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ABSTRACT Quantum computing emulators are widely used for testing quantum algorithms ideally
before executing them on real quantum processors. Therefore, researchers are very active in developing
emulators primarily on FPGAs. This project is complex and requires a long time and a specific expertise
if carried out following the low-level design approach using a Hardware Description Language (HDL).
This paper describes, step by step, the process of quick designing a quantum gate emulator using a much
simpler high-level design approach. It begins with the development of a quantum gate simulator in the
MATLAB® environment, and subsequently translates it into an HDL design for FPGA implementation by
using the MATLAB’s HDL Coder toolbox. However, while code translation may seem straightforward using
MATLAB toolboxes, it becomes a non-trivial task when transitioning from a quantum computing simulator
to an HDL-based quantum computing emulator. Thus, it was necessary to conduct an in-depth study to
implement a quantum computing simulator in MATLAB, enabling an error-free translation of HDL code.
The developed method enables the designer to leverage the highly useful and straightforward model-based
design approach offered by MATLAB, rather than directly the more complex HDL approach, returning a
highly optimized HDL code for configuring the FPGA as a quantum computing emulator. This topic makes
the design of quantum emulators on FPGA quick, reliable, optimized and without the need for specialized
hardware design skills. Additionally, two implementation examples have been described using Altera/Intel
FPGA on development boards DE1_SoC and DE5a-NET DDR4 provided by Terasic Inc.
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I. INTRODUCTION
Today, we are at the very beginning of a quantum revolu-
tion [1]. Companies such as IBM [2], Rigetti [3], D-Wave [4]
and others, are investing in building physical quantum com-
puters and exposing programmable interfaces to users around
the world through cloud solutions.

In a recent paper [5], it is said that, thanks to the 53-
qubit programmable quantum processor Sycamore, it was
possible to complete a computation in 200 seconds that would
take approximately 10,000 years for the world’s most pow-
erful supercomputer to solve. This is called the quantum
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supremacy [6], [7]. The qubit is the quantum information unit
and stands for ‘‘quantum bit’’.

However, it is important to highlight that quantum com-
puters are not meant to entirely replace classical ones. Their
primary goal is to address specific and computationally
demanding problems, such as the integer factorization, sim-
ulating quantum systems [8], and other applications that
have been under study in recent years [9]. In most applica-
tions these two types of computation, classical and quantum,
are complementary because the quantum computer collab-
orates with the classical computer. In fact, the classical
computer prepares the computation to be conducted by the
quantum computer and then retrieves the result from it for
interpretation.
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Anyway, the enormous potential and power of quantum
computing drives researchers around the world to develop
new algorithms using to the massive parallelism in quantum
computation.

At the same time, real quantum machines still have a
long way to go before they become truly universal, stable,
and scalable. Spontaneous decoherence, state preparation and
measurement faults, or the engineering challenge of creating
entangled states, are serious problems to solve in the real
world.

Even if, as it was suggested by Richard Feynman and stated
by the Quantum Strong Church–Turing Thesis, only quantum
machines are capable of efficient emulation of quantum cir-
cuits [1] or, in other words, there is no physical way to achieve
the quantum speedup on classical, sequential machines, the
role of quantum emulation is crucial for debug purposes.

For this reason, quantum emulators are still being designed
and built to help on different frontiers of the quantum
revolution.

Despite the presence of quantum computing simulators,
including the recent MATLAB add-on ‘‘Quantum computing
toolbox’’ [10], there are significant differences between a
simulator and an emulator using dedicated hardware, such
as Field-Programmable Gate Arrays (FPGAs) that can be
outlined as follows.

Typically, quantum simulators work at a higher level of
abstraction, using classical computing resources to simulate
the behaviour of a quantum system. They model quan-
tum gates, circuits, and algorithms using classical bits and
algorithms to simulate the probabilistic nature of quantum
systems. Differently, an emulator implemented on an FPGA
aims to replicate the quantum behaviour more closely by
using the parallelism and reconfigurability of the FPGA
hardware. It tries to mimic quantum operations at a lower
level, often involving the direct representation of qubits and
quantum gates in hardware.

In fact, the primary focus of a quantum computer emulator
is to ensure that every operation is naturally parallelized,
in a way that closely emulates the quantum nature of the
computation, and this aim is accomplished thanks to the
reconfigurable hardware of FPGAs providing inherent paral-
lelism, enabling simultaneous execution of multiple quantum
operations. Simulators are generally slower than emulators,
as they rely on classical computation. They are limited by
the processing power of classical processors (CPUs) and
are constrained by the need to simulate quantum parallelism
using classical parallelism.

Moreover, the simulation of any quantum algorithm on a
standard computer will often require exponentially more time
than it would on a quantum machine. While it is impossible
to bypass that need for resources when emulating quantum
circuits, by using FPGAs can shift the weight from time to
hardware complexity.

In addition, the reconfigurable nature of FPGAs allows
to perfect resource usage for more customization of quan-
tum operations at the hardware level and supplies a balance

between flexibility and performance, making FPGA emu-
lators more efficient in terms of both space and power
consumption compared to classical simulators. This can be
helpful for applications where fine-tuning of quantum gates
is crucial.

The FPGA hardware emulates the behaviour of a real
quantum system, enabling the efficient execution of quantum
algorithms while maintaining their natural time complexity.
This is essential for evaluating the performance and practi-
cality of such algorithms in a simulated quantum computing
context.

Finally, a quantum computing emulator does not have
to consider the typical undesired phenomena of the real
quantum world. Its sole aim is to provide users with the con-
venience of running a universal emulator that yields results
akin to those of a quantum machine, without needing to
address error correction and other undesired side effects.
Therefore, a quantum emulator implements perfect qubits.

Thanks to emulators, users are enabled to design and run
on quantum algorithms without the need to own an actual
quantum computer.

While it is possible to implement quantum computing
emulators on Graphical Processing Units (GPU), which are
well-suited for intensive calculations, there are, however,
some limitations encountered.

In fact, although GPUs are efficient in handling parallel
operations, they may encounter constraints in optimizing for
specific quantum computing algorithms. On the other hand,
FPGAs offer greater flexibility in optimization for specific
algorithms.

Moreover, GPUs may have higher latency compared to
FPGAs in certain computational scenarios, especially when
dealing with very specific data streams.

This is why the use of FPGAs is widespread in the scien-
tific community, and it is the same hardware that has been
chosen for use in this work.

In fact, in scientific literature, there are several works and
papers related to the design of quantum computing emulators
implemented on FPGA, but the approach followed, i.e., the
hardware design approach by using the Hardware Descrip-
tion Languages (HDL), is always very complex and requires
uncommon skills.

The purpose of this paper is to outline a dependable, high-
level designmethodology for a quantum computing emulator,
which is then implemented on an FPGA. This process begins
with designing a quantum logic gate simulator in the MAT-
LAB environment and involves translating it into an HDL
design for FPGA implementation.

The described approach offers significant advantages
compared to a low-level hardware design of FPGAs configu-
ration.

In fact, the MATLAB environment allows for a
model-based design method, which is much simpler and
widely used in the scientific community compared to the
hardware-based approach required when designing directly
in any hardware description language. This approach also

41318 VOLUME 12, 2024



A. Giorgio: Project and Implementation of a Quantum Logic Gate Emulator on FPGA

proves to be much more effective for project debugging and
much faster in reaching the final implementation.

Additionally, the MATLAB code translator toolboxes
enable the generation of highly optimized code tailored to the
specific target hardware. Achieving this level of optimization
is much more challenging when working directly in HDL and
requires uncommon design skills. With the method devised
and described in this paper, highly optimized HDL code can
be obtained more easily.

Finally, the proposed approach is ‘‘cross-factory’’ because
it applies to FPGAs from different manufacturers.

The procedure to translate a project developed in MAT-
LAB into an HDL design is theoretically simple when
executed with the ‘‘HDL Coder’’ toolbox, which is part of
the MATLAB software. However, serious difficulties arise if
the aim is to obtain the HDL design of quantum logic gates
starting from their MATLAB models, and it becomes a real
challenge if a fixed-point number representation is used. This
representation allows for a dramatic reduction in the need
for FPGA resources, while MATLAB functions work with
floating-point double-precision arithmetic.

If a designer attempts to automatically convert the models
of quantum logic gates from MATLAB code to HDL using
the ‘‘HDLCoder’’ and the ‘‘Fixed-point designer’’ MATLAB
toolboxes, the process fails.

This happens for several reasons.
Firstly, MATLAB functions are employed in the imple-

mentation of quantum gates, many of which are unsuitable
for code translation. Not all MATLAB functions, particularly
trigonometric and exponential functions widely used in simu-
lating quantum gates, support automatic code translation. For
each function, it’s possible to check the documentation web
page’s ‘‘Extended capabilities’’ section to ascertain whether
it supports automatic code translation or not.

If a function is not supported by the conversion tool
it is necessary to replace it with a Look-up Table (LUT)
implementation or a CORDIC (COordinate Rotation DIgital
Computer) implementation.

Secondly, there are functions introduced by the Fixed-Point
Designer tool that are unsupported for code translation.
Therefore, if the ultimate goal is to translate the code into
HDL, it is not advisable to use the Fixed-Point Designer
for the automatic conversion from floating-point to fixed-
point arithmetic. Instead, it is necessary to write the code
of the quantum simulator directly in fixed-point arithmetic.
Additionally, subscripting and casting procedures must be
employed during coding to optimize resource consumption
in hardware (FPGA) implementations. These procedures are
unnecessary when designing only a simulator without the
intention of translating it into HDL code.

Thirdly, not all MATLAB functions used to simulate quan-
tum gates support fixed-point arithmetic, thus necessitating
proper replacement.

Fourthly, for the MATLAB project to be suitable for the
automatic generation of HDL code, it must be structured
meticulously, distinguishing the function that will undergo

translation—the actual algorithm—and a MATLAB script in
which the function will be called. This listing will constitute
the testbench file.

For these reasons, simply writing a quantum computing
simulator in MATLAB without adhering to proper rules
and procedures is insufficient for generating optimal and
error-free HDL code translation.

Therefore, the procedure to translation from a quantum
computing simulator project developed in MATLAB to a
quantum computing emulator developed in HDL is any-
thing but straightforward and obvious. It requires a deep
and highly detailed study, such as the one conducted and
described in this paper, to make the procedure smooth and
error-free.

Currently, there is no documentation on this topic.
The author specifically studied and tuned the procedure for

the development of MATLAB code for quantum computing
simulation that is oriented towards rapid, optimized, and
error-free translation into HDL code.

Therefore, the importance and novelty of this paper are
twofold. Firstly, it proposes a high-level quantum emulator
design procedure based on the model-based design approach
characteristic of MATLAB, a concept not previously pre-
sented in existing literature. Secondly, it defines rules for
designing a quantum computing simulator in MATLAB,
specifically tailored for code translation into HDL.

In this paper, the author describes the complete design flow
and the step-by-step procedure for creating a quantum com-
puting simulator in MATLAB, specifically oriented towards
code translation. It culminates in the implementation of a
highly optimized quantum computing emulator on an FPGA.
Importantly, this process does not require in-depth knowledge
of HDL or FPGA design method.

The procedure has been applied to design and implement a
single qubit and a two-qubit emulator on Altera/Intel FPGAs.

Therefore, in Section II, the theoretical background regard-
ing qubits and quantum logic gates has been described.
In Section III, references found in the literature related
to the design and implementation of quantum computing
emulators are reviewed, highlighting that no paper – at the
best of the author knowledge – deals with the proposed
approach. Section IV provides a detailed explanation of the
new approach. Section V presents the hardware implementa-
tion of single qubit and two-qubit emulators. In SectionVI the
obtained results are discussed. Finally, in Section VII, there
are conclusions and final remarks.

II. THEORETICAL BACKGROUND ABOUT QUBIT AND
QUANTUM LOGIC GATES
Classical information is founded on the concept of bits -
logical, dimensionless values - that can be either 0 or 1. These
values correspond to two physical voltage values, such as 0 V
and 5 V, and are manipulated by logic gates.

Logic gates are circuits that physically implement logical
operations such as AND, OR, and NOT (or INVERTER).
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Quantum computers are based on the qubits that behave
according to the quantum theory and are processed by quan-
tum logic gates.

Qubits are ‘‘prepared’’ in a linear combination of two
distinct states that correspond to the two classical bits 0 and 1.
In general, a quantum system simultaneously exists in a
superposition of all its possible states, according to the prin-
ciple of superposition of states. This results in having an
immense amount of information (theoretically infinite) even
about a single quantum information carrier compared to clas-
sical bits.

Superposition is not the only property of quantummechan-
ics used in quantum computation. For example, considering
the measurement principle of quantum mechanics, until a
measurement is performed on the system, the system itself
stays in an ‘‘indefinite’’ state; at the time of measurement,
the system’s state collapses (reduces) into one of the possible
base states defined for the system, with a certain probability.
Therefore, themeasurement is an irreversible operation on the
quantum system and the quantum computation perspective
is probabilistic, in contrast to the deterministic approach of
classical computation. The quantum computer can be seen as
a processing unit that can simultaneously processmany inputs
and producing probabilistic outputs.

Due to measurement, the information reverts back to a
classical nature. This occurs due to another characteristic of
the quantum world: quantum interference, which increases
the probability of obtaining the correct answer to the problem
being solved.

A relevant feature for the implementation of quantum algo-
rithms is the ‘‘Entanglement.’’ Entangled quantum elements
are ‘‘intertwined’’, intrinsically connected.

The elements of the quantum system are described by a
single wave function, not separable into distinct functions.

The greater computational power of quantum computers
arises from quantum parallelism, which allows a quantum
computer to execute the same algorithm on all logical states
simultaneously, using the superposition of states. This is a
powerful property that no classical computer can achieve.

Consequently, calculations can be performed simultane-
ously on all information - i.e., on all 2n quantum states
superimposed - stored in a n-qubit quantum register.

The result is that parallel computation can be achieved
using a single quantum hardware module. This means that
a quantum computer can, in a single computation step, per-
form the same mathematical operation on 2n different input
numbers encoded in a coherent superposition of n qubits.
To achieve the samework, any classical computer must repeat
the same computation 2n times, or it requires 2n different
processors working in parallel.

