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ABSTRACT Finding new molecules with desirable properties has high computational and overhead
costs. Much research has focused on generating candidate molecules in one- and two-dimensional spaces,
which has produced some favorable results. However, extending these approaches to molecules in three-
dimensional space would be far more useful because the representation of molecules is more realistic,
although three-dimensional methods have much higher computational costs. In this work, we developed a
geometric deep reinforcement learning agent that generates and optimizes molecules that could interact with
a biochemical target. The agent can be used for generating molecules from scratch or for lead optimization
when it enhances the properties of a given molecule, whether by enhancing its drug-likeness or increasing its
activity toward the target via implicit learning. Thus, the agent works with molecules in three-dimensional
space without high computational costs.

INDEX TERMS Molecule generation, molecule optimization, geometric deep learning, reinforcement
learning, de novo drug design.

I. INTRODUCTION
Searching for new molecules with desired properties is
crucial, but the computational overhead and time costs
accompanying this process are huge, reaching 3 billion
dollars over the past 10 to 15 years [1]. Artificial intelligence
(AI) is undergoing a Cambrian explosion in algorithms and
has had major successes in solving complex problems. The
present work applies AI to the problem of finding the best
molecule to satisfy a quantifiable objective, such as obtaining
the desired properties. Molecules can be generated in an
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auto-regressive manner by sequentially creating or editing
a molecule via actions such as adding and removing bonds
and atoms step-by-step until a final molecule is obtained.
Alternatively, molecules can be generated in one shot by
learning to generate an entire molecule at once from the
latent space. Different methodologies have been developed
to find molecules with desired properties. One approach is
to build a generative model that can learn the underlying
structure of the chemical space and generate novel molecules
with desired properties, such as high binding affinity. The
model can also maximize the quality of the molecule as a
drug candidate by maximizing drug-likeness functions, such
as the quantitative estimate of drug-likeness (QED), which

VOLUME 12, 2024

 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ 45519

https://orcid.org/0009-0002-4151-4588
https://orcid.org/0000-0003-4127-9055
https://orcid.org/0000-0003-3706-0616
https://orcid.org/0000-0002-5003-7579
https://orcid.org/0000-0001-7278-7349
https://orcid.org/0000-0002-8016-6144
https://orcid.org/0000-0001-9032-4401


A. Abdallah et al.: Geom-SAC: Geometric Multi-Discrete SAC With Applications

is a computational approach that assesses the likelihood of
a molecule being a successful drug candidate based on its
chemical properties. The search or optimization process in
the latent space can then be guided by these properties to
identify promising drug candidates for further testing and
development. This approach has shown great promise in
accelerating the drug discovery process and has the potential
to speed up the introduction of new drugs to themarket, which
could save lives, money, and time. Molecules have been
represented in many ways, including as a one-dimensional
(1D) string and most commonly as the simplified molecular-
input line-entry system (SMILES), which follow chemical
rules to ensure the validity of the molecule. Using this
kind of representation, it is intuitive to apply a sequence
generative model, such as recurrent neural networks (RNNs).
For example, Grisoni et al. used a bidirectional RNN
and Kusner et al. sampled from the latent space using
a variational autoencoder model that followed encoding
and decoding regime [2], [3]. However, string generation
methodologies still suffer from severe limitations, such as
poor output molecule validity and difficulty optimizing
for desired properties. Another representation method is
two-dimensional (2D) molecular graphs, in which atoms
and bonds are modeled as nodes and edges. This method
has gained attention because it can model structures that
are more complex. Advances have been made in graph
neural networks (GNNs), which have greater expressive and
representational power than traditional convolutional neural
network architectures [4]. Another promising approach that
leveraged feature extraction of molecules was introduced
by Xing et al. [5] proposed and validated a method for
geometric feature extraction from drug point clouds using
DGCNN [6], addressing challenges in existing methods and
emphasizing the importance of point cloud data in chemical
reactor management. The introduction of DGCNN enhances
precision, recall, F1 score, and accuracy, demonstrating its
superiority over traditional methods like PointNet [7] and
PointNet++ [8]. Furthermore, the studies contribute to the
field by creating a comprehensive drug point cloud dataset,
filling a gap in data sets for end-to-end extraction models, and
advancing the understanding and application of DGCNN in
the automated and intelligent processing of drug point cloud
data, with potential implications for pharmaceutical process
optimization. However, using DGCNN appears to be a more
practical solution, it is not without challenges. One challenge
is that it depends on a transformation network to adjust the
point cloud, yet this introduces a doubling of the network
size. Additionally, the deep features and their neighborsmight
exhibit excessive similarity, making it difficult to generate
valuable edge vectors. Furthermore, the DGCNN involves
numerous trainable parameters, addressing difficulty in iden-
tifying optimal parameters during the comprehensive training
of the entire network. Moreover, molecular graphs can be
easily extended tomodel the three-dimensional (3D) structure
of molecules, which is a more realistic representation of the

