tumors and (b) for platinum-resistant tumors. For each tumors
type, two cases are represented with two different ROIs.
The left and right ROIs correspond to CT and PET images,
respectively.

D. DEEP LEARNING MODELS FOR AUTOMATIC PLATINUM
RESISTANCE DETECTION
The deep learning models used in this study were imple-
mented using the Pytorch framework and Python 3.10
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FIGURE 1. Data preparation process.

FIGURE 2. Extracted ROIs: (a) ROIs for platinum-sensitive tumors;
(b) ROIs for platinum-resistant tumors.

(Python Software Foundation, Fredericksburg, VA, USA) and
were trained on a single workstation with an Intel Core
i9-13900H processor (Santa Clara, CA, USA), NVIDIA
4060 graphics card (Santa Clara, CA, USA), and 8 GB of
random-access memory.

In this study, we constructed a classification model utiliz-
ing SE–SPP–DenseNet models to ascertain the presence of
platinum resistance by analyzing patient imaging data. A sig-
nificant difference in the number of patients with platinum
resistance (97) and patients with platinum sensitivity (192)
would have resulted in an overfitting of the model. Thus,
data augmentation was performed on the data of patients with
platinum-resistance. Then, the data were rotated by 90◦ to
double their volume, ensuring a relative balance with the
data of patients with platinum sensitivity. The dataset was
allocated on a per-patient basis in the ratio of training set:
validation set: test set = 0.8:0.1:0.1. After assignment, the
training, validation, and test sets consisted of 3400 430, and
430, respectively.

We used DenseNet, the structure of which is shown
in Fig. 3 [10]. There are four variants of DenseNet
models: DenseNet121, DenseNet169, DenseNet201, and
DenseNet264. In this study, we used DenseNet121 as the
backbone of the convolutional neural network architecture,
and we added an SE Block [11] and SPP Layer for prediction.
The structure of the SE Block is shown in Fig. 3, in which
a four-step operation was performed between the inputs and
outputs of the convolutional layers in the network.

We incorporated the SPP Layer into the network, replacing
the subsequent pooling layer in the DenseNet output. The

SPP Layer was implemented in three steps. First, the input
feature maps were pooled using kernels of different sizes
to obtain various output feature maps. Second, a fixed-size
feature vector was obtained by merging the output feature
maps of different sizes. Finally, the feature vector was fed
into the fully connected layer for classification. This enabled
the extraction of multiscale features and inputted them into
a fully connected layer with a fixed size, regardless of
the image input size, after selecting suitable spatial bins.
Notably, the generated experimental images were resized
to 224 × 224 pixels.
We also used a more common deep residual net-

work (ResNet)18 for medical-image classification [12]. The
ResNet18 model increases the number of network layers to
extract richer features at different depths. Simultaneously,
ResNet18 prevents gradient dispersion or gradient explosion
by regularizing the initial and intermediate regularization
layers. The network structure of ResNet18 is shown in Fig. 4.
In this study, we also added the SE Block and SPP Layer
to ResNet18. The SE Block was applied to each convolu-
tional block, and its output was used as the input for the
next convolutional block. The SPP Layer replaces the Global
Average Pooling layer in the ResNet18 model, and its output
is classified by the fully connected layer.

Furthermore, we utilized a Swin Transformer model
for classification [13]. This model employs a hierarchical
construction approach and incorporates a sliding-window
mechanism, which allows it to gather information from mul-
tiple windows [14]. Its structure is illustrated in Fig. 5.

In our study, the Patch Partition Block down-samples
images 4, 8, and 16 times. This approach facilitates
target classification and enables the model to handle
super-resolution images while focusing on both global and
local information. The Linear Embedding Layer performs a
linear variation of our input two-channel image, and the Patch
Merging Layer performs depth doubling and halving of the
height and width of the feature maps after image chunking.
The Swin Transformer block is a key component of the Swin
Transformer model and consists of two structures. The only
difference between them is that one uses windowedmultihead
self-attention and the other uses shifted windowed multihead
self-attention.