In order to understand the process of designing a quantum
computing simulator in the MATLAB environment and sub-
sequently translating it into a quantum computing emulator
for implementation on an FPGA, it is essential to grasp
the operations carried out by quantum logic gates. This
entails understanding the fundamental notation used and the

algebraic operations executed on qubits, which constitute the
foundation of the functionality of quantum logic gates.

A. QUBITS, FUNDAMENTAL NOTATION AND OPERATIONS
In quantum physics, it is customary to use Dirac notation,
which involves the use of symbols known as ‘‘bra’’ and ‘‘ket’’
represented as ⟨ | and | ⟩ respectively.

The symbol | ⟩ is known as a ket, it is a column vector, and
it stands for a quantum state vector.

The symbol ⟨ | is called a bra, and it stands for a quantum
state vector to which the complex conjugation operation is
applied.

Subsequently, Dirac notation will be extensively used,
starting from the algebraic definition of a quantum bit.

From a mathematical perspective, being a qubit a linear
combination of 0 and 1 states, is expressed as in (1):

|ψ⟩ = α|0⟩ + β|1⟩ (1)

where coefficients α and β ∈ C being C the field of complex
numbers.

The vectors |0⟩ and |1⟩ form an orthonormal basis, also
known as the standard computational basis, as in (2) and (3),
respectively:

|0⟩ =
[
1 0

]
(2)

|1⟩ =
[
0 1

]
(3)

The complex coefficients α and β are known as probability
amplitudes, and their squared magnitudes are the probability
of measuring the states |0⟩ and |1⟩, respectively. This leads to
the normalization condition in (4):

|α|
2
+ |β|

2
= 1 (4)

This condition arises because the sum of probabilities of all
possible measurement outcomes must be equal to 1. There-
fore, a qubit is a unit vector, i.e., its norm is equal to 1, in a
complex two-dimensional vector space C2.
A single qubit can be graphically represented using the

Bloch sphere, a unit-radius sphere where points on its surface
correspond uniquely to qubit states, as shown in Fig. 1.

FIGURE 1. Bloch sphere.

The ‘‘north pole’’ corresponds to the state |1⟩, the ‘‘south
pole’’ to |0⟩, and other points are superpositions of the states
|0⟩ and |1⟩.

41320 VOLUME 12, 2024



A. Giorgio: Project and Implementation of a Quantum Logic Gate Emulator on FPGA

Typically, a point on the surface of a sphere in
three-dimensional space R3 is represented in spherical coor-
dinates (ρ, ϕ, θ ), where ρ is the distance from the point
on the sphere to the origin of the reference system (always
ρ = 1), θ denotes the angle formed by the point on the sphere
inR3 with the positive z-axis, and ϕ is the angle formed by the
projection of the vector onto the (x, y) plane with the positive
x-axis.

In the case of a qubit, it is proper to represent the ket
using the standard computational basis and highlighting the
relationship between it and the polar coordinates. This results
in (5):

|ψ⟩ = eιγ
(
cos

(
θ

2

)
|0⟩ +eiϕ sin

(
θ

2

)
|1⟩
)

(5)

Holding the condition:

0 ≤ θ ≤ π and 0 ≤ ϕ ≤ 2π

The factor eiγ is known as the global phase.
The inner product is a binary operation denoted by the

symbol (·,· ), which takes values in the field of the vector
space itself: (·,· ): V × V → K.

The field K can be defined in several ways. For the
purposes of quantum mechanics calculations, the field of
complex numbers C is considered. Given two vectors v and
u, being respectively:

v = (a1, a2, . . . , an)

u = (b1, b2, . . . , bn)

the inner product is defined in (6):

(v, u) =

∑
a∗

i bi for i = 1 to n (6)

Two vectors are said to be orthogonal if and only if their
inner product is zero.

The norm of a vector is defined and denoted by the symbol
∥ · ∥ as in (7):

∥v∥ =
√
(v, v) (7)

A unit vector is a vector with a norm equal to 1.
An orthonormal basis is a basis in which its vectors are unit

vectors and pairwise orthogonal.
The inner product can be rewritten as ⟨|⟩.
The Hilbert space is a mathematical entity that plays a

fundamental role in the formalization of quantum mechanics
theory: the first postulate of the theory states that to every
quantum system, one associates a Hilbert space, typically
denoted asH.
A Hilbert space is a vector space equipped with an inner

product ⟨· |·⟩ and is complete with respect to the metric
induced by the norm ∥ · ∥.
A metric space is said to be complete if all Cauchy

sequences of vectors in the vector space converge to an
element in the space; for vector spaces of finite dimensions,
this condition is always satisfied.

In quantum computation, the vector spaces dealt with are
always of finite dimensions; therefore, in this context, the
terms ‘‘Hilbert space’’ and ‘‘vector space’’ are equivalent.

A quantum system with multiple interacting qubits forms
a quantum register and the tensor product operator supplies a
rigorous mathematical description of the quantum register.

Given two vector spaces V and W of dimensions n and m,
respectively, the tensor product space V ⊗ W is the set of
vectors in (8):

v⊗ w =

 v1
...

vn

⊗

w1
...

wn

 =



v1

w1
...

wn


...

vn

w1
...

wn




(8)

where v ∈ Vew ∈ W
The dimension of the tensor product space will be the

product of the dimensions of the spaces that compose it.
The properties of the tensor product between vectors,

which will be useful later, are highlighted.
For every |v⟩ ∈ V and |w⟩ ∈ W with z as a scalar:

z(|v⟩ ⊗ |w⟩) = (z|v⟩) ⊗ |w⟩ = |v⟩ ⊗ (z|w⟩) (9)

For every |v1⟩ , |v2⟩ ∈ V and |w⟩ ∈ W:

(|v1⟩ + |v2⟩)⊗ |w⟩ = |v1⟩ ⊗ |w⟩ + |v2⟩ ⊗ |w⟩ (10)

For every |v⟩ ∈ V and |w1⟩ , |w2⟩ ∈ W:

|v⟩ ⊗ (|w1⟩ + |w2⟩) = |v⟩ ⊗ |w1⟩ + |v⟩ ⊗ |w2⟩ (11)

The tensor product is bilinear, meaning it is linear in each
argument:

|v⟩ ⊗ (a |w1⟩ + b |w2⟩) = a|v⟩ ⊗ |w1⟩ + b|v⟩ ⊗ |w2⟩ (12)

(c |v1⟩ + d |v2⟩)⊗ |w⟩ = c |v1⟩ ⊗ |w⟩ + d |v2⟩ ⊗ |w⟩ (13)

where a, b, c, d ∈ C (complex numbers).
A quantum register is a space of quantum states generated

by n qubits.
From a mathematical perspective, a quantum register is an

element of the Hilbert space C2n, with a basis that consists of
the tensor product of 2n qubits in (14):

|i1⟩ ⊗ |i2⟩ ⊗ . . .⊗ |in⟩ (14)

The terms |ij⟩ represent the bases of the Hilbert space
associated with each qubit. The equivalent notation is also
used for the basis of the register |i1i2 . . . in⟩.

Considering, for example, a register composed of 2 qubits,
the system is represented by the tensor product of two kets
|i1⟩ and |i2⟩; therefore, the state of the quantum register is as
in (15):

|ψ⟩ = α1|00⟩ + α2|01⟩ + α3|10⟩ + α4|11⟩ (15)

VOLUME 12, 2024 41321



A. Giorgio: Project and Implementation of a Quantum Logic Gate Emulator on FPGA

Like the case of a single qubit, the normalization condition
also holds for the quantum register as in (16):∑

|αK|
2

= 1 (16)

where the sum is over all possible combinations of α values,
ranging k from 1 to 2n.
In the case of measurement on a single qubit, the state of

the register will be changed to a new state conditioned on the
measurement result itself, as in (17):∣∣ψ ′

〉
=
α1 |00⟩ + α2|01⟩√

|α1|
2
+ |α2|

2
(17)

Equation (17) shows the state in which the system occurs
when a measurement is performed on the first qubit, resulting
in an outcome of 0.

In the case where the bit 1 is measured, the state of the
register results as in (18):∣∣ψ ′′

〉
=
α3 |10⟩ + α4|11⟩√

|α3|
2
+ |α4|

2
(18)

In both cases, the vector is normalized to have unit norm.
It is not always possible to write the state of a quantum

register as the tensor product of the individual qubits taken
separately. These quantum states are called entangled states.
In other words, a state is said to be ‘‘Entangled’’ if and only if
it is inseparable, meaning that given |ψ⟩, the ket of a quantum
system consisting of n qubits cannot be expressed as in (19):

|ψ⟩ = α1v1 ⊗ α2v2 ⊗ . . .⊗ αnvn (19)

With αi ∈ C standing for the probability amplitudes of the
i-th qubit and vi being one of the two computational basis
states associated with the same qubit.

In an entangled state, the measurement of one qubit affects
the probability of measuring the others.

For example, consider an entangled state of a 2-qubit reg-
ister in (20):

1
√
2
(|00⟩ + |11⟩) (20)

By measuring the state of the first qubit, which has a 50%
chance of collapsing into either state 0 or state 1, is obtained
also the information about the state of the second qubit: it is
the same value as the first. The measurement of the system
not only changes the behaviour of the first element but also
influences the entire system, thereby defining the state of the
second qubit as well.

B. QUANTUM LOGIC GATES
A functionally complete set of logic gates in classical com-
puting supplies all the necessary elements for any digital
circuit design. Similarly, in quantum computing, defining
elementary quantum circuits, known as quantum logic gates,
and finding a subset of them that forms a functionally com-
plete system, allows for the implementation of any quantum
operation.

Quantum logic gates are transformations that act on a
Hilbert space of dimension 2n, where n is the length of the
input vector or, equivalently, as 2n × 2n matrices with values
in C.

Operations on qubits can be classified as operations on
single qubits or multiple qubits.

For the latter, they can be reduced to a sequence of oper-
ations that act on at most two qubits within the considered
vector.

Therefore, in this section are described all elementary
quantum logic gates along with their mathematical formalism
and operations. This description is necessary to design the
quantum simulator in MATLAB environment and then, the
quantum emulator in HDL.

Let V and W be two vector spaces over the field K,
x ∈ K and let A : V → W be an operator.
A is called a linear operator if and only if it satisfies the

two properties in (21) and (22):

A(v+ u) = A(v) + A(u) (21)

A(xv) = xA(v) (22)

It is possible to define a relationship that links a linear
operator on vector spaces to matrices.

In fact, let V andW be two vector spaces with bases:
B1 = {v1, v2, . . . , vn} and
B2 = {w1,w2, . . . ,wm}

respectively and let f : V → W be a linear operator. There
exists a unique matrix A ∈ Km,n such that:

A
(
vj
)

=

m∑
i=1

aijwi (23)

for j = 1,2, . . .n
being aij the elements of the matrix A.
If the bases of the vector spaces changes, the components

of the matrix will change accordingly.
The matrix defined in this way is called the associated

matrix or the representation matrix of the linear operator.
Therefore, a suitable representation of linear operators is

through matrices. This property allows for the use of matrix
algebra in describing elementary quantum operators, as these
operators are linear.

The application of a quantum operator on a system can be
expressed as the product of the representation matrix of the
operator A and the associated ket of the system |v⟩:∣∣v′〉 = A |v⟩ (24)

The matrices associated with operations on quantum sys-
tems have specific properties that result from the requirement
that their application preserves the characteristics of quantum
systems.

Considering an operation on a single qubit, it is represented
by a 2 × 2 matrix. The normalization condition in (4) must
also be preserved after the operation’s application. The asso-
ciated matrix should be a unitary matrix because applying a
unitary matrix to a unit vector results in another unit vector.
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Operations on qubit registers also correspond to unitary
operations, as in the case of single qubits.

A matrix A is said to be unitary if the (25) holds:

AA† = I (25)

where A†denotes the adjoint matrix of A, and I is the identity
matrix with dimensions matching those of A. The adjoint
matrix of A is the conjugate transpose of A, as in (26):

A† =

(
AT
)∗

(26)

Therefore, a quantum operation on n qubits is represented
by a square unitary matrix of size 2^n.

The first single-qubit gate that is certainly one of the
most used in the definitions of quantum algorithms is the
Hadamard gate. The associated representation matrix is:

H =
1

√
2

(
1 1
1 −1

)
(27)

The Hadamard gate is often used to create a state of super-
position on a single qubit. This means that after applying the
Hadamard gate, the qubit can exist in a linear combination
of basic states. Therefore, a measurement of the output state
will have an equal probability of yielding 0 or 1, as in (28)
and (29), respectively:

H |0⟩ =
1

√
2

(
1 1
1 −1

)(
1
0

)
=

1
√
2

(
1
1

)
=

1
√
2

|0⟩ +
1

√
2
|1⟩ (28)

H |1⟩ =
1

√
2

(
1 1
1 −1

)(
0
1

)
=

1
√
2

(
1

−1

)
=

1
√
2

|0⟩ −
1

√
2

|1⟩ (29)

The probability amplitudes associated with each basis state
for every obtained ket are equal to 1/2. If the starting state is
a generic ket |ϕ⟩ = α|0⟩ + β|1⟩, it results as in (30):

H |ψ⟩ =
1

√
2

(
1 1
1 −1

)
|ψ⟩ =

1
√
2

(
1 1
1 −1

)(
α

β

)
=

1
√
2

(
α + β

α − β

)
=
α + β
√
2

|0⟩ +
α − β
√
2

|1⟩ (30)

Furthermore, the Pauli matrices and the related quantum
gates are to be considered. These are three matrices, generally
denoted by the letters X, Y, and Z (sometimes, the notation σx,
σy, and σz is used), and they correspond to a 180◦ rotation of
the qubit around the x, y, and z axes, respectively, in the Bloch
sphere, i.e., in the complex space.

In quantum physics, the Pauli matrices stand for the x, z,
and y components of an electron’s spin, respectively.