molecule that has greater utility for drug design because it
considers the conformation of the molecule. The 3D structure
also reflects more molecular properties, such as energy or
other quantum properties, and is better for predicting binding
with proteins or understanding many biological interactions
that are useful in drug design [9]. However, working with 3D
molecules adds nontrivial computational cost because of the
conformer optimization of the molecule, which is difficult
as there is no unique solution or infinite solutions. This
optimization problem has been tackled by minimizing the
energy of the molecule to achieve higher stability, but many
computational chemists do not regard energy as relevant to
drug design problems.

II. RELATED WORKS
The most relevant works are those that use GNNs or rein-
forcement learning for molecule generation and optimization
tasks, andwe analyze the strengths and gaps in thesemethods.

A. EARLIER WORKS
Zhou et al. introduced MolDQN, in which they optimized
molecules with a deep Q-network, and they represented
molecules with molecular graphs. They biased the generation
of the molecule towards higher QED values by sequentially
adding an atom or bond, or by removing a bond for
each time step. One downside of this approach is the
limitation in scalability as it only generates relatively small
molecules [10]. Jin et al. obtained molecules by identifying
substructures extracted from existing molecules identified
as possibly having favorable properties, and then expanding
and fine-tuning molecules using a policy gradient method.
Although this approach had good results, it had limited
suitability for searching for new molecules [11].

B. MOLECULES IN 3D
Recent approaches focus more on 3D representations of
molecules, and thus are more powerful, have more potential
capabilities, and can perform more tasks. In the following
section, we discuss some of these methods. Joshi et al.
relied on the correlation between the functional groups of
a molecule and its desired properties instead of generating
molecules from scratch. The framework used a method that
involves constructing molecules around a pre-determined
scaffold by adding individual atoms sequentially within
the 3D space of the scaffold. The need for a preexisting
scaffold restricts the exploration space and the optimization
toward higher-quality drug likeness properties, such as QED,
is limited. Nevertheless, the method guarantees that the final
molecule always has a desired scaffold [12]. Hoogeboom
et al. introduced an equivariant denoising diffusion model
for generating molecules in 3D space by using a diffusion
process, in which noise is incrementally introduced to both
positional data and atom types at discrete time intervals.
At each interval, the model outputs a Gaussian distribution
with a growing variance. This noise is introduced to the
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positional data and atom types and provides both rotational
and translational equivariance. The generation process
concentrates on mastering the reverse denoising process,
in which a neural network is learnt to predict the mean of
the Gaussian distribution. The model selects a molecule from
the diffused molecules and inputs it into a neural network
capable of processing both continuous and discrete data.
The method is applicable to both discrete and continuous
data, but diffusion-based models have a higher computational
cost [13]. Cho et al. [14] proposed a reinforcement learning
(RL) approach using a deep deterministic policy gradient
algorithm for optimizing the 3D Euclidean geometry of
small molecules. They intended to obtain higher-stability
molecules by optimizing so that the molecule energy was
within ±3.0 eV of the true total energy of the target
molecule. The episode reached an end if the model placed
two atoms too near to each other, which broke the chemical
bond and caused an error in the density functional theory
algorithm; when the model predicted two connected atoms
to be so far from each other that the chemical bond broke;
or when the molecule was within the specified energy
range. This approach assumed that the optimization process
was deterministic and developed a smooth technique to
handle Euclidean space; however, the work focused on small
molecules.

