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ABSTRACT Accurate indoor positioning is critical to a variety of use cases including tracking, proximity,
mapping, and navigation. Existing positioning methods are either inaccurate (e.g. RSSI-based ranging),
impractical (e.g. fingerprinting), or uncommon (e.g. Ultra-Wide Band/UWB). WiFi Round-Trip Time
(RTT) marries the ubiquity of WiFi infrastructure with the accuracy of such ranging mechanisms as
those used in UWB. We present WhereArtThou, a commercial-grade, plug-and-play indoor positioning
solution (IPS) based on WiFi RTT. Our base algorithm uses an extended Kalman filter with a random
walk motion model (EKF-RW) which relies solely on RTT distance measurements. We propose two EKF
components to enhance positioning accuracy. First, as distance measurements can further be fused with
inertial sensor readings, we propose a step-and-heading-based filter (EKF-SH) when such readings are
available. We devise a method to fit the non-Gaussian step error with a Gaussian random variable to remain
within the computationally-efficient Kalman filtering framework. Second, we define a distance-dependent
measurement model to match the true statistics of the measurement noise and approach optimal position
estimation. Moreover, we measure the gain from the proposed enhancements not only through the almost-
exclusively-used error metric in the indoor positioning literature, the Euclidean distance and its variations,
but also through metrics commonly used in satellite and maritime navigation, the cross-track and along-track
errors, in addition to a set of metrics of our own definition. Finally, we show that RTT is highly susceptible
to the human body holding the device measuring it, and we case-study the impact of human-body blockage
on positioning and ranging errors. We test our algorithms on over 18 hours of walking data collected on
different devices, in different locations, and with different users, and we observe that the EKF-RW and
EKF-SH achieve 90th percentile distance errors of 1.65 m and 1.45 m, and 90th percentile cross-track errors
of 0.85 m and 1.55 m, making our solution primed for commercial deployment.

INDEX TERMS Indoor positioning, indoor localization, wireless positioning, device-based positioning,
range-based positioning, WiFi round-trip time (RTT), fine-timing measurement (FTM), ranging, Bayesian
filter, Kalman filter, pedestrian dead reckoning (PDR), inertial measurement unit (IMU), ground truth.

I. INTRODUCTION
Indoor positioning has grown in popularity over the last
decade in parallel with the growth in the number of personal
wireless devices and in the size of wireless infrastructure [1],
[2], [3]. While the use cases are plenty and include smart
homes and buildings, surveillance, disaster management,
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industry and healthcare, they all require wide availability and
good accuracy. Most of the existing positioning techniques
suffer from one or more of the following drawbacks:
inaccuracy, impracticality, and uncommonness. For example,
fingerprinting is a two-step method that builds a spatial
database mapping position descriptors to features such as
received signal strength, e.g. RSSI in WiFi or Bluetooth,
and then enables the online lookup of the position from the
features [4], [5]. Building a database is cumbersome, and the
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slightest change to the floor layout may render the database
useless and obsolete. Another example is positioning based
on ultra-wide band (UWB), another wireless technology [6].
While UWB provides great accuracy, UWB tags, to be
used as reference points, are far less common compared
to WiFi, which can be found in almost every commercial
and residential space. Enter WiFi round-trip time (RTT)
which standardizes the Fine Timing Measurement (FTM)
mechanism for accurate ranging inspired by UWB [7]. Given
the pervasiveness of WiFi access points and devices, WiFi
RTT has become the strongest contender to win the indoor
positioning race.

An entirely orthogonal positioning philosophy is dead
reckoning, where an object’s position is estimated not through
measured ranges with reference points, but rather through
a continuous account of its displacement. Pedestrian dead
reckoning, or PDR, refers specifically to when the object
in question is a pedestrian walking indoors or outdoors [8].
With the proliferation of sensors inside smart devices,
e.g. smartphones, tablets, and smartwatches, PDR has
naturally evolved to supplement legacy wireless positioning
technologies, such as WiFi, that have long been supported
by these very devices [9], as well as more recent and
less common technologies such as UWB. The inertial
measurement unit (IMU) is an in-device hardware module
that combines numerous sensors with functional differences,
e.g. the accelerometer measures linear acceleration; the
gyroscope measures angular velocity; the magnetometer
measures the strength and direction of the magnetic field.
These three sensors alone are able to estimate the object’s
velocity, i.e. speed and direction, and predict its trajectory
by accruing its displacements through methods inspired
by robot kinematics, and used in autonomous navigation
and simultaneous localization and mapping (SLAM) [10].
While either range-based, wireless localization or sensor-
based, PDR can be used exclusively, combining the two
approaches through what is known as sensor fusion reduces
uncertainty and establishes a good trade-off between the
predicted trajectory and the observed one, as evidenced
by its widespread use in indoor localization competitions
[11], [12].

Recent years have seen an increase in work on range-based
indoor positioning using WiFi RTT (FTM). Reference [13]
investigates the quality of RTT distance measurements
on different smartphones in different operational settings
and under different link conditions. Reference [14] also
studies the ranging quality of different devices in different
configurations and characterizes the biases in ranging errors.
This work also proposes a method to resolve the ambiguity in
the estimated position due to the presence ofmultiple equally-
plausible candidates. Reference [15] compares two-sided
ranging, i.e. the FTM mechanism, with one-sided ranging
using legacy APs that are not FTM-capable. Reference [16]
implements an active monopulse radar system that uses the
FTM mechanism through a single access point to measure

distance. Reference [17] empirically builds a measurement
likelihood function and uses particle filtering to estimate
the position of a moving target. Reference [18] proposes
RTT as a fingerprint instead of the traditionally-used RSSI.
Reference [19] proposes calibration algorithms to overcome
the impact of clock deviation and non-line-of-site (NLOS)
links on ranging errors. Reference [20] also presents a
calibration method to eliminate range offsets due to clock
skew. Reference [21] studies ranging performance through
the scope of different variables such as sampling and
multipath. Reference [22] compares the ranging accuracy
between WiFi RTT and UWB. Reference [23] proposes a
positioning algorithm based on multi-dimensional scaling,
by converting measurements of distances between wireless
nodes, specifically RTT, into two-dimensional coordinates.
Reference [24] proposes an RTT-based fingerprintingmethod
based on Gaussian process regression, using particle swarm
optimization to tune the model’s hyperparameters. Refer-
ence [25] explains the enhancements as outlined in IEEE
802.11az to the existing ranging techniques and provides
a detailed evaluation through experiments conducted in the
mmWave (60 GHz) band. Last but not least, [26] proposes a
method to distinguish LOS links from NLOS as well as error
correction methods for each scenario.