The X gate, sometimes referred to as the quantum NOT
gate, performs an inversion of the basis states, meaning it
swaps the probability amplitudes associated with the two
basis states. The relative matrix and applications to qubits are
in (31), (32), (33) and (34)

X =

(
0 1
1 0

)
(31)

X |0⟩ =

(
0 1
1 0

)(
1
0

)
=

(
0
1

)
(32)

X |1⟩ =

(
0 1
1 0

)(
0
1

)
=

(
1
0

)
(33)

X |ψ⟩ =

(
0 1
1 0

)(
α

β

)
=

(
β

α

)
= β |0⟩ + α |1⟩ (34)

The Y gate, in addition to swapping the values between
them like X, changes the phases of both states by a factor of
i = eiπ/2, resulting in the matrix (35) and in operations on
qubits as in (36), (37) and (38):

Y =

(
0 −i
i 0

)
(35)

Y |0⟩ =

(
0 −i
i 0

)(
1
0

)
=

(
0
i

)
(36)

Y |1⟩ =

(
0 −i
i 0

)(
0
1

)
=

(
−i
0

)
(37)

Y |ψ⟩ =

(
0 −i
i 0

)(
α

β

)
=

(
−iβ
iα

)
= βe−

iπ
2 |0⟩ + αe

iπ
2 |1⟩

(38)

The Z gate only acts on the |1⟩ base state, changing its sign,
as in (39), (40), (41) and (42):

Z =

(
1 0
0 −1

)
(39)

Z |0⟩ =

(
1 0
0 −1

)(
1
0

)
=

(
0
1

)
(40)

Z |1⟩ =

(
1 0
0 −1

)(
0
1

)
=

(
0

−1

)
(41)

Z |ψ⟩ =

(
1 0
0 −1

)(
α

β

)
=

(
α

−β

)
= α |0⟩ − β |1⟩ (42)

The Pauli matrices are involutory, meaning that they are
equal to their own inverses. Therefore, applying a Pauli
matrix twice to a quantum system does not result in a change.
In mathematical terms, the square of the Pauli matrices is the
identity matrix, as in (43):

X2
= Y 2

= Z2
= I (43)

Other notable quantum gates are the phase shift gates. They
are expressed by matrices having no effect on the |0⟩ state but
acting on the |1⟩ state only, by introducing a phase variation to
the quantum state, i.e., a phase φ. Therefore, the probability
of measuring |0⟩ or |1⟩ does not change.
In particular, the S matrix in (44) performs a 90-degree

rotation around the Z-axis in the Bloch sphere. Its operations
on a single qubit are in (45), (46) and (47):

S =

(
1 0
0 i

)
(44)

S |0⟩ =

(
1 0
0 i

)(
1
0

)
=

(
1
0

)
(45)

S |1⟩ =

(
1 0
0 i

)(
0
1

)
=

(
0
i

)
(46)
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S |ψ⟩ =

(
1 0
0 i

)(
α

β

)
=

(
α

iβ

)
= α |0⟩ + iβ |1⟩

= α |0⟩ + e
iπ
2 β |1⟩ (47)

The T gate performs a 45-degree phase rotation around the
Z-axis in the Bloch sphere. Its matrix representation is in (48)
and its operation on a qubit are in (49), (50) and (51).

T =

(
1 0

0 e
iπ
4

)
(48)

T |0⟩ =

(
1 0

0 e
iπ
4

)(
1
0

)
=

(
1
0

)
(49)

T |1⟩ =

(
1 0

0 e
iπ
4

)(
0
1

)
=

(
0

e
iπ
4

)
(50)

T |ψ⟩ =

(
1 0

0 e
iπ
4

)(
α

β

)
=

(
α

βe
iπ
4

)
= α |0⟩ + βe

iπ
4 |1⟩

(51)

The Z, S, and T gates can be considered particular cases of
phase shift gates, where the phase is respectively equal to π ,
π
2 and π

4
A fundamental theorem for achieving universality in

single-qubit operations is the single-qubit Y-Z decomposition
theorem.

It is demonstrated that all operations on a single qubit can
be expressed using two Z gates and one Y gate.

In fact, let α, β, γ and δ be real numbers. The unitary
operator on a single qubit can be expressed according to (52):

U = eiαRZ (β)RY (γ )RZ (δ) (52)

being RZ and RY unitary rotation matrices generated by the
Pauli matrix, according to (53) and (54), respectively:

RY (θ) = e−
iθY
2 =

(
cos θ2 − sin θ2
sin θ2 cos θ2

)
(53)

RZ (θ) = e−
iθZ
2 =

(
e−

iθ
2 0

0 e
iθ
2

)
(54)

therefore resulting (52) in (55):

U =

 e
−i
(
α−

β
2 −

γ
2

)
cos γ2 −e

−i
(
α−

β
2 +

γ
2

)
sin γ2

e
−i
(
α+

β
2 −

γ
2

)
sin γ2 e

−i
(
α+

β
2 +

γ
2

)
cos γ2

 (55)

Logical gates that process two or more qubits are referred
to as controlled gates. In these gates, the unitary operator is
applied to specific qubits, known as targets, based on the state
of other qubits, referred to as controls. It is denoted by the
notation in (56):

Cn,k (U) (56)

where n is the number of control qubits, k is the number of
target qubits, and U is the matrix representation of the unitary
operator in (55).

The first two-qubit gate is the CNOT gate (Controlled
NOT), which matrix in in (57). It changes the state of the
second qubit only if the first qubit is in the |1⟩ state and

leaves the other basis states unchanged, as in (58), (59), (60)
and (61):

CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 (57)

CNOT |00⟩ = |00⟩ (58)

CNOT |01⟩ = |01⟩ (59)

CNOT |10⟩ = CNOT
((

0
1

)
⊗

(
1
0

))

=


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0



0
0
1
0



=


0
0
0
1

 =

(
0
1

)
⊗

(
0
1

)
= |11⟩ (60)

CNOT |11⟩ = CNOT
((

0
1

)
⊗

(
0
1

))

=


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0



0
0
0
1



=


0
0
1
0

 =

(
0
1

)
⊗

(
1
0

)
= |10⟩ (61)

Applied to a generic quantum register consisting of two
qubits, as in (62):

|ψ⟩ = α |00⟩ + β |01⟩ + γ |10⟩ + δ |11⟩ =


α

β

γ

δ

 (62)

the CNOT gate perform the transformation in (63):

CNOT |ψ⟩ = CNOT


α

β

γ

δ

 =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0



α

β

γ

δ

 =


α

β

δ

γ


= α |00⟩ + β |01⟩ + δ |10⟩ + γ |11⟩ (63)

The CNOT gate is the quantum analogue of the classical
XOR gate applied to the second qubit, while the first qubit
stays unchanged. The importance of the CNOT gate in quan-
tum computation is because of any unitary operator can be
expressed exactly using CNOT and single-qubit operations:
they form a complete basis of infinite cardinality for quantum
computation.
A second fundamental two-qubit logic gate is the SWAP

gate, which matrix is in (64). It swaps the states between the
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two qubits as in (65), (66), (67), (68) and (69):

SWAP =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 (64)

SWAP |00⟩ = |00⟩ (65)

SWAP |11⟩ = |11⟩ (66)

SWAP |10⟩ = SWAP
((

0
1

)
⊗

(
1
0

))

=


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1



0
0
1
0



=


0
1
0
0

 =

(
1
0

)
⊗

(
0
1

)
= |01⟩ (67)

SWAP |01⟩ = SWAP
((

1
0

)
⊗

(
0
1

))

=


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1



0
1
0
0



=


0
0
1
0

 =

(
0
1

)
⊗

(
1
0

)
= |10⟩ (68)

SWAP


α

β

γ

δ

 =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1



α

β

γ

δ

 =


α

δ

β

γ


= α |00⟩ + δ |01⟩ + β |10⟩ + γ |11⟩ (69)

A third fundamental gate that works on multiple qubits is
the Toffoli gate. It is a three-qubit quantum logic gate that
plays a significant role in defining the relationship between
classical and quantum circuits. Also known as the CCNOT
gate (Controlled-Controlled-NOT), the Toffoli gate is a gen-
eralization of the CNOT gate (Controlled-NOT) to three
qubits. In practice, the Toffoli gate acts as a CNOT gate
controlled by two qubits. If both qubits are in the state |1⟩,
it performs the CNOT operation on the third qubit; otherwise,
nothing happens. Its matrix representation in (70) reflects this
relationship:

CCNOT =



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0


(70)

Considering a generic ket associated with a quantum reg-
ister of three qubits, as in (71):

α1 |000⟩ + α2 |001⟩ + α3 |010⟩ + α4 |011⟩ + α5 |100⟩

+ α6 |101⟩ + α7 |110⟩ + α8 |111⟩ (71)

applying the CCNOT gate, it becomes as in (72):

α1 |000⟩ + α2 |001⟩ + α3 |010⟩ + α4 |011⟩ + α5 |100⟩

+ α6 |101⟩ + α8 |110⟩ + α7 |111⟩ (72)

The classical Toffoli gate is universal for reversible classi-
cal computations, meaning that every classical computation
can be constructed in a reversible manner using the Toffoli
gate. The quantum Toffoli gate, when applied to individual
states of the computational basis, performs the same opera-
tions as its classical counterpart. Therefore, it can simulate
classical computations on a quantum computer. This ensures
that it is possible to execute any classical algorithm on a
quantum computer.

Finally, another important quantum operator is measure-
ment.

The act of measuring the state of a quantum system results
in the collapse of the system from a coherent superposition
state to a base state. For instance, when measuring a qubit
|ψ⟩ = α|0⟩ + β|1⟩ the outcome will be a classical bit, which
can be 0 or 1 with probabilities |α|

2 and |β|
2, respectively.

III. QUANTUM COMPUTING EMULATION ON FPGA
From the theoretical background, it is possible to conclude
that the quantum evolution of qubits is modelled by applying
a sequence of transformations to quantum states. These trans-
formations can be attributed to linear mathematical operators
represented by matrices. The fundamental operators, from
which all operations can be traced back, have been listed
previously.

Any quantum algorithm can be expressed as a sequence of
these operators applied to the quantum system.

Based on the earlier considerations, the implementation of
quantum algorithms can be simplified to a series of vector-
matrix products.

Therefore, it is possible to mimic the behaviour of a quan-
tum computer both through software (in this case, it is called
simulation) and through hardware (in which case, it is called
emulation).

A comparison among the two approaches is in section I,
where the advantages of the emulators have been also
highlighted. Hardware-based emulation supplies significant
performance improvements compared to software simulators.
This explains why there are several works in the literature on
this topic [8], [9], [11], [12], [13], [14], [18], [19], [20], [21],
[22], [23], [24].

In general, approaches to designing quantum emulators can
be categorized into three groups [8], [9], [11], [12], [13], [18],
[19], [20], [21], [22], [23], [24]:

- Efficient emulation of quantum algorithms. This involves
implementing a prebuilt set of operations, prioritizing time
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and/or hardware resource usage over accurately reflecting the
physical behaviour and universality of a quantum computer.
Proposed designs include HDL libraries, often accompanied
by preprocessing software, as well as CPU-like solutions.

- Emulating the behaviour of specific physical quantum
circuits. This approach focuses on replicating the physics of
a selected group of synthesized circuits. These circuits are
typically constructed using tools provided in HDL libraries,
without necessarily aiming to build a processing unit with a
universal set of instructions capable of executing any quan-
tum algorithm.

- Tools for designing and running quantum algorithms on
classical architectures. Designed to allow users to write and
run quantum algorithms on their classical machines, these
tools do not prioritize emulating the natural massive paral-
lelism characteristic of quantum computers.

The design method developed and described in this
paper follows a universal architecture approach. Specifically
tailored for FPGA implementation, the proposed method
consists of modules responsible for emulating various com-
ponents of quantum circuits, including quantum gates. This
approach fully reflects the mathematical representation of a
quantum computer’s behaviour.

While many hardware-software systems for emulating
quantum computing primarily focus on optimizing hardware
efficiency through software, the proposed approach takes
a different direction by decoupling hardware and software.
In this approach, software is exclusively employed to offer
programming abstraction for the hardware. Consequently, the
emulator is designed to execute entire quantum algorithms,
encompassing state preparation, evolution, andmeasurement,
entirely in hardware. Furthermore, an observation across
various emulator projects conducted by scientists reveals a
commonality: they adopt a hardware design approach, using
hardware description languages in the design phase. This
choice often results in project complexity, especially in terms
of optimization. The novelty of this work lies in a distinctly
different approach, adopting a model-based strategy using
MATLAB. This alternative allows for a faster, simpler, and
more optimized design tailored for FPGA implementation,
using the efficient optimization tools provided by MATLAB.

The next section supplies a detailed description of the
proposed procedure.

IV. DESCRIPTION OF THE NEW DESIGN APPROACH OF A
QUANTUM COMPUTING EMULATOR
MATLAB programming environment offers a rich variety
of plugins and toolboxes designed for use across various
professional domains, and it can also be used for designing
digital electronic systems with FPGAs.

To ease the translation of code from the MATLAB envi-
ronment to a hardware description language these tools are
extensively employed.

The primary toolbox relied upon is undoubtedly HDL
Coder. This is a highly significant feature of MATLAB as
it enables high-level design, modelling, and coding without

requiring an in-depth knowledge of HDL languages, thanks
to its automated and optimized translation capabilities.

HDL Coder helps high-level FPGA design by generating
Verilog and VHDL files from MATLAB code [25].

HDL Coder does not work alone; it is complemented
by a toolbox known as Fixed-Point Designer. This toolbox
plays a crucial role in converting MATLAB code working
in double-precision floating-point arithmetic, into fixed-point
arithmetic. This translation process, which could be quite
challenging if performed manually, is automated by this tool.
Unfortunately, however, this tool is general-purpose and not
specifically designed for code translation. As a result, it may
introduce functions that are not suitable for code conversion.
In specific cases, such as quantum computing simulation,
it becomes essential to directly write MATLAB code that
operates in fixed-point arithmetic rather than relying on auto-
matic fixed-point conversion tools.

HDL Coder toolbox includes a Workflow Advisor, which
is a graphical interface that helps programmers in translating
MATLAB code into an HDL project and verifying the MAT-
LAB project in hardware.

