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ABSTRACT Cluster analysis has been applied to a wide range of problems as an exploratory tool to enhance
knowledge discovery. Clustering aids disease subtyping, i.e. identifying homogeneous patient subgroups,
inmedical data.Missing data is a common problem inmedical research and could bias clustering results if not
properly handled. Yet, multiple imputation has been under-utilized to address missingness, when clustering
medical data. Its limited integration in clustering of medical data, despite the known advantages and benefits
of multiple imputation, could be attributed to many factors. This includes methodological complexity,
difficulties in pooling results to obtain a consensus clustering, uncertainty regarding quality metrics, and a
lack of accepted pipelines. A few studies have examined the feasibility of implementing multiple imputation
for cluster analysis on simulated/small datasets. While these studies have begun to address how to pool
imputed values and quantify uncertainty in clustering due to imputation, a need remains for a complete
framework that integrates MI in the clustering of complex medical data and sophisticated cluster algorithms.
We propose a cluster analysis framework that mitigates bias and addresses these limitations. It includes
methods to pool multiple imputed datasets, create a consensus cluster solution by ensemble methods, and
select an optimal number of clusters based on validity indices. It also estimates uncertainty about cluster
membership attributable to the imputation and identifies features that characterize the derived clusters. The
utility of this framework is illustrated by its application to a traumatic brain injury dataset with missing
data. Our analysis revealed six multifaceted clusters that differed with respect to Glasgow Coma Score
(GCS), mechanism of injury, sociodemographics, vitals, lab values, and radiological presentation. The most
severe cluster consisted of single, relatively young patients injured by motor accident, with higher GCS
severity scores. Comparative analysis with the miclust R package, along with statistical validation of cluster
characterization, demonstrates its robust performance.

INDEX TERMS Multiple data imputation, clustering, ensemble learning, canonical discriminant analysis,
mixture models, traumatic brain injury, missingness.

I. INTRODUCTION
The identification of meaningful subgroups of patients by
unsupervised machine learning (ML) methods is a key
component of the precision medicine initiative [1], [2].
Various diseases (cancers, neurological disorders, genetic
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disorders, autoimmune disorders, etc.) exhibit high hetero-
geneity in their clinical presentation, trajectory, and outcome.
Identifying clinically meaningful patient subgroups enables
individualized care. The explosion in the variety and volume
of medical data has created opportunities for data-driven ML
methods to discover disease subtypes with implications for
precision medicine [1], [3]. Clustering, an unsupervised ML
technique, have been successfully applied to varied disease
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datasets to yield important insights that could guide treatment
or prognosis [4], [5], [6], [7]. Nevertheless, medical data with
its complex structure, disparate data types, and missingness
poses challenges to the application of cluster analysis to
precision medicine. Missing data is a pervasive problem
in healthcare [8]. Even carefully conducted prospective
studies often have missing data on baseline characteristics
or outcome measures [9]. While the absence of some
recorded data may be unavoidable in clinical studies, the
performance of ML algorithms suffers from bias when
data is incomplete [10]. Furthermore, missingness poses a
significant challenge when clustering medical data since
these algorithms require a complete matrix of input features.

Various methods have been proposed to handle miss-
ingness [11], [12], [13]. The most common approach is
complete-case analysis (CCA) in which any individual with
missing data on any of the predictor or outcome variables
is deleted from the analysis [8], [9], [13]. A variation on
this method is to delete features that exceed a specified
threshold of missingness. Although this approach creates a
fully observed dataset, it is problematic in that it decreases
either the number of cases or the number of features available,
potentially resulting in the loss of pertinent information.
Furthermore, when data are missing on multiple features,
a substantial proportion of the sample may be excluded from
analysis, leading to a loss of precision and statistical power
[14], [15]. Case deletion can introduce selection bias if there
is a systematic difference between patients with and without
missing values [9].

An alternative to CCA is single imputation which replaces
eachmissing value with a single value. LetD denotes an input
dataset consisting of p features for n samples with missing
values i.e. D = {F1,F2, · · · ,Fp} where |Fj| = n, a simple
and commonly used single imputation technique is to replace
each missing data point in D with its mean for normally
distributed continuous features, its median for non-normal
continuous features, and its mode for categorical features [9].
This approach is also problematic as it can lead to biased
parameter estimates, an altered distribution of the features,
or a disruption in the relationship among the features [12].
Other advanced methods have been proposed within the
conditional estimation framework for single imputation [13],
[16]. For example, conditional estimates of missing values
based on values of other observed features in the data
(e.g. by regression) can yield unbiased estimates under
certain assumptions [9]. Another advanced approach to single
imputation is the IterativeImputer method [16] (available in
Scikit-learn package), which models features with missing
values as a function of other features and uses the predicted
estimates as imputed value. The IterativeImputer repeats this
procedure up to a default maximum number of iterations
and uses the average of the predicted values as the final
prediction. Themain disadvantage of single imputation is that
the uncertainty of the imputed values is not incorporated in
the final analysis [12], [14]. The treatment of estimates of

missing data values as though they are precise, rather than
hypothetical estimates, ignores the uncertainty in the imputed
values andmay underestimate standard errors or overestimate
the significance of model results [9], [12], [14].

Multiple imputation (MI) is recognized as a robust
approach to missingness that accounts for uncertainty in
the imputed values, addresses the issue of underestimated
standard errors, and yields less biased estimates of missing
values [12], [13], [14], [15]. MI methods have been used
in predictive analysis (or supervised learning models) which
entails building statistical models that estimate an outcome
from a set of inputted features [12]. The three main steps of
MI are imputation, analysis, and pooling [16]. MI replaces
missing values in the dataset m times with plausible data
points, resulting in m imputed datasets D̃(1)

· · · D̃(m). These
values are drawn from a distribution specifically modeled
for each missing entry. The analysis is conducted on each
D̃(h) (where h ∈ {1 · · ·m}), and the results are pooled to
obtain a final imputation that accounts for variation among
the estimated values [9], [14]. Despite the importance of
handling missing data appropriately and the demonstrated
value ofMI in prediction models [14], [17], [18], [19], MI has
not been widely applied to unsupervised ML models that
are tackling tackle large complex datasets such as occur in
healthcare [8].