III. PROPOSED APPROACH
In this section, we describe our extension of the soft-actor
critic (SAC) algorithm to work with multi-discrete action
spaces, and we highlight our contribution to solving the prob-
lem of finding new molecules with desired functionalities.
Working with molecules in 3D has considerable promise
as highlighted previously, yet it is a more complicated task
and requires more computational resources than working
in 1D or 2D. Therefore, there are extra limitations on our
expectations for the output; for example, we need to account
for extra features in the modeling added by increasing
the dimension, including the torsion, angles, and distances.
Reinforcement learning faces some challenges because the
environment needed for this model is a mixture of continuous
spaces for atom positions and discrete spaces for discrete
actions, such as atom and bond addition. We propose a
solution for these limitations that focuses on flexibility to
allow easy use and tweaking by chemists so that the method
meets the need for multi-objective molecular generation
and optimization for drug design. Our contributions can be
summarized as follows. In order to differentiate our work
over existing approaches, Geom-SAC is capable of handling
very complex and, high-dimensional tasks with improved
sample efficiency, stability, and scalability compared to other
RL agents. Moreover, most methods have been based on
learning a value function or using on-policy algorithms.
Off-policy algorithms are more sample-efficient than on-
policy algorithms; thus, the SAC algorithm outperforms other
methods in the exploration process because this algorithm is
trained to maximize the bargain between the expected return

and entropy. Consequently, we propose an extension to the
SAC algorithm to allow it to operate on graphs andwe use it to
handle multi-discrete action spaces. Our approach combines
the low computational costs when dealing with 2D molecular
graphs and the advantages of the 3D state, delivering a multi-
objective tool for chemists to use in the next generation
of computer-aided drug design. Molecules are encoded
using a hybrid GNN model with a flexible integration
between robust, fast, and well-maintained frameworks, such
as PyTorch Geometric (PYG), Gymnasium, and RDKit.

A. MDP FORMULATION
First, we developed our environment, in which we define
our problem of generating or modifying molecular graphs
as a Markov decision process (MDP). The environment
allows smooth integration among PYG for graph neural
networks and molecular graph modeling; Gymnasium [15],
which is a maintained fork of OpenAI’s Gym framework that
provides tools needed for reinforcement learning; and RDKit,
which provides functionalities to perform calculations and
operations on molecules. Our MDP is different from other
work in several aspects. Usually at the beginning of the
episode, invalid actions are taken; for example, the agent
may output invalid indices for atoms to be connected with
a bond. As an intuitive solution to this problem, we map
these illegal actions to legal ones, and we impose a penalty
on the agent when it takes such an action. Moreover, we early
stop the episode if too many invalid actions are taken. In our
MDP, we track the evolution of the molecule, and we early
stop the evolution process if worse modifications continue to
be made. At every step, we give the agent an intermediate
reward if the modified molecule does not break the MMFF94
algorithm to make sure that the molecule is embeddable in
3D space, produces a chemically valid molecule, or does not
violate the chemical valency [16]. We combine features from
both domains (graph theory and chemistry), such as node
degree and hybridization type. These features are calculated
at each time step for the molecular graphs. We do not directly
employ a hybrid action space to produce 3D geometries for
the molecule atoms for the following main reasons. First,
there are many cases where a reasonable 3D conformer for
a molecule is unknown; thus, there is not yet a general
rule. Second, we intend to provide chemists with a tool
for lead optimization, for introducing a new drug to the
market rapidly with minimal costs, and for limiting harmful
or fatal side effects in a new drug. Third, classical algorithms
for molecular embedding into 3D outperform deep-learning
approaches in many scenarios. Fourth, despite the remarkable
results obtained by present deep-learning approaches in
generating molecular geometries, these approaches lack
scalability to larger molecules, and because there is no correct
answer to which is the right conformer, there could be an
infinite number of solutions. Similar to You et al., [17] we
defined our action space to bemulti-discrete, andwe followed
their definition for checking the chemical valency and validity
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of the molecule. However, we extended the action space
to five joint actions at each time step, and we added more
methods for more generalization and to benefit from the
utility of 3D structures. For observing the states, we defined
our graph as PYG to output the Data object containing
the information about the state as a graph where X is the
node features tensor X ∈ RN×F and the tuple represents
an edge index in COO format, where I ∈ N2×|E| encodes
edge indices, and edge attributes E ∈ R|E|×D where D
represents the edge features. The MDP is defined by a tuple,
(S,A,P,R, γ ),
where
• S: set of states,
• A: set of multi-discrete actions,
• P(st+1|st , at ) := P(st , at , st+1): state transition proba-
bility of the next state, st+1 ∈ S, given the current state,
st ∈ S, and a concatenation of multi-discrete actions,
a ∈ A,

• R(st , at , st+1, rt ): bounded immediate reward on each
transition,

• γ : is the discount factor, where {γ ∈ R | 0 < γ < 1}.