To translate the MATLAB code into a format usable by
HDL Coder, it must be prepared for conversion to HDL. Not
any MATLAB function can be translated in HDL.

Therefore, the main challenge of the procedure is to design
aMATLABmodel of quantum gates in fixed-point arithmetic
and using MATLAB functions and custom MATLAB scripts
suitable for code translation with the HDL Coder toolbox.
The chosen HDL language in this work is Verilog.

In addition to the Verilog HDL code obtained from MAT-
LAB translation, the complete emulator developed in this
work includes other files written directly in Verilog HDL for
data loading, algorithm application, and output pin assign-
ment for result extraction.

A. PROCEDURE FOR CODE CONVERSION FROM MATLAB
TO HDL
For a more efficient and faster generation of HDL code, it is
advisable to design the MATLAB model of the quantum
computing emulator using certain best practices:

•Employ algorithms that use adders and shifting instead
of algorithms that rely on functions such as sine, division,
and modulo. Addition and shifting operations consume fewer
hardware resources.

•Avoid using large arrays and matrices, as they require
more registers and additional RAM for storage. When their
use is unavoidable, it is recommended to employ RAM map-
ping optimization to map these memories into RAM.

•Use the fixed-point arithmetic. Floating-point data types
are inefficient for hardware implementation.

In a first step, to utilize HDL Coder with one of the
supported third-party FPGA synthesis tools, it is necessary
to add that tool to the system path using the hdlsetuptool-
path function. For the Intel FPGAs used in this work the
design environment is Quartus. Therefore, the syntax of the
command is:
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To create a new HDL Coder project, it is possible to
start the tool either through its icon, from the ‘‘Apps’’ tab,
or by using a manual command in the MATLAB Command
Window, as follows:

and it will appear a user interface of the HDL coder toolbox
as in Fig. 2.

FIGURE 2. User interface of HDL coder toolbox.

In the ‘‘MATLAB Function’’ section is needed to select the
MATLAB script to be translated and a related testbench file.

A testbench file is also a MATLAB script suitable to eval-
uate the algorithm in the file to be translated; it defines the
required parameters, invokes the Design Under Test (DUT)
function and stores the result. It is not subject to translation.

A well-written testbench file must adhere to certain
requirements: it should have no inputs, use the same data
types, dimensions, and complexity in every function call.
A well-constructed testbench file should cover the entire
range of numerical data that the function needs to manage.

The HDL Coder toolbox utilizes data collected from the
testbench execution to deduce fixed-point data types when
floating-point to fixed-point conversion is required. Conse-
quently, the presence or absence of a testbench file leads to
variations in the guided workflow. Another example is the
determination of input variable types for the function, which
is derived directly from the file.

If the MATLAB code is untranslatable, in the preliminary
phase of the translation workflow, the HDL Coder toolbox
returns an error message. The ‘‘Code Generation Readiness’’
tool [26] examines the MATLAB code to find features and
functions not supported by code generation facility, ulti-
mately providing a report. It is advisable to run the Code
Generation Readiness tool before going ahead with code
translation by entering the following command in the MAT-
LAB Command Window:

being ‘‘function’’ the name of the MATLAB file to be
examined. A screen opens, with the analysis performed for
translation compatibility of the code in the file.

To make MATLAB code compatible for translation into
HDL language, it is necessary to follow proper coding rules,
as later explained.

If the Code Generation Readiness tool does not detect
errors, it is possible to go ahead with defining the data types
of the input variables for the function. Then, it is possible to
run the Workflow Advisor, as in Fig. 3.
The Workflow Advisor panel is opened, listing all the

steps to be taken to reach the analysis and synthesis phase.
Subsequently, it leads to the creation of the Quartus project,
allowing to exit theMATLAB environment and continue with
Quartus. One by one, in order, the tasks suggested by the
workflow advisor must be performed.

At the first step, must be chosen whether to
continue with converting the variables into fixed-point
format. It should be remembered that fixed-point arith-
metic is not needed but recommended to generate HDL
code used to configure FPGAs. It is possible to go
ahead with fixed-point conversion by setting ‘‘Convert to
fixed-point at build time.’’ The next task involves config-
uring the Fixed-Point conversion tool according to design
requirements.

When the tool for fixed-point conversion runs, generates
a MEX function suitable for the MATLAB project at hand.
If compilation is completed without errors, the tool displays
compiled information (type, size, complexity) for functions
and variables in the code. If compilation errors occur, the
tool supplies error messages that refer to the line of code
causing the compilation issues. These errors must be resolved
to continue further. If the code uses functions unsupported for
fixed-point conversion, the tool displays them in the ‘‘Func-
tion Replacements’’ tab.

The choice of data ranges for the fixed-point arithmetic
conversion can be based on the ranges derived from the
execution of the testbench file, user-defined ranges (referred
to as static intervals), or a combination of both. When man-
ually inputting static intervals, they take precedence over the
derived ranges, and the tool incorporates them in suggesting
fixed-point data types. Additionally, the proposed type can be
modified and locked, preventing any further modifications by
the tool.
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FIGURE 3. Workflow advisor screen.

FIGURE 4. Fixed-point conversion screen.

If a testbench file is used, the box labelled ‘‘Anal-
yse ranges using simulation’’ must be checked and the
box labelled ‘‘Manually specify design ranges’’ should be
checked if static intervals are used. ‘‘Analyse ranges using
derived range analysis’’ is employed when a testbench is
not used. If static intervals are manually input, two columns
appear in the ‘‘Variables’’ section where the lower and
upper bounds of the variable intervals for the function are
shown.

Before continuing with code analysis, must be specified
either the lengths of decimal parts based on predefined word
lengths or word lengths based on predefined decimal part
lengths. By default, the user specifies the word length, and
the tool returns the fractional part length. Following this, the
properties of variables resulting from mathematical opera-
tions invoked in the code need to be specified. The rounding
mode to be executed, referred to as the ‘‘Rounding method’’
must be defined. Additionally, the data type and resizing of

intermediate sums and products can be decided using the
properties ‘‘SumMode’’ and ‘‘ProductMode’’. Decisions on
handling potential overflow cases, denoted by ‘‘Overflow
action’’, also need to be made. To go ahead, a click on the
‘‘Analyze’’ button is needed (see Fig. 4).

The ‘‘SimMin’’ and ‘‘SimMax’’ tables are now populated
with simulation intervals: Sim Min indicates the minimum
value assigned to the variable during simulation, while Sim
Max represents the maximum value assigned to the variable
during simulation.

Fixed-point types are proposed based on default word
length settings. The ‘‘Types’’ table holds information for each
existing floating-point variable: Signedness, Word length,
and fractional part length.

Data types are proposed using the ‘‘numerictype’’ nota-
tion. For example, numerictype(1,16,14) indicates a signed
fixed-point type with a word length of 16 and a fractional
part length of 14, while numerictype(0,14,13) indicates an
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FIGURE 5. Workflow advisor device settings.

unsigned fixed-point type with a word length of 14 and a
fractional part length of 13.

The ‘‘Type’’ proposal phase uses Sim Min/Sim Max infor-
mation and combines it with user-specified word length
settings to suggest a fixed-point type for each variable. It is
possible also to enable the ‘‘Log histogram data’’ option
in the ‘‘Analyze’’ button dropdown menu to log histogram
data.

The histogram display supplies concise information about
the simulation data range for a variable. The x-axis corre-
sponds to bit weights, and the y-axis to the occurrence count.
Proposed numeric type information is overlaid on this chart
and can be changed. By moving the white bounding box
left or right, can be changed the binary point position; the
box’s width does not change because it matches the defined
word length. By moving the edges left or right, is altered the
fractional part length. All changes made to the proposed type
are saved in the project.

If the numerical results do not meet the required precision,
the word lengths must be tuned or the types must be manually
changed, repeating the rest of the workflow steps until the
desired results are achieved.

By selecting ‘‘Validate Types’’ (see Fig. 4) it is validated
the code generation using the proposed fixed-point data types.

If the validation is successful, it can be tested the numerical
behaviour of the fixed-point MATLAB program by clicking
on ‘‘Test Numerics’’ (see Fig. 4). By default, if a testbench
has been added to define inputs or conduct a simulation, the
tool uses this file for testing numbers.

To detect overflows, the option from the ‘‘Test Numerics’’
dropdown menu: ‘‘Use scaled doubles to detect overflows’’
must be enabled. In case of detection, an ‘‘Overflow’’ tab will
be generated with detailed information about the encountered
error.

By right-clicking on ‘‘Fixed-Point Conversion’’ (Fig. 4)
and then selecting ‘‘Run to selected Task’’ the workflow
goes ahead with the task ‘‘Select Code Generation Target.’’
The type of workflow to be performed must be chosen
at this stage. In this work, the MATLAB environment
to generate hardware description code is used, while the

subsequent phases leading to board programming are done
using the Quartus synthesis tool. Therefore, as shown in
Fig. 5, ‘‘Generic ASIC/FPGA’’ option must be chosen.
Under ‘‘Synthesis Tool,’’ has been already configured

‘‘Altera QUARTUS II’’ or ‘‘Intel Quartus Pro’’ according
to the hdlsetuptoolpath function arguments, as previously
explained. Then, the Chip family and the Device used must
be specified.

The final task to be performed is the generation of the HDL
code. It is possible to configure the settings based on project
requirements, which are organized into various tabs, the first
of which is the ‘‘Target’’.

In the Target tab, within the ‘‘Target Selection’’ section,
the HDL language in which the MATLAB code is converted
is defined. In this workflow, Verilog has been chosen, as in
Fig. 6. In the second section, ‘‘Output settings,’’ the files
to be generated during this task are determined: HDL code
for the fixed-point MATLAB function (‘‘Generate HDL’’),
script files for third-party tools (‘‘Generate EDA Scripts’’),
and reports for analysing the compatibility of the MATLAB
project for HDL code generation (‘‘Check HDL confor-
mance’’).

In the ‘‘Coding Style’’ tab, settings related to the coding
style that the tool should employ are found. In the first section,
the possibility of generating code comments is decided. It is
specified whether to keepMATLAB code comments, include
the MATLAB source code as comments, and generate a code
generation report.

In the ‘‘Coding standards’’ tab, it is specified whether code
should be generated according to industrial standards for code
writing style. In the affirmative, as in the case of this work,
proper modifications can be made according to preferences.

In the ‘‘Clocks & Ports’’ tab, the properties of timing sig-
nals and input and output ports of the module to be generated
are declared. In this case, default settings are kept.

In the ‘‘Optimizations’’ tab (Fig. 7), certain properties of
the HDL code are defined with the intention of optimizing the
definition of hardware modules. This tab is divided into four
sections: ‘‘General,’’ ‘‘Pipelining,’’ ‘‘Area Optimizations,’’
and ‘‘Loop Optimizations.’’
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FIGURE 6. Workflow advisor HDL language settings.

The ‘‘General’’ section options allow to decide whether
to utilize portions of the installed RAM on the devices and
set the corresponding usage thresholds. The option to enable
‘‘Aggressive Dataflow Conversion’’ is available for consider-
ation when employing floating-point IP core modules.

In the ‘‘Pipelining’’ section, various properties are defined
to generate a hardware module that follows the pipelin-
ing paradigm. This involves adding intermediate registers
between individual blocks of the project to reduce resource
usage and optimize the maximum achievable clock fre-
quency.

The next sections, ‘‘Area Optimizations’’ and ‘‘Loop Opti-
mizations,’’ should only be edited if the designer has an
in-depth understanding of the project. In this work, this tab
was changed only in the ‘‘Pipelining’’ section. The other
sections were changed only in the intermediate stages of trial
and error to experiment with different usage scenarios, but no
advantages were observed.

The ‘‘Floating Point’’ tab is ignored if the project does not
involve the use of floating-point arithmetic functional blocks,
as chosen in this work. Similarly, it should not be changed the
‘‘Frame to Sample Conversion’’ tab.

In the ‘‘Advanced’’ tab, selected options are emphasized:
‘‘Generate instantiable code for functions’’ to generate HDL
modules for each function in the MATLAB project, and
‘‘Generate Simulink model’’ which creates aMATLAB func-
tional block for use in a Simulink model. To generate a
Simulink block, the tool requires the use of the Fixed-Point
Designer.

In the ‘‘Diagnostics’’ section of the ‘‘Advanced’’ tab, the
entry associated with the ‘‘Check for presence of reals in
generated HDL code’’ property is changed to ‘‘Error.’’ This
results in checking and potentially generating an error if the
generated HDL code uses ‘‘real’’ data types. It should be
noted that HDL code having ‘‘real’’ data types is not synthe-
sizable. If the code is generated for simulation purposes only,
this setting can be changed to ‘‘Warning’’ or ‘‘None’’.

The ‘‘Script Options’’ tab concerning properties related to
scripts generated during compilation, simulation, synthesis,

and linting is not taken into consideration. In the final tab,
the source MATLAB code appears.

By right-clicking on ‘‘HDL Coder Generation’’ (Fig. 7)
and then selecting ‘‘Run this Task’’ the code conversion is
performed. In the panel below the settings tabs, it can be seen
the log, which consists of the sequential and chronological
recording of operations performed during the task.

The HDL code and the relevant reports generated can be
examined by clicking on the hyperlinks in the code generation
log window.

The procedure described above is the general process for
using the MATLAB HDL Coder toolbox, with instructions
for configuring settings and executing the steps to complete
the conversion from MATLAB to HDL.

However, when trying to write the MATLAB code for
quantum logic gates, it is found that the described procedure
does not at once succeed.

All the encountered problems are described below in the
paper, along with the adopted solutions and the related MAT-
LAB code. For instance, the following are just some of the
error messages that MATLAB returns when the designer
attempts code translation without adhering to very precise
simulator design rules:

Call to function ‘cos’ is not supported for HDL code
generation, at Function ‘cos’ (#57.271.281), line 11, col-
umn 9 Function ‘applyScalarFunctionInPlace’ (#14.537.549),
line 17, column 9 Function ‘cos’ (#56.290.371), line 11, col-
umn 5 Function ‘getOperator1_fixpt’ (#1.1774.1804), line 36,
column 19.