A few studies have examined the feasibility of implement-
ingMI for cluster analysis on simulated or small datasets [11],
[20], [21], [22], [23]. Clustering is a multidimensional
optimization problem and is considered exploratory data
analysis since cases are generally unlabeled, unlike predictive
models, which have a known outcome label. This poses
a key challenge for MI as clustering does not require the
estimation of specific model parameters, which makes the
pooling step less clear. Prior feasibility studies [11], [20],
[21], [22], [23] have emphasized that when MI is applied to
clustering, the pooling of multiple imputations is challenging.
Another problem is to quantify the uncertainty in clustering
that occurs due to variance in imputed values. While these
studies have begun to address how to pool imputed values and
how to quantify uncertainty in clustering due to imputation,
a need remains for a complete framework that integrates MI
in the clustering of medical and healthcare data, which is
typically more complex than the data considered in some of
these earlier studies. It is important to address MI within the
context of key data preprocessing and data curation steps,
as well as in the context of more sophisticated clustering
methods beyond k-means. Furthermore, the downstream
effects of MI after clustering need to be assessed. After
clustering, influential (discriminating) features for cluster
formation need to be identified. The clusters formed must be
characterized and interpreted. Post-cluster analysis is critical
to making clustering useful for precision medicine. Single
imputation methods largely influences data preprocessing
prior to clustering, however multiple imputation impacts
on all three stages of the clustering (data preprocessing,
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clustering, and post-clustering analysis) (Fig. 1). This work
focuses on a careful examination of all steps especially the
post-clustering, in contrast to prior feasibility studies.

Our goal is to provide an explainable framework for the
application of MI to the clustering of complex medical data
that will support fairness and unbiases in the identification
of disease subtypes, even in the presence of missing
data [24]. We utilize a rigorous clustering method, ensemble
clustering (also known as consensus clustering), which is
an effective means to aggregate a collection of dissimilar
clusterings to yield a more robust solution [25], [26]. It
is particularly useful when dealing with complex datasets
where different individual algorithms may excel in capturing
different patterns or structures. The contributions of the work
are as follows:

• We propose a framework that combines MI with
ensemble clustering so as to ensure robustness at each
stage, from data curation, to clustering, to cluster
validation, to downstream statistical analysis, and finally
to cluster characterization.

• Ensure robustness of cluster analysis by accounting for
uncertainty due to the missingness.

• Empirically evaluate this framework in the context
of traumatic brain injury (TBI), a common neuro-
logical disorder that poses a substantial public health
burden [24].

II. BACKGROUND
To provide a context for the proposed clustering framework,
we briefly review basic underlying concepts and terminolo-
gies related to MI, clustering, and validation metrics. Each
of the three main steps for MI (imputation, analysis, and
pooling) are described in context of clustering.

A. MECHANISMS OF MISSINGNESS
Prior to applying any imputation technique, it is important to
consider the underlying mechanisms driving the missingness.
The pattern and mechanism of missing data are important
determinants as to which technique is utilized [27]. There
are broadly three main mechanisms discussed in literature:
missing completely at random (MCAR), Missing at Random
(MAR), and missing not at random (MNAR) [12], [13],
[14]. MCAR occurs when the probability of a data point
being missing for a feature does not depend on values of
the observed or unobserved data. Under MCAR, there are
no systematic differences between missing and observed
values. MAR implies the probability of a data point being
missing can be explained by information contained in
the observed data. MAR is a more realistic and broader
assumption that also includes MCAR situations. MNAR
assumes the probability of a data point beingmissing depends
on information not available in observed data. MNAR data
are themost challenging to address and require more complex
methods as the systematic differences between the missing

and observed values still remain even when the observed
values have been taken into account [12], [14].
Although MAR is more realistic than MCAR for most

datasets, it is challenging to know when the MNAR
assumption is more appropriate since there are no statistical
tests to determine whether the data are MAR or MNAR [12].
In predictive models, a sensitivity analysis [28] can be
performed to assess how deviations from this assumption
affect the results. However, to the best of our knowledge,
no such methods are available for cluster analysis and this
is an open problem. It is standard practice when using MI to
assume MAR, as we do in this work.

B. MULTIPLE IMPUTATION METHODS
When conducting MI, a key challenge for any type of
downstream analysis is selecting an appropriate imputation
method. Such method should i) account for the process that
created the missingness; (ii) preserve the relationship among
features; and (iii) account for the uncertainty about these
relationships [16]. A widely used approach that addresses
these requirements is multivariate imputation by chained
equations (MICE), which utilizes a fully conditional speci-
fication framework (FCS). In FCS, a multivariate imputation
model is specified for each incomplete feature through a set
of conditional densities. Missing data are imputed one feature
at a time by iterating over the conditional densities [16].

There are different definitions of multivariate imputation
exist in the literature [13], [29]. The terms univariate and
multivariate refer to the number of features in an analysis.
Univariate implies one feature while multivariate, more than
one feature. This terminology applies to imputation in two
ways. It can refer to the number of features with missing
values. It can also describe the type of model (or method)
applied to generate the imputed values. A univariate impu-
tation method, such as replacement by the mean, estimates
the missing data points for a feature Fj ∈ D by using
observed values available for a single feature. In contrast,
a multivariate imputation model, such as predictive mean
matching [12], generates missing values for the feature Fj
using observed values for Fj as well as other features in D.
Note that multivariate imputation is not the same as multiple
imputation. Likewise, univariate imputation is not the same as
single imputation. Multivariate imputation can be applied in a
single imputation context where a single estimate is obtained
per missing data point, resulting in a single imputed dataset
D̃. When applying multivariate imputation in the setting of
multiple imputation, multiple values are estimated for each
missing data point, resulting in multiple imputed datasets
[D̃(1)

· · · D̃(m)]. The number of imputed datasets (m) required
depends on factors such as the percentage of missingness
and analysis goals. It should be carefully chosen to attain a
low and stable between-imputation variance [30]. According
to [12], a range of m = [5, 20] is sufficient for point
estimation for a moderate amount of missingness. Usingm >

20 does not usually provide enough of a relative improvement
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FIGURE 1. Challenge of integrating the 3 key components of multiple imputation into cluster analysis in contrast to single
imputation.

in accuracy compared to increased computational cost. In this
work, m is set to 15.

Fully conditional specification could be used to conduct
multiple imputation, as it specifies a multivariate imputation
model on a feature-by-feature basis by a set of conditional
densities, one for each incomplete feature [16]. In selecting
an appropriate multivariate imputationmethod, it is important
to take into account the feature datatype (e.g., continuous,
categorical, ordinal) inD, as well as the nature of relationship
among the features. There are some methods such as EMII
algorithm [31] suited for specific data applications such
as gene expression. Predictive mean matching (PMM) and
random forest (RF) are commonly used multivariate impu-
tation methods suited for mixed datatypes (a characteristic
of complex medical data). PMM is an imputation method
that preserves non-linear relationships between features [16].
RF is a ML-based approach for obtaining imputed values
based on sampling values and combining predictions derived
from multiple regression trees [32]. These approaches keep
imputed values within biologically reasonable intervals.
RF performs favorably against classic imputation methods,
in that it is a better general function approximator and it
allows for non-linearities and more complex interdependen-
cies [33], [34].