1) ACTION SPACE
Our actions generate and optimize molecules, and they are
designed to give high flexibility in the molecule’s evolution
and to ensure the chemical validity of the molecule in each
step as well as the generated molecular graph structure. For
example, the observed molecule should not have isolated
nodes because they affect the calculation of the molecular
properties. Actions are defined as the concatenation of multi-
discrete actions over multi-categorical distribution. Formally,
it can be defined as

At ∈ {a0, a1, . . . , an−1}; ai ∈ {0, 1, . . . ,Ni−1}, (1)

where each action ai has Ni different possibilities.
In our environment, it is defined as

At ∈ {a0, a1, a2, a3, a4}, (2)

where
• a0 ∈ {0, 1, ..., no. of allowed atom types− 1},
• a1 ∈ {0, 1, ...,max no. of atoms− 1},
• a2 ∈ {0, 1, ...,max no. of atoms− 1},
• a3 ∈ {0, 1, ..., no. of allowed bond types− 1},
• a4 ∈ {0, 1, 2, 3}.

2) ADDING AN ATOM
at each step, the agent selects atom to place in the molecular
graph from a set containing atoms determined by the user.
This action is performed when the number of atoms inserted
does not exceed the predetermined number by the user,
or when a termination condition is met. This is determined
by action a0.

3) ADDING A BOND
at each step, the agent chooses two of the atom indices
to connect between them from a1 and a2, and the type of

the bond is determined by the fourth action. Bond addition
happens when a4 is equal to 0.

4) ALTERING BOND TYPE
this action selects two atom indices in the molecule to check
whether they have a bond. If there is a bond, the bond type is
modified to the type specified by the fourth action, and if there
is no bond, a new one is created. This action is performed
when a4 is equal to 1.

5) REMOVING A BOND
this action selects two atom indices in the molecule and
checks whether there is a bond connecting them from a1, and
a2. If there is a bond, it removes the bond, and if there is not
it does not perform an action. This action is done when a4 is
equal to 2.

6) CONNECTING MOLECULAR FRAGMENTS TOGETHER
This action acts as a heuristic to aid our agent. It ensures
that there are no isolated nodes in the graph because they are
not chemically valid and cause incorrect calculations of the
molecular properties. The action checks if there are isolated
fragments that could be connected together by checking for
possible binding sites in the fragments to form a single
bigger molecule with the highest QED, and ensures that the
molecules produced are 100% valid. This action is done when
a4 is equal to 3.

7) REWARD SYSTEM
We designed a reward system to give the agent a reward
or penalty after performing each step, so that the evolution
process is biased towards favorable functionalities. A final
reward is given after the episode is terminated when a
stopping condition is met. At each step, the agent calculates
the QED for the modified molecule. When the QED is below
0.44, the agent gets a penalty with a magnitude proportional
to how close the value is to 0, and when the QED is above
0.44, the agent gets a reward with a magnitude proportional to
how near the value is to 1. The reward or penalty is calculated
as:

rqed =
1.5−

√
1

QED(mol)+ϵ

C
, (3)

where

C : tunable parameter for step reward scaling,

ϵ : added for computational stability.

The agent gets a small step reward when the molecule is
chemically valid and does not break valency or the 3D
embedding algorithm and gets a similarity score if a reference
molecule is given for biasing molecule evolution toward a
certain activity. After the episode is terminated, the agent
gets a final reward for final molecule validity, valency,
convergence with the MMF94 algorithm (see Fig. 1), and
final QED, aswell as a similarity score if a referencemolecule
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FIGURE 1. Sample molecules that cannot be embedded in 3D space
because the MMF94 optimization fails to converge, regardless of the 2D
validity or high QED value of the molecule. Our agent implicitly acquires
an understanding of the valid 3D geometry for a molecule.

is given with a function similar to the one used in the
QED step reward where is the current molecule developed.
To ensure that the generated molecule have a distribution
similar to that of the reference molecule, we added a step
reward for the similarity score by encoding the twomolecules
into a binary vector using the Morgan fingerprint with radius
of 2, after that we calculate the Tanimoto coefficient in order
to get the similarity score of the two molecules ([18], [19]).

B. THE GEOM-SAC ALGORITHM
For the agent to learn the policy given the state as a molecular
graph, we must encode the state first. Next, the encoded state
is given to our agent, which then tries to maximize the trade-
off between expected return and entropy using soft policy
iterations.