Literature on PDR methods, and dead reckoning methods
more generally, is as deep and as old as that on wireless
methods, but literature that specifically combines PDR with
RTT is rather limited. Recent work, e.g. [28], proposes
positioning methods using sensor fusion and ranging error
compensation models based on least squares fitting. The
proposed positioning methods estimate the user’s heading
from RTT ranges, rotational velocity sensors, and the
in-devicemagnet while combating distortions in themagnetic
field. [29] uses a federated filter to fuse RTT measurements
with sensor readings. Reference [30] proposes to use RTT
measurements to estimate the user’s rotation, achieving what
the authors refer to as ‘‘virtual inertial sensors’’. Reference
Recent work [31], [32] also combines RTT measurements
with IMU sensor readings to estimate position through
extended and unscented Kalman filters. One work [33] takes
a geometric approach to combine RTT measurement models
with PDRmodels into a system of equations. The authors then
use not filtering methods, but rather optimization methods to
solve for position. Most recently, [34] proposes a positioning
method for smartphone-based robots using adaptive and
error-state Kalman filters based on inertial navigation and
sensor fusion.

Kalman filters, and more generally Bayesian filters, are
the mainstay of positioning and tracking [10]. The Bayesian
filter, and its efficient, linear counterpart, the Kalman filter,
are probabilistic techniques that enable the estimation of the
state of an observed dynamical system or the probability
thereof. These filters assume that the trajectory of the system
is expressed through a motion model, also known as a state
transition model, which describes how the system evolves
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across time. The measurement of the state is expressed
through a measurement model, or an observation model,
which relates the state, or its probability distribution, at a
given time to measurements collected at that time. With an
incoming stream of measurements, the state of the system is
recursively estimated in two steps. In the first step, known as
the prediction step, the current state is predicted from its most
recent estimate solely using the motion model. In the second
step, known as the update step, the predicted state is corrected
with collected measurements. In this work, we highlight the
shortcoming of measurement and motion models used in
relevant work, and propose different ways to overcome these
limitations.

To begin with, we propose an enhancement to measure-
ment methods used in recent work, which are based on
correcting measured RTT ranges, either by subtracting a
back-off, error-like quantity, or by applying a transformation
whose parameters are empirically fit. We introduce a model
that not only corrects the range measurements in the average
sense based on their value, but also weights them in
proportion to their reliability: placing more weight on shorter
ranges and less weight on longer ones. We refer the reader to
Section IV-B for a thorough discussion.

Moreover, we consider two shortcomings of motion
models: its states are unobservable, and uncertainties in its
inputs are unaccounted for. We propose a model that drops
unobservable states and properly accounts for input errors.
We refer the reader to Section IV-C for a detailed discussion.

Furthermore, while the referenced papers use established
techniques such as Bayesian filters combined with sophis-
ticated PDR models, our target has been a simple and
computationally-inexpensive solution that can run as smooth
on flagship, computational power-horses as on lower-end,
possibly embedded devices. These design drivers directly
relegate three groups of algorithms, 1) iterative solvers,
2) non-linear Bayesian filters and filter banks, and 3) higher
dimension models, in favor of a low-dimensional (linear)
Kalman filter that achieves a speedup proportional to the
number of iterations, particles, filters, or dimensions that
would have otherwise been used.

We introduce WhereArtThou,1 a device-side solution and
key component of our indoor positioning system (IPS)
based on WiFi RTT, that can achieve a 90th-percentile
positioning error of under 1.6 m. Our solution can be readily
deployed by the average user using commercial-off-the-shelf,
FTM-capable smartphones and access points.

The contributions of this paper are as follows:
• A distance-dependent measurement model that maps
RTT distance measurements to appropriate observation
noise mean and variance, which are used in the Kalman
filter update step; such a model matches the true
statics of the observation noise and approaches optimal
estimation

1The nameWhereArtThou is a double play on words. One means ‘‘where
are you’’ in archaic English. The other hints at WiFi RTT as they both start
with the letter ‘‘W’’ followed by the letter string ‘‘RTT’’.

• A step error model that fits a non-Gaussian step
error with a Gaussian random variable, upholding the
computationally-efficient Kalman filter framework

• Detailed benchmark results of our algorithms through
not only the Euclidean distance error metric or any of
its derivatives, which is the the almost-exclusively used
metric in indoor positioning literature, but also through
commonly usedmetrics in satellite, aerial, maritime, and
ground navigation

• A set of metrics to measure the jitter of position
estimates along and across the track of motion

• A case study exposing the detrimental effect of the user’s
body on ranging and positioning accuracy

The algorithms described in this paper, including the
different models introduced herein, can beat a 90-percentile
positioning error of 2 m comfortably as evaluated through
different metrics and tested on extensive datasets obtained
with different devices and in different test sites.

The paper is organized as follows. In Section II we
introduce and overview Fine Timing Measurements (FTM),
the WiFi mechanism that enables our solution. In Section III,
we describe our data collection procedure. In Section IV,
we detail our positioning algorithms and their novel
aspects. In Section V, we describe the evaluation metrics.
In Section VI, we benchmark our proposed algorithms.
In Section VII we case study the impact of human body
blockage on ranging and positioning accuracy. And finally,
we conclude the paper in VIII.

II. FINE TIMING MEASUREMENT
While round-trip time (RTT) is an abstract, blanket term that
measures the time it takes for an object to travel from source
to destination and back again, the term RTT in this paper
refers specifically to the WiFi Fine Timing Measurement
(FTM) mechanism introduced through IEEE 802.11mc,
standardized under IEEE 802.11-2016, and informally known
as WiFi RTT.
Fine timing measurement (FTM), is a wireless network

management procedure that allows a WiFi station (STA)
to accurately measure the distance from another STA, e.g.
an access point (AP), by measuring the round-trip time (RTT)
of the frames exchanged between them.

An STA wanting to localize itself, known as the FTM
initiator (FTMI), with respect to other STAs, known as FTM
responders (FTMR), schedules an FTM session during which
the STAs exchange messages and measurements. The FTM
session consists of three phases: negotiation, measurement
exchange, and termination.

In the negotiation phase, the FTMI negotiates with the
FTMRs key parameters, such as frame format and bandwidth,
number of bursts, burst duration, burst period, and number
of measurements per burst. In the measurement phase, the
FTMI measures the RTT of the frames exchanged with the
FTMRs. The measurement phase consists of one or more
bursts, and each burst is comprised of one or more (fine
timing) measurements. In order to be useful for positioning
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FIGURE 1. Example of an FTM measurement exchange with one burst
and two measurements per burst.

and proximity apps, the RTT between two STAs is translated
into a distance according to the following equation:

d =
RTT
2

c. (1)

Each FTM of the burst will yield a distance sample, with
multiple distance samples per burst. The samples can be
averaged out, and their mean and standard deviation can be
reported.

Given multiple FTM bursts and multiple measurements
per burst, the distance samples can be combined in different
ways to produce a representative distance measurement. For
example, the mean distance and its standard deviation can be
reported, or the median or some other percentile.