When multivariate imputation is combined with multiple
imputation, it is helpful include as many related features as
are available in the dataset. Some features may be useful
for the imputation model, even if these features are not
used for the cluster analysis. Using every bit of available
information yields multiple imputations that have minimal
bias and maximal certainty [16].

C. MI ANALYSIS STEP FOR CLUSTERING
A key aspect of MI is that the analysis is conducted on
each of the m imputed datasets, and intermediate results are

pooled together to yield a final result [16]. This analysis
step has historically involved predictive modeling with a
known outcome where parameter inference is a key goal.
However, cluster analysis does not lie within this modeling
scope since it is an unsupervised (exploratory) method [11].
The goal of cluster analysis, especially in context of medical
data, involves more than simply estimating the number of
clusters (subgroups) using a specified clustering algorithm.
It also includes determining final cluster assignment of each
individual in the dataset as well as a holistic characterization
of the subgroups in terms of membership, discriminating
features (or biomarkers), statistical validation, and clinical
relevance/explainability. These highlight several steps in
the clustering framework that need to be addressed in
terms of pooling information and evaluation of uncertainty
across the multiple imputations. Although these steps are
straightforward to implement with a single dataset, when
dealing with m imputed datasets, the analysis step has to
ensure that the variation among estimates of the missing
values is addressed.

1) DATA PRE-PROCESSING
Data pre-processing (or data curation) ensures that the data
utilized for clustering is of optimal quality. Key data curation
tasks include addressing missing data, eliminating redundant
features, removing outliers, and feature normalization [35].
When incorporating MI, correlation and/or outlier detection
techniques [35] are conducted on each of the m datasets
[D̃(1)

· · · D̃(m)]. For MI to work properly, the only difference
in the datasets should be in the imputed values. All features,
samples, and complete data points should remain the same
across datasets. Correlation analysis can lead to removal of
a feature from D̃(h) while outlier detection can lead to the
removal of a sample. For the set of features and samples to
be the same across all datasets, a redundant feature (or outlier
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sample) should be eliminated only if it is flagged in at least
p% of the m datasets, where p% is determined by the domain
application.

To ensure proper normalization of all data points in each
D̃(h), it has to be conducted globally across all m datasets
for each feature. Specifically for continuous and ordinal
features, the minimum and maximum values for determining
the normalized value between 0 and 1 for each instance are
selected per feature across allm datasets. This standardization
fs, ensures that the variation across datasets is in the imputed
values, not in the observed values. Thus fs([D̃(1)

· · · D̃(m)]) →

[D̃′
(1)

· · · D̃′
(m)

].

2) ENSEMBLE CLUSTERING ALGORITHM AND
VALIDATION METRICS
In clustering, different sets of clusters Cl = {c1, . . . , ck} can
be obtained by multiple clustering algorithms or by varying
a given parameter for the same algorithm [36]. Ensemble
clustering (or consensus clustering) is an advanced clustering
approach that aggregates a collection of dissimilar clusterings
to yield a more robust solution [25], [26]. It allows us to
leverage the strength of diverse algorithms, as they can vary
significantly in performance and outcome. A key benefit is
the increased stability of clusters and the greater likelihood
of obtaining clustering solutions with low sensitivity to noise,
outliers, or sampling variation.

The premise of ensemble clustering is to apply a set of
clustering algorithms to an input data matrix such that each
algorithm yields its own clustering result Cl . These results
are pooled using a consensus decision metric to determine the
final clustering solution C . Consensus decision metrics allow
for the fusion of the output partitions obtained from various
clustering algorithms in the ensemble into a final partition.
Multiple metrics are available that include the mixture model,
graph closure, and majority voting [25].
When applying ensemble clustering, multiple solutions can

be obtained depending on the consensus decision metric or
the tuning parameters. How does one identify the optimal
solution that translates to a ‘meaningful’ configuration
for a given domain application [36]? Cluster validation
indices estimate how well a given clustering configuration
aligns with the structure of the underlying data [37]. The
validation process is key to cluster analysis [38], given that
multiple configurations are obtained by varying parameters
and/or performing multiple iterations. Several validation
indices [39] are available for use. Each index views the
task of determining the optimal clustering configuration
from a different perspective. To leverage the strengths of
multiple indices, we utilize an ensemble validation model [6],
which provides ranked order of clustering partitions so that
the user can select the most optimal r configurations or
results.

When applying MI to clustering, it is important to pool the
results obtained per imputed dataset so that final clustering
solution C = {c1, . . . , ck} aligns across all m datasets.

In the last phase of MI (see section II-D), we outline steps
for pooling and aligning the final cluster partitions and
membership across the imputed datasets.

3) CLUSTER CHARACTERIZATION
A key aspect of using clustering in precision medicine is to
provide an explanation for the results [40]. An initial explana-
tory step is to characterize the clusters by discriminating
features and to quantify feature differences between clusters.
Integration of statistical analysis at every level of the model
interpretation allows for the quantification of the differences
between clusters and ensures that a robust description of
the clinical characteristics of each cluster is made. Clinical
relevance, also referred to as usefulness [6], [40]), addresses
the question ‘‘Do the derived clusters have clinically relevant
predictive power?’’ For example, do the ‘‘severe’’ cases
have a worse outcome or leave the injured brain more
susceptible to future damage or progression? To assess
clinical relevance, varied outcome measures (separate from
the input features) that evaluate prognosis and/or recovery
trajectories are usually selected by domain experts. The key
is to select ones pertinent to evaluating the clinical research
objectives.

Both clinical interpretation and usefulness are important
components of explainability of cluster analysis. In the
context of MI, only the interpretation phase is directly
impacted since it involves analyzing the input features, which
need to be summarized across the m datasets. In contrast,
evaluation of clinical relevance relies on the final cluster
membership and involves analysis of data obtained from
varied outcomemeasures outside ofD. Interpretation focuses
on which features are important in separating the clusters
and understanding how they differ statistically. There are
multiple approaches to identifying these features [35]. One
option is to perform canonical discriminant analysis (CDA)
which evaluates the discriminative power of multiple linear
combinations of the features and captures interactions [41].
SHAP (SHapley Additive exPlanation) values [42] can also
be used to quantify the importance and influence of each
feature Fj ∈ D, with respect to cluster membership, for
further interpretation and explainability.

The above methods identify which features are useful in
classifying an individual into one of the proposed clusters.
However, they do not inform on how clusters differ by feature.
To better understand the nature of differences among the
clusters, statistical analyses are performed to identify which
clusters differ significantly on each input feature. This can
aid clinicians interpret the nature of the clusters based on
the input features. The appropriate statistical methods to
assess and quantify these pairwise differences depend on
the datatype of each feature. Multiple testing corrections are
required to control the false positive rate when many tests
that are conducted. When conducting MI, feature importance
evaluation and pairwise testing needs to be performed for
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each of the m datasets. These results are pooled together as
described in section II-D.