1) GRAPH ENCODER
For node embeddings, we use a hybrid model of a graph
attention network (GAT) and a graph isomorphism network
(GIN). The attention layer in GAT focuses the algorithm to
the most important features of the graph. This combination
of GAT and GIN outperforms ordinary graph convolutional
networks (GCNs) in terms of generalization to unseen
data. GINs have better discriminative powers than GCNs
because GINs resemble the Weisfeiler-Lehman test for graph
isomorphism, an overview of these methoods and more can
be found at [20]. We use the GAT with eight-headed multi-
head attention, and then the computed embeddings are passed
to the GIN to increase the expressive power with an ‘‘add
pooling’’ aggregator as a graph readout [21]. The computed
embeddings are defined as

ha = GAT(X , (I ,E)) (4)

hδ = READOUT(GIN(ha, (I ,E))) (5)

hG = ReLU(φ(ReLU(ω(hδ))) (6)

where

• ha = [head1∥head2, . . . , ∥headk ],
• X ∈ RN×F : node feature tensor,
• I ∈ N2×|E|: tuple of tensors holding edge indices in
COO format,

• E ∈ R|E|×D: tensor holding edge attributes,
• φ and ω: trainable parameters,

headk =Wi

∑
i∈Nj

βki,jhj (7)

βi,j =
exp(aT [Whi∥Whj])∑

j′∈Ni
exp(aT [Whi∥Wh′j])

(8)

h′j = σ

∑
j∈Ni

βi,j ·Whj

 (9)

• βi,j : denotes the attention on neighbour j ∈ Ni when the
information is aggregated at node i,

• a: learnable attention tensor of rank one,
• W: learnable attention tensor of rank two,
• h′j: computed node features,
• ∥: concatenation operator.

GIN (ha, (I ,E)) = MLP(l)((1+ ξ (l)).h(l−1)i +

∑
j∈Ni

h(l−1)j ,

(10)

• ξ (l): trainable parameter.
In our definition, for the graph encoder’s layers we follow
arguments and notation as PYG.
For the READOUT function, we use a global add pool-
ing [21].

hg =
N∑
i=0

hi (11)

2) DEEP REINFORCEMENT LEARNING
We choose deep reinforcement learning as our optimization
tool for non-differentiable functions because we want to
learn both promising and unpromising solutions to our
problem. The SAC algorithm is the state-of-the-art algorithm
for continuous action spaces, and we are proposing a
new version of SAC which can operate in a multi-discrete
action space settings, We introduced our problem setup
in Section III-A; in the present section, we complete the
definition of our algorithm.

a: VALUE FUNCTIONS (V )
Two types of value function are typically used in the SAC
algorithm for calculating Bellman equations. The first is
state-value function (V ), which estimates the expected
cumulative future rewards starting from a given state and
following policy π . The second is twin Q-value functions
(Q1 and Q2), which estimate the expected cumulative future
rewards starting from a given state, taking a specific action,
and then following policy π . This helps mitigate overes-
timation bias, which is a common problem in Q-learning
algorithms.

b: POLICY NETWORK
The policy network, π (a|s), resembles the actor part in
our algorithm, providing a multi-categorical probability
distribution over the multi-discrete actions given the current
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state. The objective for the policy is formally defined as

J (π ) = E[Q(s, a)− α ∗H(π (·|s))], (12)

where α: temperature parameter that controls the trade-off
between exploration and exploitation. Higher α emphasizes
exploration, whereas lower α emphasizes exploitation.
H(π(·|s)): entropy of the policy distribution for state s, which
encourages the policy to explore by favoring actions with
higher uncertainty. The optimization objective for the actor
in actor-critic methods can be defined as

π∗(a|s) = argmax
π

π (a|s)[E[Q(s, a)− α ∗H(π(·|s))]].

