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ABSTRACT Direction-of-arrival (DOA) estimation is a crucial task in wireless communication and radar
systems, with applications spanning beamforming, localization, and target tracking. Conventional methods
often require high-resolution quantization, imposing challenges and complexities, particularly in large-scale
antenna arrays. One-bit DOA estimation has emerged as a groundbreaking alternative, aiming to achieve
accurate results without the need for high-resolution measurements. However, state-of-the-art approaches
either require reconstruction of an unquantized covariance matrix or sparse signal recovery, or are based on
restrictive assumptions such as the equality of power of signal sources. In this paper, a novel approach for
direct one-bit DOA estimation is presented, overcoming the limitations of previous methods by introducing
a generalized one-bit covariance matrix and smoothing it. Through analytical and numerical analyses,
we reveal the shortcomings of the direct application of the one-bit covariancematrix, particularly in scenarios
with unequal signal powers. Comparative simulations demonstrate the superiority of the proposed approach,
especially in scenarios with significant signal-to-noise ratio differences and a limited number of snapshots.

INDEX TERMS Direction-of-arrival estimation, one-bit measurements, sensor array, sources power.

I. INTRODUCTION
In the ever-evolving landscape of wireless communication
and radar systems, direction-of-arrival (DOA) estimation
stands as a critical and fundamental task [1], [2], [3]. Accurate
DOA estimation plays a pivotal role in a wide range of
applications, including beamforming, localization, and tar-
get tracking [4], [5], [6]. Over the years, extensive research
efforts have been directed towards enhancing the perfor-
mance of DOA estimation methods. However, one of the
persistent challenges in DOA estimation is the need for
high-resolution quantization, which often, and especially in
emerging large-scale antenna array systems, requires costly
and complex hardware setups [7]. The power consumption of
analog-to-digital converters (ADCs) increases exponentially
with quantization bit number [8]. Therefore, one-bit ADCs,
composed of simple comparators, are of great interest in
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massive multiple-input multiple-output (MIMO) systems due
to their minimal circuit power consumption [9], [10].
In response to the aforementioned challenge, a break-

through has emerged in the form of one-bit DOA estimation,
a paradigm-shifting approach that seeks to provide accurate
DOA estimation without relying on high-resolution mea-
surements [11], [12], [13]. In [14], an estimator is provided
to obtain the normalized scatter matrix of the unquantized
data from one-bit samples, which is robust against outliers.
In [15], a framework is presented to solve the problem of
DOA estimation from one-bit measurements received by a
sparse linear array. The performance of such a framework is
studied in detail in [11]. Chen et al. [16] modeled the DOA
estimation problem of incoherent signals as a binary clas-
sification problem and reduced the physical complexity by
using sparse arrays. In [17], a gridless approach robust against
off-grid errors and sign inconsistency is provided.

All the works mentioned above rely either on the recon-
struction of the unquantized covariance matrix or the sparse
signal recovery. Huang and Liao [18] showed that the

VOLUME 12, 2024

 2024 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License.

For more information, see https://creativecommons.org/licenses/by/4.0/ 40011

https://orcid.org/0000-0001-8470-7385
https://orcid.org/0000-0002-4041-4027
https://orcid.org/0000-0002-0242-3029
https://orcid.org/0000-0003-1017-1009


A. M. Molaei et al.: Direct One-Bit DOA Estimation Robust in Presence of Unequal Power Signals

covariance matrix of one-bit array measurements can be used
without mediation for DOA estimation based on subspaces
decomposition. However, in modeling and implementation,
they have considered the limiting assumption of equal power
of signal sources. Such an assumption is not necessarily true
in practical applications, because the sources in the environ-
ment can be located at different distances from the array or
radiate different powers [19].
To overcome the above limitation, in this paper, we first

derive the one-bit covariance matrix without restrictions
on the power of the sources, generalized one-bit covari-
ance (GOBC) matrix, and express it in terms of the unquan-
tized covariance matrix. Then, with analytical and numerical
analyses, we will show how the covariance matrix obtained
directly from one-bit measurements may not be reliable
against unbalanced signal-to-noise ratios (SNRs). We will
also show that such a matrix suffers from the problem of
swapping subspaces in conditions of imbalance between
sources’ powers and limits its use for DOA estimation based
on subspaces decomposition techniques. Finally, a solution
based on smoothing the GOBC matrix is presented to signif-
icantly improve the final results.