D. POOLING RESULTS
The last phase of MI involves pooling information from the
m analyses conducted to obtain a final result along with an
assessment of the uncertainty due to variance in the imputed
values. In predictive models, the standard is usually to apply
Rubin’s rules [12], [43] for pooling to obtain parameter
estimates with standard errors that account for variation
between and within imputed datasets. When applying MI to
clustering, the pooling process is required at two stages: (1)
to obtain a final cluster membership and (2) post-hoc analysis
of features after the cluster membership has been determined.
Since clustering is an unsupervised learning process with no
ground truth label, the pooling step is no longer a direct
application of Rubin’s rules [11].

To pool the m different clustering results {C1, . . . ,Cm}

together to obtain a final partition C , we leverage a similar
solution utilized in consensus clustering, a known approach
to aggregate a collection of dissimilar clusterings (see
Section II-C2). The final consensus partition obtained is
highly dependent on the consensus decision metric applied,
which is non-trivial. Prior feasibility studies on MI in cluster
analysis have utilized majority voting [20] or non-negative
matrix factorization methods [11]. In this work, we use the
same consensus decision metric applied in the ensemble
clustering model for obtaining the initial m clustering results.
Thus, to assign the final cluster membership per sample
across the m imputed datasets, each Ch result is pooled
together to yield C using this rigorous consensus decision
metric.

When integrating the MI pooling step after a final
clustering partition is obtained, the main challenge is that
post-hoc analysis operates on both the set of imputed datasets
[D̃(1)

· · · D̃(m)], and the single final clustering result C . For
the methods used to determine feature importance (such
as SHAP and CDA), the m set of results obtained from
each type of analysis can be pooled in a similar manner
to the correlation analysis (see Section II-C1). A feature
is considered important if it is flagged as a discriminating
feature in at least p% of the m datasets. In each of these
analyses, a value is generated per Fj that suggests whether
it is important in distinguishing between clusters or not.
For example, CDA produces a loading per Fj on multiple
canonical variables. Pooled within-group correlations (−1 ≤

ρ ≤ 1) are then calculated between the features and the
standardized canonical scores. An absolute value closer to
1 indicates a stronger relationship which implies the feature
is more important in distinguishing the clusters. Any feature
in which the correlation (ρ) exceeds a certain threshold t on
any canonical variable is deemed important.

Summarizing these values across them datasets to obtain a
global one is non-trivial. There are no currently no known
methods that offer a way to appropriately combine the

loadings or the pooled within-group correlations. Taking the
mean of the values across datasets for CDA is not a viable
approach since the canonical variables may not be optimally
aligned (e.g., the signs of the loadingsmay differ). Generating
a global value across the m imputed datasets remains an open
problem. In this work, we generate a binary value for each
feature within each of them datasets by comparing the values
to the threshold t and labeling it as important (1) or not (0).
Results are then pooled across datasets by declaring a feature
important if it is flagged in at least p% of the datasets.

The statistical analyses to identify differences on input
features between clusters in the final result C are one aspect
where Rubin’s rules for predictive analysis can be adapted
for pooling. In predictive models, there is a quantity of
interest (Q) that is being estimated from the data. When
applying MI, an estimate for Q is obtained for each dataset
to yield m estimates {Q̂1, . . . , Q̂m}. These estimates are
pooled together using Rubin’s rules [12], [43] to obtain a
final estimate (Q̃) and its standard error. The standard error
calculation incorporates the uncertainty in the estimate of Q
that arises due to the variation in the imputed values across
the m datasets. These rules can be applied to the statistical
validation tests for post-hoc cluster analysis, which assess
whether there is an association between the labels from the
final clustering result C (predictor variable) and each of the
featuresFj utilized in the clustering (response variable). After
the analyses for each imputed dataset D̃(h) is conducted, the
final estimate is given by Q̃ =

1
m

∑m
h=1 Q̂h.

The total variance of Q̃, denoted by T̃ , is a combination of
the within-imputation variance (Ũ) and between-imputation
variance (B̃). Ũ is computed as, Ũ =

1
m

∑m
h=1 Ûh, where Ûh

is the variance for each D̃(h), and B̃ is given by,

B̃ =
1

(m− 1)

m∑
h=1

(Q̂h − Q̃)
2
. (1)

Hence, the total variance (T̃ ) is derived as:

T̃ = Ũ + (1 +
1
m
)B̃. (2)

This calculation of total variance used in the post-hoc testing
provides a measure of uncertainty that accounts for variation
associated with missingness.

III. METHODOLOGY
We propose a framework for integrating MI into cluster
analysis that addresses the varied layers of complexity
identified in Section II. This framework consists of three
phases: input data preprocessing, ensemble clustering and
validation, and cluster characterization and uncertainty
analysis, as illustrated in Fig. 2. Each phase is described
briefly below.

In the data preprocessing phase, we initially selected
features to be employed for clustering (in consultation with
a domain expert) and evaluated the missingness. Multiple
imputation is then performed in the mice 2.9 package
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FIGURE 2. Overview of multiple imputation framework for cluster analysis.

available in R [16], assuming a MAR missing mechanism,
to yield m = 15 datasets. For implementation purposes
with the mice package, PMM was utilized for features with
only one missing observation and RF was used for features
with more than one missing observation. For each of the m
datasets, we conducted a pairwise correlation analysis using
both Pearson and Spearman rank correlations. Features that
exceeded the domain guided threshold [6] in at least p = 80%
of the datasets were dropped. The data was standardized,
as described in Section II-C1, using only the observed values
per feature across all m datasets cohesively.
The input data preprocessing phase yieldedm standardized

data matrices [D̃′
(1)

· · · D̃′
(m)

] for subsequent cluster analysis.
The ensemble cluster analysis, as outlined in Algorithm 1,
produced a final clustering solution (Ckopt ) with kopt clusters
such that the final cluster assignment for each sample i is
same across all the [D̃′

(1)
· · · D̃′

(m)
] matrices. The ensemble

clustering model, 5, consists of v base algorithms with the
mixture model consensus decision function, 9, where v is
the number of individual clustering algorithms in the model.
In this work, v=4 (k-means, spectral, Gaussian mixture, and
agglomerative clusteringwithWard’s linkage), and k is varied
from a=2 to b=10. (Note that for themixturemodel consensus
metric, k has to be specified a priori.) The ensemble model
is based on previous work (E2 model/MM consensus) [6].
Since non-deterministic algorithms were applied, the seed
was fixed to ensure that the difference in results across

datasets is due to the variation in the imputed values, not the
random aspect of the algorithm.