E. QUANTITATIVE ASSESSMENT METRICS
In this study, the accuracy, sensitivity, specificity, positive
predictive value (PPV), and negative predictive value (NPV)
of the above three deep learning models for predicting plat-
inum resistance of patients in the test set were calculated,
the receiver operating characteristic (ROC) curves and the
confusion matrixes were constructed, and the area under the
curve (AUC) was calculated.

III. RESULTS
A. PATIENT CHARACTERISTICS
A total of 289 patients were eligible and included in the
study, of whom 97 were platinum-resistant and 192 were
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FIGURE 3. Structure of DenseNet.

FIGURE 4. Resnet18 network structure.

FIGURE 5. Structure of swin transformer.

platinum-sensitive. After data preprocessing and augmen-
tation, the image data of patients with platinum resistance

included 4,158 images, and the image data of patients with
platinum sensitivity included 4,534 images.
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FIGURE 6. ROC curves for classification using PET/CT images with the
SE–SPP–DenseNet, SE-SPP-ResNet18, and Swin Transformer models.

B. PARAMETER SETTINGS FOR EACH MODEL
After comparing the results of several preliminary exper-
iments, the specific hyperparameters of the DenseNet,
ResNet18, and Swin Transformer models were set, as shown
in Table 1.

The learning rate was set to 0.1 times of the origi-
nal if the loss of the validation set did not decrease after
10 epochs during the training process. In the process of
pre-experimentation, we found that all three models could
converge before the epoch number was equal to 50. There-
fore, we used a fixed epoch number equal to 50 and set the
Early Stopping strategy to stop training if the loss of the val-
idation set did not decrease after 20 epochs to prevent the
overfitting phenomenon from occurring. Stochastic Gradient
Descent (SGD) and binary cross-entropy loss were selected
as the network optimizer and loss function, respectively. Dur-
ing the training period, we performed image augmentation,
including inversion of the vertical direction of the image
and normalization of the image, by calculating the mean and
variance of the image. However, it is important to mention
that the image augmentation was only performed for the
images during the training period, and image augmentation
was not performed for the images used for validation and
testing.

C. PLATINUM RESISTANCE CLASSIFICATION RESULTS
In this study, a detection framework based on deep learning
techniques was proposed to predict whether a patient with
HGSOC is platinum-resistant using multimodal images from
PET/CT. We investigated the performance of three different
deep learning models: DenseNet, ResNet18, and Swin Trans-
former. The ROC curves of these three models are shown in
Fig. 6.

The three models were trained and tested using five-fold
cross-validation. The SE–SPP–DenseNet model achieved an
accuracy of 92.6%, sensitivity of 86.3%, specificity of 96.1%,

PPV of 95.7%, and NPV of 85.7%. Quantitative evaluation
of the ResNet18 model, adding the SE Block and SPP Layer
(SE–SPP–ResNet18), showed an accuracy of 88.2%, sensi-
tivity of 78.2%, specificity of 95.2%, PPV of 95.8%, andNPV
of 75.1%. The Swin Transformer model obtained an accuracy
of 83.1%, sensitivity of 85.7%, specificity of 77.5%, PPV of
79.5%, and NPV of 84.2%.

The ROC curves for the three models mentioned above are
shown in Fig. 6, where the AUCs of the SE–SPP–DenseNet,
SE–SPP–ResNet18, and Swin transformer models were 0.93,
0.92, and 0.87, respectively. The confusion matrices for pre-
dicting platinum resistance using the three models are shown
in Fig. 7. The SE–SPP–DenseNet had a lower degree of
confusion compared to the other two models.

D. EFFECTIVENESS OF SE BLOCK AND SPPLAYER
MODULE FOR PLATINUM RESISTANCE ASSESSMENT
We also performed ablation studies to further validate the
effectiveness of the SE Block and SPP Layer in improving
the prediction performance of the DenseNet and ResNet18
models. The results of the ablation studies are presented in
Table 2.