The rest of this paper is organized as follows. Section II
establishes the data model, providing the main assumptions
for subsequent developments. Section III introduces the pro-
posed generalized direct one-bit DOA estimation approach,
deriving the GOBC matrix and addressing the limitation of
equal power assumptions. Finally, Section IV presents the
performance evaluation through computer simulations, com-
paring the proposedmethodwith existing one-bit approaches.
Notation:Throughout the paper, superscripts (·)T , (·)H and

(·)∗ represent the transpose, conjugate transpose and complex
conjugate, respectively. The symbols j, sign (·), ℜ {·}, ℑ {·},
Q1 {z}, arcsin (·),E {·}, diag (·) and δ (·) denote the imaginary
unit, the sign function, the real part and imaginary part,
the complex-valued element-wise quantization function, the
arcsine function, the expected value operator, the diagonal
matrix and the Dirac delta function, respectively. Im stands
for the m× m identity matrix.

II. DATA MODEL
Consider K narrowband far-field signals impinging onto
a M -element uniform linear array (ULA) from different
directions {θ1, θ2, . . . , θK }, where θk ∈ [−90◦, 90◦) and
k = 1, 2, . . . , K . The inter-element spacing of the array
equals half the wavelength (d = λ

/
2). The array’s data

model under one-bit quantization at time t = 1, 2, . . . , L
can be represented as [20]

y (t) ≜ Q1 {x (t)} = Q1 {As (t) + w (t)} , (1)

where L is the number of snapshots, and x (t) =

[x1 (t) , x2 (t) , . . . , xM (t)]T ∈ CM×1 and y (t) =

[y1 (t) , y2 (t) , . . . , yM (t)]T ∈ CM×1 denote unquantized
array observations and one-bit array measurements, respec-
tively. s (t) = [s1 (t) , s2 (t) , . . . , sK (t)]T ∈ CK×1 and
w (t) = [w1 (t) , w2 (t) , . . . , wM (t)]T ∈ CM×1 represent

signal and noise vectors, respectively, which are assumed to
be uncorrelated and modeled as zero-mean circular complex
Gaussian random processes. The power of the k-th signal
source and the noise power are denoted by σ 2

k and σ 2
w,

respectively. The steering vector of the steering matrix A =

[a (θ1) , a (θ2) , . . . , a (θK )] ∈ CM×K [21] is expressed as
a (θk) = [a1 (θk) , a2 (θk) , . . . , aM (θk)]T ∈ CM×1 with

am (θk) = ejτm, k , (2)

where τm, k = −2π (m− 1) d sin θk
/

λ denotes the propaga-
tion time delay between the first sensor (reference) and the
m-th one, and m = 1, 2, . . . , M . In (1), Q1 {z} is defined
as [22]

Q1 {z} =
1

√
2

(sign (ℜ {z}) + jsign (ℑ {z})) . (3)

III. GENERALIZED DIRECT ONE-BIT DOA ESTIMATION
The arcsine law [14], [23] states that if x (t) is a
circularly-symmetric complex Gaussian vector with zero
mean and covariance Rx = E

{
x (t) xH (t)

}
(consistent with

the assumptions of the data model in Section II), then the
covariance matrixRy = E

{
y (t) yH (t)

}
corresponding to the

signal y (t) (see (1)) is related to Rx as follows:

Ry =
2
π
arcsin

(
R̄x

)
, (4)

where R̄x ≜ D−1/2RxD−1/2 is the normalized covariance of
the unquantized samples x (t), D ≜ diag([Rx]1, 1 , [Rx]2, 2 ,

. . . , [Rx]m,m) and arcsin (z) = arcsin (ℜ {z})+j arcsin (ℑ {z}).
According to (1) and (2), and the uncorrelation of signals

and noise, the
(
m, m′

)
-th entry of the matrix Rx is obtained

from the following equation:

[Rx]m,m′ = E
{
xm (t) x∗

m′ (t)
}

= E

{[
K∑
k=1

am (θk) sk (t) + wm (t)

]

×

[
K∑
k=1

a∗

m′ (θk) s∗k (t) + w∗

m′ (t)

]}

=

K∑
k=1

am (θk) a∗

m′ (θk) σ 2
k + σ 2

wδ
(
m− m′

)
, (5)

where σ 2
k = E

{
sk (t) s∗k (t)