The final clustering solutionCkopt is obtained in an iterative
manner (see Algorithm 1). The ensemble cluster validation
model combines 7 different cluster performance indices [38]
to rank the initial set of clustering results obtained per D̃′

(h)
.

The global optimal value for the number of clusters, kopt ,
is the most frequently occurring k among the top r =

3 optimal clustering configurations across the m datasets.
Using this value of kopt for 9, another iteration of ensemble

clustering is performed per D̃′
(h)
. During the second rerun,

there is no need for the cluster validation model as only
one clustering solution is generated per D̃′

(h)
since kopt is

fixed. However, the cluster assignment of each sample i
can vary across the data matrices. To ensure a common
cluster assignment per sample i across all data matrices, the
m clustering configurations [C1,kopt , . . . ,Cm,kopt ] are pooled
together using the mixture model consensus decision metric
to obtain the final configuration Ckopt .

For the cluster characterization and uncertainty analysis
phase, we applied both CDA and SHAP to evaluate the
importance of the input features and identify the ones
that contribute the most to the determination of cluster
membership assignment. To identify the informative features,
we pooled the results obtained across the m imputed datasets
by marking a feature as important if it was flagged in at least
p = 80% of the datasets.
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Algorithm 1 Ensemble Clustering With Multiple
Imputation

▷ Notations

[D̃′
(1)

· · · D̃′
(m)

]: m standardized imputed datasets.
5: ensemble clustering model made up of v base
algorithms.

9[a:b]: mixture model consensus function with k
varied from a minimum value (a) to maximum value
(b).
freq(k, r): frequency of number of clusters k among
top r ranked clustering results.

▷ Initial ensemble clustering runs
for h := 1 to m do

Run 5 on D̃′
(h)

→ τ base clustering solutions
Apply 9[a:b] on τ clusterings →

[Ch,a, ..Ch,k , . . .Ch,b] ensemble clustering
outcomes
Rank [Ch,a . . .Ch,b] in order of most optimal
solution using ensemble validation model

end
▷ Select optimal k value
kopt = max

k,∀h
freq(k, r) on ranked [Ch,a . . .Ch,b]

▷ Rerun ensemble clustering
for h := 1 to m do

Run 5 on D̃′
(h)

→ τ clustering solutions
Apply 9[kopt ] on τ base clustering solutions →

[Ch,kopt ]
end
▷ Pool results for final cluster
assignment
Apply 9[kopt ] on [C1,kopt , . . . ,Cm,kopt ] → [Ckopt ]

The CDA was implemented in JMP. A feature was flagged
as discriminating if |ρ| > 0.20 on any of the significant
(p-value< 0.05) canonical variables and this criteria is
satisfied in at least 80% of the imputed datasets. Note
that CDA has an underlying assumption that the features
are continuous [44], [45], [46]. However, in practice, many
datasets have a mixture of continuous and categorical
variables such as in this work. We had four data types:
continuous, ordinal, categorical, and binary. Ordinal features
were treated as continuous in the CDA. For binary or
categorical features, we utilized indicator variable encoding
(i.e., for a binary feature, a ‘‘1’’ is assigned to one of the
categories and a ‘‘0’’ for the other category). For a categorical
feature with ‘‘l’’ number of levels, a total of ‘‘l − 1’’
indicator variables were used to represent the categories.
This approach provided numerical values for the features
and enabled the analysis to be conducted. Since the features
were broken down into multiple variables, it did not provide

an overall loading for the feature and made interpretation
more challenging. Further research is needed to determine the
optimal way to handle categorical features in CDA.

SHAP values [42] were computed using the random forest
model. Unlike CDA, SHAP does not have a threshold value
for importance. Hence, the final feature importance values
were averaged across the m imputed datasets for each Fj.
With respect to categorical features (A4, A6), similar to CDA,
we first applied one-hot encoding and then, averaged across
all levels of encoding to obtain a final SHAP value.

The Tukey procedure based on ANOVA was utilized for
continuous and ordinal scale features for pairwise tests, while
a χ2 test was conducted for nominal scale features. For each
feature, a test was performed on each of the m datasets
and results were pooled using Rubin’s rules to obtain the
appropriate test statistic and p-value that accounts for both
the within and between imputation variance, as described
in Section II-D. Rubin’s rules were performed to properly
incorporate the uncertainty that arises from the multiple
imputed datasets into the testing procedures, as quantified
by the standard errors. The Tukey method was implemented
using the R packages mitml and multcomp, while the
χ2 test utilized the miceadds package [47], [48], [49].
A false discovery rate (FDR) adjustment was subsequently
performed on the p-values obtained to control the expected
proportion of false discoveries at 5% across all of the features
tested.

The domain expert utilized the results of these analyses
along with varied visualizations of the clusters (Uniform
Manifold Approximation and Projection (UMAP) [50], CDA
canonical plots, SHAPley bee-swarm plots [42], and heat
maps) to derive a robust interpretation of the clinical
significance of the cluster analysis.

IV. APPLICATION OF FRAMEWORK TO A TBI
DATASET WITH MISSING DATA
To evaluate the effectiveness of the MI clustering framework,
we applied it to a TBI sample drawn from the Citicoline
Brain Injury Treatment Trial (COBRIT) [51] (which was
used in prior work [6]). TBI has been identified as an ideal
candidate for precision medicine data analysis, given its
heterogeneity and complexity. Better tools are needed to char-
acterize TBI severity subtypes beyond clinical classification
systems such as the Glasgow Coma Scale (GCS) or cranial
computer tomography (CT) metrics, such as Marshall or
Rotterdam scores. For example, GCS classifies the severity
of TBI as mild, moderate, or severe. However, it does not
capture the pathoanatomical features or pathophysiology
in individual patients and is confounded by factors such
as endotracheal intubation, use of drugs, alcohol, and/or
medications [24].

To demonstrate the robustness of our framework, we car-
ried out comparisons on three fronts as follows. First,
where a different multiple imputation framework (Miclust
[20]) is applied to cluster analysis with a basic cluster-
ing algorithm. Miclust (package available in R) performs
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k-means clustering and uses a relabeling and voting process
to combine the partitions obtained from the m imputed
datasets. Second, the case where ensemble clustering is
applied but without multiple imputation i.e. previous work
by Yeboah et al. [6]. Third, a case in which cluster
analysis is applied using partitioning around medoids
(PAM) algorithm with a different imputation approach
(see Section V) [52].