E. THE IMPORTANCE OF PET IMAGES
Furthermore, this study used PET and CT images as multi-
modal data for training and testing. However, many patients
are currently diagnosed using CT alone, and not PET/CT.
To illustrate the importance of PET images in predicting
platinum resistance, experiments were performed using the
three aforementioned models using only CT images for
training and testing. The AUCs of the SE–SPP–DenseNet,
SE–SPP–ResNet18, and Swin Transformer models were
0.87, 0.84, and 0.64, respectively. The ROC curves and quan-
titative results for the three models are presented in Table 3
and Fig. 8, respectively.

F. THE MEMORY CONSUMPTION AND TIME EFFICIENCY
OF THE DIFFERENT MODELS
To compare the performances of SE–SPP–DenseNet,
SE–SPP–ResNet18, and Swin Transformer, we calculated
their memory consumption and time efficiency. The results
are summarized in Table 4. The SE-SPP-DenseNet had a
memory consumption of 645.52 MB and a time efficiency
of 0.426 s.

IV. DISCUSSION
In this study, we developed deep learning models to pre-
dict platinum resistance in patients with HGSOC. PET/CT
images of patients’ ovarian cancer lesions were used as
two-channel multimodal inputs for prediction using an
improved DenseNet model. We improved the accuracy of
platinum resistance prediction by adding the SE Block and
SPP Layer to the DenseNet model. The SE–SPP–DenseNet
model achieved the highest accuracy (92.6%) in predicting
platinum resistance.
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TABLE 1. Training parameters for the ResNet18, DenseNet, and swin transformer models.

FIGURE 7. Confusion matrices for predicting platinum resistance using three models. (a) SE–SPP–ResNet18, (b) SE–SPP–DenseNet, and (c) Swin
Transformer.

TABLE 2. Classification results of ablation studies of the se block and SPP layer in different models.

From Fig. 6 and Table 2, it is evident that the predic-
tive accuracy of DenseNet surpassed that of ResNet. This is
because each DenseNet layer acquires supplementary inputs
from all previous layer connections and integrates its own
outputs with all subsequent layers. DenseNet is different from
ResNet in that it does not simply add the feature outputs of
earlier layers to the inputs of later layers but connects these
inputs and outputs using fewer parameters. Better classifi-
cation results can be achieved through dense connectivity

between the layers. In addition, the selection of the network
should be determined by data complexity.

This study utilized the ResNet18 and DenseNet121models
instead of more complex models, such as ResNet152 and
DenseNet264. Although more complex models are expected
to achieve better results, they did not perform satisfacto-
rily during training iterations. The models would overfit
and become increasingly less accurate soon after the begin-
ning of training. With limited training samples and sample
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TABLE 3. Classification results of different models using single modality and multimodality images.

FIGURE 8. ROC curves for classification using CT images with the
SE–SPP–DenseNet, SE-SPP-ResNet18, and Swin Transformer models.

TABLE 4. Memory consumption and time efficiency of SE–SPP–DenseNet,
SE–SPP–ResNet18, and swin transformer.

complexity, increasing the complexity of the model may
decrease its fitting ability. However, it can also lead to overfit-
ting and reduce its ability to generalize. The optimal solution
used by the SGD algorithm during training is not a global
optimal solution but a local optimal solution. Thus, the more
complex the network, the more complex the solution space,
resulting in the inability to obtain an optimal solution using
SGD.

With the increasing complexity of neural network learn-
ing, the amount of stored information increases. Hence, it is

more advantageous to focus resources on the critical inputs
for the current classification task if the computing power
is constrained. Therefore, we added the SE Block, which
reduces the focus on other information and, as can also be
seen in Table 2, the addition improves the accuracy of the
model in terms of predicting the patient’s platinum resis-
tance. Furthermore, because of the nonuniformity of ROI
sizes, it is necessary to adjust the various ROI input sizes
for training and testing according to ROI sizes distribution.
The test results can then be used to determine the appro-
priate ROI size for scaling up and down. The SPP Layer
not only enables the network to adapt to different sizes of
input data but also handles object distortion and spatial layout
variations through multilevel pooling, thus improving classi-
fication accuracy [16]. Therefore, the SPP Layer was added
to the model. As shown in Table 2, the model exhibited an
improvement in the quantitative assessment index of platinum
resistance in patients after the addition of the SPP Layer.