Call to function ‘sin’ is not supported for HDL code gener-
ation

Call to function ‘pow’ is not supported for HDL code gen-
eration

Call to function ‘abs’ is not supported for HDL code gener-
ation

Call to function ‘log’ is not supported for HDL code gener-
ation

Call to function ‘rtIsInf’ is not supported for HDL code
generation
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FIGURE 7. Workflow advisor Optimizations settings.

Call to function ‘atan2’ is not supported for HDL code
generation

Call to function ‘hypot’ is not supported for HDL code
generation

Non-scalar types are not supported for derived range
analysis.

Found unsupported dimensions on matrix type at output
port: 0, name ‘op’, in the file/function getOperator_fixpt.
Either flatten the matrix to a vector or enable ‘FrameToSam-
pleConversion’ for large matrices to generate HDL code

Non-synthesizable single or double data type found in HDL
code, [. . . ] To fix this problem, cast the floating-point data type
to a fixed-point data type.

Therefore, a deeper understanding of key concepts in
the fixed-point conversion process and the correct writing
of MATLAB code is necessary before providing it to the
HDL Coder toolbox. These particularly important aspects are
described in the following subsection and then applied to the
quantum computing emulator project.

B. PROCEDURE TO WRITE RIGHT MATLAB FUNCTIONS
FOR HDL CODER SUCCESSFULLY PROCESSING
To make the MATLAB code translatable, sometimes instead
of an automatic floating-point to fixed-point conversion (by
using the Fixed-Point Designer toolbox), a manual imple-
mentation of fixed-point arithmetic is highly recommended
to successfully obtain a MATLAB project into an effi-
cient fixed-point implementation. As previously stated, this
occurs because the Fixed-Point Designer toolbox sometimes

introduces functions that are not supported for code trans-
lation. The fixed-point arithmetic is adopted by using the
MATLAB ‘‘fi’’ data type to represent fixed-point numbers
and specific functions to perform arithmetic operations on
them.

The ‘‘fi’’ class supplies an interface to specify the number
of bits used to represent the integer and fractional parts of a
number, as well as the position of the fixed point.

Numeric attributes and mathematical rules to follow can be
specified. The syntax for creating a ‘‘fi’’ object is:

‘‘value’’ is the value of the number.
‘‘signedness’’ is a flag saying whether the number is signed

(1) or unsigned (0)
‘‘Wordlength’’ (WL) is the total number of bits instantiated

to represent the number, including those used for the integer
and fractional parts.

‘‘Fractionlength’’ (SL) is the number of bits used for the
fractional part of the number.

The properties of the fixed-point object may be defined
using two MATLAB functions, ‘‘fimath’’ and ‘‘numeric-
type.’’

The ‘‘numerictype’’ function has already been described.
The ‘‘fimath’’ function creates a ‘‘fimath’’ object that

describes the properties of a ‘‘fi’’ object related to arithmetic
operations.
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The MATLAB syntax for creating a ‘‘fimath’’ object is:

The properties of the ‘‘fimath’’ object are defined using
name-value pairs, where the first argument is the property and
the second is the value to assign to it.

Multiple properties can be defined. Key properties are:
‘‘RoundingMethod’’ specifies the roundingmode for arith-

metic operations and can take values like ‘Ceiling,’ ‘Conver-
gent,’ ‘Floor,’ ‘Nearest,’ ‘Round,’ ‘Simplest,’ ‘Zero’.

‘‘OverflowMode’’ declares the overflow handling mode
and can be ‘Wrap’ or ‘Saturate’.

‘‘ProductMode’’ regulates the product handling mode
and can be ‘FullPrecision,’ ‘SpecifyPrecision,’ ‘KeepLSB,’
‘KeepMSB’.

‘‘SumMode’’ regulates the sum handling mode and
can be ‘FullPrecision’, ‘SpecifyPrecision’, ‘KeepLSB’,
‘KeepMSB’.

‘‘ProductWordLength’’ defines the bit length of the
product.

‘‘SumWordLength’’ specifies the bit length of the sum.
‘‘MaxProductWordLength’’ defines the maximum accept-

able bit length for the product data type, ranging
from 2 to 65535.

‘‘MaxSumWordLength’’ defines the maximum acceptable
bit length for the sum data type, ranging from 2 to 65535.

‘‘CastBeforeSum’’ specifies whether the conversion to the
final data type should be performed before the sum operation
and can be ‘true’ or ‘false’.

In general, by using ‘‘fimath’’ allows a fine control over
the behaviour of fixed-point arithmetic operations, ensuring
the correct implementation of the system.

For example, by the command:

the values exceeding the representable range are ‘‘saturated’’
to the nearest limit value, avoiding unpredictable system
behaviour.

Similarly, by the command:

the values are always rounded down.
Useful programming techniques include subscripting

assignment and casting.
In MATLAB environment, subscripting assignment is a

technique to assign values to specific elements or subsets of
an array or matrix. It allows the designer to select and access
a specific part of an array or matrix using indices and then
assign new values to those selected elements.

For example, considering a 3 × 3 matrix A, can be used
a subscripting assignment to assign a new value to a specific
element, such as A(2,3)= 5, or to select a subset of the matrix

and assign new values to those selected elements, such as
A(2:3,1:2) = [1,2;3, 4].
A special type of subscripting assignment is:

A focus on this MATLAB syntax is needed. When intro-
ducing fixed-point data types into the code, it’s possible that
data types may change when overwritten, potentially causing
an increase in bit width.

The particularity of this type of assignment is that the data
type of the original vector or matrix (in the example, A) does
not change. Once the type of the original data is defined, the
value associatedwith A can change, but the data type is forced
to be the one defined earlier.

This assignment via subscripting is used to assign a new
value to fixed-point variables to preserve the existing data
type, the size of the array of the overridden variable, and
prevent bit growth.

These last two aspects are particularly important for pro-
gramming FPGAs.

It’s worth noting that Verilog listings describe how logic
elements in the FPGA are connected and which resources
will be used. Therefore, it must be declared the amount of
memory to use and avoiding excessive and uncontrolled use
of resources. These requirements translate into the inability
to define variables with variable size and the need to specify
the arithmetic rules for fixed-point numbers.

Casting is the process of converting an instance of one data
type into another instance of a different data type.

In MATLAB, casting can be done using type conversion
functions like int(), double(), single(), etc. For example, it is
possible to convert a double variable into an integer variable
using the int() function, as in int(3.14). Another use of the
casting statement is:

This statement is a call to the MATLAB casting function,
which takes three arguments: the first is the array or variable
to convert, the second is a keyword (‘like’) used to specify that
the target data type should be the same as the data type of the
reference variable or array provided as the third argument.

To ensure a smooth MATLAB code translation process,
it is crucial to structure the project by separating the algorithm
that will be translated from the remaining code. This includes
functions for variable data type definitions and the testbench
script, which are useful only for debugging purposes.

The portion of the MATLAB project that implements the
algorithm is the only part to be converted to fixed-point. The
definition of inputs or the display of results does not require
code translation. Additionally, separating data type defini-
tions from the code makes it easier to compare fixed-point
implementations and potentially redirects the algorithm to a
different device.
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Moreover, it is advisable to add the directive #codegen in
the MATLAB script to use the Fixed-Point Designer toolbox
and to use the Code Generation Readiness tool. The #codegen
directive indicates the intention to generate code instructing
the MATLAB code analyser to assist the user in diagnosing
and correcting violations that could cause errors during code
generation.

An example of MATLAB script applying the functions and
practices discussed is as follows:

It is noticeable the use of the ‘‘ScaledDouble’’ data type,
which is a double format that preserves data about WL (Word
Length), FL (Fraction Length), and sign.

During code generation, MATLAB suggests the best FL.
Also, it is noticeable a syntax different but

analogous to the one shown earlier in the numerictype
function.

The function in the previous script takes the desired data
type (‘‘dt’’) as input and returns a structure T that encom-
passes entities with the required arithmetic and numerictype
characteristics. This is an example of a function defined with
the intention of declaring data types.

It follows an excerpt from the function that is subject to
translation, which utilizes casting and subscripting assign-
ment for variable definition:

An alternative to the cast statement is ‘‘zeros’’:

An example of a testbench file is as follows:

In general, utilizing the ‘fi’ data type and specific MAT-
LAB functions enables the precise and controlled imple-
mentation of fixed-point arithmetic. On the other hand,
employing the Fixed-Point Designer toolbox automates the
fixed-point design process, saving time and reducing errors.
Both approaches are valid, and the designer evaluates which
methodology is better suited for each case.

Mathworks’ website lists all functions supported for HDL
translation [27]. For each function, in the ‘‘Extended capa-
bilities’’ section, is specified if it supports translation. If a
MATLAB function is not supported by the translation tool,
a solution may be to replace it with a Look-up Table (LUT)
implementation or a CORDIC implementation.

CORDIC-based algorithms are among the most efficient
for hardware implementation because they use adders and
bit shift operations. They are iterative algorithms, and the
designer must specify the number of iterations. The choice
of the number of iterations for CORDIC algorithms depends
on the required precision for HDL code generation. In gen-
eral, the more iterations, the higher the precision of the
CORDIC algorithm. However, increasing the number of
iterations can also increase circuit complexity and power
consumption. One strategy is to start with a moderate num-
ber of iterations and progressively increase it until the
desired precision is achieved. It is also possible to use the
convergence method to determine the optimal number of
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iterations, which involvesmonitoring the approximation error
for each iteration and stopping iterations when the error is
below a certain threshold (the help for CORDIC functions
provides a sample script).

It’s essential to consider that the choice of the number of
iterations also depends on project-specific features such as
clock speed and available processing resources.

In general, finding a balance between precision and circuit
complexity is crucial to achieve the best result.

Some MATLAB functions, even if supported by HDL
Coder, can be replaced to obtain a more efficient fixed-point
implementation. For example, to perform the division of a
number by amultiple of two, it is advisable to useMATLAB’s
bit-shifting instruction ‘‘bitshift’’.

In the following, there are some essential rules to avoid
errors during the fixed-point conversion phase:

- Structures and matrices are not supported for primary
function inputs (or main function inputs), even though it is
possible to use them inside the primary function [28].

- HDL Coder toolbox supports fixed-point numbers with a
maximum word length of 128 bits [28].

- Variable-sized data is not supported, both in the testbench
file and in the primary function [28].

- For each input of the primary function (or DUT -
Device Under Test) whose class is fixed-point, they must
be specified the ‘‘numerictype’’ properties and the ‘‘fimath’’
properties [28].

HDL Coder needs to determine the properties of all vari-
ables in MATLAB files during compilation. Following this
criterion, HDLCoder should be able to identify the properties
of the inputs.

With the methodological insights and best practise rules
just described, has been developed the quantum computing
simulator which MATLAB code is oriented to the automatic
translation in HDL code, in fixed-point arithmetic, that is the
core of the hardware quantum computing emulator.

Therefore, in the following subsection is described in detail
the MATLAB project and then the procedure for translating
it into HDL code.

C. DESIGN OF A QUANTUM COMPUTING SIMULATOR IN
MATLAB
TheMATLAB project originates from code previously devel-
oped by other authors [29]. However, significant modifica-
tions have been implemented in this work to transform it into
a simulator suitable for code translation for hardware imple-
mentation. Furthermore, the code has been adapted to serve
as a quantum computing emulator implemented on an FPGA.

The starting MATLAB code is based on David Deutsch’s
mathematical model of a universal quantum computer [30].
Therefore, matrix multiplication and tensor products (also
known as Kronecker products, both terms will be used
interchangeably) between complex numbers are the main
advanced mathematical operations used in the model.

The result of the simulation performed by this MAT-
LAB project is a probability distribution of the states of the

quantum computer, in addition to the post-computation state
of the system.

A quantum algorithm powered by the quantum computer
is a matrix of strings: the rows of the matrix represent the
qubits, and the columns represent the algorithm’s steps. Each
element of the matrix represents a quantum gate.

The MATLAB project implements the previously
described quantum gates and, in addition, U1, U2 and U3
as in the following.

The U3 gate is the generic single-qubit rotation gate
defined by three angles, θ , φ, and λ (Fig. 1), representing
rotation angles for the X, Y, and Z axes, respectively. The
corresponding matrix is in (73):

U3
(
θ, φ, λ

)
:=

(
cos

(
θ
2

)
−eιλ sin

(
θ
2

)
eιφ sin

(
θ
2

)
eι(φ+λ) cos

(
θ
2

) ) (73)

The U1 and U2 gates are special cases of the U3 gate,
introduced specifically due to hardware characteristics.

The U1 gate implements a single-qubit rotation around
the Z-axis by the angle θ given as an input argument, and
corresponds to the Phase Shift gate modelled by (74):

U1
(
λ
)

= U3
(
0, 0, λ

)
=

(
1 0
0 eιλ

)
(74)

The U2 gate implements a single-qubit rotation around the
X and Z axes by angles φ and θ , respectively, as in (75):

U2
(
φ, λ

)
= U3

(π
2
, φ, λ

)
=

1
√
2

(
1 −eιθ

eιφ eι(φ+λ)

)
(75)

The introduction of U1 and U2 gates is motivated by error
rates: the error rate for U1 is immeasurable, whereas the error
of U3 is twice that of U2. Consequently, for enhanced fidelity
and to minimize the occurrence of gate errors, a circuit exclu-
sively utilizing U1 and U2 gates is expected to outperform
one incorporating U3 gates [31], [32].

The function called ‘‘getOperator’’ in the developedMAT-
LAB simulator returns the matrix corresponding to any
requested single-qubit quantum gate, which serves as the
operator.

The simulator allows the use of a qubit-controlled version
of any of the above gates.

The function called ‘‘getControlledOperator’’ returns the
matrix for a single-qubit operator controlled by another qubit.
The Toffoli gate and Swap gate are also implemented in the
MATLAB simulator and the ‘‘algorithmPreprocess’’ func-
tion is used to replace the Toffoli and Swap gates with their
implementations using CNOT, Hadamard, and T gates.

