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ABSTRACT In the current economic and energy situation, it is imperative for major electricity consumers
to meticulously determine their electricity procurement. This is the case for cement producers. This work
intends to determine the most efficient approach to electricity acquisition, considering their involvement
in the electricity pool, power-purchase agreements, and the potential installation of a photovoltaic
self-production unit and a battery storage system. To achieve this, we model the electricity consumption
flexibility of cement producers, accounting for all production processes associated with cement and clinker
manufacturing. This results in the formulation of a mid-term decision-making problem under uncertainty,
which is addressed through the application of a two-stage risk-averse stochastic programming formulation.
In order to reduce the computational size of the resulting optimization problem, the planning horizon
is characterized by a set of representative periods obtained through a procedure based on chronological
time-period clustering. To analyze the practical viability of the proposed approach, a realistic case study
is solved featuring an existing cement producer, real-world energy pool prices, and data pertaining to
renewable energy production. The findings derived from this case study highlight the viability of installing
a photovoltaic self-production unit as a strategic measure to reduce the expected procurement expenses for
the cement producer. Moreover, the photovoltaic self-production unit proves instrumental in mitigating the
vulnerability to elevated procurement costs. It has been also observed that an imprecise modeling of the
technical characteristics within the cement manufacturing processes can lead to a substantial underestimation
of procurement costs.

INDEX TERMS Large electricity consumer, power purchase agreements, cement plant, self-generation
facility, stochastic programming.

NOTATION
The notation used throughout this paper is included below for
quick reference.
Sets and Indices
AMpmω Set of time periods in which the maintenance

period m associated with process p can start in
scenario ω

C Set of contracts, indexed by c
K Set of period groups used to compute the costs

associated with the power capacity and energy
purchases in the pool, indexed by k
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approving it for publication was Ahmed A. Zaki Diab .

Mp Set of maintenance periods of process p, indexed
by m

P Set of processes, indexed by p
PAp Set of ancestor processes whose outputs are

directly connected to process p
T Set of time periods, indexed by t
Tkω Set of time periods belonging to period group k

in scenario ω

T F Single-element set composed by the last time
period of the planning horizon

� Set of scenarios, indexed by ω

Parameters

APVtω Availability of PV self-generation unit in period
t at scenario ω (pu)
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CE
p Average electricity consumption associated with

process p (MWh/ton)
CG
k Cost of the power contracted with the grid for

period group k (e/MW)
C I ,PV Annualized investment cost of PV self-generation

unit (e/MW)
C I ,SE Annualized investment cost of the energy compo-

nent of the battery system (e/MWh)
C I ,SP Annualized investment cost of the power compo-

nent of the battery system (e/MW)
CU ,Or Penalization cost of the non-provision of prod-

ucts requested by clients (e/ton)
DB Base demand of auxiliary processes (MW)
Dmaxp Maximum power consumption associated with

process p (MW)
Dminp Minimum power consumption associated with

process p (MW)
DOrptω Product sale orders requested by clients manu-

factured by process p at period t and scenario ω

(ton/h)
DT p Minimum down time associated with process p

(h)
DT ′

ptω Auxiliary parameter used to compute the min-
imum down time in period t associated with
process p and scenario ω (h)

MT
p′p Per unit value of product obtained from process p′

that is transformed to the final product of process
p (pu)

NT Number of time periods in the planning horizon
PCmax,c Maximum power capacity that can be signed

from contract c (MW)
PI ,PVmax Maximum power capacity that can be installed of

the self-generation PV facility (MW)
Smaxp Maximum quantity of product that can be stored

in the storage associated with process p (ton)
Sminp Minimum quantity of product that can be stored

in the storage associated with process p (ton)
TMpm Duration of the maintenance period m associated

with process p (h)
TM

′

pmtω Auxiliary parameter used to compute the duration
of the maintenance period m of process p if starts
at period t in scenario ω (h)

UT p Minimum up time associated with process p (h)
UT ′

ptω Auxiliary parameter used to compute the mini-
mum up time in period t associated with process
p and scenario ω (h)

α Confidence level (pu)
β Weighting factor of the risk aversion experienced

by the cement producer (pu)
γ S,E Minimum energy that can be stored in the battery

(pu)
γ S,O Initial and final amount of energy stored in the

battery (pu)
1tω Duration of period t in scenario ω (h)
ηS Charging and discharging efficiencies of the

battery (pu)

λCc Purchasing energy price of contract c (e/MWh)
λPtω Final purchasing price at the pool considering

grid charges and tolls in period t at scenario ω

(e/MWh)
λStω Selling price at the pool in period t at scenario ω

(e/MWh)
πω Probability of scenario ω (pu)

Variables

dptω Average power demand associated with process
p and period t in scenario ω (MW)

dU ,Or
ptω Unserved quantity of product p in period t and

scenario ω (ton)
eI ,SE Energy capacity installed from the battery

(MWh)
eStω Energy stored in the battery in period t and

scenario ω (MWh)
mIptω Quantity of input product used from process p in

period t and scenario ω (ton)
mOptω Quantity of output product produced by process

p in period t and scenario ω (ton)
mSptω Quantity of product obtained from process p that

is sold to clients in period t and scenario ω (ton)
pCc Contracted power from contract c (MW)
pGk Contracted power from the grid for period group

k (MW)
pI ,PV Installed power capacity of the solar PV facility

(MW)
pI ,SP Power capacity installed from the battery (MW)
pPtω Average power purchased from the pool in period

t and scenario ω (MW)
pPVtω Average power produced by the solar PV facility

in period t and scenario ω (MW)
pStω Average power sold to the pool in period t and

scenario ω (MW)
pS,C
tω Average power charged to the battery in period t

and scenario ω (MW)
pS,D
tω Average power discharged from the battery in

period t and scenario ω (MW)
sptω Quantity of product stored in the storage associ-

ated with process p in period t and scenario ω

(ton)
vDptω Binary variable that is equal to 1 if process p is

consuming electricity in period t and scenario ω

vMpmtω Binary variable that is equal to 1 if the main-
tenance m of process p starts at period t and
scenario ω

ζω Auxiliary variable used to compute the difference
between the procurement cost of scenario ω and
the Value-at-Risk for a confidence level α (e)

ξ Auxiliary variable whose optimal value is the
Value-at-Risk for a confidence level α (e)

I. INTRODUCTION
Minimizing the electricity procurement cost for large con-
sumers holds significant importance as it may directly impact
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their financial viability. By reducing energy expenses, large
consumers can allocate more resources to vital aspects of
their operations, including i) innovation, ii) employee well-
being, iii) growth initiatives, and iv) improving their overall
competitiveness. Additionally, cost reduction efforts may be
synchronized with sustainability goals by lowering carbon
emissions, which aligns with global environmental objectives
and enhances the organization’s reputation.

A paradigmatic example of a large consumer is the
cement industry. Cement plants are significant electricity
consumers due to the energy-intensive processes involved in
cement production, which includes high-temperature kilns
and grinding equipment. The raw materials and clinker used
in cement production need to be crushed, ground, and heated,
demanding substantial electrical power, as explained in [1].

A. LITERATURE REVIEW
In contrast to the extensive research on modeling the
participation of generating units in electricity markets, there
has been a much more limited exploration of electricity
procurement for large consumers in the technical litera-
ture. Nevertheless, over the past few decades, numerous
methodologies have been proposed for determining energy
procurement strategies for large consumers. Pioneering stud-
ies addressing the electricity procurement of large consumers
within liberalized electricity markets were conducted by [2],
[3], [4], [5].

Nonetheless, identifying the most advantageous electricity
procurement strategies for large consumers remains an ongo-
ing area of investigation. Reference [6] introduced a multi-
stage stochastic programming formulation for determining
the procurement strategies of large consumers participating
in the electricity pool while also being able to enter bilateral
contracts with electricity suppliers. In contrast, the authors
of [7] proposed a two-stage stochastic formulation that
considered large consumers with storage facilities capable
of investing in onsite solar PV units. Reference [8] explored
the economic feasibility of installing PV self-generation
units for large consumers. The authors of [9] simultaneously
considered the potential use of PV, wind turbines, micro-
turbines, and energy storage by large consumers while
modeling the uncertainties associated with electricity prices,
loads, and renewable production. The recent work [10]
examined the electricity procurement of consumers using
hybrid systems composed of photovoltaic, wind power, and
fuel cells. Reference [11] proposed a stochastic programming
model to decide the power-purchase agreements by large
consumers in a medium-term planning horizon.