A. DATA
The COBRIT study was a phase 3, double-blind, randomized
clinical trial conducted over 4 years (2007 to 2011) to
investigate the effectiveness of citicoline compared to placebo
for TBI in 1213 subjects (ages 18 to 70 years) [51]. COBRIT
data is available through the Federal Interagency Traumatic
Brain Injury Research (FITBIR) [53] data repository. All
participants had non-penetrating head injuries with varying
levels of severity, as quantified by the GCS score, and
required inpatient hospitalization. CT scan findings included
intraparenchymal hemorrhages (10 mm or greater total
diameter), acute extra-axial hematomas (epidural or subdural
thickness of 5 mm or greater), subarachnoid hemorrhage
(visible on at least 2 contiguous 5-mm slices or at
least 3 contiguous 3-mm slices), intraventricular hemorrhage
(present on 2 slices), and midline shift (5 mm or greater).
Demographics and details on the injury were collected at
baseline. Metabolic, liver, and hematologic values, vital
signs, and other selected blood laboratory values were
collected at multiple time points. The study found no
benefit for functional or cognitive status in the active drug
group.

The input features selected for cluster analysis in this
paper are similar to those utilized in prior work [6]. Yeboah
et al. [6] investigated a set of 32 features consisting of
baseline measurements on demographics, details of injury,
CT scan findings, metabolic, liver, and hematologic results
obtained from blood samples, GCS scores, and vital signs.
As a result of missing data, especially among the CT
scan features, the sample size was reduced to 859 patients.
Given the application of MI in this work to address
missingness, we performed the cluster analysis on the full
study sample of 1213 subjects and added the features of
alcohol blood level, high and low diastolic blood pressure,
and CT lesion high mixed density that had been excluded
previously for missingness above 0.1%. Based on domain
expert guidance, we excluded the hypertonic saline total
volume as a feature not of clinical interest. For this study,
we included the additional demographic features of gender
and marital status. The correlation filter analysis identified
a set of features that were excluded due to high correlation
(collinearity). This included CT epidural lesion anatomic site,
CT subdural lesion anatomic site, and CT intraparenchymal
lesion anatomic site. Table 1 shows the set of 36 features,
with the level of missingness, used in clustering the 1213 TBI
patients.

TABLE 1. Description of input features and evaluation of significance
based on k6 clustering output.

B. ENSEMBLE CLUSTERING & VALIDATION RESULTS
The outcome of initial clustering and validation for the
15 datasets is illustrated in Table 2. The value of kopt (see
Fig. 3) was determined to be either 4 or 6, based on the
most frequent appearing value of k in the top 2 and top
3 highest ranked results. The next iteration of the ensemble
clustering was conducted with k fixed at both 4 and 6 for kopt
for the mixture model consensus across all 15 datasets. Heat
maps of normalized mutual information (NMI) (see Fig. 4)
demonstrate the relative variation in the results among the
15 imputed datasets after using both fixed kopt values for
ensemble clustering. We used NMI to quantify the amount of
uncertainty in cluster membership due to the data imputation
since the differences across the 15 datasets is attributable to
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TABLE 2. Cluster validation model ranking outcome across all datasets.

the imputed values. As shown in Fig. 4, there is a significant
degree of variation in cluster assignment across datasets
based on NMI. The k6 results appear to be more consistent.
The final pooled result, obtained from the consensus cluster
membership assignment using the mixture model, for both
kopt values is illustrated in Fig. 5 by UMAP on dataset #15.
Even though the final pooled cluster labels are the same for
all 15 datasets, since each dataset differs on the imputed
values, one dataset (#15) is utilized to visualize all the
results.

FIGURE 3. Summary of the number of clusters k value in the highly
ranked (top 2 vs. top 3) cluster validation results across all datasets. The
most frequently occurring k results were k=4 and 6.

FIGURE 4. Heatmap to illustrate variance in clustering assignment across
imputed datasets using normalized mutual information (NMI) after fixing
k at 4 and 6, prior to pooling across all for final cluster membership.

C. COMPARATIVE ANALYSIS USING MICLUST
The outcome of the cluster analysis using Miclust is shown
in Fig. 6. Based on the initial k-means results obtained
per dataset, Miclust determines the optimal value of k
using the CritCF criterion [54]. The CritCF [54] provides
a ranking of partitions in feature subspaces of different
cardinalities. It simultaneously searches for both relevant
feature subspaces and optimal partitions. Higher values for
CritCF are preferred. The box plots in Fig. 6(a) illustrate the
distribution of CritCF values across the 15 imputed datasets
for k varied from 2 to 9 (the maximum possible k in Miclust).
The highest median CritCF value is observed in the k = 4
results, which aligns with the results in Fig. 6(b) that show
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FIGURE 5. Visualization of clusters by UMAP after pooled membership
across all datasets. Even though the final pooled cluster labels are same
regardless of dataset, since each dataset differs on the imputed values,
results are displayed for dataset #15.

FIGURE 6. Miclust results: (a) Show box plots of the between-imputation
distribution of CritCF by the number of clusters (k). From (b), the most
frequently occurring optimal result based on the CritCF criterion was k=4.

k = 4 was selected in around 70% of the datasets. Miclust
subsequently refits the clustering across all 15 datasets using
k = 4, aligns the partitions, and finally assigns each sample
a cluster membership based on majority voting. The final
Miclust result is illustrated in Fig. 7 with UMAP on dataset
#15. Note that one of the clusters is comprised of only one

FIGURE 7. Visualization of clusters by UMAP for k4 using Miclust
package. Even though the final pooled cluster labels are same regardless
of dataset, since each dataset differs on the imputed values, results are
displayed for dataset #15.

individual, which could be an outlier. There is alsomuchmore
overlap between the Miclust clusters compared to our results
(Fig. 5).

D. OUTCOME OF CLUSTER CHARACTERIZATION &
UNCERTAINTY ANALYSIS
The outcome of the feature importance evaluation, based
on CDA, for the k4 and k6 clustering outputs as well as
Miclust are presented in Table 3. All canonical variables
were statistically significant at (p < 0.05) across all
15 imputed datasets for all of three clustering results.
CDA identified 4 discriminating features for the k4 output
(A1, A4, A6, and A21) while the k6 results selects these
in addition to three other non-demographic features (A7,
A28, and A31). For the Miclust result, presence of the
singleton cluster appears to inflate the contribution of the
CDA correlations. Almost all features (27 out of 36) were
deemed important in discriminating between the clusters.
The domain expert (D.H) determined the optimal clustering
result based on a holistic approach that took into account the
cluster composition of each result bymeans and distributions,
UMAP visualizations, CDA outcomes, SHAP plots, and
NMI heatmaps. The k6 cluster derivation was chosen as
more clinically meaningful than the k4. All the subsequent
results for cluster characterization and uncertainty analysis
are presented for kopt = 6.
Figure 8 displays the SHAP results obtained when a

random forest model is fit on the k6 clustering output using
bar plots (Fig. 8(a)) and beeswarm plots (Fig. 8(b)). The
height of each vertical bar in the bar plot indicates the
magnitude of the feature’s importance while the beeswarm
plot shows the SHAP value distribution. It denotes the
importance by color. Red indicates a positive correlation,
while blue indicates a negative correlation on the predicted
value. The intensity of the color reflects the level of impact
a specific feature has on the prediction. Both red and blue
are important, but they have opposite effects on the output.
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FIGURE 8. k6 SHAP results using dataset #15: (a) shows the mean absolute value of the SHAP values for each feature. (b)shows the
distribution of the impacts each feature has on the model output. The color represents the feature value (red high, blue low).