}
, σ 2

w = E
{
wm (t)w∗

m (t)
}
and

m′
= 1, 2, . . . , M . Therefore, D = PIM , where P ≜

K∑
k=1

σ 2
k + σ 2

w, and as a result we have

[
R̄x

]
m,m′

=

K∑
k=1

am (θk) a∗

m′ (θk) σ 2
k + σ 2

wδ
(
m− m′

)
K∑
k=1

σ 2
k + σ 2

w

40012 VOLUME 12, 2024



A. M. Molaei et al.: Direct One-Bit DOA Estimation Robust in Presence of Unequal Power Signals

=


1, m = m′,

K∑
k=1

am(θk )a∗

m′ (θk )σ
2
k

K∑
k=1

σ 2
k +σ 2

w

=

K∑
k=1

am(θk )a∗

m′ (θk )χk

K∑
k=1

χk+1
, m ̸= m′,

(6)

where χk ≜ σ 2
k

/
σ 2
w represents the SNR of the k-th signal.

According to (2) and (6), we have

ℜ

{[
R̄x

]
m,m′

}
=

K∑
k=1

ℜ

{
ej

(
τm, k−τm′, k

)}
χk

K∑
k=1

χk + 1

=

K∑
k=1

cos
(
τm, k − τm′, k

)
χk

K∑
k=1

χk + 1

, m ̸= m′.

(7)

By using the generalized triangle inequality [24], it can be
easily proved that∣∣∣∣∣

K∑
k=1

cos
(
τm, k − τm′, k

)
χk

∣∣∣∣∣ ≤

K∑
k=1

∣∣cos (
τm, k − τm′, k

)∣∣ χk
≤

K∑
k=1

χk . (8)

Therefore, considering (7) and (8), we can conclude that∣∣∣ℜ {[
R̄x

]
m,m′

}∣∣∣
=

∣∣∣∣ K∑
k=1

cos
(
τm, k − τm′, k

)
χk

∣∣∣∣
K∑
k=1

χk + 1

≤

K∑
k=1

χk

K∑
k=1

χk + 1

, m ̸= m′.

(9)

Similarly, for the imaginary part, we can write∣∣∣ℑ {[
R̄x

]
m,m′

}∣∣∣
=

∣∣∣∣ K∑
k=1

sin
(
τm, k − τm′, k

)
χk

∣∣∣∣
K∑
k=1

χk + 1

≤

K∑
k=1

χk

K∑
k=1

χk + 1

, m ̸= m′.

(10)

Since in practice, always
K∑
k=1

χk >0, then
∣∣∣ℜ {[

R̄x
]
m,m′

}∣∣∣≤1

and
∣∣∣ℑ {[

R̄x
]
m,m′

}∣∣∣≤1.
∣∣∣ℜ {[

R̄x
]
m,m′

}∣∣∣= ∣∣∣ℑ {[
R̄x

]
m,m′

}∣∣∣=1,
for m ̸= m′, occurs only when a noise-free scenario is con-
sidered, or the signal power is infinite. Therefore, in practice,
it can be said that for m ̸= m′,

∣∣∣ℜ {[
R̄x

]
m,m′

}∣∣∣ < 1 and∣∣∣ℑ {[
R̄x

]
m,m′

}∣∣∣ < 1. Also, (9) and (10) indicate that the
lower the sum of SNRs, the smaller the upper bounds of

∣∣∣ℜ {[
R̄x

]
m,m′

}∣∣∣ and ∣∣∣ℑ {[
R̄x

]
m,m′

}∣∣∣ (go towards zero). For

example, suppose two signals with DOAs of −40◦ and 10◦

and with SNRs of χ1 and χ1 − 5 dB, respectively, impinge

onto a 10-element array. The values of Rm′ ≜
∣∣∣ℜ {[

R̄x
]
1,m′

}∣∣∣
and Im′ ≜

∣∣∣ℑ {[
R̄x

]
1,m′

}∣∣∣ for different χ1s are illustrated

in Fig. 1. The curves in Fig. 1 confirm the theoretical findings
derived above.

FIGURE 1. The magnitude of the real and imaginary parts of the
correlation coefficient versus different SNRs.