Most of the works described above consider that the
demand is input data that cannot be modified with the
objective of reducing electricity procurement costs. However,
if the individual processes of the industrial consumer are
properly modeled, it is possible to formulate accurately the
ability of large consumers to change electricity consumption
patterns aiming at reducing electricity procurement costs.

In this sense, reference [12] delivered a thorough examination
of the latest developments in industrial and commercial
demand response. Reference [13] solved a long-term inte-
grated production planning and electricity procurement
problem while considering uncertainty in product demand.
The authors of [14] concentrated on a steel plant and
streamlined its scheduling with the goal of maximizing
profits in both the energy and spinning reserve markets. The
authors of [15] illustrated how digital twins hold promise in
enabling the provision of flexibility services from industrial
energy systems. Reference [16] proposed a data-driven
procedure to support energy-intensive industrial plants to
offer energy flexibility in the joint energy and reserve market.

The electricity procurement of cement plants has been
also studied by many authors in the past, such as [17],
and continues as an active research topic, for instance,
the work presented in [18]. Reference [19] proposed a
procedure for delivering essential ancillary services, such
as regulation and load following for cement power plants,
through the synergy of industrial loads capable of adjusting
their power consumption in significant discrete increments
and an onsite energy storage device that offers finer-grained
power adjustments. The work developed in [20] proposed a
bilevel formulation to obtain the equilibrium reached by a
number of strategic cement producers through a technological
representation of the market.

B. OBJECTIVE AND CONTRIBUTIONS
The aim of this paper is to develop a practical, rigorous, and
readily applicable tool for cement plant managers seeking
to assess their medium-term electricity procurement while
accounting for various sources of uncertainty. The considered
electricity procurement options comprise the participation
in the energy pool, the installation of a photovoltaic self-
generation system, the use of batteries, and the exploration
of power-purchase agreements. To ensure well-informed
decisions, a mathematical modeling is developed to capture
the operational characteristics and electricity consumption
patterns of all stages in the cement production process.

To the best of our knowledge, this work provides the first
mathematical formulation of the medium-term electricity
procurement for cement producers considering the schedul-
ing of the production processes. Consequently, this work
offers four significant contributions:

1) Formulating the medium-term electricity procurement
strategy for a cement plant by providing a precise math-
ematical description of the operational characteristics
of each stage in the cement production process.

2) Modeling the plant’s electricity consumption resulting
from sales orders. This electricity consumption is
flexible, andmay vary based on the available electricity
procurement options for the cement plant operator.

3) Mathematically defining the decision-making problem
as a mixed-integer two-stage risk-averse stochastic
programming problem. This involves the incorporation
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of binary variables associated with the commitment of
individual processes and accounting for the operator’s
degree of risk aversion. Additionally, this formulation
determines the optimal scheduling of maintenance
periods for critical processes.

4) Conducting a practical case study using a real-world
cement plant as a basis, while considering various
sets of electricity procurement options. The process of
constructing the input data for this case is meticulously
described to simplify the application of the proposed
tool for cement plant managers.

II. ELECTRICITY CONSUMPTION OF CEMENT FACTORIES
In any industrial business, particularly in the cement industry,
understanding the required power in a plant is crucial for
estimating electricity costs and formulating budgets for the
upcoming years. For this purpose, it is standard practice
to install electricity counters in every section, subsection,
or primary driver within these types of plants. Assuming the
availability of data such as instant power demand (MW),
consumption during any given period (MWh), and main
production (ton) for each main and intermediate product,
easily accessible through an ERP (Enterprise Resource Plan-
ning) or SCADA (Supervisory Control and Data Acquisition)
software.

Below, we describe the production process for a cement
plant.

A. DESCRIPTION OF THE CEMENT PRODUCTION
PROCESS
The process of cement production in a typical cement factory
can be briefly described as follows:

• Quarry: Limestone and clay are extracted from the
quarry using small and controlled detonations. Lime-
stone (70%) and clay (30%) are the primary raw
materials used to produce cement.

• Crushing and prehomogenization: The limestone is
crushed in successive phases until it reaches fragments
of about 50 mm. Starting from the variable qualities of
the stone, a uniform mineral composition is obtained,
which is typically referred as the raw mix.

• Raw: Raw meal with ideal granulometry is obtained by
using vertical roller mills or ball mills.

• Kiln: Raw meal passes through the pre-calcination
cyclone exchanger, where the residual heat of the
furnace gases is used. Raw meal is the subject of a
series of physical and chemical transformations that
take place in large rotary kilns: drying (up to 150 ◦C);
dehydration of the clay (up to 500 ◦C); decarbonation
(between 550 ◦C and 1100 ◦C); and clinkerization
(between 1300 ◦C and 1500 ◦C). The clinker passes
from approximately 1450 ◦C to approximately 140 ◦C
through refrigeration grids or satellite tubes attached to
the kiln, from which the released gases are sent to the
drying process.

• Clinker grinding and cement manufacturing: Once the
additions, gypsum and other additives have been dosed,
the materials are milled and homogenised until the final
product is obtained: Portland cement.

• Expeditions: The final process consists of packaging or
bulk shipment.

B. ELECTRICITY CONSUMPTION OF EACH STAGE
According to the stages of cement production described
above, the electricity consumption of a cement factory
includes the addition of the following elements:

• Base consumption (BC): This is associated with the
minimum power needed for the plant to run. They are
all the auxiliary consumptions: compressed air network,
refrigeration systems, control rooms, and lighting,
among others.

• Quarry and raw materials section (QRM): This section
comprises all processes, starting the quarries (if any)
or from the discharge of incoming raw materials,
involving the crushing and transportation to the pre-
homogenization stock. Subsequently, the power con-
sumption in this section is substantial, primarily pro-
pelled by energy-intensive processes like crushing,
grinding, and transportation.

• Raw mills (RM): They comprise the extraction and
transport from the raw materials section, and the
grinding and transport to the raw meal stock. The
electricity consumption in the raw mills is also notably
high due to the energy-intensive grinding process and
the operation of conveyors, fans, and control systems.

• Kiln (K): The kiln is the core of a cement plant, where
raw materials undergo high-temperature processing to
form clinker, a crucial component in cement production.
Its importance lies in being the central unit responsible
for transforming raw materials into the final product,
making it a key determinant of the plant’s efficiency
and product quality. Moreover, it represents the phase
with the highest energy consumption per produced ton.
This process encompasses the i) extraction and transport
from the rawmeal stock to the kiln, ii) clinkerization and
cooling processes, and iii) transport to the clinker stock.

• Cement mills (CM): The cement mill in a cement
plant consumes a considerable amount of electricity
during the grinding of clinker and the production of
cement. It involves the operation of grinding equipment,
conveyors, and fans. It also includes the comsumption
associated with the extraction and transport from the
clinker stock and the milling and transport to the cement
silos.

• Expedition (E): The expedition section involves the
final stage of product packaging and transportation.
Its electricity consumption primarily stems from the
operation of packaging machinery, conveyors, and other
auxiliary equipment essential for the efficient packing
and dispatch of the finished cement products.
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FIGURE 1. Cement production process.

Fig. 1 shows the entire cement production process. The
electricity consumption of each process, as well as the storage
size, is included for a typical plant. Note that the kiln is the
most energy-intensive process, exhibiting the highest peak
demand and the greatest energy consumption per produced
ton.

Given the power consumption profiles outlined above,
the challenge for cement plant managers lies in accurately
deciding the active consumptions for each hour. This task
is contingent on factors such as the performance (ton/h)
of each section, storage levels, client orders, and various
considerations influencing the decision to operate specific
sections. These considerations encompass electricity market
prices, scheduled maintenance shutdowns, production and
maintenance shift schedules, self-generation unit production,
and other relevant factors. The main idea of the approach
presented in this paper is to decide on the electricity procure-
ment of the cement plant while simultaneously optimizing
the scheduling of the production processes. Consequently, the
operation of the cement plant can be adapted to the previously
determined electricity procurement strategy to minimize total
costs.

III. DECISION-MAKING FRAMEWORK UNDER
UNCERTAINTY
The proposed approach considers a medium-term planning
horizon. This planning horizon is represented using a target
year divided into a set of periods t ∈ T . The characterization
of the planning horizon within a single year serves as a
compromise between accurately modeling the operational
dynamics of the cement plant and ensuring computational
tractability. Indeed, the adoption of a singular target year
is a common practice in addressing medium-term decision-
making problems, as observed in related works such as [11].
The duration of each time period may vary, not necessarily

restricted to one hour, since a clustering procedure explained
in Section V-H have been applied to different datasets,

FIGURE 2. Illustrative example - Original and reduced sets of pool prices.

such as pool price, to reduce the computational size of
the optimization problem. The output data of the clustering
technique are reduced series, in which each period comprises
one or more adjacent periods from the original series. Hence,
the duration of each period t must appear in the formulation
of the optimization model in order to attain informed results.
Fig. 2 illustrates the performance of the clustering technique.
The original data involve 168 hourly values of pool prices,
while the reduced data comprise 33 periods with different
durations. Note that, although errors can be found in the
characterization of the pool prices using the 33 periods, only a
20% of the original data are considered, which translates into
significantly less variables and constraints in the optimization
problem.