TABLE 3. Canonical discriminant analysis (CDA) results for top two
optimal clustering outputs from our framework and Miclust.

The SHAP results suggest that some of the radiology/imaging
features (A11, A12, A13, A16, and A18) were important in
addition to the demographic and injury related ones (A1, A4,
A5, and A6). Both SHAP and CDA correlations agreed on
age, mechanism of injury, and marital status as contributing
the most to determining cluster membership, though they
differed on the other selected features.

Figure 9 provides the pairwise comparison results for
the k6 clustering output based on Tukey and χ2 tests. The
p-values for each pair of clusters is provided above the
diagonal (grey boxes). The orange boxes below the diagonal
visually denote pairs of clusters that exhibited significant
differences (p < 0.05). These results were obtained using
Rubin’s rules that account for the uncertainty in the imputed
values (see Section II-D). A total of 26 features showed
statistical significance on the pairwise tests for at least one
pair. Fig. 9 displays the results for the 20 features that
exhibited significance for at least three cluster pairs. The

means on both the original and normalized scale per cluster
are listed at the bottom of each sub-figure for continuous
features, along with the standard errors for the normalized
means. For ordinal and binary features (A3, A7, A13),
we compare the clusters by the percentages of the most
relevant level/category. The cluster(s) with the highest mean
(or percentage) is highlighted in red, while the cluster(s) with
the lowest mean (or percentage), in blue. The standard errors,
obtained via Rubin’s rules, provide a measure of uncertainty
in how much each cluster mean varies (incorporating both
within and between imputation variation). From Fig. 9, these
standard errors are similar for each cluster on all the features.
More importantly, the p-values derived are based on a test
statistic that incorporates this type of standard error (of the
difference in two means). Hence, the significance results
account for the uncertainty in the imputed values. Figures 10
and 11 illustrate the frequency distributions for categorical
features (A4, A6) for each category by cluster.

The CDA, SHAP, and pairwise results provide different
perspectives of feature importance. Pairwise tests are con-
ducted on a feature-by-feature basis, which does not address
any correlation that exists between features. In contrast, CDA
and SHAP are multivariate methods that account for such
relationships. However, only the pairwise tests provide a
way to utilize Rubin’s rules to quantify and incorporate the
imputation uncertainty into the results. We take a holistic
approach by having the domain expert review the results of
all three methods to select key features to characterize the
clusters (as summarized in Table 4 and Fig. 12), but highlight
that this is an area where further research is needed.

V. DISCUSSION
Missing data remains a challenge to the usability and
reliability of large biomedical datasets. This is true regardless
of whether the source of data is carefully conducted clinical
trials or electronic health records [8], [9], [56], [57].
Moreover, since clustering methods rely on complete case
records, missing data poses obstacles to applying clustering
to these datasets. We have presented a framework to address
missingness in biomedical data bymultiple imputation before
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FIGURE 9. Input features by cluster that exhibited significance on pairwise tests using the multiple testing criterion, false discovery rate (FDR). P-values
from Rubin’s rules are shown on the upper diagonal. Orange shading in lower diagonal indicates the cluster pair is significantly different at p ≤ 0.05 by
FDR. For continuous variables, the mean, normalized mean, and standard error (obtained via Rubin’s rules) for each cluster are reported.

clustering. This framework has allowed us to cluster a
large traumatic brain injury dataset from a clinical trial
without deleting features or case records due to missingness.
Though the empirical analysis in this paper is focused
on TBI data, the framework generalizes to other types of
large medical datasets, with MAR/MCAR missingness, for
other heterogeneous diseases (such as cancer, stroke, autism
spectrum disorders, etc.) for which cluster analysis is the end
goal. We demonstrate that multiple imputation can be applied
to address missingness in a manner that allows the successful
application of clustering and offers a realistic estimate of the
uncertainty introduced by the imputation.

The main premise of MI is that when there are missing
data points present, there is an inherent uncertainty in
trying to replace those values. Attempts to predict a single
most accurate value for a missing data point (e.g., single
imputation) would be treating the value as known, which
can negatively impact the ability to make valid statistical
inferences. MI addresses the uncertainty in the unknown
values by generating multiple imputed values, applying an
analysis to each imputed dataset, and then pooling them
together in a way that allows valid inferences to be made.
Though the imputed values will vary, by generating multiple
clustering results that account for these fluctuations in the
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TABLE 4. Overall cluster characterization narrative based on key Features.

FIGURE 10. Distribution of marital status across clusters.

imputed values and appropriately pooling them together,
improves the overall robustness of the results. Some key
aspects that distinguish our work from prior research on MI
in clustering include: a start-to-finish framework for pre-
processing, clustering, and post-hoc analysis; utilization of
more robust clustering approach with ensemble clustering
that utilizes multiple algorithms and decision metrics;
mixture model to obtain consensus (pooled) cluster result;
post-hoc analysis for cluster characterization with pairwise
comparisons that employ Rubin’s rule to quantify uncertainty.

We applied this framework to ensemble clustering
of 1213 TBI subjects in the COBRIT trial [51]. The trial
enrolled subjects with either mild complicated TBI (n =

807) or moderate-to-severe TBI (n= 406). Subjects had
received either citicoline or placebo randomized 1:1 in a
double-blinded design. The study was halted after enrolling

FIGURE 11. Distribution of clusters by Mechanism of Injury (MOI). Note,
Motorcycle* category includes accidents from ATV and golf carts as well.