While FTM was conceived in the 11mc amendment,
it underwent a series of enhancements through the 11az
and 11bk amendments. IEEE 802.11az Enhancements for
Positioning, dubbed Next Generation Positioning, targets
enhancing scalability, security, accuracy, and efficiency by
extending the maximum supported bandwidth to 160 MHz
from 80 MHz, and adding support for the 6 GHz band and
MIMO. The 11bk amendment further extends the maximum
supported bandwidth to 320 MHz.

III. DATA COLLECTION
Establishing the ground truth of the user’s varying position
is critical to evaluating positioning algorithms and charac-
terizing the errors between a sequence of positions and their
estimates. We describe a simple and inexpensive method to
define the ground truth trajectory of a moving user and to
collect data.

Although vision-based motion capture systems like ViCon
and OptiTrack can quite accurately capture the trajectory of
motion [35], they are not critical for WiFi positioning as
compared to other, more accurate technologies like UWB..
Positioning and ranging errors with WiFi RTT are on average
far greater than the error between the vision-based trajectory
and the timestamp-based one to be presented below. In UWB

FIGURE 2. Traversable office space is converted to a grid network made
of nodes and segments used to define walking routes along which the
user’s true position can be confidently computed. Gray lines and gray
dots represent segments and nodes. The blue rectangle and blue dots on
it represent a test route and turning points. Red dots represent APs.

positioning, however, errors could be of the scale of the length
of a smartphone, making an accurate ground truth indeed
critical for evaluation. But even with UWB, the gap in RMSE
(vision-based vs. timestamped) was observed to be in the
5-15 cm range at the time where the RMSE errors themselves
are of that same order. With WiFi, however, the RMSE is in
the meter range, so such an accuracy in the absolute error
figure is not as critical. Moreover, experiments enabled by
vision-based systems cannot be reproduced in subsequent
work that cannot access similar systems, and results and
findings cannot be validated.

We convert a floorplan into a grid network of routes,
segments, and nodes. Every route is made of segments, and
every segment is defined by two nodes used as anchors
to determine the ground truth coordinates of the points
along every segment. Nodes are chosen for the ease of
inferring their Cartesian coordinates, e.g. the intersection
of two corridors or aisles, and they are used as anchors to
determine the ground truth coordinates of the points along
every segment. A route can be closed if its extremities
touch, and open, otherwise. Accordingly, closed routes are
polygonal, and open routes are piece-wise linear. Every
datapoint corresponds to the time series of data collected
by the user’s device as they traverse a designated route.
The collected data includes RTT-related measurements and
statistics, IMU sensor readings, and other useful information.

In the data collection phase, the user stands at the start
point of a route and waits for a signal from the data collection
app prompting them to start walking. When a user is about
to make a turn, they press a ‘‘timestamp’’ button to mark
the occasion. The user tries to maintain a uniform speed
throughout each segment of the route. While the user is
walking, the data collection app uses an Android API to
make ranging requests2 with registered FTM-capable access
points, timestamps the corresponding ranging responses,
and extracts the RTT distance measurements and relevant
information.

2The ranging request is sent by the application layer down through the
WiFi stack to start an FTM session the results of which are sent back up to
the application layer as a ranging response.

VOLUME 12, 2024 41087



R. Jurdi et al.: WhereArtThou: A WiFi-RTT-Based Indoor Positioning System

In the evaluation phase, the underlying route of every
datapoint is sampled into a discrete sequence of waypoints
{ xk } at times { tk } at which ranging results are received.
The true position of waypoints along a segment is computed
through interpolating between the two nodes defining the
segment whose true positions are knownwith close-to-perfect
accuracy. For a waypoint occurring at an arbitrary time t and
falling between any two consecutive nodes with positions
x1 and x2 that the user visits at times t1 and t2, we compute
the true position x according to the following equation:

x = x1 +

(
t

t2 − t1

)
· (x2 − x1). (2)

IV. POSITIONING ALGORITHM
In this section, we describe our positioning algorithm and
highlight two innovations therein: a distance-dependent
measurement model and a step-and-heading motion model
that fits into the Kalman filter framework.

A. RANDOM WALK EXTENDED KALMAN FILTER
We start by giving up any linear or angular kinematic
information, e.g. acceleration and angular velocity, and rely
solely on ranging (RTT) information to derive the position of
the user/device. Later, we incorporate kinematic information
provided by the device IMU to predict the user’s trajectory
and enhance positioning accuracy.
Trilateration, or multi-lateration, is the most basic method

of computing the position of a device from ranges, i.e.
distance measurements, with anchor points whose locations
are known. This method solves a non-linear least square
problem with the following objective:

f (x) =

A∑
a=1

wa (ra − d(x,pa))2 , (3)

where ra is the range from anchor point, or access point (AP),
a, 1 ≤ a ≤ A, pa is the location of AP a, d(·, ·) is the
Euclidean distance function, and wa are weights. Without
loss of generality, we will assume throughout this paper that
ranges with all the APs are available.

The problem above is typically solved using a minimiza-
tion algorithm such as Levenberg-Marquardt, or relaxed,
expanded, or reformulated into other problems and solved
using methods such as semi-definite programming [36], the
parallel projection method [37], or the projection on convex
sets method [38], to name a few.

The methods above are limited in two ways. First, they
are iterative, where every iteration involves numerous matrix
operations, such as multiplication and inversion, which
consume both time and power. Second, they are memoryless;
the aforementioned methods estimate position from a set of
ranges obtained during the same time step, forfeiting a great
opportunity to use a vast past history of range measurements
and position estimates. A Kalman filter, overcomes those two
limitations.

A Kalman filter recursively estimates the state of a dynam-
ical system from a sequence of measurements obtained over
time and an underlying model of state evolution [10]. The
filter models the underlying system by two linear equations,
a motion, or state transition, equation, and a measurement,
or observation, equation. In our positioning context, the
motion model describes the evolution of position with
time, and the measurement model describes the relationship
between that position and the RTT ranges from the different
APs.

Two common sensor-free motion equations in the indoor
positioning literature are the second-order and third-order
motion equations involving kinematic quantities such as
velocity and acceleration.

In the second-order model, which we refer to as position-
velocity (PV) model, the state of the system sk is the
two-dimensional device position and velocity, i.e. sk =

[xTk , vTk ], and the state transition equation is[
xk
vk

]
=

[
I 1tkI
O I

]
·

[
xk−1
vk−1

]
+ εk , (4)

where εk represents the uncertainty in state variables,
possibly capturing the impact of random acceleration on
position and velocity, 1tk is time between the last two
estimation epochs, and I and O are the 2 × 2 identity and
zero matrices.

In the third-order model, most recently used in a work on
WiFi-RTT-based positioning [34], the state of the system sk
becomes the two-dimensional device position, velocity, and
acceleration, i.e. sk = [xTk , vTk , aTk ], and the state transition
equation becomesxkvk

ak

 =

 I 1tkI 1
21t

2
k I

O I 1tkI
O O I

 ·

xk−1
vk−1
ak−1

+ εk , (5)

where εk represents the uncertainty in state variables that are
evolving with time.