According to the derived bounds in the previous
paragraph, the convergence of Taylor series expan-
sions arcsin

(
ℜ

{[
R̄x

]
m,m′

})
and arcsin

(
ℑ

{[
R̄x

]
m,m′

})
are guaranteed [25]. In addition, if

∣∣∣ℜ {[
R̄x

]
m,m′

}∣∣∣ and∣∣∣ℑ {[
R̄x

]
m,m′

}∣∣∣ are small enough, or equivalently, the sum of

the SNRs is sufficiently low, the high-order terms of the arcsin
expansion can be omitted and according to (4) we write:[

Ry
]
m,m′ =

2
π
arcsin

([
R̄x

]
m,m′

)
≃

2
π

[
R̄x

]
m,m′ , m ̸= m′. (11)

For m = m′, since according to (6) and (4),
[
R̄x

]
m,m′ =[

Ry
]
m,m′ = 1, therefore, the above approximation cannot be

applied. However, by rewriting (11) into the form (12)

Ry − IM ≃
2
π

(
R̄x − IM

)
, (12)

the following closed form (GOBC matrix) can be obtained:

Ry ≃
2
π
R̄x + 0.36IM . (13)

VOLUME 12, 2024 40013



A. M. Molaei et al.: Direct One-Bit DOA Estimation Robust in Presence of Unequal Power Signals

Let v ∈ CM×1 be an eigenvector of Rx corresponding to an
eigenvalue λ , then Rxv = λv [26]. Therefore, we can write

Ryv ≃

(
2
π
R̄x + 0.36IM

)
v

=

(
2
π
P−1/2IMRxP−1/2IM + 0.36IM

)
v

=
2

πP
Rxv + 0.36IMv =

2
πP

λv + 0.36v

=

(
2

πP
λ + 0.36

)
v. (14)

From (14), we can conclude that although the eigenval-
ues of Ry are obtained by scaling the eigenvalues of Rx
by 2

/
(πP) and adding 0.36, the eigenvectors of Ry and Rx

are almost the same. As a result, for DOA estimation
methods based on eigenvectors, such as subspace tech-
niques, the GOBC matrix can be used directly, consid-
ering applied approximations. However, considering that
measurements y (t), unlike measurements x (t), are lim-
ited to only four values (±1 ± j)

/√
2 (according to (1)

and (3)), the data of Ry, which in practice are estimated

as R̂y =
∑L

t=1 y (t) yH (t)
/
L, experience faster (high-

frequency) changes, especially when the number of snapshots
is small. The results of the simulations that will be pre-
sented in Section IV show that the direct application of
the GOBC matrix may lead to the phenomenon of swap-
ping subspaces under conditions where the powers of the
received signals are too unbalanced. In particular, the greater
the differences of signals’ powers, the greater the differ-
ence between the eigenvalues corresponding to the signals
(i.e. λ1, λ2, . . . , λK ); and the eigenvalues of the weaker
signals are closer to the λK+1, λK+2, . . . , λM , where λ1 ≥

λ2 ≥ . . . ≥ λM . This leads to inter-subspace leak-
age [27], in which a share of the true signal subspace resides
in the estimated noise subspace. Therefore, some steering
vectors may not be completely orthogonal to the noise sub-
space. Ultimately, this may cause DOAs to be incorrectly
estimated. Note that this becomes more acute when the esti-
mation relies on low-resolutionmeasurements (quantization).
To overcome this problem, we apply to the data R̂y, before
subspace decomposition, a smoothing operation that acts as a
low-frequency filtering. This preprocessing step reduces the
impact of high-frequency changes in the data, making the
subsequent subspace decomposition more robust and accu-
rate. After applying the filtering, an estimate of the smoothed

GOBC matrix R̂y_Smoothed is obtained. For this purpose, vari-
ous smoothing filters such as moving mean, moving median,
Gaussian, etc. [28] can be employed.

DOAs can be estimated by the following spectral search
function:

θ̂k = argmax
θ

[
aH (θ)Qn_SmoothedQH

n_Smootheda
H (θ)

]−1

︸ ︷︷ ︸
f (θ)

,

(15)

FIGURE 2. Comparison of the estimated spatial spectra of various
methods when the SNRs of the signals are different; (a) θ2 = 3.5◦,
(b) θ2 = 5.5◦.

where

R̂y_Smoothed = Qs_Smoothed3s_SmoothedQH
s_Smoothed

+ Qn_Smoothed3n_SmoothedQH
n_Smoothed, (16)

where Qs_Smoothed, spanning the signal subspace of
R̂y_Smoothed, consists of the eigenvectors related to the diago-
nal elements of 3s_Smoothed. Similarly, Qn_Smoothed consists
of the eigenvectors related to the diagonal elements of
3n_Smoothed, which spans the noise subspace of R̂y_Smoothed.