According to Fig. 7, SE-SPP-DenseNet demonstrated
the best classification performance and exhibited the least
confusion among the three models evaluated. Table 4
reports the memory consumption and time efficiency of the
SE–SPP–DenseNet, SE–SPP–ResNet18, and Swin Trans-
former models. While the SE-SPP-ResNet18 model offers
benefits in terms ofmemory consumption and time efficiency,
its accuracy significantly lags behind that of the SE-SPP-
DenseNet. SE–SPP–DenseNet exhibited the highest accuracy
andAUC, although it wasmidstream in terms ofmemory con-
sumption and time efficiency. Therefore, it can be concluded
that SE–SPP–DenseNet is the best-performing model among
the three. In addition, we analyzed classification failures and
discovered that the majority were due to the ROI being too
small, as well as the region occupied by the tumor in the PET
images being small. ROIs with small areas were from the
top and bottom ends of the tumor or from small tumors. The
presence of a small area of the tumor in the PET image may
be attributed to physicians sometimes having labeling bias.

Compared to the currently available learning models
for predicting platinum resistance in patients, our study
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had a different predictive approach and incorporated fur-
ther improvements. Hwangbo et al. developed a machine
learning model to predict platinum resistance in patients
using three machine learning algorithms: logistic regression,
random forest, and support vector machine [15]. In our
study, the SE–SPP–DenseNet model was established to
predict platinum resistance in patients using deep learn-
ing, which has better model generalization ability than
that in machine learning and can extract and learn fea-
tures directly from raw data, thus simplifying the need
to collect relevant features related to platinum resistance
in the process of machine learning. This significantly
reduces the unnecessary work required in medical imaging
applications.

Han et al. used a deep learning model to predict plat-
inum resistance in patients with HGSOC and achieved a
classification accuracy of 74% [17]. Liu et al. predicted
platinum resistance in patients based on histopathologi-
cal images using the Inception V3 deep learning model
and achieved an AUC of 0.846 for classification [18].
Compared with the above models, our study proposes the
SE–SPP–DenseNet model as a superior method for predict-
ing platinum resistance in patients. Wu et al. were able to
predict the risk of platinum resistance in patients based on
the level of protein expression, but they were still unable to
accurately identify the patients [9]. Therefore, the develop-
ment of a deep learning model based on PET/CT images
to predict platinum resistance in patients with HGSOC
can help physicians make the most appropriate treatment
decisions.

Our study had several limitations. First, as this was a retro-
spective study, only patient cases within the 4-year timeframe
were selected as experimental data, potentially introducing
bias in the results. Second, the study’s applicability is limited
owing to the small sample size, thus requiring an increase
in data collection for future research. In the future, we will
analyze the association between ROI size and classification
results. Furthermore, we can explore the use of segmentation
algorithms to automatically identify tumor regions in the PET
images of patients with ovarian cancer, thereby reducing the
likelihood of human error.

V. CONCLUSION
In this study, we proposed a method using the deep learn-
ing model SE–SPP–DenseNet to predict platinum resistance
in patients based on multimodal PET/CT images of the
ROI. Ablation studies demonstrated that the incorporation
of the SE Block and SPP Layer into DenseNet enhanced
the classification performance of the original model. Experi-
ments utilizing single-modality CT images demonstrated the
importance of multimodal imaging in predicting platinum
resistance. The SE–SPP–DenseNet model accurately pre-
dicted platinum resistance in patients with a final accuracy of
92.6% and anAUC of 0.93.We believe that gynecologists can
use this model for assisted diagnosis to determine the most

appropriate treatment plan and prognostic measures based on
whether a patient has platinum resistance.
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