In the absence of motion sensors in the device held by
the user, the above models lead to unwanted undershooting
and overshooting of the position estimate. Consider the two
following scenarios.

In the first one, a user holds their device, walks along
a linear path and abruptly stops once they reach the end.
In the absence of an accelerometer to measure acceleration,
the velocity as a state is slow to respond to sudden
change in speed. During the ramp-up phase, the estimated
position undershoots if the initial speed is set too small,
i.e. it slowly catches up to the true position. When the
user has been walking straight for some time, and if
range measurements are accurate, the filter may be able to
close-in on the true velocity, yet this does not overcome the
next challenge. During the wind-down phase, the estimated
position overshoots because the velocity as a state is non-zero,
i.e. the position estimate goes past the true position.

In the second scenario, a user walks along a horizontal
path and abruptly makes a sharp turn midway through.
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FIGURE 3. When the user makes a sharp turn, the position estimate
overshoots past the corner when the position-velocity (PV) model is used.

In the absence of an accelerometer to measure the device’s
acceleration, and a gyroscope tomeasure the device’s rotation
angle and infer the user’s acceleration, the velocity as a state
is slow to respond to sudden change in walking direction.
As a result, the estimated position continues along the same
horizontal path, only to get back on the right track once
enough range measurements have been collected.

Unlike position which is a state observed by RTT range
measurements, velocity is an unobserved state that also
does not take any inputs, so it can be neither predicted
nor corrected. Therefore, we opt for a motion model
that avoids undershooting and overshooting by dropping
velocity as a state variable and retaining position as the
the only state. We term this model the random walk
(RW) model. Fig. 3 depicts the two scenarios above, and
compares the trajectory estimated by the position-velocity
motion model and that estimated by the random walk
model.

We begin by assuming that the user can take an arbitrary
step, i.e. a step with a random size and direction, and we
model the evolution of their position by a drift-less Gaussian
random walkmodel in the 2D plane. Accordingly, the motion
model becomes

xk = xk−1 + vk , (6)

where xk denotes the current position, xk−1 denotes the
previous position, and vk denotes a (fractional) step of
random size and direction, specifically vk ∼ N (0,Qk ),
where

Qk =

[
σ 2
P1t2k 0
0 σ 2

P1t2k

]
, (7)

1tk = tk − tk−1 is the time between consecutive ranges,
and σ 2

P is the process noise variance parameter reflecting the
user’s average speed.

There are two key things to note about the random
walk model. First, the longer the time between consecutive
ranges, the farther away the user can stray from their last
known position. Practically speaking, a low ranging rate
spreads out position estimates, while a high ranging rate

FIGURE 4. The process noise variance σ2
P can either restrict or liberate

motion; a lower σ2
P gives a smooth trajectory, but results in round corners

and lag; a higher σ2
P , however, sharpens corners and catches up to the

user, but gives a jumpy trajectory.

brings them together. Second, the smaller the process noise
variance σ 2

P , the more constrained the motion. Figure 4
illustrates the physical significance of the model parameter
σ 2
P . Practically speaking, a lower σP produces a smooth

trajectory, but one that lags behind the user, more so if they
are walking fast; a higher σP produces a choppy trajectory,
but one that catches up to the user regardless of how
fast they walk. Therefore, the value of σP can be chosen
to either restrict or liberate the estimated trajectory. The
choice of σP needs to balance the conflicting objectives
of increasing both response time and smoothness. In this
work, we assume a fixed value for σP that works reasonably
well for a wide range of walking speeds. We defer to
future work dynamically adjusting σP based on the device
IMU.

The process noise variance needs to be commensurate with
the use case and expected speed range. For example, a value
of σ 2

P = 3 corresponds roughly to a speed range of 3 mph,
or 1 m/s, for walking, to 7 mph, or 3.3 m/s, for running.
Alternatively, a value for σ 2

P = 2 corresponds roughly to
a lower speed range of 1 mph, or 0.4 m/s, for strolling, to
5 mph, or 2.2 m/s, for jogging. We explain how the process
noise variance σP can be derived from the target speed range
in the appendix.

As for the measurement model relating the latest set
of ranges to the corresponding position, we assume the
following additive white Gaussian noise model:

ya,k = d(xk ,pa) + wa,k , (8)

where ya,k is the kth range, i.e. RTT distance measurement,
from AP a = 1 . . .A, d(x,pa) is the ground truth distance
between the device at position xk and AP a at a location
pa, and wa,k is the white Gaussian measurement noise that
models the ranging error and is assumed to be uncorrelated
across time and APs. Additionally, the measurement noise is
assumed for the time being to have a fixed variance across
time and APs, i.e. wa,k ∼ N (0, σ 2

M ). We stack the ranges
{ ya,k } with the A APs to obtain the vector observation yk at
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time tk

yk =

ya,k...
yA,k

 (9)

with a corresponding measurement noise wk ∼ N (0,Rk ),
where

Rk =

σ 2
M . . . 0
...

. . .
...

0 . . . σ 2
M

 . (10)

Having defined the motion and measurement models,
we can now derive the Kalman filter prediction and update
steps. In the prediction step, the Kalman filter predicts the
next position x̂k|k−1 from the last known positon estimate
x̂k−1 and computes its covariance Pk|k−1 using the motion
model (6). The prediction euqations are

x̂k|k−1 = x̂k−1, (11)

Pk|k−1 = Pk + Qk . (12)

The update step of a Kalman filter interpolates between the
predicted position x̂k|k−1 and the position as inferred from
the observation yk . As the distance d(xk ,pa) is a non-linear
function of the position xk , the relationship between the
observation yk and the position xk needs to be linearized as
follows to remain within the Kalman filter framework:

yk = Hkxk + wk , (13)

where the matrix Hk , known as the observation matrix, has
elements

[Hk ]a,j =
∂d(xk ,pa)

∂xj

∣∣∣
xj=[x̂k|k−1]j

. (14)

The linearization of the observation equation gives the
extended Kalman filter (EKF) whose update equations are
given by

x̂k = x̂k|k−1 + Kk
(
yk − d(x̂k|k−1)

)
, (15)

Pk = (I − KkHk)Pk|k−1, (16)

where d(·) is the vector of distances from the A APs, I
is the 2 × 2 identity matrix, Kk is the Kalman gain and
is a function of the measurement noise and a priori error
covariance matrices Rk and Pk|k−1, and Pk is the a posteriori
error covariance matrix. The prediction and update equations
are obtained following standard derivation [10].

B. DISTANCE-DEPENDENT MEASUREMENT MODEL
We propose a refinement of the measurement model to
enhance positioning accuracy. The way a Kalman filter,
or a Bayesian filter in general, works is that it first
predicts the next position from the most recent estimated
position according to the motion model, and then updates
its prediction from the most recent measurement according
to the measurement model. The uncertainty in the user’s
motion and error in the measured ranges are modeled by

FIGURE 5. RTT distance measurements (blue) and ground truth distance
(black) for different APs as a function of time corresponding to route rc1
show in Fig. 2; vertical bars timestamp turning points along a route.