IV. PERFORMANCE EVALUATION AND DISCUSSION
In this section, the results of computer simulations to verify
the performance of the proposed approach (generalized direct
one-bit DOA estimation) are presented along with the dis-
cussion. Also, comparisons are made with one-bit multiple
signal classification (MUSIC) with covariance matrix recon-
struction [23], MUSIC with unquantized measurements [29]
and one-bit MUSIC algorithm [18]. A 10-element ULA is
considered. The signals and noise are independent and identi-
cally distributed complexGaussian processeswith zeromean.
In all simulations, σ 2

w = 1. Unless otherwise specified,
L = 1000, and two narrowband signals impinge on the
array from θ1 = −10◦ and θ2 = 3.5◦. In all methods,
the step size of the angle search is 0.1◦. To smooth the
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FIGURE 3. Comparison of the estimated spatial spectra of various
methods when the SNRs of the signals are the same;
(a) χ1 = χ2 = −10 dB. Note that the same performance of the blue and
red spectra in the case where the SNRs of the signals are equal and low is
consistent with the analysis of [18], (b) χ1 = χ2 = 10 dB.

GOBC matrix, we have used the Gaussian filter [30], which
provided the best performance in our experiments. All results
are obtained from averaging NT = 1000 Monte Carlo runs.
To evaluate the accuracy of the estimates, the root-mean-
square error (RMSE) criterion with the definition of

RMSE =

√∑K

k=1

∑NT

i=1

(
θ̂k, i − θk

)2/
NTK

is used, where θ̂k, i represents an estimate of θk in the
i-th trial [31].
Fig. 2(a) shows the normalized estimated spatial spectra of

various methods when the SNRs of the signals are different
(the first is 10 dB and the second is −10 dB). As can be
seen, the output of the proposed approach (green diagram) has
a better resolution than other one-bit approaches, although
logically the best resolution belongs to unquantized MUSIC
(black diagram). More noteworthy is the performance of the
one-bit MUSIC method (red diagram). It can be seen that
the estimated DOA of the second signal with lower SNR
has a significant error (see right peak). Fig. 2(b) shows the
simulation outputs when the second source is moved to 5.5◦

(keeping other parameters constant). Again, the peaks of all
the methods are around the correct DOAs, except for the
one-bit MUSIC method. The estimated DOA of the sec-
ond source, like Fig. 2(a), is about 31.5◦. In other words,

FIGURE 4. Spatial spectra of one-bit MUSIC algorithm [18] in three
different cases. χ1 = 10 dB and χ2 = −10 dB.

FIGURE 5. Allocation of signal and noise subspaces in one-bit MUSIC
algorithm [18] corresponding to Fig. 4. The eigenvectors 1 to 10
corresponding to the largest to smallest eigenvalues are sorted;
(a) Case 1, (b) Case 2, (c) Case 3.

in the case of the one-bit MUSIC method, although the
original DOA of the second source is changed, there is no
change in the estimated DOA. Now let us consider Fig. 3.
Fig. 3(a) and Fig. 3(b) show the outputs of the mode where
the SNRs of both signals are χ1 = χ2 = −10 dB
and χ1 = χ2 = 10 dB, respectively. This time, the one-bit
MUSIC method works correctly (whether the SNR is low
or the SNR is high). Considering the above, it can be con-
cluded that the one-bit MUSIC method [18], which is a direct
estimation approach from one-bit data, fails when the SNRs
are different. In Section III, it was stated that the reason for
this issue is the problem of swapping subspaces. To confirm
this, we have demonstrated three different cases in Fig. 4.
In all three cases, χ1 = 10 dB and χ2 = −10 dB. Fig. 5
shows the allocation of signal and noise subspaces in the
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FIGURE 6. Comparison of RMSEs of various methods versus the SNR of the second source when χ1 = 10 dB; (a) L = 100, (b) L = 500, (c) L = 1000.

corresponding cases. Case 1 represents the normal state of
decomposition of signal and noise subspaces, where the two
eigenvectors corresponding to the largest eigenvalues of the
covariance matrix in [18] constitute the signal subspace, and
the remaining eigenvectors form the noise subspace [18].
In this case, only one of the peaks (corresponding to the
stronger signal) is correct (see Fig. 4). In Case 2, although
there are only two sources, three eigenvectors corresponding
to three larger eigenvalues are considered as the signal sub-
space. The result is that three peaks can be identified in Fig. 4,
the two on the left side are correct and the right peak does
not correspond to any signal. Finally, considering Case 3,
we find that the problem is in the eigendecomposition of the
covariance matrix in the approach [18] so that since the SNR
of the second signal is significantly different from the SNR
of the first one, the eigenvector corresponding to the weaker
signal is swapped with the strongest component of the noise
subspace. As we showed in Fig. 1, the proposed approach
does not suffer from such a practical problem.