At the beginning of the planning horizon, the cement plant
operator must decide on i) the installation of a self-generation
PV power unit, ii) signing Power Purchase Agreements
(PPAs), and iii) the power capacity to contract with the
power utility. A PPA is an off-market agreement between an
electricity supplier and a consumer for the physical supply
of electricity from renewable sources and mid/long term
duration. Any demand notmet through the self-generation PV
unit and PPAs is fulfilled by purchasing energy from the pool.

All these decisions are made in the presence of multiple
uncertainties, primarily related to pool prices and the
availability of the self-generation facility. The values of these
uncertain parameters for each day and time period can be
defined as stochastic processes, as described by [21], and can
be represented using a set of scenarios denoted byω in�. For
the sake of generality, we consider that the duration of each
time period t may vary in each scenario ω. This duration is
denoted by 1tω and is measured in hours. It is important to
note that all decisions made at the beginning of the planning
horizon remain unaltered across all possible outcomes of
these uncertain parameters. With this consideration, a two-
stage stochastic programming problem can be formulated
to determine the investment and contracting decisions of
cement producers while accounting for uncertainty. Fig. 3
visually illustrates this two-stage decision-making process
considering N� scenarios.

In this paper, the Conditional Value-at-Risk (CVaR),
as introduced by [22], is used to capture the risk aversion
experienced by the cement plant. Specifically, CVaR is
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FIGURE 3. Decision-making tree.

FIGURE 4. Process schema.

here used to measure the expected procurement cost that
the cement plant might encounter in the most unfavorable
scenarios.

IV. MATHEMATICAL FORMULATION
We define P ∈ {QRM , . . . ,E} as the set of processes
p described in Section II-B. Let mIptω be the variable
representing the tons of useful products obtained after process
p in period t and scenario ω that are stored for later use.
The amount of product stored after process p in period t
and scenario ω is denoted by sptω, which must be smaller
than the storage capacity Smaxp and greater than the lower
limit Sminp . The quantity of products leaving the storage to
feed the next processes is denoted by the variable mOptω,
whereas mSptω is the quantity of product sold to clients in
period t and scenario ω. The power consumed by process
p in period t and scenario ω is represented by dptω. Given
the specific processes associated with cement production
and the automation of transportation between processes, the
material processing time is typically less than one hour. Fig. 4
illustrates the schema of the generic process p.
The set of constraints of the medium-term electricity

procurement problem faced by a cement producer are
described below.

A. MASS BALANCE OF PRODUCT STORAGES
The mass balance of the storage placed after each process is
formulated as follows:

sptω = spt−1,ω + mIptω − mOptω − mSptω, ∀p, ∀t, ∀ω (1)

Sminp ≤ sptω ≤ Smaxp , ∀p, ∀t, ∀ω. (2)

The amount of product generated after process p depends
on the inputs of the products generated in the previous
processes that are directly connected to p. This is formulated
as:

mIptω =

∑
p′∈PAp

MT
p′pm

O
p′t−1,ω, ∀p, ∀t, ∀ω, (3)

where PAp is the set of ancestor processes whose outputs are
directly connected to process p; parameter MT

p′p indicates
the per unit value of the product obtained from process p′,
which serves as the input product for process p. As mentioned
earlier, based on the specific processes involved in the
production of cement, all processes require less than one hour
to be completed.

The fulfillment of product sale orders, denoted as DOrptω
(ton/h), requested by clients, is formulated as:

mSptω = 1tωDOrptω − dU ,Or
ptω ∀p, ∀t, ∀ω (4)

0 ≤ dU ,Or
ptω ≤ 1tωDOrptω ∀p, ∀t, ∀ω, (5)

where dU ,Or
ptω is the unserved demand for the product resulting

from process p in period t and scenario ω. Only processes
Kiln and Expedition, whose outputs are clinker and packed
cement, respectively, are destined to be sold directly to
clients. The amount of clinker that is not sold to clients is
used in other processes to produce cement.

B. POWER CONSUMPTION
The average power consumption of process p in period t
and scenario ω is denoted as dptω (MW). Each process p is
associated with known electricity consumption in MWh per
ton, which is denoted as CE

p . The maximum and minimum
electricity consumption per process are determined by the
machinery installed in the factory, and they are denoted
as Dmaxp and Dminp (MW), respectively. The mathematical
formulation of the energy consumption of process p in
period t is:

1tωdptω ≥ CE
p m

I
ptω, ∀p, ∀t, ∀ω (6)

Dminp vDptω ≤ dptω ≤ Dmaxp vDptω, ∀p, ∀t, ∀ω, (7)

where binary variable vDptω is equal to 1 if the electric
equipment associated with process p is in operation in
scenario ω, being equal to 0 otherwise. Observe that some
equipment may consume electricity even if they are not
processing any material. For this reason, constraint (6) is an
inequality instead of an equation.

C. MINIMUM UP AND DOWN TIMES OF PROCESSES
Modeling the technical performance of electrical equipment
may require the use of a more detailed formulation that
considers the establishment of minimum up and down times.
Minimum up and down times refer to the specified durations
during which an equipment must remain in operation
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(up time) or be shut down (down time). These predefined
time intervals are crucial for ensuring the proper functioning,
maintenance, or operational requirements of the equipment.
Constraints (8) and (9) formulate the minimum up time,UTp,
and down time,DTp, considering periods of different duration
as follows:

UT ′
ptω∑

t ′=t

(
vDpt ′ω −

(
vDptω − vDpt−1,ω

))
≥ 0,

∀p, ∀t, ∀ω (8)
DT ′

ptω∑
t ′=t

(
1 − vDpt ′ω −

(
vDpt−1,ω − vDptω

))
≥ 0,

∀p, ∀t, ∀ω, (9)

where UT ′
ptω is the cardinality of the period up to which

process p must remain operational upon initiation at period
t (UT ′

ptω = min((t∗,NT ) | t∗ = min{t∗ |
∑t∗

t ′=t 1t ′ω ≥

UTp})). Conversely, DT ′
ptω denotes the cardinality of the last

period for which process p must be inoperative when it is
scheduled to shut down at period t , (DT ′

ptω = min((t∗,NT ) |

t∗ = min{t∗ |
∑t∗

t ′=t 1t ′ω ≥ DTp})). Please note that
parameters UT ′

ptω and DT ′
ptω vary with the scenario index

ω since the temporal characterization of the year may differ
across each scenario under consideration.

D. MAINTENANCE PERIODS
Some processes need to schedule long maintenance periods
in which they are not available. The duration of maintenance
period m associated with process p is represented by TMpm.
Considering that the duration of time periods can be different
in each scenario, the number of time periods that must last
the maintenance period m of process p if starts at period t
of scenario ω is denoted by TM

′

pmtω (h), the set of periods in
which maintenance can be started is AMpmω, and the start of
the maintenance period m of process p in scenario ω is a
decision variable that is mathematically formulated by the
binary variable vMpmtω. The formulation of the maintenance
period is as follows:

TM
′

pmtω∑
t ′=t

(
vDpt ′ω − (1 − vMpmtω)

)
≤ 0, ∀p, ∀m ∈ Mp,

∀t ∈ AMpmω, ∀ω (10)∑
t∈AMpmω

vMpmtω = 1, ∀p, ∀m ∈ Mp, ∀ω (11)

vMpmtω = 0, ∀p, ∀m ∈ Mp, ∀t /∈ AMpmω, ∀ω, (12)

where TM
′

pmtω = min{t∗ |
∑t∗

t ′=t 1t ′ω ≥ TMpm}.

E. PHOTOVOLTAIC SELF-GENERATION UNIT
The electricity demand of the plant can be satisfied by
installing a PV self-generation unit. The capacity to install
pI ,PV must be smaller than a maximum value depending on

the available space PI ,PVmax . The power production depends
on the installed capacity and availability of solar radiation,
APVtω . This availability is an uncertain parameter that is
characterized by a set of scenarios ω ∈ �.