Gaussian random variables whose mean and variance are
parameters that are themselves subject to error. Therefore,
setting those parameters close to their true values is critical
to the accuracy of the estimate. In this work, we focus
on modeling the measurement noise mean and variance as
quantities that vary with distance. Specifically, we draw
an empirical relationship between the measurement noise
mean and variance on one side and the RTT ranges on
another using a wealth of collected data. We term this the
distance-dependent measurement model (DDMM).

Fig. 5 shows an array of RTT distance measurements
from 6 APs overlaid on top of the ground truth distance as
a function of time. While the most obvious observation is
that the ranges fluctuate and contain outliers, a more subtle
observation is that these ranges are biased along certain
parts of the route. The bias can be attributed to a consistent
and dominant non-line-of-sight (NLOS) signal components
due to reflectors in the environment which exaggerates the
distance between the device and AP and results in a longer
time of flight.

The measurement noise parameters, both mean and
variance, can be characterized on an AP-by-AP basis. The
resulting account, however, would remain specific not only
to the site where the APs are deployed, but also to the
AP locations within that site. Instead, we opt to make the
measurement noise identically distributed across all APs.

Before putting the distance-dependent measurement model
into operation (online phase), we train the model to give
values to its parameters (offline phase). In the training
phase, we obtain the RTT-distance-dependent measurement
noise mean µM (y) and variance σ 2

M (y) through the following
four-step process:

1) Perform multiple rounds of data collection (see
Section III) sampling all feasible locations

2) For every waypoint k of every route, compute the set
of ranging errors {wa,k } as the difference between the
ranges { ya,k } with the different APs a = 1 . . .A and
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the true distances { d(xk ,pa) }; plot the ranging errors
{wa,k } against { ya,k } (see Figure 6)

3) Partition the range axis into bins of equal width,
e.g. 1 m, and assign the ranging errors to their
corresponding bins

4) Compute the mean and variance of the elements of
every bin to obtain the sequences { µb } and { σ 2

b }

5) Fit the sequence of means and variances, each with
a straight-line, quadratic, or higher-order polynomial,
to obtain the functionsµM (·) and σ 2

M (·) that give, for an
arbitrary range y, estimates of the mean and variance of
its corresponding ranging error

We observed that linear fitting is more suitable for fitting
the mean of the ranging errors, and quadratic fitting is more
suitable for fitting their variance as it increases more rapidly
with distance than the mean.

Once the functions µM (·) and σ 2
M (·) are defined, the

distance-dependent model can now be used in the EKF
update step. Under the new model, and for a received vector
observation yk =

[
y1,k · · · yA,k

]T , the measurement noise
covariance matrix Rk , originally defined in (10), is now
computed as

Rk =

σ 2
M

(
y1,k

)
. . . 0

...
. . .

...

0 . . . σ 2
M

(
yA,k

)
 . (17)

Moreover, the a posteriori estimate x̂k , previously computed
according to (15), is now computed as

x̂k = x̂k|k−1 + Kk · ek , (18)

where the Kalman gain Kk is a function of the measurement
noise covariance matrix Rk , which itself is now a function
of the measurement yk , and ek is the innovation, i.e. the
difference between the predicted range measurement and the
actual one, is also a function of the measurement yk , namely

ek = yk −

µM
(
y1,k

)
...

µM
(
yA,k

)
− d

(
x̂k|k−1

)
(19)

The distance-dependent EKF update essentially does two
things. First, it compresses the range measurement ya,k
by subtracting from it the estimated bias µM (ya,k ) of the
corresponding ranging error. Second, it assigns a weight,
or confidence, appropriate to the value of the range. Bigger
ranges are assumed more erroneous and are assigned smaller
weights, while smaller ranges are assumed more truthful and
are assigned larger weights. This is in agreement with the fact
that NLOS links are more probable at greater distances.

Recent investigation of the ranging accuracy of WiFi
RTT [15], [39] also observed that the spread of ranging errors
and their average increases with distance, but they modeled
these relationships through probability distributions and used
those in the update step of a more general, Bayesian estima-
tion framework, which is costly. Recent investigation of the

FIGURE 6. The bigger the distance, the worse the measurement; ranging
errors are fitted with a quadratic function of the RTT distance from a
single AP; dots correspond to waypoints along a route; colors indicate
test routes. The white curve at the center describes the fitted mean µM of
the ranging errors; the two white curves on either side are the mean ±

the standard deviation σM .

positioning accuracy of WiFi RTT [27] proposed a correction
of RTT range measurements by subtracting a back-off term
to compensate for the typically-positive ranging error. The
authors defined the back-off as a polynomial function of
the RTT ranges whose coefficients are determined offline
by fitting them to training data. A similar and more recent
investigation proposed a better-educated error compensation
method [26]. The method first identifies if the link is LOS
or NLOS using RSSI measurements, and then applies the
appropriate back-off term that is also a polynomial function
of the RTT ranges. Another recent work on the positioning
accuracy of WiFi RTT proposed a correction of RTT ranges
by applying to them a polynomial functionwhose coefficients
are determined through fitting [28].
Applying a corrective offset to RTT measurements does

only half of the job. In a Kalman filter, or Bayesian filter
in general, there are two key measurement-related quantities
that go into the correction step, also known as update
step: the noise covariance matrix Rk and the innovation ek .
Processing the RTT measurement yk by either applying it
to a function, or by applying to it an additive corrective
offset, may only bias the innovation ek around zero. It does
not, however, weight the different measurements according to
their reliability. Thoseweights, in fact, are calculated from the
measurement noise covariancematrixRk and applied through
the Kalman gain Kk , which decides which of the following
two contributes more to a reliable position estimate: the
prediction or the observation.

Therefore, the measurement model that we introduce not
only corrects the RTT measurements in the average sense
based on their value, but also weights them appropriately:
placing more weight on shorter distances and less weight on
longer ones.

Finally, it is worth noting that the statistics of the
measurement noise vector, its mean and covariance, are time
varying. As the user moves around, their distance to every AP
varies. As they move closer to an AP, the mean and variance
of the measurement noise decrease. As they move away
from an AP, the mean and variance increase. This behavior
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is captured by the empirically-motivated distance-dependent
model. In reality, the measurement noise vector is not only
time varying, but also correlated across time and across links,
making the measurement noise both colored and one with a
non-diagonal covariance matrix. Properly characterizing the
joint probability distribution of the measurement noise across
time and across links can significantly improve positioning
accuracy.