(13)

Here, the term α ∗ H(π(·|s)) in acts as a penalty that
discourages the policy from becoming overly deterministic,
promoting exploration by maintaining a certain level of
randomness in action selection.

c: ENTROPY REGULARIZATION
The SAC algorithm encourages exploration by maximizing
the entropy, and the entropy regularization term of the policy
is defined as

H(π (·|s)) = −
∑
a

π (a|s) ∗ log(π (a|s)). (14)

d: SOFT BELLMAN EQUATION
Describes the relationships between Q-values, state values,
and the entropy regularization term. Moreover, this equation
provides the foundation for updating the value functions and
the policy in the SAC algorithm. Formally, it is defined as
follows. Given a state-action pair, (s, a), the soft Bellman
equation is

Q(s, a) = R(s, a)+ γ ∗ E[V (st+1)− α ∗H(π(·|s))], (15)

where
• γ : discount factor,
• Q(s, a): Q-value for taking action a in state s,
• R(s, a): immediate reward for taking action a in state s,
• V (st+1): value function for the next state st+1.

e: POLICY UPDATE
Policy π is updated to maximize the expected reward along
with an entropy term, which encourages exploration.

f: VALUE FUNCTION UPDATE
Value function V and Q-function Q are updated using
a gradient descent-based method to minimize the mean-
squared Bellman error.

g: ENTROPY PARAMETER UPDATE
Temperature parameter α is also updated iteratively to ensure
that the entropy of the policy remains within a certain range.
The GEOM dataset used in this study is publicly available

Algorithm 1 Geometric SAC for Multi-Discrete Actions
1: Input: an instance of the environment, current state of the

molecular graph, number of max steps, number of max
atoms, number of max invalid actions ratio, and initial
parameters for neural networks V9 ,V9 ,Q2i , π8 ∀i ∈
{1, 2}

2: Output: updated parameters of the neural networks,
9i,2i,8 ∀i ∈ {1, 2}

3: Initialization: replay buffer: D with capacity C and
batch size B

4: Initialization: graph encoder: hG, finite horizon:M
5: Initialization: hyperparameters: τ, γ
6: Initialization: done ∈ {False,True}
7: Terminal conditions: (if the number of max steps is

reached) or (if the number of max invalid actions ratio
is reached) or (if the number of max atoms is reached)
(see 3.1)

8: for i = 0:M-1 do
9: donet ← False
10: while not done do
11: at ∼ π∅( ∥Categorical(ait ) | hG(st )) ∀i ∈ {1, 2, . . . , n}
12: Dt+1 ← Dt∥(st , at , rt , st+1, donet )

13:
Vψ(t+1) := Vψt − λVψt ∇ψt Vψt (st )(Vψt (st )

−Q
θ it
(st , at )+ logπ8t (at |st )) ∀i ∈ {1, 2}

14:

Q
θ i(t+1)

:= Q
θ it
− λQ

θ it
∇
θ it

E((st ,at )∼D)[(Qθ it
(st , at )

−R(st , at )

+γ
∑

P(st+1|st , at ) ∗ Vψ (s(t+1)))
2] ∀i ∈ {1, 2}

15:

πφ(t+1) := πφt

− λπφt
∇φtE(st )∼D[πφt (st )

T [α log(πφt (st ))− Vψt (st )]]

16: αt+1 := αt − λ∇παt (st )
T [−α(log(πt (st ))+ Ĥ)]

17: Q
θ i(t+1)

:= τQ
θ it
+ (1− τ )Q

θ it
∀i ∈ {1, 2}

18: st ← st+1
19: (terminal condition H⇒ donet ← True) ∧ (¬donet ←

False)

and can be downloaded online [22]. Code is available for
reproducibility at [23].
Algorithm 1: An extension of the SAC algorithm to

handle multi-discrete action spaces and operate on graph data
structures. To formally prove that the algorithm terminates,
we need to establish a termination condition that ensures the
Geom-SAC algorithm ends after a finite number of steps.
In the Geom-SAC algorithm, there are two main loops: an
outer loop over episodes and an inner loop over steps within
each episode. We need to examine both loops.

• Outer loop (M): to prove termination for the outer loop,
we specify a finite number, M, of episodes. This means
that the algorithm runs for a predetermined number of
episodes, and then terminates.

• Inner loop (steps within an episode): The inner loop
iterates until the termination condition ‘‘done’’ becomes
true, which happens if the number of maximum steps is
reached, or if the number of maximum invalid actions
ratio is reached, or if the number of maximum atoms
is reached. This is a common pattern in reinforcement
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TABLE 1. Comparison of the top three molecules from our agent against
the state-of-the-art approaches. We obtain a molecule with QED of
0.9484, which is higher than the QED of molecules in the databases,
making it a candidate for the highest recorded QED recorded.

learning algorithms, where an episode terminates when
certain criteria are met (e.g., the terminal condition in
our approach).