Now, the estimation accuracy in various methods is com-
pared. In this experiment, the SNR of the first source is
assumed to be fixed and equal to 10 dB. By changing the SNR
of the second source from −10 to 10 dB, the RMSE values
for different numbers of snapshots are calculated in Fig. 6.
From the results, it can be seen that when the SNR differ-
ence between two sources is more than about 10 dB, the
proposed one-bit approach performs much better than other
one-bit methods, especially when the number of snapshots
is less. This is consistent with the explanation in Section III.
Also, when the SNRs of the sources are close to each other,
the proposed approach exhibits competitive performance.
In addition, according to the theoretical analyzes related to
correlation coefficient and power in Section III, when the sum
of SNRs is lower (compared to the case where the sum of
SNRs is higher), we expect the performance of the proposed
approach to be closer to the outputs of unquantized data.
The results of Fig. 6 confirm this. It is quite natural that
the lowest RMSEs always belong to the results obtained by
unquantized data (with infinite precision). For further inves-
tigation, in Fig. 7, a 3-D surface plot of the performance of
each method is extracted. In Fig. 7, in addition to changing

FIGURE 7. 3-D surface plot of the performance of various methods.
L = 100. Different methods are distinguished by different edge line
colors. Faces and colorbar are color-coded according to the RMSE range.

FIGURE 8. Comparison of RPs of various methods versus angular gap 1.

the SNR of the second signal from −10 dB to 10 dB, the
DOA of the second source is also variable (between 2.5 and
4.5 degrees). DOA and SNR of the first signal are still fixed.
It is still observed that, in general, the proposed approach,
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among the one-bit methods, has the closest performance to
the unquantized data output. It can also be seen that gener-
ally increasing the spatial distance (increasing the angular
gap between the sources) decreases the RMSE, which is
reasonable.

In the last experiment, the resolution probabilities
(RPs) [18] of the algorithms are compared. For this pur-
pose, it is assumed that the true DOAs of the two sources
are θ1 = −10◦ and θ2 = −10◦

+ 1, and have SNRs
of 10 and −10 dB, respectively, where 1 ∈ [1◦, 15◦]
represents the angular gap between the two sources. In each
independent run, it is assumed that the test is successful if the
estimation errors of bothDOAs are less than 0.51 (themiddle
angle of the two sources). Therefore, in the simulation,
we have defined the RP as the ratio of the number of success-
ful trials (NS), to the total number of runs, i.e. RP ≜ NS

/
NT.

The results are shown in Fig. 8. For both the number of
snapshots equal to 100 and 1000, the proposed approach
provided the best performance using one-bit measurements.
Similar to the previous experiment, it can be seen that in fewer
snapshots, the performance of the proposed approach is closer
to the output of unquantized data. The more important point
is that the RP values corresponding to the one-bit MUSIC
algorithm, regardless of the number of snapshots, are always
equal to zero, which means that the method [18], in a more
practical scenario, where the powers of the signals are not
necessarily equal, is absolutely not reliable.

V. CONCLUSION
In this paper, we first derived the GOBC matrix. Then,
we highlighted the limitations of directly applying the one-bit
covariance matrix, particularly in the presence of unbalanced
SNRs, leading to the swapping of subspaces. Furthermore,
we introduced a solution involving the smoothing of the
GOBC matrix, significantly improving the final DOA esti-
mation results. The presented analytical findings and numer-
ical simulations demonstrated the efficacy of the proposed
approach in overcoming practical challenges associated with
unequal signal powers for one-bit DOA estimation. Com-
parative simulations with existing methods underscored the
superiority of the proposed method, especially in scenar-
ios with significant SNR differences and a limited number
of snapshots. The research contributes a robust solution to
enhance the reliability of one-bit DOA estimation in practical
applications.
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