1213 subjects due to the lack of a treatment effect. Enrolled
subjects were heterogeneous in age (18 to 70 years), sex,
marital status, and mechanism of injury. Subjects with mild
TBI (concussions) or severe TBI (fixed dilated pupils, etc.)
were excluded. Based on a consensus validation method
that utilized multiple cluster quality metrics (Table 2 and
Fig. 3) combined with domain expert opinion, we chose a
cluster solution of k6. Cluster membership for the k6 solution
was stable across all 15 missing data imputations (Fig. 4).
Examination of the UMAP (Fig. 5) showed robust clusters,
although some overlap was observed. The sub optimal
result of the comparison method (Miclust) might be due
to difference in algorithm: k-means vs. ensemble clustering
with multiple algorithms (include k-means); utilization of
a single validation metric (CritCF) vs. multiple decision
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FIGURE 12. Heat map of features by cluster for k6. Features are
organized similar to Table 4 demographics, GCS, mechanism of injury,
CT scan, laboratory, vital signs. The color scale is coolwarm from
Orange [55] normalized to the interval [0,1]. For continuous variables, the
color scale reflects the cluster mean while for categorical variables, the
proportion for each cluster.

metrics combined in an ensemble manner; and sensitivity
to presence of outliers. Miclust clustering is based on
k-means on each imputed dataset. The optimal value of
k is selected based on the value of k that maximizes the
CritCF criteria in most datasets. This approach differs from
ours, which utilizes more sophisticated ensemble clustering
and validation approach that utilize multiple algorithms
and validation metrics to select kopt . We were limited
in comparisons to other approaches [11], [21], [22], [23]
beyond miclust due to limited availability of implementable
packages.

In contrast to prior work of conducting clustering on
the same dataset without MI [6], here we obtain more
complex clusters rather that simple clusters primarily driven
by mechanism of injury. Definitive characterization of the six
clusters based on ensemble clustering of the 1213 subjects
in this dataset is more complex. We specifically looked at
whether age, sex, initial TBI severity (GCS), mechanism
of injury, medical, laboratory, and radiological activity
were features that predicted cluster membership. Figures 9,
11, and 10 demonstrate the differences in features by
cluster. Figures 11 and 10 emphasize the importance of the
mechanism of injury and marital status in determining cluster
membership. The mean values of continuous features and
proportions of categorical features are converted to heat maps
for side-by-side visual comparisons to aid in characterizing
the clusters (Fig. 12). These results are converted to narrative
tables emphasizing how clusters differ by feature (Table 4).
Folweiler et al. [52] conducted cluster analysis on the

same 1213 COBRIT patient sample. They selected a set of
features that exhibited <10% missingness (MAR or MCAR)
and applied multiple imputation with m = 5. They performed
feature selection, using a generalized low-rank model,
individually, on each of the 5 imputed datasets, and obtained
a set of 6 features (platelet count, hematocrit, hemoglobin,

prothrombin time (PT), PT international normalized ratio
(INR), and blood glucose level) that intersected all datasets.
Cluster analysis was then carried out on a single data set
pooled by averaging the m point estimates for each missing
value on these features only. Averaging the values prior to
clustering overlooks the notion that these imputed values
are not deterministic and exhibit a degree of uncertainty.
Thus, similar to single imputation, the clustering results
and analysis does not address variation or uncertainty due
to imputation. Clustering of these six features across the
1213 samples yielded three clusters. In contrast, our approach
integrates MI in every aspect of the cluster analysis to yield
a more robust performance. Four of their six clustering
input features were also determined by our method to differ
significantly across all the six clusters identified.

Our work places a key emphasis on cluster character-
ization, which is directly influenced by data imputation
techniques. This can be subsequently extended for clinical
relevance examination based on outcome measures, as con-
ducted in prior work [6]. We observe that the C5 group
appear to be the most severe group whose all had a motor
accident (either as a driver or passenger), are all single and the
youngest. Their vitals and lab values are extreme as well as
their GCS scores. In contrast, the C2 group were all involved
in a motor accident as well but are all married and have
the highest percentage of females. They did have the least
presence of intraparenchymal lesion. It would be interesting
to compare the clinical outcome trajectory of both groups.

A strength of this study was that no subjects were lost,
and no features were excluded due to missing data. Multiple
imputation allowed us to use NMI as an estimate of the
uncertainty in clustering introduced by imputed values. The
MI framework supported the use of ensemble methods for
clustering and ensemble methods for optimizing the number
of clusters. Furthermore, the MI framework supported
methods to find the discriminating features (SHAP and
CDA) and methods to characterize and interpret the derived
clusters. A primary limitation of this study is the increased
time complexity of MI compared to single imputation.
As illustrated in Fig. 2, after obtainingm imputed datasets, all
subsequent analyses are ×m, until the application of Rubin’s
rule when the results are all pooled together. However, this is a
linear effect, which is worthwhile given the resulting increase
in robustness of the results. Furthermore, MI depends on the
assumption that missing data are missing at random (MAR),
which cannot always be verified. Although the COBRIT trial
showed no treatment effect, we did not consider treatment by
citicoline as an input feature. Although the primary outcome
was 90-day survival and status, we did not characterize
derived clusters by their outcome. This posed difficulties in
generating cluster solutions that are meaningful, interesting,
and biologically plausible [58] reflect the realities of the
underlying data rather than any limitations of the methods
used to impute missing data. Even the best imputation and
clustering algorithms are limited by the quality and structure
of the underlying data.
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VI. CONCLUSION
The paper presents a start to finish package for integration of
multiple imputation in cluster analysis of complex biomedical
datasets which mandate post-hoc steps to obtain robust
and meaningful characterization of the clustering results.
We demonstrate the utility of our framework by integrating
the ensemble (consensus) clustering method. This allows us
to leverage the strength of diverse algorithms. The goal of
this work is not to introduce another clustering algorithm
but rather to present a method for integration of multiple
imputation in complex cluster analysis. Hence, the clustering
module of the pipeline can be replacedwith another algorithm
of choice.

This paper demonstrates the utility of our framework
to address missingness in a large traumatic brain injury
dataset that utilizes multiple imputation prior to ensemble
clustering. The pipeline sequentially identified features
with missing values, used multiple imputation to create
fifteen datasets, filtered out co-linear features, standardized
features, and performed ensemble clustering on imputed
datasets. Derived clusters in the consensus solution were
characterized with heat maps, tables of feature means and
proportions, statistical analysis of pairwise differences with
Rubin’s rules, and an overall narrative table. This approach
allowed for an estimation of uncertainty based on both NMI
among imputed datasets and standard error of the cluster
means.

Comparisons with three different approaches on the same
dataset demonstrate a more robust performance. The analysis
revealed six multifaceted clusters that differed with respect
to GCS, mechanism of injury, sociodemographics, vitals,
lab values, and radiological presentation. The most severe
cluster consists of single, relatively young patients that were
injured by motor accident, and had higher GCS severity
scores. This methodology for integrating multiple imputation
in cluster analysis to tackle the missingness issue in a robust
manner is generalizable. It can be applied to other medical
datasets exhibit significant heterogeneity with comparable
levels of missing data. Future work will focus on dealing
with implications of datasets for which MNAR mechanism
of missingness is more appropriate (such as developing a
sensitivity analysis for clustering), and improving robustness
of canonical discriminant analysis for all data types as well
as exploring alternative pooling strategies that utilize Rubin’s
rules.
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