The main function of the simulator is called ‘‘quantum-
Computer’’. This function takes three input parameters: a
quantum algorithm, a list of measured qubits, and the ini-
tial state of the quantum system. The first input parameter
contains a matrix representing the quantum algorithm itself,
the second parameter is a row vector containing the indices
of the measured qubits (indices start at 1), and the initial
state contains a column vector representing the state of the
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quantum computer at the beginning of the algorithm’s exe-
cution. The function returns three outputs: the final quantum
state, the probabilities of measuring basic states (in standard
computational basis), and amatrix representing the processed
quantum algorithm.

The ‘‘initializeRegisters’’ and ‘‘initializeRegistersInt’’
functions are used to generate an initial state. The first
function transforms a list of individual qubits into their tensor
product, resulting in the initial state of the quantum computer.
It follows the relative script.

The second function transforms integers into the initial
state of the quantum computer.

The MATLAB project includes ∗.mat files containing
some well-known algorithms for testing the simulator. The
considered algorithms are as follows:

a) bellState.mat - Preparation of a specific Bell state as
in (76):

∣∣8+
〉
=

1
√
2
(|00⟩ + |11⟩) (76)

After loading the bellState.mat file, the simulation starts by
running the command (in MATLAB command window):

b) bitSwap.mat - Swapping of two contained qubits.
c) Toffoli.mat - Implementation of the Toffoli gate using

CNOT and single-qubit gates.
d) grover_4bit_1iter.mat - First iteration of Grover’s

algorithm searching for the solution to the logical equation

ABCD̄ = 1

After loading the ∗.mat file, the simulation starts by run-
ning the command:

e) The grover_4bit_2iter.mat and grover_4bit_3iter.mat
files contain two and three iterations of Grover’s algorithm,
respectively. The command to enter is like the previous case.

f) statePrep.mat - Preparation of a 3-qubit register with the
following state distribution:

p(|000⟩) = 3 %
p(|001⟩) = 5 %
p(|010⟩) = 7 %
p(|011⟩) = 10 %
p(|100⟩) = 13 %
p(|101⟩) = 15 %
p(|110) = 17 %
p(|111⟩) = 30 %

D. FROM MATLAB TO HDL: THE QUANTUM COMPUTING
EMULATOR PROJECT FOR FPGA IMPLEMENTATION
Expanding on the foundational MATLAB design of a quan-
tum logic gates simulator, as outlined in [29] and summarized
in the preceding subsection, in this work have been developed
two MATLAB simulators following best practices and code
translation guidelines. This stems from the implementation
of two distinct emulators: one tailored for applying quantum
algorithms to a single qubit, and a second one designed for
application to a two-qubit system. The need to describe two
different emulator projects arises from different computa-
tional requirements and hardware resources in each case.

In fact, for emulating a quantum computing on a single
qubit, an Intel Cyclone V FPGA is enough, while emulating a
quantum computing on a two-qubit register requires the use of
an Intel Arria 10 FPGA due to the greater need for resources.

The computation on a single-qubit system involves left
multiplication between the matrix representing the quantum
algorithm (of size 2 × 2) and the column vector representing
the ‘‘ket’’ of the system.

In cases where there are multiple operators, multiplication
between the matrices of individual operators is performed.

It’s important to note that matrix multiplication is not
commutative, so when the algorithm involves applying two
or more matrices, the order in which matrix multiplication
is performed must be respected, as shown in the following
example.

A representation of applying quantum operators (A, B,
and C in this order) to a qubit (q0) is as in (77)

|q0⟩ − −A− −B− −C − − (77)

The equivalent mathematical expression is in (78):

|q1⟩ = C ∗ B ∗ A ∗ |q0⟩ (78)

The project of the single-qubit MATLAB simulator con-
sists of five scripts:
getOperator.m returns the matrix associated with the

requested quantum gate or operator.
matrix_complex_mults.m performs the multiplication

between operators.
probFinal_oneQubit.m calculates the probability distribu-

tion associated with qubit measurement.
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Apply_operator.m performs left multiplication of the
matrix associated with the algorithm with the qubit ket.
quantumComputer_oneQubit.m calls all the other func-

tions and is the main function.
Two-qubit quantum computing involves qubits being

interconnected so that the state of one qubit affects the
state of the other, creating a quantum register. A two-
qubit quantum register is a superposition of states in as
in (79):

|ψ⟩ = α00 |00⟩ + α01 |01⟩ + α10 |10⟩ + α11 |11⟩ (79)

A column vector composed of complex coefficients
αij represents the quantum register, obtained through the
Kronecker product between the two kets of individual
qubits.

The computation on a two-qubit system involves left
multiplication between the matrix representing the quantum
algorithm (of size 4×4) and the column vector (of size 4×1).
To construct the algorithm, operators must be specified for
each qubit (these operators are represented as 2× 2 complex
matrices, like the single-qubit case). After selecting the oper-
ators for each qubit, the Kronecker product is employed to
calculate the tensor product between the operators of the first
qubit and those of the second qubit. The result is a complex
4×4 matrix representing the combined effect of the operators
on the two qubits, forming the operators of the two-qubit
quantum register.

This process is repeated for each operator to be applied
to the quantum register. Matrix multiplication is then used
to combine the operators in the correct order, analogous to
the single-qubit case with necessary precautions. Finally, the
resulting matrix must be applied to the initial state of the
quantum register using matrix multiplication.

The project of the two-qubit MATLAB simulator consists
of the following six scripts:
getOperator.m returns the matrix associated with the

requested single-qubit operator. This function is different
from the single-qubit case because a new operator, the Con-
trolled operator is needed.
getControledOperator.m returns thematrix for a single-qubit

operator controlled by another qubit.
matrix_complex_mults.m performs the multiplication

between operators (4 × 4 matrices).
probFinal_twoQubit.m calculates the probability distribu-

tion associated with measuring the state of individual qubits
and the probability of measuring both qubits.
Apply_operator.m performs the left multiplication of the

matrix associated with the algorithm with the quantum regis-
ter ket.
quantumComputer_twoQubit.m calls all the other func-

tions and is the main function of the simulator.
Upon reviewing the list of MATLAB scripts only,

it becomes apparent that the original MATLAB project [29]
for a quantum logic gates simulator has undergone extensive
revisions to develop the two simulators necessary for single
and double qubit computing.

Furthermore, substantial coding modifications have been
implemented to adapt the original MATLAB code for
code translation and to make it suitable for FPGA imple-
mentation. In the sections that follow, the codes for all
the mentioned scripts are provided, accompanied by a
more detailed description of their contents. Each script
has undergone successful steps for translation into Ver-
ilog HDL, following the procedure outlined in the previous
section.

getOperator.m
This function is designed to return the matrix associated

with each requested single-qubit operator. It requires four
input arguments and returns one output argument.

As the first input argument, the function is passed the
name of the operator to be used, denoted as ‘‘opName’’ that
is a character string. The subsequent three variables represent

41336 VOLUME 12, 2024



A. Giorgio: Project and Implementation of a Quantum Logic Gate Emulator on FPGA

the angles required for defining the matrices. Specifi-
cally, the first angle, θ , is used for defining the matrices
U1, U2, U3, Rx, Ry, Rz, and EXP (exponential); the
angle φ is used for matrices U2 and U3, and the angle
λ is used for U3. The switch-case control structure is
employed.

The MATLAB code of the getOperator.m function is:
The considered script may appear simple in its defini-

tion in a high-level language like MATLAB but proves
to be very difficult to immediately convert into Verilog
HDL.

Before proceeding with the code translation, it was decided
to modify the data type of the variable ‘‘opName’’ to make it
an 8-bit unsigned integer. It is noticeable that the ‘‘char’’ type
in MATLAB reserves 16 bits per element, and ‘‘opName’’
must necessarily be a vector of 3 characters (16 × 3 =

48 bits). The modification results in a memory savings
of 40 bits.

Moreover, it is preferable to define the ‘‘op’’ matrix
as null by default due to in a hardware description lan-
guage all possible conditions must be expressed, unlike
a programming language like MATLAB, where it is
optional. It was chosen to define it as a null matrix
to immediately detect errors in the quantum algorithm’s
definition.

Moreover, the exponential function (‘‘exp’’) is not sup-
ported for code translation. Therefore, it has been replaced
with its fifth-term Taylor series expansion.

This attempt exposes additional functionalities and prop-
erties that are not supported for translation.

Also, all trigonometric functions and some MATLAB
functions introduced by the Fixed-Point Designer, are not
suitable for code translation. Therefore, the built-in MAT-
LAB trigonometric functions (‘‘sin’’ and ‘‘cos’’) were
replaced with their equivalent CORDIC functions (‘‘cordic-
sin’’ and ‘‘cordiccos’’) [33], and (80):

exp
(
1ι ∗

π

4

)
(80)

is replaced with the associated numerical values:
0.707429206709773+1i0.707429206709773.

For a project where variable ranges are known in advance,
it is possible to force the Fixed-Point Designer to convert
the code into fixed-point data types defined by the designer.
Moreover, the matrix ‘‘op’’ has been reshaped into a sin-
gle column vector by stacking the columns of the original
matrix:

The next step involved modifying the HDL Coder settings,
specifically to recognize the presence of ‘‘real’’ data type
variables in HDL code as an error.

The implementation of fixed-point arithmetic was con-
tinued using the ‘‘fi’’ constructor and MATLAB functions
discussed in previous section.

The final ‘getOperator’ script suitable for code
translation is:
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In the ‘‘fimath’’ function the approximation method used
is ‘Nearest’, which ensures rounding to the nearest repre-
sentable number. Additionally, in the case of equal distance
between two fixed-point numbers, they are rounded to the
nearest representable number in the positive infinity direc-
tion. The choice is based on two reasons: it has a moderate
computational cost [34] and is the best solution in rela-
tion to the proposed numerictype. The numerictype(1,16,15)
allows representing numbers ranging from -1 to a maximum
of 0.999969482421875; the smallest representable value is
0.000030517578125.

Regarding how to handle Overflow, ‘Saturate’ was chosen
instead of ‘Wrap.’ The latter implies that overflow should be
handled by ‘wrapping’ the most significant bits around the
least significant bits, in other words, if a number exceeds
the maximum representable limit in a certain number of
bits, the most significant bits are ‘wrapped’ around the least
significant bits to produce a new number. This can lead to
unexpected results and loss of precision. For example, adding
two fixed-point numbers with fimath and numerictype as
indicated, whose sum is 1, the calculator returns -1.

By setting ‘ProductMode’ and ‘SumMode’ to ‘FullPre-
cision,’ it would mean that the product and sum would be
calculated with the maximum precision available on the
system. This means there would be no rounding or bit

truncation during these operations. This mode of handling
products and sums allows for the highest possible precision
but can also lead to memory or performance issues when
dealing with large amounts of data.

For these reasons, ‘‘fimath’’ specifies the precision and
word length used for product and sum operations. Precision
is specified using ‘ProductFractionLength’ and ‘SumFrac-
tionLength’ while word length is defined using ‘Product-
WordLength’ and ‘SumWordLength’

In this code, it specifies that product operations will use a
word length of 16 bits and a fraction length of 15 bits, and
sum operations will also use a word length of 16 bits and a
fraction length of 15 bits. Additionally, the ‘CastBeforeSum’
parameter specifies that data should be converted before
being summed. Forcing the product and sum to have a limited
number of bits, in this case with the same numerictype for
factors and addends, is necessary due to the limited resources
available on the FPGA Cyclone V.

The defined number of iterations is 15: for fixed-point
operations, themaximum number of iterations is one less than
the word length of the angle [34].

The ‘bitsra’ (BIT Shift Right Arithmetic) instruction shifts
the bits to the right while maintaining the sign bit (MSB),
representing the sign. It is the fastest and most efficient way
to divide by a multiple of 2.

The ‘opName’ variable is also a fixed-point number with
a word length of 16. This modification will be beneficial for
generating words to be loaded into the ROM of the system,
in the Quartus FPGA’s design environment.

The version of the same function for a two-qubit
emulator has a different ‘fimath.’ In particular, ‘Product-
Mode’ and ‘SumMode’ are set to ‘FullPrecision’ because a
high-performance FPGA board is used to its fullest potential.

Additionally, for a two-qubit emulator, a new operator
is introduced, the Controlled Operator (‘opName’ == 15),
to implement controlled quantum gates, quantum operators
that characterize systems with two or more qubits:

In the case where the required operator is a controlled
operator indicated by the number 15, the corresponding qubit
will act as the control qubit, and the identity operator will be
applied to it.

quantumComputer_oneQubit.m
It is the main function for a single qubit quantum comput-

ing execution. It follows the complete MATLAB code:
This function executes the quantum algorithm on a sin-

gle qubit and requires the algorithm steps as mathematical
operators to apply, following themodel of David Shor’s quan-
tum computer [23]. This function employs three quantum
operators.

41338 VOLUME 12, 2024



A. Giorgio: Project and Implementation of a Quantum Logic Gate Emulator on FPGA

Firstly, the vector representing the quantum state after the
algorithm’s application is initialized as a 2 × 1 array of
complex numbers. Subsequently, the three quantum oper-
ators that will constitute the algorithm are obtained using
the ‘‘getOperator’’ function, which takes ‘‘opName’’ ‘‘theta’’
‘‘phi’’ and ‘‘lambda’’ values as inputs. These operators
are then multiplied together in a specific order using the
‘‘matrix_complex_mults’’ function.

Finally, the initial qubit state is modified using the obtained
operator and applied to the initial qubit state with the
‘‘Apply_Operator’’ function. The final probability distri-
bution is then calculated using the ‘‘probFinal_oneQubit’’
function.

matrix_complex_mults.m

The function called ‘‘matrix_complex_mults’’, takes two
complex matrices A and B as input and returns their prod-
uct C. The function uses the reshape instruction to convert
the column vectors A and B into 2 × 2 matrices. It then
employs the standard multiplication operator to calculate the
product between A_temp and B_temp. Finally, C_temp is
converted back into a column vector, which is assigned to

the output variable C. The reshaping operation of inputs and
outputs is required by the toolbox to ensure compatibility. The
same procedure applies to all other auxiliary functions, whose
inputs and outputs consist of matrices.