C. STEP AND HEADING EXTENDED KALMAN FILTER
Positioning accuracy can be enhanced by using sensor
readings to account for incremental changes in position.
Dead reckoning is a method of estimating the position

of a moving object by adding incremental displacements to
its last known position. Pedestrian dead reckoning, or PDR,
refers specifically to the scenario where the object in question
is a pedestrian walking in an indoor or outdoor space.
With the proliferation of sensors inside smart devices, e.g.
smartphones, tablets, and smartwatches, PDR has naturally
evolved to supplement wireless positioning technologies that
have been long supported by these devices such as WiFi and
cellular service, as well as more recent and less common
technologies such as ultra-wide band (UWB). The inertial
measurement unit (IMU) is a device that combines numerous
sensors with functional differences, e.g. the accelerometer
measures linear acceleration; the gyroscopemeasures angular
velocity; the magnetometer measures the strength and
direction of the magnetic field. Combining IMU sensor data
and ranging measurements from wireless chipsets like WiFi
and UWB, known as sensor fusion, can improve positioning
accuracy by reducing uncertainty.

Methods that use PDR can be broadly split into two
categories: inertial navigation (IN) methods, and step and
heading (SH) methods [40].

IN methods continuously track the position of the device
and its orientation, i.e. the direction it is facing in two- or
three-dimensional space (also known as attitude or bearing).
To determine the instantaneous position of the device,
IN methods integrate the 3D acceleration to obtain velocity,
and then the velocity to determine the displacement from
the start point. To determine the instantaneous orientation
of the device, IN methods integrate the angular velocity
from the gyroscope to obtain the change in angles from
the initial orientation. Measurement noise and biases at
the levels of the accelerometer and gyroscope leads to a
linear growth of orientation offset across time due to the
integration of rotational velocity, and to quadratic growth of
displacement error across time due to the double integration
of the acceleration. Overcoming measurement noise and
biases often demands a computationally-complex filter with
a high-dimensional state vector that tracks all the biases and
noise
statistics [41].

Unlike IN methods that track the position of the device
continuously, SH methods update the device position less

frequently by accumulating the steps that user takes from
a start point. Every step is described as a vector whose
magnitude is the size of the step and whose argument
is the heading of the step. Instead of directly integrating
sensor readings to compute displacement and change in
orientation, SH methods perform a sequence of operations.
First, an SH system detects a step or stride from the device’s
three-dimensional acceleration using one of many different
algorithms, e.g. peak detection, zero-crossing detection,
or template matching. Second, once a step or stride is
detected, the SH system estimates the size, or length, of the
step from the sequence of acceleration readings coinciding
with the step. Third, the SH system estimates the heading of
the step using the gyroscope, magnetometer, or a combination
of both.

While step detection is prone to mis-detection, for e.g.
due to peaks in acceleration falling below a detection
threshold, as well as false alarm, for e.g. due to double peaks,
SH methods remain more robust than IN methods in the
absence of an accurate estimate of the statistics of the noise
at the level of the different sensors. Therefore, we opt for an
SH-based motion model.

Motion models based on sensor fusion, including step and
heading models, are more rife in the indoor positioning and
robotics literature than sensor-free motion models. In one
common model, the state of the system sk is the motion
heading direction and two-dimensional position, i.e. sk =

[xTk , θk ], and the motion model is[
xk
θk

]
=

[
xk−1 + sk · g(θk−1)

θk−1 + φk

]
+ vk , (20)

where

g(θk ) =

[
cos θk
sin θk

]
, (21)

and vk is the additive process uncertainty vector, sk is the
size of the detected step, and φk is the differential step
heading, i.e. rotation angle of the device held by the user
around the vertical axis in the global frame of reference.
The step size sk is computed from the three-dimensional
acceleration through analytical models such as those defined
in [42], [43], and [44], and the rotation angle φk from
the three-dimensional angular velocity or from the change
in magnet-based device orientation. Closed-form models,
however, need not be used at all. Instead, a regression
model trained on the time series of IMU sensor readings
through supervised learning can be used [45], [46], [47],
[48], [49]. The step size sk and differential step heading
φk are the system inputs, i.e. they act on the state sk
comprised of the position xk and motion heading θk ,
and they change it. Those inputs, however, are prone to
error.

The model above has been very recently borrowed and
applied to WiFi-RTT-based positioning, e.g. in [27] and [28].
The model was amended by expanding the state to include
a multiplicative step size correction factor αk , leading to the

41092 VOLUME 12, 2024



R. Jurdi et al.: WhereArtThou: A WiFi-RTT-Based Indoor Positioning System

four-dimensional state sk = [xTk , θk , αk ] and motion modelxkθk
αk

 =

xk−1 + αk−1 · sk · g(θk−1 + φk )
θk−1
αk−1

+ vk . (22)

Existing models including (20) and (22) have two short-
comings: the states lack observability, and the state transitions
lack specificity. Some state variables, e.g. the heading θk , are
unobserved, and errors in system inputs, namely the step size
sk and rotation angle φk , are unaccounted for.

Motion models, e.g. (20) and (22), are non-linear, so they
need to be linerized to remain within the efficient Kalman
filtering framework. Generic linearization techniques such as
the extended Kalman filter (EKF) and the unscented Kalman
filter (UKF) produce new transition equations. The step that
the user takes, consisting of the step size sk and differential
step heading φk , is the input to the system that acts on and
changes its state, comprised of the user’s position and their
heading. Those inputs, however, are prone to error. Generic
linearization recipes translate the non-linear relationships
between states and inputs into linear ones, but the errors in
the different inputs are not explicitly accounted for. Instead,
they are arbitrarily swept under the umbrella of the state error
term vk that is linearly added to the state variable sk .

To overcome the limitations described above, we propose
a state transition and error model that drops unobserved
states and properly accounts for input errors. In Section VI,
we compare our model with the two models (20) and (22)
by plugging them into Kalman filters and evaluating their
positioning accuracy.

Suppose that we can infer the the size of the step (or
average step size) sk taken between tk−1 and tk as well as
the step heading θk taken during that same time. Instead of
the random walk EKF whose motion model takes no inputs,
an enhanced EKF with a motion model that takes the step
size and heading sk and θk as inputs can be used to predict
the next position. However, errors in sensor readings will
propagate into the step size and heading and need to be
modeled accordingly. A simple model accounts for additive
noise to both the step size sk and step heading θk as follows:

xk = xk−1 +
(
sk + vS,k

)
·

[
cos

(
θk + vθ,k

)
sin
(
θk + vθ,k

)] , (23)

where vS,k ∼ N (0, σ 2
S ) is the additive Gaussian error

in step size, and vθ,k ∼ N (0, σ 2
θ ) is the additive

Gaussian error in step heading. Eq. (23) is non-linear in
the error variables vS,k and vθ,k , so the effective process
uncertainty, which characterizes the error in the state, will
not be Gaussian. Without a Gaussian process uncertainty,
the computationally-efficient Kalman filtering framework
will no longer apply. To overcome this, we are faced with
two options. The first option is to use the more general
Bayesian framework which supports non-linear equations
and non-Gaussian errors. Under this framework, the state
transition equation becomes a state transition probability, and
the observation equation becomes an observation likelihood