0 ≤ pPVtω ≤ APVtω p
I ,PV , ∀t, ∀ω (13)

0 ≤ pI ,PV ≤ PI ,PVmax . (14)

F. BATTERY OPERATION
Integrating batteries with intermittent self-generation facili-
ties like solar PV plants enables large consumers to optimize
energy usage and reduce costs. Additionally, the reduction in
the cost of batteries makes them increasingly attractive for
industrial and residential applications.

Batteries are mainly characterized by energy and power
capacities. The energy capacity refers to the maximum
amount of energy that can be stored in the battery. The
power capacity is the maximum power that can be either
charged to or discharged from the battery. The installed
energy and power capacities are denoted by variables eI ,SE

and pI ,SP, respectively. The maximum power to charge
(pS,C
tω ) and discharge (pS,D

tω ) the battery in each period t
and scenario ω is formulated by constraints (15) and (16),
respectively. The limits of stored energy (eStω) are enforced
by constraints (17). The energy balance of the battery is
established using constraints (18). Parameter ηS refers to the
efficiency of charging and discharging the battery. Finally,
the minimum level of energy in the battery at the end of the
planning horizon is defined by constraint (19).

0 ≤ pS,C
tω ≤ pI ,SP, ∀t, ∀ω (15)

0 ≤ pS,D
tω ≤ pI ,SP, ∀t, ∀ω (16)

γ S,EeI ,SE ≤ eStω ≤ eI ,SE , ∀t, ∀ω (17)

eStω = eSt−1,ω + ηS1tωp
S,C
tω − 1tωp

S,D
tω /ηS , ∀t, ∀ω (18)

γ S,OeI ,SE ≤ eStω, ∀t ∈ T F , ∀ω. (19)

G. POWER-PURCHASE AGREEMENTS
A cement plant can procure part of its demand by signing
power-purchase agreements, which are bilateral contracts
with electricity suppliers. The power contracted through
contract c is denoted by pCc (MW). The purchasing price
of electricity associated with PPA c is λCc (e/MWh). For
simplicity, this formulation considers PPAs spanning the
entire target year. More complex PPA configurations are
detailed in [11]. The limits of the power purchased through
PPA contracts are formulated as follows:

0 ≤ pCc ≤ PCmax,c, ∀c. (20)

H. POWER DEMAND PROCUREMENT
The power demand procurement for the plant is formu-
lated in this subsection. Variables pPtω and pStω denote the
power purchased from and sold to the pool, respectively.
Equation (21) formulates the power balance for each period
t and scenario ω, where DB represents the base power
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consumption of auxiliary elements. Constraints (22) and (23)
ensure the positive nature of power purchased from and sold
to the pool. Variable pGk models the power capacity contracted
with the grid operator, with tariffs typically distinguishing
between different types of periods, k ∈ K , and associated
different prices. Constraints (24) and (25) establish that the
power capacity contracted with the grid must exceed the
power injected and extracted from the grid in each time period
and scenario, respectively.

pPtω +

∑
c∈C

pCc + pPVtω + pS,D
tω =

∑
p∈P

dptω + DB + pS,C
tω + pStω, ∀t, ∀ω (21)

pPtω ≥ 0, ∀t, ∀ω (22)

pStω ≥ 0, ∀t, ∀ω (23)

pGk ≥ pPtω +

∑
c∈C

pCc , ∀k, ∀t ∈ Tkω, ∀ω, (24)

pGk ≥ pStω, ∀k, ∀t ∈ Tkω, ∀ω. (25)

I. CONDITIONAL VALUE-AT-RISK
The risk assessment metric used in this formulation is
the Conditional Value-at-Risk at a specified confidence
level α (α-CVaR) [22]. When dealing with a discrete cost
distribution, α-CVaR serves as an approximation of the
expected cost associated with the most costly scenarios. The
α-CVaR is determined through variables ξ and ζω as ξ +
1

1−α

∑
ω∈� πωζω.

The optimal value of ξ represents the smallest value such
that the probability that the cost exceeds or equals it is
less than or equal to 1 − α, i.e., the Value-at-Risk (VaR).
Additionally, ζω is the difference between the procurement
cost of scenario ω and the VaR. The values of variables ξ and
ζω are determined by the following set of constraints:∑

k∈K

CG
k p

G
k + C I ,PV pI ,PV + C I ,SEeI ,SE + C I ,SPpI ,S

+

∑
t∈T

(
λPtω1tωpPtω − λStω1tωpStω +

∑
c∈C

λCc 1tωpCc

+

∑
p∈P

CU ,Or
ptω dU ,Or

ptω

)
− ξ ≤ ζω, ∀ω, (26)

ζω ≥ 0, ∀ω. (27)

The summation of terms on the left-hand side of con-
straint (26), excluding variable ξ , represents the total
procurement cost associated with scenario ω. This cost
encompasses the i) annual cost of power contracted from
the grid, ii) the annualized investment cost of the PV self-
generation unit, iii) the annualized investment costs of energy
and power components of the battery, iv) the annual cost
associated with energy purchased from the pool, v) the
negative anual revenue from energy sold to the pool, vi) the

cost associated with the annual energy purchased from PPAs,
and vii) the annual penalization cost of unserved sale orders
requested by clients.

J. OBJECTIVE FUNCTION
The objective of this problem is to minimize the total cost
incurred by the cement power plant plus the CVaR.

The objective function (28) is composed of two terms, each
of them weighted by the parameters β and (1 − β). The
parameter β represents a weighting factor that falls within
the range of [0,1] and serves the purpose of characterizing the
level of risk aversion experienced by the cement producer.

The component multiplied by β signifies the expected
procurement cost. Meanwhile, the term multiplied by (1−β)
corresponds to the CVaR, which quantifies the risk associated
with incurring higher costs and is approximately equivalent
to the expected cost within the (1 − α) worst-case scenarios,
as outlined in [22].

Consequently, when β = 1, the CVaR term is disregarded,
and the cement producer behaves as a risk-neutral entity,
aiming to minimize the expected cost without considering
the expenses linked to the worst-case scenarios. Conversely,
with β = 0, the expected cost component is excluded, and
the cement producer operates as a risk-averse entity, striving
to minimize the costs within the worst-case scenarios as
extensively as possible.

The total expected cost comprises the summation of
scenario-independent costs along with the expected cost of
those dependent on the scenario. Scenario-independent costs
include the annual cost of power contracted from the grid,
the annualized investment cost of the PV self-generation unit,
and the annualized investment costs of energy and power
components of the battery. In contrast, the expected cost
of scenario-dependent costs incorporates the expected value
of the summation of scenario-dependent costs, such as the
annual cost associated with energy purchased from the pool,
the negative annual revenue from energy sold to the pool, the
cost associated with the annual energy purchased from PPAs,
and the annual penalization cost of unserved orders requested
by clients. The expected cost is calculated as the weighted
sum of the cost in each scenario multiplied by its occurrence
probability.

Minimize2

β

(∑
k∈K

CG
k p

G
k + C I ,PV pI ,PV + C I ,SEeI ,SE + C I ,SPpI ,S

+

∑
ω∈�

πω

[∑
t∈T

(
λPtω1tωpPtω − λStω1tωpStω

+

∑
c∈C

λCc 1tωpCc +

∑
p∈P

CU ,Or
ptω dU ,Or

ptω

)])

+ (1 − β)

(
ξ +

1
1 − α

∑
ω∈�

πωζω

)
(28)
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where set 2 = {dptω, d
U ,Or
ptω , eI ,SE , eStω, m

I
ptω, m

O
ptω, m

S
ptω,

pCc , pGk , p
I ,PV , pI ,SP, pPtω, p

PV
tω , pStω, p

S,C
tω , pS,D

tω , sptω, vDptω,
vMpmtω, ζω, ξ} includes the optimization variables.

K. TIME-PERIOD CLUSTERING, SCENARIO REDUCTION
AND SOLUTION PROCEDURE
Problem (1)-(28) constitutes a large-scale mixed-integer
linear programming formulation of the two-stage risk-
averse stochastic programming model for the medium-term
electricity procurement problem faced by a cement producer.
This model addresses the uncertainties associated with pool
prices and the availability of the PV self-production unit.

The large number of constraints and the combination of
continuous and binary variables in problem (1)-(28) may
pose challenges for efficient solving. Therefore, a clustering
procedure is employed to mitigate this issue by reducing
the number of periods used to characterize the target year.
Additionally, a scenario reduction technique is applied to
decrease the number of scenarios while ensuring sufficient
characterization of uncertain parameters. The resulting
problem is then solved in three sequential steps, aimed at
significantly diminishing solution times.