Apply_Operator.m

The function ‘‘Apply_Operator’’ performs the application
of a matrix operator to a quantum vector. In this case as well,
the ‘reshape’ operation is used.

probFinal_oneQubit.m

The ‘‘probFinal_oneQubit’’ function accepts an input ‘‘a’’
that represents the state of a qubit and aims to calculate the
probability that the system collapses into a particular basis
state when the qubit is measured.

MATLAB’s ‘‘fimath’’ is used to specify the fixed-point
numerical representation used in the calculations. This com-
ponent uses the same settings identified in the ‘‘getOperator’’
function. As for the variable type, the function uses the
‘‘numerictype’’ component to define ‘‘probFinal’’ as an
unsigned fixed-point element with the entire bit sequence
used to describe the fractional part.

The function uses a CORDIC algorithm, ‘‘cordicabs’’ [33],
to calculate the absolute value of the quantum state, using
a precision of 15 bits. The result is saved in the variable
‘‘abs_value.’’

Finally, the function returns the variable ‘‘probFinal,’’
which is the value of ‘‘abs_value’’ squared. Squaring is per-
formed as an element-wise multiplication of the array by
itself for compatibility with HDL Coder toolbox. This array
represents the probability of obtaining a particular state when
the qubit is measured; it should be noted that the sum of
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the probabilities of obtaining each individual basis state must
equal 1.

In the following there is the description of the MATLAB
scripts for the two-qubit project, also.

quantumComputer_twoQubit.m
It is the main function for a two-qubit quantum computing

execution, which code is:

The ‘‘quantumComputer_twoQubit’’ function performs a
quantum algorithm on a two-qubit register. The algorithm is
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presented as in (81) and (82):

|initState0⟩ : − − op00 − −op10 − −op20 (81)

|initState1⟩ : − − op01 − −op11 − −op21 (82)

where ‘‘op_i_j’’ are the operators to be applied to individual
qubits, ‘‘i’’ is the operator index, and ‘‘j’’ is the qubit index
within the quantum register.

The result of the quantum computation is as in (83):

|computerState⟩ = op2 ∗ op1 ∗ op0 ∗ |initState⟩ (83)

The function takes as input the names of the operators,
the angles for their parameterization, and the initial state of
each qubit. It then creates the two-qubit register using the
‘‘two_qubit_register’’ function and defines the operators to
be applied to each qubit.

Next, it defines the operators to be applied to the entire
quantum register: a control structure (if-else) checks if
a controlled logic gate is requested. If so, the function
calculates the controlled operator using the ‘‘getControle-
dOperator’’ function; otherwise, it performs the Kronecker
product between the operators to be applied to each qubit.

The final state of the computer is obtained by applying the
operators in the order specified by the algorithm. The function
returns the final state of the computer, the probability of the
final state of the register, and the probability that the two
qubits are in either the state 0 or 1.

It follows the description of the scripts and related func-
tions called by the ‘‘quantumComputer_twoQubit’’ function:

two_qubit_register.m

This script calculates the Kronecker product of two qubits,
represented as 2 × 1 column vectors, which is necessary
for generating a two-qubit quantum register. The code uses
bra-ket notation to represent the qubits, where each qubit is
represented as a 2 × 1 column vector.
The code uses four variables to represent the coefficients

of the Kronecker product between the two qubits:

c_00, c_01, c_10, c_11

For each pair of coefficients from the two qubits, c1(1,1)
and c2(1,1), c1(1,1) and c2(2,1), c1(2,1) and c2(1,1), c1(2,1)
and c2(2,1), they are multiplied and assigned to their respec-
tive variables. Finally, a column vector C is created with the
values of the four variables, representing the result of the

Kronecker product between the two qubits, i.e., the ket of the
quantum register.

prodotto_di_kronecker.m

This function calculates the Kronecker product between
two complex 2×2 matrices, which respectively represent the
operator applied to the first and second qubits. The result is
a complex 4 × 4 matrix, which is ‘‘flattened’’ to support the
HDL Coder tool.

The output variable is defined according to the expected
numerical characteristics, like what was done in previous
functions.

Then, an empty matrix ‘‘C’’ is created with specific pre-
cision and numeric type options. Subsequently, temporary
matrices ‘‘c1_temp’’ and ‘‘c2_temp’’ are created to hold the
input matrices. The Kronecker product is computed between
each pair of elements of the temporary matrices, resulting in
four matrices: ‘‘c_00,’’ ‘‘c_01,’’ ‘‘c_10,’’ and ‘‘c_11.’’ These
matrices are then combined into a 4 × 4 matrix ‘‘C_temp.’’
Finally, there is an assignment for subscripting, along with

the flattening of the ‘‘C_temp’’ matrix into a one-dimensional
vector C.

getControledOperator.m
The ‘‘getControledOperator’’ function takes two param-

eters as input: ‘‘baseOp,’’ which represents the operator to
be applied to the target qubit, and ‘‘ControlQubit,’’ which
represents the index of the control qubit. The code returns a
4×4 matrix representing the single-qubit operator controlled
by another qubit.

Initially, properties are defined for the ‘‘op’’ object,
including overflow action, rounding method, product mode,
and sum mode. Subsequently, two variables are cre-
ated for the real and imaginary elements of ‘‘op,’’ and
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a template for ‘‘op’’ is defined as a complex number com-
posed of the two just-created variables. These are the same
instructions used in the ‘‘getOperator’’ function.

The ‘‘baseOp_temp’’ matrix is then resized into a 2 ×

2 matrix using the reshape function. At this point, the code
performs a conditional check on ‘‘ControlQubit.’’ If ‘‘Con-
trolQubit’’ equals 0, the control qubit is the first qubit, and
the returned operator is a 4 × 4 matrix.
It is worth of notice that the controlled operator described

is an extension of the CNOT logic gate. Given the operator to
be applied to the second qubit represented as in (84):

baseOptemp =

[
U11 U12
U21 U22

]
(84)

The corresponding controlled operator is as in (85):

op0 =


1 0 0 0
0 1 0 0
0 0 U11 U12
0 0 U21 U22

 (85)

The operator is created as a 4× 4 matrix with the elements
of ‘‘baseOp_temp’’ in the bottom-right corner and identity
elements in the top-left corner.

If ‘‘ControlQubit’’ equals 1, the control qubit is the second
qubit, and the first qubit is the target qubit. The operator is
created as a 4×4matrix with the elements of ‘‘baseOp_temp’’

at positions (2,2), (2,4), (4,2), and (4,4), and identity elements
in the remaining positions of the main diagonal, as in (86):

op1 =


1 0 0 0
0 U11 0 U12
0 0 0 0
0 U21 0 U22

 (86)

The ‘‘op_1’’ matrix is obtained by left and right multiply-
ing the ‘‘op_0’’ matrix by the SWAP matrix [35].

The implementation of these two types of controlled oper-
ators is not provided in the original ‘‘getOperator’’ function,
which only allows for the case where the control qubit is the
first qubit.

If the ‘‘ControlQubit’’ flag is neither 0 nor 1, the controlled
operator is set as a 4×4 matrix of zeros to immediately detect
a problem. Finally, the ‘‘op’’ matrix is returned as the output
of the function.

The functions, matrix_complex_mults.m and
Apply_operator.m are as for the single-qubit case with the
introduction of the only change in reshaping parameters from
(2,2) to (4,4).

probFinal_twoQubit.m

The function ‘‘probFinal_twoQubit’’ calculates the proba-
bility distribution of a two-qubit quantum system. The func-
tion requires the complex vector ‘‘computerState,’’ which
describes the quantum state following the application of the
algorithm.

Next, the function calculates the probabilities associated
with three possible measurement outcomes using the ‘‘cordi-
cabs’’ function and performs element-wise multiplication
using the notation ‘‘. ∗,’’ similar to what was done for a single-
qubit system.
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Subsequently, the function calculates the probability dis-
tribution of measuring a basis state (|0⟩ or |1⟩) for each
individual qubit by summing the probabilities associated with
the basis states of the quantum register (|00⟩, |01⟩, |10⟩, |11⟩)
that contain that state for the individual qubit.

For example, to calculate the probability of measuring 0 for
the first qubit, are summed the probabilities of obtaining the
basis states |0⟩⊗|x⟩, where |x⟩ is any state of the second qubit.
Similarly, to calculate the probability of measuring 1 for the
first qubit, are summed the probabilities of obtaining the basis
states |1⟩⊗|y⟩, where |y⟩ is another state of the second qubit.

These distributions are stored in the vectors ‘‘probQubit0’’
for the first qubit and ‘‘probQubit1’’ for the second qubit.
Finally, the function also returns the overall probability dis-
tribution of the two-qubit quantum system which is saved in
the ‘‘probFinal’’ vector.

Testbench files
To test the validity of the work, it was necessary to write

three testbench files, two in MATLAB and one directly in
Verilog HDL, for each of the two projects:

- MATLAB testbench file to be applied to the original
MATLAB project.

- MATLAB testbench file to be applied to the MATLAB
project to be translated (from simulator to emulator).

- Verilog HDL testbench file to be applied to the Quartus
project of the emulator.

In this section are described the two MATLAB testbench
files, and in the next section will be analysed the Verilog ones.

For the single-qubit project, the MATLAB code of the
testbench to be applied to the original MATLAB project
is:

‘‘initState’’ is the ket associated with the qubit in the initial
state. It is emphasized that it is important to ensure that the
complex vector satisfies the normalization condition; other-
wise, it would not represent a valid quantum system.

The operators specified in this script are three and require
the Ry

(
−
π
2

)
, Rx

(
π
4

)
and U3

(
π
6 ,−

π
2 ,−

π
9

)
, operators, in that

order.
The additional lines of code are not strictly necessary but

can be useful for directly comparing the values obtained,
both in fractional and binary form, with those of the
emulator.

The code of the testbench file to be applied to the
single-qubit MATLAB project (from simulator to emulator)
is:

QuantumComputer_oneQubit_tb.m

This testbench file performs the same functions as the
previous script and is used to test the quantum computing sim-
ulator for a single qubit. The ‘‘quantumComputer_oneQubit’’
function is used to execute the quantum algorithm. The file
specifies the input parameters for the function, including the
initial state of the qubit, the names of the quantum operators
to apply, and the parameterization angles for each operator.

The ‘‘fimath’’ and ‘‘numerictype’’ objects are defined with
the same settings applied in the ‘‘getOperator’’ function.

The initial state of the qubit and the parameteriza-
tion angles for the quantum operators are converted into
binary numbers using the ‘‘bin’’ function. The ‘‘quantum-
Computer_oneQubit’’ function is then executed using the
specified input parameters, and the result of the quantum
computer’s state and the final probability are saved in ‘‘com-
puterState_my’’ and ‘‘probFinal_my,’’ respectively. These
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results are also converted into binary numbers for later visu-
alization.

For the two-qubit project, the MATLAB code of the
testbench to be applied to the original MATLAB project
is:

This testbench initializes the initial state of the qubits using
the ‘‘initializeRegisters’’ function. The value of the initial
state is represented as a complex 2 × 2 matrix. The variable
‘‘qAlgorithm’’ contains a series of quantum operations to
be performed on the quantum system, with three operators
planned for each qubit.

For the first qubit, the following operators are applied in
this order: Z, Rx

(
π
4

)
and ‘‘• ’’; the ‘‘• ’’ operator indicates

the use of a controlled gate, with the first qubit acting as the
control qubit.

For the second qubit, the operators applied are Ry
(
−
π
2

)
,

Rx
(
π
4

)
andU3

(
π
6 ,−

π
2 ,−

π
9

)
. Schematically, it is represented

as in (87) and (88):

|initState0⟩ : − − Z − − − Rx
(π
4

)
− − − − − − • −

(87)

|initState1⟩ : − − Ry
(
−
π

2

)
− −Rx

(π
4

)
− −U3

(π
6
,−
π

2
,−
π

9

)
− (88)

This array is passed to the ‘‘quantumComputer’’ function,
along with a matrix of strings representing the quantum
algorithm to be executed on the quantum system. The result of
the ‘‘quantumComputer’’ function is the final quantum state
ket, the probability of measuring the basis states after mea-
suring both qubits, and the quantum transformation matrix
representing the effect of the quantum operations on the
quantum system.

Finally, the final quantum state vector is converted into
a ‘‘fi’’ data type and expressed as a binary string for easy
visualization and comparison.

The code of the testbench file to be applied to the two-qubit
MATLAB project (from simulator to emulator) is:

QuantumComputer_twoQubit_tb.m
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FIGURE 8. Input variables definition of the testbench file.

It calls the ‘‘quantumComputer_twoQubit’’ function to
simulate the evolution of a two-qubit quantum system based
on the quantum operations applied to the two qubits.

The testbench defines the following variables:
fm: a fimath object defining the numeric rules.
nt1: a numerictype object with 16 bits of word length (WL),

signed, and 15 bits of fraction length (FL), used to represent
quantum states.

nt: a numerictype object with 16 bits of WL, signed, and
13 bits of FL, used to represent angles.

template: a template for all angles for operator parameter-
ization.

theta_0, phi_0, lambda_0: three arrays of fixed-point num-
bers representing the angles used for the quantum operation
applied to the first qubit.

theta_1, phi_1, lambda_1: three arrays of fixed-point num-
bers representing the angles used for the quantum operation
applied to the second qubit.

initState_0, initState_1: two arrays of complex fixed-point
numbers representing the initial quantum states of the two
qubits.

opName_0, opName_1: two arrays of fixed-point numbers
representing the quantum operations to be applied to the two
qubits.

The testbench then calls the ‘‘quantumComputer_twoQubit’’
function, passing the values of the variables described above
as arguments. The function returns the following outputs:

computerState_my: an array of fixed-point complex num-
bers representing the final quantum state of the two-qubit
system.

probFinal_my: an array of fixed-point numbers represent-
ing the total probability of the two-qubit system.

probQubit_0_my: an array of fixed-point numbers repre-
senting the probability of the first qubit.

probQubit_1_my: an array of fixed-point numbers repre-
senting the probability of the second qubit.

All variables are also expressed in binary format for com-
parison with values obtained from the Quartus simulation.

FIGURE 9. Types definition.