FIGURE 7. ‘‘Normalizing’’ the step error: Fitting the support of the step
error with an ellipse; x̂k−1 is the latest estimate; the prediction x̂k|k−1
falls inside an annular sector; left: ‘‘tall’’ error with small σθ and large σS ;
right: ‘‘fat’’ error with large σθ and small σS .

function [10]. An example of such a framework is known
as Monte-Carlo localization, which uses a particle filter to
approximate the probability distribution of the estimate by
a set of particles, each having a value denoting position
and a weight denoting probability. Running this framework,
however, is computationally expensive, and it risks draining
the battery and throttling other running applications. This
brings us to the second option which is to transform the
non-Gaussian process uncertainty into a Gaussian random
variable which would then make the Kalman filtering
framework applicable once again. In this case, Eq. (23) above
would need to be transformed into the following:

xk = xk−1 + sk ·

[
cos θk
sin θk

]
+ vk , (24)

where vk is a Gaussian random variable representing the
error in the step and accounts for both errors in the step
size and direction. We will refer to Eq. (24) as the step and
heading (SH) equation. Our remaining task is to ‘‘normalize’’
the non-Gaussian step error, i.e. to derive a transformation
of the non-Gaussian step error into a Gaussian. We note
that the step error according to Eq. (23) is concentrated
inside an annulus sector, which is a cut of an annulus.
We propose to capture most of the density of the error
distribution by fitting the annulus sector with an ellipse,
rotated and dilated appropriately. We propose the following
algorithm.

We define the points A, B, C , andD around the most recent
estimate x̂ = (x̂, ŷ) as follows:

A =
(
x̂ + (s+ σS ) · cos θ, ŷ+ (s+ σS ) · sin θ

)
, (25)

C =
(
x̂ + (s− σS ) · cos θ, ŷ+ (s− σS ) · sin θ

)
, (26)

D =
(
x̂ + s · cos(θ + σθ ), ŷ+ s · sin(θ + σθ )

)
, (27)

B =
(
x̂ + s · cos(θ − σθ ), ŷ+ s · sin(θ − σθ )

)
. (28)

We now use the four points A, B, C , and D to describe
the two orthogonal axes of an ellipse, and then compute the
variance of the horizontal and vertical errors σ 2

X and σ 2
Y ,

as well as the their auto-covariance σXY . We compute σ 2
X , σ

2
Y ,
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and σXY as follows:

σ 2
X =

(
DB
2

)2

· sin2 θ +

(
AC
2

)2

· cos2 θ, (29)

σ 2
Y =

(
DB
2

)2

· cos2 θ +

(
AC
2

)2

· sin2 θ, (30)

σXY =

(DB
2

)2

−

(
AC
2

)2
 · sin θ cos θ, (31)

where AC and BD are the lengths of the segments AC and
BD. Finally, we can now build the covariance matrix Qk of
vk as follows:

Qk =

[
σ 2
X σXY

σXY σ 2
Y

]
(32)

The step and heading model gives rise to a different filter,
the step and heading extended Kalman filter, or EKF-SH for
short. The EKF-SH has the same update step as the EKF-
RW, as they both use the same observation model, but it has
a different prediction step. Indeed, the prediction step of the
EKF-SH is given by the following two equations:

x̂k|k−1 = x̂k−1 + sk ·

[
cos θk
sin θk

]
, (33)

Pk|k−1 = Pk + Qk . (34)

In Section VI-B, we compare the EKF-SH with the
EKF-RW through various error metrics.

V. EVALUATION METRICS
Numerical evaluation of an algorithm’s positioning accuracy
does not always stand up to visual evaluation which is what
truly represents what the user experiences and sees on the
screen. Often times, the EKF-SH trajectory appears better to
the eye than the EKF-RW trajectory but scores less on the
positioning error metric defined as the Euclidean distance.
One possible reason is that the EKF-SH trajectory is prone
to the ‘‘group delay’’ effect where the position estimates
have a constant offset from the ground truth throughout the
entire route. Most anticipated use cases of indoor positioning
are not time-sensitive, so a position estimate that stays
on track is arguably more important than one that catches
up to the user’s true position as they move but jumps
around a lot. The disconnect between the user-perceived
experience and the Euclidean distance as a standard error
metric motivates the use of a more fair metric that measures
the distance between the position estimate and the route rather
than with the true position along that route. Fortunately, such
metrics are common in satellite, aerial, maritime, and ground
navigation. Hence, we will evaluate our different algorithms
through the following metrics:

• Horizontal error (HE): Distance (Euclidean) between
the true position xk and its corresponding estimate x̂k ,
i.e.

HEk =
∥∥ x̂k − xk

∥∥ . (35)

• Along-track error (ATE): Distance between the true
position xk and the orthogonal projection of its estimate
x̂k on the trajectory, mathematically defined as

ATEk =

∥∥∥ proj(xk−1,xk )x̂k − xk
∥∥∥ . (36)

• Cross-track error (XTE): Distance between the
position estimate x̂k and the true trajectory, defined as

XTEk =

∥∥∥ x̂k − proj(xk−1,xk )x̂k
∥∥∥ . (37)

In addition to the standard error metrics defined above,
we introduce 3 additional metrics that reflect user experience.
These metrics are derived from standard error metrics,
namely the XTE and ATE.

• Swaying range (SR): Twice the standard deviation of
cross-track errors { XTEk } of waypoints along a route.
It captures the transverse jitter, i.e. the amount of
variation across the track of motion. While the mean
XTE can be zero, meaning that the estimate of the user’s
position is, on average, neither to the left nor to the
right of the true position, the estimates can very much
fluctuate inwards and outwards, similar to a car swaying
side to side due to suspension faults.

• Rocking range (RR): Twice the standard deviation of
the along-track errors { ATEk } of waypoints along a
route. It captures the longitudinal jitter, i.e. the amount
of variation along the track of motion. While the mean
ATE can be zero, meaning that the estimate of the user’s
position is, on average, neither leading nor trailing the
true position, the estimates can very much fluctuate back
and forth, similar to a car rocking back and forth when
stalling as it comes to a halt.

• Positioning lag (PL): It captures how far in time the
position estimate is lagging behind the true position
(positive value), or leading ahead of it (negative value).
We define the positioning lag at waypoint k as:

PLk =
ATEk
uk

, (38)

where uk is the speed at waypoint k .
To compute the swaying range, rocking range, and

positioning lag, the XTE andATE need to be redefined to give
the estimated trajectory an aspect of sidedness, i.e. whether
the position estimate falls on the left side of the true position
or on the right side, and whether the estimate falls on the front
side of the true position or on the back side. TheXTE andATE
thus become signed quantities according to the following new
definitions:

• ATE: Has a positive sign if the position estimate is
trailing behind the true estimate and a negative sign if
it is leading ahead, namely

ATEk = −
∥∥ p̂k − xk

∥∥ · sgn ⟨x̂k − xk , xk − xk−1⟩

(39)

where p̂k = proj(xk−1,xk )x̂k , sgn (·) is the sign function,
and ⟨·, ·⟩ is the dot product.
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FIGURE 8. The distance-dependent measurement model (blue) pulls the estimated trajectory closer to the ground truth trajectory (solid black line) than
the estimate under fixed measurement noise variance.