IV. EXPERIMENTS AND RESULTS
We tested our approach against the following three tasks to
assess the efficiency of the agent:
• Task (a)
– Goal: Generating a molecule from scratch, in which
starting from a carbon atom connected to a random
atom with an arbitrary bond, the algorithm should
generate a molecule that maximizes desired properties.
We optimize for a higher QED, chemical validity, and
3D spatial embedding capability.
– Results: By tracking the trajectory of molecules’
evolution during episodes, our agent learns the aromatic
structures, and it generates molecules with higher drug-
like properties. Table 1 compares our results with
state-of-the-art approaches in this task considering the
top three molecules.

• Task (b)
– Goal: Optimizing an existing molecule, in which
for any molecule, the algorithm searches for the best
possible actions to enhance its functionalities. We use
the same multi-objectives as used for task (a).
– Results: The agent builds a molecule given a sub-
molecular structure or a molecular scaffold as a starting
point. The agent increases the quality of this structure
towards a QED score indicating drug-like properties,
from 0.4 to 0.9483 (see Fig. 2).

• Task (c)
– Goal: Optimizing a molecule towards certain activity,
in which we give the algorithm a reference molecule
with known activity toward a certain disease, and a
tunable parameter of how similar the two molecules
should be. We assume that similar molecules have
similar effects on the same target, and thus the evolution
of the molecule should be in the direction of favorable
properties. In other words, themodifiedmolecule should
not deviate much from a given distribution of a reference
molecule.
– Results: We increase the QED for existing molecules
without deviating much from a reference molecule. We

FIGURE 2. Starting from a benzene ring as a scaffold with a QED score of
0.4 (left), the agent raises this value to 0.9483 (right) with minimal
modifications of the initial scaffold. The 3D geometry is obtained by the
MMF94 algorithm, making it possible to generate conformers and apply
quantum mechanics calculations to the molecule. The agent incorporates
atom linkage strategies into its reward system to ensure that the 3D
geometry of the molecule is valid and the MMF94 optimization converges
during the learning process.

FIGURE 3. A molecule active towards SARS-CoV-1 virus from the GEOM
dataset, the QED score of which is increased from 0.83 (left) to 0.93 with
a similarity score of 42% (right).

FIGURE 4. Averaged reward vs averaged loss of the agent across all tasks.

use molecules from the GEOM dataset that are active
against the SARS-CoV-1 virus, and we increase the
mean QED of the molecules from 0.55 to 0.83 with
a mean similarity of ∼20%. An illustrative example is
shown in Fig. 3.

To demonstrate the capabilities of our agent, we selected
the state-of-the-art approaches as the baseline. Moreover,
our model may be generalized so that it may be used not
only in drug discovery, but also in similar tasks, such as
material design. In drug discovery, we showed that our model
outperformed other approaches with the extra advantage
of considering geometrical properties in the multi-objective
optimization task, in addition to chemical functionalities.
The model performance is shown in Fig. 4. Hyperparameter
tuning is an expensive task in deep reinforcement learning
because the training must be repeated for the same set of
hyperparameters many times to detect if there is a substantial
improvement in the performance. Certain hyperparameters,
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TABLE 2. Best hyperparameters for reducibility.

TABLE 3. Supercomputer specifications.

such the number of attention heads, batch size, buffer size,
and the dimensions for each hidden layer, were manually
adjusted by us, and other hyperparameters were borrowed
from the original SAC methodology. Table 2 shows the best
hyperparameters for reducibility.

The Magi machine (Table 3) is a high-performance com-
puter with a versatile x86-64 architecture. It can efficiently
handle a wide range of tasks, including both older and
modern software. It has eight powerful processing units,
making it useful for tasks that require multitasking, such
as scientific simulations, data analysis, and virtualization.
It also has 62 GB of RAM, which is useful for our research.
In summary, this machine is a powerful and versatile system
that can handle various computing challenges, including
intensive calculations, data analysis, and running virtual
environments.

V. DISCUSSION
Our algorithm obtained molecules with high QED values.
From an initial carbon atom or a molecular substructure, the
algorithm learned the carbon ring structure, the atom and
bond type distribution given the current state of the molecule,
and linking strategies that did not violate valency, chemical
validity, or embeddability in 3D space (see Fig. 5).