E. TRANSLATION OF MATLAB PRIMARY FUNCTIONS INTO
VERILOG HDL CODE
The general procedure to translate MATLAB functions into
Verilog HDL listings has been outlined previously. In this
section, the procedure applied to the generation of the quan-
tum computing emulators is described, starting with the
single-qubit and two-qubit MATLAB simulator projects,
which were detailed earlier.

The steps for the single-qubit emulator are as follows.
Add Intel Quartus Lite Edition to the system path using the

hdlsetuptoolpath function:

Create a new HDL Coder project:
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FIGURE 10. Synthesis tool and target FPGA definition in workflow advisor.

Click on ‘‘AddMATLABFunction’’ and select the primary
function QuantumComputer_oneQubit.m.

Click on ‘‘Autodefine types’’ and add the testbench file by
clicking the ‘‘+’’ next to the ‘‘Test File’’ entry and selecting
the file QuantumComputer_oneQubit_tb.m.

Then, click ‘‘Run’’.
These operations allow the definition of input variables by

executing the testbench file (Fig. 8).
Then, click on ‘‘Use These types’’, as in Fig. 9, and then

click on ‘‘Workflow Advisor’’.
It is worth of notice that in workflow advisor it is declared

do not to proceed with automatic fixed-point conversion by
setting ‘‘Keep Original Types’’.

The next task involves defining the synthesis tool and the
target FPGA board, as in Fig. 10.
The final step involves specifying all the settings for HDL

Code Generation as follows:
Target -> Target Selection -> Language -> Select

‘‘Verilog’’;
Target -> Output Settings -> Check ‘‘Check HDL

Conformance’’;
Coding Style -> Generated Code comments -> Check

‘‘Include MATLAB source code as comments’’;
Coding Style -> Generated Code comments -> Check

‘‘Generate report’’;
Coding Standards -> Choose coding standard -> HDL

Coding Standards -> Select ‘‘Industry’’;
Optimizations -> Pipeling -> Check ‘‘Register Inputs’’;
Optimizations -> Pipeling -> Check ‘‘Register Outputs’’;
Optimizations -> Pipeling -> Check ‘‘Adaptive

Pipelining’’;
Advanced -> Advanced Coding Options -> Check ‘‘Gen-

erate instantiable code for functions’’;
Advanced -> Diagnostics -> Check for presence of reals

in the generated HDL Code -> Select ‘‘Error’’.
Choosing to enforce code writing standards based on

industrial recommendations is advisable to enhance the read-
ability of Verilog code listings. This approach sets limits
on the length of variable names and promotes the use of
standard names for typical I/O signals such as clock and
reset.

It is important to check the introduction of registers on
input and output to induce the HDL Coder toolbox to insert
clock enable signals on input and output, as explained in the
section describing the Quartus project.

Once the task settings are defined, clicking on ‘‘Run’’
are displayed in the log window hyperlinks to the generated
Verilog files and requested reports.

Regarding the generation of Verilog listings for the two-
qubit emulator, there are no substantial differences fromwhat
was shown for the single-qubit case, except for the definition
of the synthesis tool and target FPGA board (Fig. 11). The
selected synthesis tool is Intel Quartus Pro Edition that sup-
ports the Arria 10 FPGA family.

The related MATLAB command is:

The final step in the MATLAB environment project
involves writing two functions that, given all the input values
required by the QuantumComputer_oneQubit and Quantum-
Computer_twoQubit scripts, writeMemory Initialization File
(MIF) files for the FPGA implementation, used to initialize
the memory of an FPGA.

These files are used to define the initial content of a
memory, such as RAM or ROM, before the board’s logic is
executed. MIF files are very useful when it’s necessary to
specify a specific starting behaviour for the memory, such
as ensuring that a memory holds a specific value at boot-up.
These files are written in a text-based format and consist of
lines that describe the position of each bit in memory and the
initial value of each bit.

In Quartus environment, MIF files can be used to initialize
memory in various ways, such as manually entering values
or automatically generating them using third-party software.
In this work, MATLAB was used for this purpose [36].

Before running either of the two MIF file generation
functions, it is necessary to execute the corresponding test-
bench file (testbench for the emulator). This ensures that the
required fixed-point input values are available to the function.
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It follows the code for the MIF file generation:

The function also creates a second file, the HEXfile, which
is a memory initialization file alternative to the MIF file,
whose values are written in hexadecimal format.

For completeness, the script for generating the MIF file
for the two-qubit emulator is provided below, also. The only

significant difference is that the RAM size is 32 words,
compared to the 16 words in the previous case.
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V. HARDWARE IMPLEMENTATION
The hardware implementation was carried out using INTEL’s
FPGA, mounted on Terasic boards. The development envi-
ronment used was Intel’s Quartus IDE.

To implement the single-qubit emulator, the FPGA
5CSEMA5F31C6 from the Cyclone V family, mounted on
the Terasic DE1_SoC board, was utilized [37].

To implement the two-qubit emulator, the FPGA
10AX115N2F45E1SG from the Arria 10 GX family,
mounted on the Terasic DE5a-NET DDR4 board [38], was
used because the resources of the Cyclone V were insuffi-
cient.

In both cases, the files to be used in their respective Quartus
projects (for the single-qubit emulator and for the two-qubit
emulator) are the ones obtained through the code translation
procedure performed starting by the respective MATLAB
simulators.

To complete the projects for both emulators, the remaining
task is to implement the input loading for initializing compu-
tations, as described below.

The data loading system comprises three interconnected
blocks: a modulo-15 counter, a Serial-In Parallel-Out (SIPO)
register, and a ROM memory block to be instantiated on
the FPGA board. The configuration parameters for the ROM
memory are shown in Fig. 12.
The SIPO register is designed with dimensions matching

those of the ROM for seamless memory data loading. After
loading, an additional clock cycle activates all data buses in
parallel at the register’s output. The register requires a ‘‘load’’
pin for initializing data loading and features a 16-bit data bus,
resulting in 16 data buses, each carrying 16 bits. Furthermore,
it includes a ‘‘done’’ output pin that signals when the register
has been loaded, simultaneously halting the loading process,
and making the data buses available at the output.

For each of the three modules, Block Symbol Files
(BSFs) have been generated from the Verilog listings. These
BSF files serve as symbolic blocks, facilitating a dia-
grammatic system design and freeing it from code-based
programming.

A. SINGLE QUBIT EMULATOR HARDWARE
IMPLEMENTATION
The complete design of the single-qubit emulator is illus-
trated in Fig. 13. The schematic file serves as the Top-Level
Entity of the project, representing the overall architecture of
the system, its interconnections, and acting as the starting
point for synthesis by the Quartus IDE.

As depicted in Fig. 13, the ‘‘done’’ output signal from the
SIPO register functions as the clock enable signal for the
block related to the actual quantum algorithm. When the data
from the register becomes available at the output, it is stored
in the input registers of the module responsible for quan-
tum computation on the subsequent clock cycle. Following
another clock cycle, the final data is accessible at the output
of the entire system.

The significance of introducing input and output registers
during the MATLAB code translation phase is now clarified:
it is essential for enabling synchronization between the com-
putation block and the data loading system.

FIGURE 11. Workflow settings for the 2-qubit emulator.
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FIGURE 12. ROM configuration screen.

FIGURE 13. Schematic of the full design.

B. TWO-QUBIT EMULATOR HARDWARE
IMPLEMENTATION
As mentioned earlier, the Pro version of the Quartus IDE
is utilized for the two-qubit emulator. The procedures are
analogous to those discussed previously: create the project,
add the generated Verilog listings, and define the module that
invokes all the components.

It is noteworthy that the two-qubit computational block
requires 32 data buses as input. Consequently, in this system,
it is necessary to adjust the data loading block: the ‘‘modulo
16’’ counter is replaced by a ‘‘modulo 32’’ counter, and
similarly, the size of the ROM is increased to 32 words from
the previous 16. No other differences in hardware description
are observed at this level.

The testbenches for both hardware implementations were
created using the waveform editor tool in the Quartus IDE,
accessible through the ‘File’> ‘New’> ‘University Program
WVF’ option in the main menu.

The testbench file serves as a graphical interface where
input waveforms are easily drawn, and upon completing the
calculations, the corresponding output waveforms are dis-
played, as shown in Figs. 14 and 15.

Users also have the option to select the radix for
visualizing results, choosing between fractional (dec-
imal) and binary. When comparing results obtained
from MATLAB simulators and FPGA emulators, select-
ing the fractional view of the output proves to be
useful.
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FIGURE 14. Calculation results of a 1-qubit emulator.

FIGURE 15. Calculation results of a 2-qubit emulator.

VI. RESULTS AND DISCUSSION
In Figs. 14 and 15 the calculation results by FPGA are shown
for the single-qubit and two-qubit emulator, respectively,
and they match with the MATLAB calculations, as shown
in table 1 and 2. Table 3 summarizes the FPGA resource
consumption for both implementations.

Anyway, a further discussion is useful to properly under-
stand the emulators performances and the comparison with
the simulator performances.

In a fixed-point system, the amount of information that
can be represented is limited to a fixed number of signif-
icant digits. This means that values that cannot be exactly
represented are rounded or truncated. This can lead to approx-
imation errors in mathematical operations. Additionally, the
fixed-point format can also lead to overflow or underflow,
depending on the properties of the selected format. These
errors can have significant consequences on the accuracy and
correctness of results [39], [40], [41].
To avoid these errors, it is crucial to carefully select

appropriate values for the parameters ‘‘wordlength’’ and
‘‘fractionlength’’ of the MATLAB ‘‘fi’’ format to ensure reli-
able data representation.Moreover, it is essential to verify that

intermediate and final values of calculations fall within the
range supported by the format and that quantization errors are
acceptable for the specific requirements of the application.

The precision of a fixed-point number is the difference
between successive values representable by its data type and
scale. The value of the least significant bit, and hence the
precision of the number, is determined by the number of
bits used to represent the fractional part. More bits used to
represent the fractional part result in greater precision.

Additionally, consider the error introduced using CORDIC
algorithms. Although of lesser magnitude, additional error
is inevitable. The total error is comparable to the precision
associated with the chosen fixed-point representation, due to
the use of the maximum available iterations for fixed-point
numbers with a word length of 16.

In the two designed emulators, the mathematical properties
imposed differ based on the capabilities of the two FPGAs
used for the respective hardware implementation.

In the case of the single-qubit emulator, results of
each mathematical operation are cast, introducing additional
rounding at each mathematical step. However, in the case
of the two-qubit emulator, the casting is deferred until the

41350 VOLUME 12, 2024



A. Giorgio: Project and Implementation of a Quantum Logic Gate Emulator on FPGA

TABLE 1. Comparisons between results obtained from the single-qubit quantum computing simulator and the corresponding emulator.

TABLE 2. Comparisons between results obtained from the two-qubit quantum computing simulator and the corresponding emulator.
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TABLE 3. Resources consumption for hardware implementation.

conclusion of mathematical operations, preserving the max-
imum precision available in the intermediate calculation
phases.

Precision is always lost during the rounding operation,
leading to quantization errors and computational noise. The
cost of the rounding operation and the amount of bias intro-
duced depend on the rounding method used.

Various rounding methods exist, each with its set of inher-
ent properties. Depending on the requirements of the design,
these properties can make a rounding method desirable.
Understanding the design requirements and the properties
of each rounding method can help determine which one is
best suited to real needs. The most important properties to
consider are cost, bias, and the potential for overflow. The
supported rounding methods are ceiling, convergent, floor,
nearest, round, simplest, and zero. As previously mentioned,
the rounding methods used for both cases are ‘‘nearest.’’

Based on what has been discussed so far, by the Tables 1
and 2 comparing the results obtained from each MATLAB
simulator and the corresponding FPGA emulator it can be
observed the effect of error propagation introduced in each
calculation stage, resulting in a maximum error on the fourth
digit after the decimal point and in a minimum error on the
fifth digit after the decimal point. It can be concluded that
the errors introduced by the previously listed approximations
do not significantly affect the validity of the results obtained,
as they are on the order of 10−4 – 10−5.
Anyway, it is worth of notice that the main error is particu-

larly evident in the calculation of the probability distribution.
Although the accuracy of the results obtained from

fixed-point arithmetic processing from FPGAs is widely
acceptable compared to the results obtained from MATLAB,
it is believed that the accuracy can be further improved by
intervening on the ‘‘cordicabs’’ instruction in MATLAB that
is inefficient and introduces significant rounding error. There-
fore, it is necessary to investigate alternative instructions that
incur lower computational cost (which is high in this case)
and are more accurate.

VII. CONCLUSION
In this paper, has been described step by step the procedure
for developing a quantum computing emulator implemented

on an FPGA, starting from a quantum computing simulator
developed in the MATLAB environment, for the two cases
of a single-qubit operation and for a two-qubit operation,
respectively.

The advantages of this design approach lie in the simplicity
of the project when following the ‘‘model-based’’ approach
in the MATLAB environment, as opposed to the hardware
project executed directly in an HDL language. Furthermore,
it involves the creation of a highly optimized HDL code for
FPGA implementation by the MATLAB HDL Coder tool-
box. This level of optimization is much more challenging
to achieve directly in HDL and demands uncommon design
skills. With the method devised and described in this paper,
optimized HDL code is obtained more easily.

Although theMATLABHDLCoder toolbox automatically
translates MATLAB code into HDL code, this translation is
not applicable to all MATLAB functions and fails if applied
to a quantum computing simulator if not properly designed.
Therefore, this paper deeply examines and describes project
rules to be applied during the simulator’s project phase,
focusing on transitioning from floating-point arithmetic to
fixed-point arithmetic and code translation within MAT-
LAB. This ensures error-free and reliable code translation,
resulting in a smooth and reliable design of a quantum
computing emulator starting from a quantum computing
simulator.

The procedure has been successfully applied and tested to
create a single-qubit emulator and a two-qubit emulator, both
implemented on Altera/Intel FPGAs. However, the procedure
is suitable for FPGAs from any manufacturer.

The results obtained from comparing the calculations per-
formed by the simulator and those executed by the emulator
indicate that the procedure is entirely satisfactory. While the
results are valid and satisfactory in terms of accuracy, further
improvement could be attained by utilizing floating-point
arithmetic instead of fixed-point arithmetic. However, this
would necessitate significantly more FPGA resources.
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