1) CHRONOLOGICAL TIME-PERIOD CLUSTERING
In order to reduce the computational size of the resulting opti-
mization problem, the initial planning horizon of 8760 hourly
periods has been reduced to a number of representative
periods through a procedure based on the chronological
time-period clustering (CTPC) described in [23]. Unlikemost
of the clustering techniques, the CTPC provides a set of rep-
resentative periods that maintain the chronological sequence
among them throughout the entire planning horizon. This is
key in our work since inter-temporal constraints have been
considered, i.e., constraints (1), (3), (8), (9), (10), (11), (18),
and (26). The CTPC have been applied for each scenario ω

following these steps:

1) The desired number of periods is selected. This number
should be selected with the aim of finding a trade-off
between the computational burden of the optimization
problem and the accuracy of the representation of the
input data.

2) Input data, which involves data of pool prices and
self-generation PV availability from scenario ω, are
normalized by using the min-max normalization [24].
This normalization process is needed when different
series are considered as input data.

3) The two adjacent periods with minimum dissimilarities
of the input data between them are merged. The
duration 1tω of the resulting period t is equal to the
sum of the two merged periods’ durations. The reader
is kindly referred to [23] for further information about
the calculation of the dissimilarities.

4) If the number of periods is equal to the number selected
in Step 1), stops. Otherwise, go to Step 3).

The resulting periods should be linked to values of the four
time series considered as input data of the optimization prob-
lem, i.e., pool prices (λ

P
tω), self-generation PV availability

(APVtω ), and clinker and cement demands (DOrtω ). Note that each
resulting period t is associated with a cluster that comprises
one or more adjacent periods from the original historical
series, i.e., those periods that have been merged leading to
period t . Hence, the data of the new periods are computed
as the centroids of the historical data within their clusters
for each time series, period t and scenario ω. It is worth
mentioning that the clustering procedure have been carried
out considering that only the pool prices and the solar PV
availability are the input data of the CTPC, rather than using
the four time series mentioned above. The reason behind this
lies in the presence of large clinker and cement storages,
which means that individual high or low hourly sales at a
particular hour do not significantly impact the scheduling
and operation of cement plant processes. However, high or
low values of pool prices or solar availability at a particular
hour may influence the initiation or shutdown of different
processes.

2) SCENARIO REDUCTION
For the sake of tractability, the set of scenarios used to
represent pool prices and solar PV availability may be
reduced by using a scenario reduction trying to reach a
compromise between accuracy and tractability. In this work,
we propose to use the algorithm described in [25], which is
based on solving the full optimization problem (1)-(28) as
many times as scenarios are initially generated considering
only one scenario each time. Afterwards, scenarios are
selected according to the expected cost associated with each
single scenario.

While this technique involves a higher computational load
compared to alternative methods, it remains manageable. The
computational cost of solving single-scenario instances is
relatively low and can be parallelized. The primary advantage
of this approach is its consideration of the influence of uncer-
tain parameters (e.g., pool prices and solar PV availability in
this problem) on the objective function during the scenario
reduction process. Subsequently, scenarios with similar costs
are identified for potential merging, proving particularly
advantageous in reducing scenarios with different uncertain
parameters, where the impact of these parameters on the
objective function may not be identical.

3) SOLUTION PROCEDURE
Although the CPTC procedure and scenario-reduction
techniques can be employed to mitigate computational
complexity, the substantial quantity of binary variables in
problem (1)-(28) poses challenges for efficient resolution.
Consequently, we introduce a three-step procedure to address
and solve the problem:

• Step 1: The initial phase involves solving a continuous
linear-programming relaxed version of (1)-(28). This
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step determines first-stage variables, including the
installed capacities of the PV self-generation unit, power
and energy components of batteries, and contracted
power to the grid. In particular, the problem solved in
this phase corresponds to (1)-(7), (13)-(28), wherein
binary variables vDptw are relaxed, allowing them to
assume continuous values within the interval [0, 1]. This
problem is solved very fast (few minutes).

• Step 2: Subsequently, the original problem, (1)-(28),
is solved with the first-stage variables fixed based on
the outcomes of the preceding step. Since first-stage
variables are fixed, this problem is solved significantly
faster than the original problem (in which first-stage
variables must be determined).

• Step 3: The solution derived from Step 2, which is a
feasible solution of problem (1)-(28), is utilized as a
warm start for the final resolution of the original problem
to speed up the solution process.

L. TOOL USAGE AND LIMITATIONS
The proposed decision-making tool is based on a static
decision approach formulated using a two-stage stochastic
programming model. This technique has been used in the
proposed approach because the most relevant uncertain
parameter in this problem, pool prices and solar PV
availabilities, can be easily characterized using scenarios
and the decision-making process of the consumer can be
modeled using a two-stage approach. Investment decisions,
and contracting decisions related the PPAs and the grid
power capacity may be revised and updated on a desired
time basis as the tool is intended to be used dynamically as
many times as required by the cement plant manager. To do
so, information on new generation and storage technologies,
or candidate PPAs can be incorporated into the model, as well
as an updated estimation of future pool prices and the cement
plant demand. It is also important to note that the formulation
proposed for this tool does not assume any specific values
for the technical characteristics of the cement plant stages,
and is specially designed to be versatile and applicable to any
cement producer.

Observe that the proposed tool is subjected to several
limitations. The first limitation of this tool is its dependence
on a set of realistic electricity prices and solar production
values to facilitate informed decision-making. While obtain-
ing solar production data from historical records is relatively
straightforward, estimating pool prices may necessitate the
development of a dedicated tool or engagement with a
company specialized in electricity price estimations. Another
limitation pertains to the static nature of the decision-making
procedure, where all investment decisions are made within
a single period. The advantage of this static approach lies
in its simplicity of formulation and significantly reduced
computational complexity, easing the problem-solving pro-
cess. Static models, by design, eliminate the need to estimate
uncertainties associated with random variables in future time
periods, a challenge often encountered in dynamic models.

However, it is crucial to acknowledge the downside of static
models, since they lack the flexibility to consider alternative
decisions in subsequent time periods. This limitation is
accepted as part of the trade-off between simplicity and the
consideration of evolving conditions over time. The final
limitation of the model lies in the computational size of
the resultant optimization model. Given the incorporation of
binary variables linked to scenario and time period indices,
the number of binary variables escalates linearly with the
expansion of scenarios and time periods. Consequently,
while there are no significant time restrictions in solving
these types of medium-term planning models, when dealing
with practical problems involving hundreds of thousands of
variables and constraints, the computational time required
for solving such models may extend to durations exceeding
24 hours.

V. CASE STUDY
We conducted a practical case study to evaluate the pro-
posed formulation. In this instance, we consider a cement
manufacturer situated in central Spain. Specific details about
this consumer are withheld for confidentiality purposes. The
analysis covers a medium-term planning horizon represented
by a single year. Please note that the objective of this case
study is to validate the proposed mathematical formulation
rather than provide general conclusions applicable to any
cement plant. It is important to acknowledge that variations
in cement plant configurations or different input data values
may yield different qualitative results regarding the selection
of electricity procurement options.

A. CLINKER AND CEMENT DEMANDS
The clinker and cement demands are derived from actual
data pertaining to the reference cement plant. To determine
the final demand, we consider monthly, daily, and hourly
data. Initially, we analyze the monthly demand for clinker
and cement. Following this, we extrapolate daily and hourly
demand per unit and convert the monthly quantity values
to obtain corresponding hourly quantities. These values are
then rounded to align with the standard practice of utilizing
25-ton trucks for the transportation of clinker and cement
from the manufacturing plant to their designated destinations.
Fig. 5 illustrates the monthly, daily, and hourly values as
described above. It is worth noting that identical daily and
hourly per-unit quantities apply to both clinker and cement.
For instance, Fig. 6 depicts the hourly demand for cement
throughout the year. In this case study, we consider total
annual demands of 295 thousand metric tons for cement and
145 thousand metric tons for clinker.

B. CEMENT AND CLINKER PRODUCTION PROCESSES
Table 1 provides details for each process outlined in
Section II-B, including energy consumption per ton pro-
duced, maximum and minimum power consumption, and
storage capacity. It is considered that the minimum amount
of product that can be stored at any given time should be at
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FIGURE 5. Clinker and cement demands.

FIGURE 6. Hourly cement demand.

TABLE 1. Processes description.

least 20% of the maximum capacity. Additionally, the initial
quantity of product stored at the beginning of the planning
horizon is set to 50% of the storage capacity.

Table 2 outlines the elements of the matrix MT
p′p, which

indicate the per unit value of the product obtained from
process p′ that transforms into the final product of process p.
For example, the input-output material matrix has a value of
0.9, representing the transition between the QRM and RM.
This value is influenced by the material drying process in
the raw mill, resulting in a 10% weight loss due to reduced
humidity. Notably, the main conversion takes place during
the transition from RM to K, characterized by decarbonation
(CaCO3 → CaO + CO2), resulting in roughly 60 tons of
clinker for every 100 tons of feed, as depicted in Table 2.