A. EFFECT OF GRAPH ENCODER ON THE AGENT’S
PERFORMANCE
Based on the results of our experiments, we tried many GNN
architectures many times, and differences in architecture
changed the efficiency of our agent in terms of learning
speed and performance. First, we used Dimenet++ because
it showed outstanding performance in predicting molecular
properties; however, it was too slow, and thus was infeasible
in our solution [29]. We also tried a GCN, GIN, and GAT, but
the most efficient architecture was a hybrid model consisting
of a GAT with eight multi-attention heads and a GIN, and
our hybrid model showed superior capabilities even before
conducting any type of learning [30].

FIGURE 5. Top four molecules generated by Geom-SAC with QED of
0.948 embedded in 3D space via the MMFF94 algorithm.

B. SCALABILITY TO A LARGER AND MORE COMPLEX
MOLECULAR STRUCTURES
Our approach is not limited to a certain size of molecules
to generate or optimize. In fact, we designed the MDP to
be very flexible for scalability, for example the user can
modify a parameter for setting the maximum size of the
molecule before training according to his needs, or available
computational/time resources. Moreover, the reward function
can be easily modified to bias the generation towards larger
molecules by giving small reward proportional to the time
steps taken by the molecule, or a final reward proportional
to number of atoms in the obtained molecule. However, the
complexity of the molecule increases with the increasing the
size, specially if the molecule is designed directly in the
3D space. Our approach is designed naturally to handle this
complexity of learning the 3D coordinates of the molecule at
low cost (see section III-A).

C. MORE COMPARATIVE ANALYSIS WITH OTHER
EXISTING METHODS
In terms of computational efficiency, the most expensive step
is the molecular graph encoder, which can be approximated
by the complexity of GAT and GIN. For GAT, time
complexity for computing h(t+1)a features embedding using
a single GAT attention head is O(|V |h(t)a h

(t+1)
a + |E|h(t+1)a ),

where:

• ha denotes the number of input features,
• |V | represents the number of nodes in the graph, and
• |E| signifies the number of edges in the graph.

While the time complexity for GIN is O(|E|) if the adjacency
matrix is sparse, and O(|V |2) otherwise. Moreover, Geom-
SAC is built on soft actor critic approach which is model-free,
online, off-policy, actor-critic reinforcement learning method
known to very sample efficiency. In other words, it can reduce
the computational/time cost if the process of generating data
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is expensive. Regarding the accuracy in real world scenarios,
our model is trained to maximize the entropy in its objective
optimization function. This implies a notion of creativity
in designing or optimizing molecules. In contrast to other
approaches that use transfer learning ([31], [32]), it may suffer
from limited creativity due to the pre-trained layers.

VI. CONCLUSION AND FUTURE WORK
We provided an extension to the SAC algorithm to handle
multi-discrete action spaces, and we used this model to
tackle the problem of searching for new drugs. There are
still many challenges in computer-aided drug design, such
as the need for a better scoring function to assess drug
quality or to fill the gaps in the existing functions. For
example, although QED is widely used, it has limits to the
accuracy with which it gauges the quality of molecules,
even when extended to cases involving invalid molecules
marked by isolated nodes. Furthermore, the efficacy of
computational methodologies is constrained by dataset lim-
itations encompassing inaccuracies, errors, inconsistencies
in molecular frameworks, property imbalances, and related
factors ( [30], [33], [34], [35]). Despite these challenges
affecting the accuracy of the proposed computational
approaches, research efforts continue to advance this field,
yielding incremental improvements regularly. Our approach
offers significant economic benefits for the pharmaceutical
industry, by efficiently generating and optimizing molecules
for drug discovery, Geom-SAC reduces development costs
through early identification of promising drug candidates
and accelerated timelines. This optimization leads to more
effective resource allocation, as pharmaceutical companies
can focus resources on molecules with the highest likelihood
of success. Additionally, Geom-SAC increases success rates
in preclinical and clinical trials by tailoring molecular
structures to specific drug targets and properties. These
combined benefits result in cost savings, faster time-to-
market, and improved competitiveness, enhancing the overall
efficiency and productivity of the pharmaceutical industry.

In future work, we may use a hybrid action space for multi-
discrete and continuous actions to generate 3D geometries
from scratch. Multi-modal data integration will enhance the
drug discovery process, because using diverse sources of
data, such as genomics, proteomics, and metabolomics data,
is crucial. Moreover, the demand for personalized medicine
is arising because it promises higher efficiency than general
drugs.
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