TABLE 2. Input-output material matrix (pu).

TABLE 3. Power capacity toll per period group and year.

The kiln undergoes two extense maintenance periods
annually. The first spans 14 days, commencing between April
1st and May 31st , while the second extends over 25 days,
starting from October 1st to December 10th. Furthermore,
to prevent mechanical deterioration of the kiln, and to
optimize the costs of heating and cooling it, minimum up and
down times are set at 28 and 14 days, respectively.

C. CONTRACTED POWER TO THE GRID OPERATOR
In this case study, the contracted power expenses are
determined by Tariff 6.3 TD, a pricing structure specifically
designed for industrial consumers within the Spanish power
system [26]. This tariff classifies consumption into six
distinct periods denoted by k ∈ {1, · · · , 6}.

The cost associated with the contracted power for each
group period k , CG

k , is computed as:

CG
k = 1000 × C

G
k × (1 + ET ) × (1 + VAT ), ∀k, (29)

where ET represents the electric tax at a rate of 5.113%, VAT
denotes the value-added tax at 21%, and the parameter C

K
k

corresponds to the cost associated with each period group
in Tariff 6.3 TD, as outlined in Table 3. This particular
tariff is the standard one used by cement producers in
Spain according to their required voltage and peak power
consumption.

D. POOL PRICES
Pool prices exhibit stochastic behavior, representing a
dynamic process. For instance, Fig. 7 provides the boxplot
representation of pool prices for each year between 2008 and
2020, specific to the Spanish power system [27]. Within
each box, the central line indicates the median price, while
the upper and lower edges of the box signify the 75th
and 25th percentiles, respectively. The whiskers extend to
display the range within which 99.3% of prices fall if they
follow a normal distribution. Any gray points positioned
beyond the whiskers are considered outliers. This visual
representation reveals that there is a substantial year-to-
year uncertain price variability. To capture this uncertainty,
we consider three distinct scenarios, each corresponding to
historical pool prices extracted from the dataset considered
in Fig. 7. The selected scenarios correspond to prices in years
2008, 2012 and 2020. Observe that year 2012 corresponds

54944 VOLUME 12, 2024



J. Arellano et al.: Optimal Medium-Term Electricity Procurement for Cement Producers

FIGURE 7. Historical pool prices.

FIGURE 8. Monthly average pool prices for selected scenarios.

TABLE 4. Energy, capacity and losses terms.

to the year with average pool prices, whereas minimum
and maximum prices were observed in years 2020 and
2008, respectively. The monthly average value of selected
scenarios are represented in dark blue in Fig. 8. Non-selected
scenarios, which are associated with the remaining years
between 2008 and 2020, are depicted in light blue color.
The probability of each scenario is assigned according to the
procedure described in [28].
The final purchasing price of electricity by the cement

producer in the pool, λPtω, depends on pool prices λ
P
tω as

follows:

λPtω =

(
λ
P
tω + 1000 ×

(
ETk + CT

k × (1 + LTk /100)
))

× (1 + ET ) × (1 + VAT ), ∀k, ∀t ∈ Tkω, ∀ω, (30)

where ETk (e/kWh), CT
k (e/kWh), and LTk (%) are energy,

capacity and losses terms used to pay for the usage of the
networks, which values for Tariff 6.3 TD are included in
Table 4.
The selling price of the electricity surplus by the cement

producer in the pool, λStω, is calculated as:

λStω = λ
P
tω × (1 − ST ), ∀t, ∀ω, (31)

FIGURE 9. Historical solar PV availability.

where ST is the special tax for electricity generation, and it is
equal to 7%.

E. POWER PURCHASE AGREEMENTS
In this case we consider three different PPAs that can be
signed by the cement plant. All PPAs cover the entire
planning horizon and come with a maximum power capacity
for contracting set at 2.5MW. The purchasing prices for these
three contracts are equal to 69.92, 76.58 and 83.24 e/MWh,
respectively. These values are determined by multiplying
the expected pool prices by factors of 1.05, 1.15, and 1.25,
respectively.

F. SOLAR PV AVAILABILITY
The solar PV availability at the location of the cement
plant is obtained from PVGIS (Photovoltaic Geographical
Information System) [29]. This is an online tool developed
by the European Institute of Energy and the Environment
that provides detailed information about the potential for
photovoltaic solar energy in various regions around the
world. For this case study, we calculated availability data
for a fixed-axis solar panel installation with a 30-degree
south-facing slope. The values, derived from historical solar
radiation data spanning from 2008 to 2020, are visually
represented in Fig. 9 as a boxplot. Taking into account that the
median of the annual availability is zero due to a significant
number of hours without solar irradiation, the average annual
availability for each year is also represented in this figure
by a red asterisk. It is notable that the variability in solar
production is considerably lower than what we observe in
pool prices.

However, even with the overall low annual variability in
solar production, when we examine the average monthly
availability for each year, a noticeable fluctuation in months
with comparatively lower availability is observed, particu-
larly during the winter and spring months. This fact is clearly
depicted in Fig. 10a. Consequently, we have concluded that
solar PV availability should be characterized as a stochastic
process, and we have represented it using three scenarios
that correspond to low, high, and average values. Selected
scenarios are represented in dark blue color in Fig. 10b.
Similarly to the approach used for pool prices, the probability
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FIGURE 10. PV availability.

for each scenario is determined following the procedure
outlined in [28]. Given that three pool price scenarios are
under consideration, this case study encompasses a total of
9 scenarios. Note that in this scenario generation process,
it is implicitly assumed that there is no correlation between
electricity prices in the day-ahead market in the Spanish
power system and the availability of PV production. It is
important to emphasize that the solar availability considered
here pertains to a specific location and does not reflect the
average solar availability across the entire power system.

The maximum capacity that can be installed is 25 MW.
Investment costs are annualized using the capital recovery
factor formula r(1+r)x

(1+r)x−1 , where r represents the interest rate,

and x denotes the lifetime of each considered technology [30].
We consider an interest rate of 3.5% and an expected lifespan
of the self-generation PV facility of 20 years.

G. BATTERY
It is assumed that a Li-ion battery can be installed. The capital
costs for power and energy components are set at 285 e/kW
and 306 e/kWh, respectively [31]. The charge and discharge
efficiencies are both 0.9. At any given time, the battery must
maintain a minimum energy level equivalent to 15%, and the
initial energy state of the battery is 50%of the installed energy
capacity. The expected lifespan of the battery is 10 years,
and the investment costs are annualized using the method
previously specified for the self-generation PV facility.

H. TEMPORAL CHARACTERIZATION
The CTPC, as detailed in Section IV-K, is applied to
condense the initial set of 8760 hourly periods representing
the year to a more manageable set of 720 periods. This
final number has been chosen to strike a balance between
computational tractability and the accurate characterization
of time-dependent parameters and variables. As an example
of the CTPC’s performance, Fig. 11 showcases the original
and reduced series of pool prices and PV availabilities for
scenarios 1, 5, and 9. Note that the 720-period series has
been expanded into a 8760-period series by assigning the
same values for the series across all hours within periods with
a duration greater than one hour. These specific scenarios
have been chosen to provide a visual representation of the
three distinct pool price scenarios and three PV availability
scenarios mentioned in Sections V-D and V-F, respectively.

FIGURE 11. Original and reduced sets of pool prices and self-generation
PV availabilities in selected scenarios.

This figure shows how the chronological sequence of the
original 8760-period series can be adequately reproduced by
the 720-period series.

Please note that the parameter DOrptω, denoting product
sale orders requested by clients, is derived for each scenario
through the clustering technique outlined in Section III.

I. SCENARIO REDUCTION
To reduce the computational size of the optimization prob-
lem, we employ the scenario reduction technique proposed
in [25] and detailed in Section IV-K within this case study.
Through this method, the initial number of nine scenarios has
been reduced up to five. As outlined in Section IV-K, we solve
problem (1)-(28) nine times, each time focusing on a single
scenario. The subsequent reduction of scenarios is based on
the resultant cost associated with each scenario.

Fig. 12 illustrates the probability mass function of the
costs associated with the initial and reduced scenario sets,
including the cost of each scenario and its probability. Higher
costs align with elevated pool prices and diminished solar
PV availability, while lower costs are linked to reduced pool
prices and increased solar PV availability.

Fig. 12a reveals visually that cost scenarios are grouped
into three sets of three scenarios each. These groups
correspond to low, medium, and high pool prices, with
each set of scenarios encompassing low, medium, and high
solar PV availability. Notably, the costs linked to low and
medium solar PV availability for any given pool price are
closely aligned. This observation suggests that the influence
of pool prices on the costs incurred by the cement producer
outweighs that of solar PV availability.

Examining Fig. 12b, the reduced set of scenarios effec-
tively captures the variability in costs observed in the initial
scenario set. Furthermore, it is evident that the probabilities
associated with removed scenarios are redistributed to
scenarios with medium solar PV availability within scenario
groups featuring low, medium, and high pool prices.

VI. RESULTS AND DISCUSSION
In this section, we analyze the outcomes obtained through the
application of the formulation outlined in Section IV to the
previously mentioned case study.
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FIGURE 12. Mass probability functions of cost scenarios.

To evaluate the effectiveness of the proposed formulation,
we solved four cases:

• Rel: All electricity procurement options can be used and
binary variables are relaxed (neglecting minimum up
and down times and minimum power consumption).

• BAU: Business-as-usual scenario where all electricity
procurement options can be used.

• OnlyP: The entire demand is met through purchases
in the pool; neither the PV self-generation unit nor
the battery can be installed, and PPAs cannot be
contracted.

• NoGrid: The cement plant is not connected to the grid,
and the entire demand must be supplied by the PV
self-generation unit and the battery. In this specific
case, the potential capacity to be installed from PV and
batteries is considered to be unbounded.

All simulations were executed using CPLEX 12.6.1 on a
server equipped with four 3.0 GHz processors and 250 GB of
RAM. In the BAU case, the number of constraints, continuous
variables, and binary variables amounted to 369.5 thousand,
272.2 thousand, and 32.4 thousand, respectively. As an
example, the solution times of the three stages described
in Section IV-K for solving the BAU case were as follows:
35 seconds to address the relaxed instance of the problem,
2.1 hours to resolve the issue with first-stage variables fixed
based on the relaxed instance, and 116 hours to tackle the final
problem, utilizing the solution obtained from the preceding
problem as a warm start.

Table 5 illustrates the expected cost and CVaR for each
examined case, considering values of β at both 1 and 0.
Instances with β = 1 signify risk-neutral stances, where
decisions rely solely on expected costs. Conversely, β = 0
indicates risk-averse cases, where decisions are shaped by the
worst-case scenarios characterized by the CVaR. Please note
that casesOnlyP and NoGrid yield identical solutions for any
value of β. In the instance ofOnlyP, the absence of alternative
sources, apart from the pool, avoids the opportunity to
mitigate exposure to cost variabilities. Meanwhile, in the case
ofNoGrid, where participation in the pool is prohibited, costs
across all scenarios are uniform. Consequently, the expected
value and the CVaR of the costs align.

Observe that the lowest costs are achieved in the Rel case,
wherein all binary variables used tomodel the kiln’s operation
are neglected. Consequently, the expected costs in this case

TABLE 5. Expected cost and CVaR (thousand e).

for β = 1 is reduced by 8.5% compared to that obtained in
the BAU case. This outcome implies that the simplification
of the modeling of the operational processes in the Rel case
significantly underestimates the costs incurred by the cement
plant. In a comparative context, the expected cost in the BAU
case is 25.3% less than that in the OnlyP case. This indicates
that relying solely on the pool to fulfill the cement plant’s
demand is notably more expensive than exploring alternative
procurement options, such as the PV unit, as will be discussed
later. Lastly, the NoGrid case proves to be considerably more
expensive than the other cases. This high cost is attributed to
the decoupling from the grid, which necessitates substantial
investments in the PV unit and batteries needed for the
disconnection from the grid.

The results provided by Table 5 also show that the
proposed formulation effectively diminishes the expected
cost in adverse scenarios modeled by the CVaR when the
cement producer exhibits risk aversion (β = 0). In this
context, the risk-averse solution for β = 0 results in a
7.0% and 4.4% reduction in CVaR for the Rel and BAU
cases, respectively, compared to the cases with β = 1.
However, the reduction in CVaR is nearly negligible for the
OnlyP and NoGrid cases. This lack of significant reduction
can be attributed to the inherent uncertainty in the pool and
the production of the PV unit, which cannot be effectively
mitigated through alternative procurement options in these
two specific cases. Additionally, it is important to note that
in the NoGrid case, where participation in the pool is not
considered and there are no associated operational costs for
the power production of the self-generation PV facility, the
operation costs across each scenario are identical. As a result,
the expected cost and the CVaR coincide in this particular
case.

Table 6 provides the overall expected costs for each
case. These costs comprise the investment costs for the
self-generation PV facility and batteries, expenses related
to grid-contracted power, expected costs of pool purchases,
expenditures tied to energy procured through PPAs, and
expected minus revenues from selling energy to the pool.
Note that the penalties for unserved demand are not included
in this table because they are equal to zero for all analyzed
cases. The analysis of these results reveals that the pool and
the self-generation PV unit emerge as the primary sources
for procurement when available. Notably, as the risk aversion
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TABLE 6. Total costs (thousand e).

TABLE 7. First-stage decisions.

parameter (β) decreases, signifying an increase in the cement
producer’s risk aversion, the cost associated with energy
procurement from the pool decreases. This reduction is a
strategic response aimed atmitigating exposure to uncertainty
in pool prices. Additionally, it is noteworthy that PPAs serve
as effective instruments for mitigating high costs in the
most unfavorable scenarios. As a consequence of this, these
agreements are only used when the cement producer adopts
a risk-averse perspective.

Table 7 provides the first-stage decision variables for
each examined case. These variables encompass the installed
capacity of the self-generation PV facility and batteries,
the power procured through PPAs, and the power capacity
contracted with the grid. The values presented in this table
align with those detailed in Table 6. Notably, in both
the Rel and BAU cases, the capacity installed from the
self-generation PV unit reaches its upper limit. This high-
lights the self-generation PV unit’s efficacy as a compelling
electricity procurement tool for the cement producer within
the specified location and under the given capital costs. It’s
important to note that batteries are exclusively deployed
when the cement plant operates independently of the grid.
This decision may stem from the current high capital costs
associated with these storage units, rendering them less
financially viable at present. Lastly, it is observed that the
contracted power during peak-price periods (k1 and k2) is
notably smaller than in other periods. This outcome signifies
the flexibility of the production process, allowing the cement
producer to adapt and capitalize on lower power contracting
costs.

Table 8 depicts the total annual energy corresponding to
each electricity procurement option. Specifically, it presents
the expected energy acquired from the pool and PPAs,
the output from the self-generation PV unit, the energy
discharged and charged from the battery, and the energy sold
to the pool. Observe that the energy obtained from the pool

TABLE 8. Energy (GWh).

FIGURE 13. Energy generation per month (BAU).

is reduced when risk is accounted for, β = 0, with respect
to the risk-neutral cases (β = 1). As mentioned before,
the participation in the pool is the major uncertain source in
the electricity procurement problem of the cement producer.
We observe also that most of the energy is obtained from
the self-production unit in all cases in which it is available.
Finally, it is interesting to note in NoGrid case that almost
half of the PV production is stored in the batteries for latter
use.

Fig. 13 presents, for the same case, an overview of
aggregated monthly energy generation and consumption for
β = {0, 1}. Within this depiction, it becomes apparent that
monthly PV productions tend to be smaller than the corre-
sponding monthly demands. Notably, the monthly output of
the PV unit exhibits a significant increase during summer
months compared to winter months. Furthermore, variations
in demand throughout the year are evident, with high demand
values observed in April and May, among others. During
these months, the PV availability is high, and pool prices
are relatively low, as corroborated by Figs. 8 and 10b. Upon
comparing Figs. 13a and 13b, it is observed that the energy
purchased from the pool significantly decreases as risk is
taken into account (β = 0). The reduction in pool purchases
is compensated by the acquisition of energy through PPAs,
which represent a risk-free source of power.

As an illustrative example, the operation of the kiln is
showcased in Fig. 14 for the BAU case and β = 1.
This process is selected due to its pivotal role in cement
manufacturing. The operational status of the kiln is detailed in
Fig. 14a, revealing two maintenance intervals lasting 14 and
25 days, occurring at periods 275 and 623, respectively.
The power consumption profile for the kiln is presented
in Fig. 14b, highlighting maximum and minimum power
consumption of 4000 and 3600 kW, respectively. The
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FIGURE 14. Kiln operation in BAU case and β = 1.

kiln operates within its defined power capacity range, and
minimum up and down times prevent frequent startups and
shutdowns, resulting in only three stops throughout the entire
year. Fig. 14c illustrates the mass balance of the kiln storage
for each period, showing close ties between input-output
patterns and total power consumption. Notably, even during
extended shutdowns, the stored clinker quantity is sufficient
to meet subsequent process requirements and fulfill client
orders. Fig. 14d depicts the clinker quantity stored in each
period. Due to the kiln’s high minimum power consumption
and long up and down times, the storage quantity exhibits
stable, incremental, and decremental trends, aligning with
startups and shutdowns.

Fig. 15 illustrates the average hourly power consumption
throughout the year for all cases at β = 1 in scenario 1.
These charts are derived by converting the 720 non-hourly
demand values into 8760 hourly values. The resulting series
is organized by computing the average value of the 365 daily
vectors, each containing 24 hourly values. The purpose of
this figure is to demonstrate the flexibility of the total cement
plant power consumption in adapting over time to the most
economical energy sources.

Then, Fig. 15 reveals that energy consumption remains
relatively stable during the day in the case OnlyP, with the
peak occurring during nighttime when electricity prices are
lower. Conversely, Fig. 15 demonstrates the opposite effect
for the rest of the cases, with the highest energy consumption
concentrated in the central part of the day when solar PV
production is at its peak. It is also observed that the case Rel
is the case in which the consumption of the cement plant is
more able to adapt to the curve of solar PV production. If the
curves of Rel and BAU are compared, it can be stated that the
solution of caseRel overestimates the flexibility of the cement
plant. Observe that the annual hourly consumption in the case
NoGrid is higher than the energy consumed in the case BAU.
This is consistent with the fact that energy cannot be sold to

FIGURE 15. Annual hourly consumption for β = 1 and scenario 1.

the pool in the former case. Finally, it can be concluded that
optimizing the power consumption during the cement plant
manufacturing process is viable, allowing for adaptation to
more cost-effective power sources in each specific scenario.

VII. SENSITIVITY ANALYSIS
This section presents the outcomes of three distinct sensitivity
analyses, each focused on examining the expected cost and
CVaR in response to variations in different parameters.
The initial sensitivity analysis assesses the implications of
adjusting the weighting parameter β, which characterizes the
tradeoff between expected costs and CVaR. The following
two analyses investigate the impact of altering the number
of time periods and scenarios on both the expected cost
and CVaR, respectively. All simulations were executed using
CPLEX 12.6.1 on a HPE ProLiant DL560 Gen11 server,
equipped with four 2.2GHz 18-core processors and 512 GB
of RAM.

A. WEIGHTING PARAMETER β

The parameter β ∈ [0, 1] in the objective function (28) serves
to characterize the level of risk aversion faced by the decision
maker. Values of β in proximity to 1 signify a risk-neutral
position, emphasizing the minimization of the expected cost
for the cement plant. Conversely, values of β nearing 0 reflect
risk-averse positions, prioritizing the reduction of expected
costs in worst scenarios, characterized by the CVaR. In this
subsection, we analyze the impact of the parameter β in the
BAU case. The pair expected cost and CVaR resulting from
an optimal solution for a given value of β is referred to as
efficient point, in such a way that is not possible to find
a set of optimization variables resulting simultaneously in
lower expected cost and CVaR. The ensemble of efficient
points is denoted as efficient frontier. Figure 16 illustrates
the efficient frontier for the BAU case. Notably, the CVaR
decreases as the expected cost increases. From the decision
maker’s perspective, transitioning from the solution at β =

1 to β = 0.5 could be of interest, as it allows for a 1.9%
reduction in CVaR with only a marginal 0.8% increase in
expected cost. However, it is less advantageous to move from
β = 0.25 toβ = 0, as this would incur a 7.5% rise in expected
cost while achieving a mere 0.03% reduction in CVaR.
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FIGURE 16. Efficient frontier for case BAU.

FIGURE 17. Expected cost and CVaR for different number of scenarios
(BAU).

B. NUMBER OF SCENARIOS
In this analysis, we aim to quantify the influence of the
number of scenarios on the resulting expected cost and CVaR.
As outlined in Sections IV-K and V-I, we employ the scenario
reduction technique proposed by [25] to trim the initial set
of nine scenarios. Figure 17 depicts the expected cost and
the CVaR for different numbers of scenarios in the BAU
case. This figure illustrates that both expected cost and CVaR
exhibit considerable stability for scenarios exceeding 3.
Notably, the expected cost, derived from considering all
scenarios, demonstrates more robust stability compared to
the CVaR across different scenario quantities. For example,
the shift from 5 scenarios to 9 results in a marginal 0.07%
difference in expected cost, whereas the CVaR experiences a
more pronounced 0.97% variation.

C. NUMBER OF TIME PERIODS
This final sensitivity analysis is focused in determining the
impact of varying the number of time periods on both the
expected cost and CVaR. As explained in Section IV-K,
we employ a chronological time-period clustering as outlined
in [23] to manage the computational complexity of the
resulting optimization problem. To assess the influence of
the number of time periods on the expected cost and CVaR,
the BAU case is solved for various time periods. To ensure
comparability across problems with different numbers of
time periods, we omit constraints related to minimum up
and down times and maintenance periods. These constraints,

FIGURE 18. Expected cost and CVaR for different number of timpe periods
(BAU without minimum up and down times and maintenance periods).

when retainedwith a small number of time periods, could lead
to infeasibilities and unrealistic up, down and maintenance
durations. Figure 18 displays the evolution of expected cost
and CVaR for different periods, ranging from 360 (15 × 24)
to 1080 (45 × 24). In Figure 18a, high costs are observed
for numbers of periods below 360, attributed to unserved
quantities of the product which are penalized in the objective
function (28). This arises from excessively large values of the
duration parameter 1tω when the number of periods is too
low, causing certain storages, particularly the one located in
the expedition section, to reach maximum capacity in some
periods, hindering the production and storage of additional
products to be used in following periods. Figure 18b reveals
that expected cost and CVaR exhibit stability for numbers
of periods exceeding 720. Notably, the difference between
expected cost and CVaR for 720 and 1080 numbers of periods
is only 1.2% and 0.5%, respectively.

VIII. CONCLUSION
This work introduces a novel procedure for determining the
medium-term electricity procurement strategy for cement
plants. The proposed approach encompasses participation in
the energy pool, photovoltaic self-generation, battery usage,
and power-purchase agreements. The mathematical model
developed captures operational characteristics and consump-
tion patterns across various stages of cement production,
while also accounting for uncertainties in electricity prices
and solar photovoltaic production. To make the problem
computationally feasible, it is necessary to reduce the initial
number of 8760 hourly periods that characterize the planning
horizon to a more manageable set of representative periods.
The proposed approach utilizes a methodology based on
chronological time periods to cluster adjacent hourly intervals
into non-hourly periods. It is important to note that using
a continuous-relaxed version of the original mixed-integer
linear programming formulation results in a substantial
underestimation of both the expected value and the CVaR of
the cost. The adjustment of the weighting parameter between
expected cost and the CVaR allows for a change in the
risk-aversion position of the cement plant manager. Although
the solution times associated with the proposed approach
are relatively high, ranging from several hours to several
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days, they remain reasonable for addressing a medium-term
decision-making problem.

A practical case study was conducted using data from
an operational cement plant in Spain, and the key findings
derived from this analysis are described below. It is important
to note that these conclusions can only be applied to the
particular case study that is solved here and cannot be
extrapolated to other cases with different electricity prices,
solar PV resources, or cement plant characteristics.

• Solely participating in the pool increases significantly
the expected value and the CVaR of procurement costs
compared to the case where alternative procurement
options are available.

• The installation of a solar photovoltaic system proves
economically viable for the considered cement producer,
leading to a significant reduction in the expected
procurement cost compared to cases without this
installation.

• At current capital costs, the installation of batteries
cannot be considered as economically viable for the
considered cement producer.

• The uncertainty of pool prices exerts a more pronounced
influence on procurement costs compared to the uncer-
tainty associated with the self-generation PV unit’s
production.

• High costs in the least favorable scenarios are mitigated
through the use of PPAs.

• The flexibility inherent in the processes of cement man-
ufacturing enables a substantial reduction in contracted
power during high-price periods.

• The power consumption linked to the cement plant’s
manufacturing process can be adjusted to leverage more
economical power sources in each instance, leading to
potential cost savings.

• Sensitivity analyses are essential for appropriately
adjusting the number of scenarios and time periods
considered in the problem.

Future research lines for this work involve applying
the proposed cement plant model to various problems
associated with the involvement of cement producers in
diverse electricity markets. Ongoing research is focused on
developing tools to determine the participation of cement
producers in tertiary reserve markets and active demand
programs.
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