FIGURE 9. The distance-dependent model adds a significant performance
gain. This enhancement reduces the positioning error by up to 80cm on
Model A and 1.4m on Model B.

• XTE: Has a positive sign if the position estimate is on
the right side of the true trajectory and a negative sign if
it is on the left side, namely

XTEk =−
∥∥ x̂k−p̂k

∥∥·sgn det
[
xk−xk−1 x̂k−xk−1

]
,

(40)

where det (·) is the matrix determinant.

VI. EVALUATION
To evaluate our algorithms, we collected extensive data at
3 test sites. Every datapoint consists of a time series of
RTT ranging responses and IMU sensor readings logged
continuously while the test subject walks along a test route.
More than 15 people participated in the data collection
efforts, and more than 100 distinct routes were defined.
In total, we produced more than 80 datasets consisting of
more than 1,200 datapoints and north of 340,000 waypoints
worth more than 18 hours of non-stop walking. We used
4 different devices, the Samsung Galaxy S20, S21 Ultra, S23,
and XCover6 Pro. We also used 3 different AP models, the
Google WiFi, Nest WiFi, and Aruba A515, all supporting
FTM in the 5 GHz band over a bandwidth of 80 MHz.

The bulk of the data was collected in settings rife
with signal blockages and reflectors: two offices and a
tightly-packed exhibition room. The offices contained floor-
to-ceiling columns and elevated height-adjustable desks
acting as objects of signal blockage. The desks were mounted
with desktop computers, laptops, and computer screens
acting as signal reflectors.

In short, the collected data is sufficiently diverse, sampling
numerous variables including:

• Walking pattern: Also known as gait, this includes
parameters such as walking speed, step length and
duration, stride length and duration. 15 test subjects
participated in the data collection campaign.

• FTM initiator: The mobile device held by the user
whose location needs to be identified. 4 models of
mobile devices supporting the FTM technology have
been used to collect data, for a total of more than
10 devices. FTM is a new technology that has not
yet become a standard feature in mobile phones, and
the market of FTM-capable mobile devices is currently
limited to a handful of vendors at most.

• FTM responder: The WiFi access points with known
positions acting as ranging partners for the mobile
devices. 3 models of access points supporting the FTM
technology have been used to collect data. The support
of FTM byWiFi access points remains rather limited but
is steadily rising, mirroring the trend of FTM support by
mobile devices.

• Traffic: This includes both foot traffic and wireless
network traffic, which not only are correlated, but also
have correlated effects on positioning accuracy. More
people create more line-of-sight blockages, which leads
to the overestimation of round-trip time and distance.
More people also operate more wireless devices, which
reduces channel access for FTM initiators and respon-
ders, increases their chance of collision, and causes
interference. All of the above lessens successful FTM
exchanges and reduces measurement rate.

We evaluate the different algorithms and their variations
on data collected on two representative smartphone models,
Model A and Model B.

A. DISTANCE-DEPENDENT MEASUREMENT MODEL
We first evaluate the distance-dependent measurement model
(DDMM) by benchmarking it against five baselines. The first
baseline is trilateration, which, for every vector observation
yk , initializes the solution as the centroid of AP positions.
The second baseline is an EKF-RW which uses a fixed mea-
surement noise variance σ 2

M = 3 throughout the experiment.
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FIGURE 10. The trajectory estimated under the EKF-SH (purple) is closer to the ground truth trajectory (solid black line) than that produced under the
EKF-RW (blue). The EKF-SH trajectory also shows discrete, almost equidistant dots corresponding to regular steps.

FIGURE 11. The SH reduces the different error metrics by different
amounts on different devices. The HE, i.e. the Euclidean distance,
decreases under the EKF-SH by up to 30 cm in the 90th percentile, the
XTE by up to 40 cm, and the ATE by up to 20 cm.

The third baseline, known as covariance matching, estimates
the measurement noise variance for every AP a from the
measurement post-fit residuals defined in the standard way
as [50]

ea,k = ya,k − d(x̂k ,pa). (41)

The fourth baseline, proposed in [27] (tagged ‘‘EvD’’),
corrects every RTT range measurement yk by subtracting

FIGURE 12. The SH motion model reduces the sway range by up to 60 cm
and the rocking range by up to 20 cm.

an error term ek that is a polynomial function of yk . The
coefficients of this polynomial are obtained by least-squares
fitting of collected RTT measurements with known ground-
truth values. The fifth baseline, proposed in [28] (tagged
‘‘DvR’’), process every RTT range measurement yk to
estimate the true distance dk by evaluating a polynomial
function of yk . The coefficients of this polynomial are
also obtained by fitting collected measurements with know
ground-truths.

We first compare the four different configurations numer-
ically via the cumulative distribution function (CDF) of
the positioning error, defined as the Euclidean distance
between the true position of the device and its estimate.
We make the following observations from Fig. 9. First,
EKF-RW with a fixed measurement noise variance (base
EKF-RW) outperforms trilateration only at higher error
percentiles for some device models. Second, the covariance
matching method achieves a moderate gain over the base
EKF-RW on both models. Third, the EKF-RW armed with
the distance-dependent measurement model outperforms
covariance matching across the entire curve, especially at
higher percentiles of the positioning error, where it achieves
a gain of up to 1.5 m in the 90th percentile on certain device
models. Furthermore, the DDMM outperforms EvD and
DvR across the entire positioning error curve and for both
smartphone models. While DDMM achieves a modest gain
in positioning accuracy of 20 cm at any percentile on one
smartphone model, it achieves a gain over EvD and DvR of
up to 20 cm at just the 50th percentile (median), and up to
40 cm in the 90th percentile.

We then compare visually the positioning accuracy of two
EKF-RWs: one that uses DDMM, and the base EKF-RW
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that uses fixed measurement noise variances throughout.
We overlay the scatterplot of the trajectory estimated by
DDMM (in blue) on top of that estimated by the base
EKF-RW (in yellow). We make the following observation.
The base EKF-RW, which takes the measured ranges at face
value, exaggerates the size of the trajectory as can be seen in
the center box of Figure 8 in some situations, and pushes the
trajectory outwards in some other cases. Meanwhile, under
the DD model, the EKF update step first downsizes the
measured RTT distance ya,k by removing an offset µM (ya,k ),
and then gives the observation a weight that is inversely
related to the variance σ 2

M (ya,k ).
Looking at the device model as a test variable, we observed

that the positioning accuracy on different models can be quite
different. In one experiment, we evaluated the accuracy of the
RandomWalk EKF on two different phone models, Model A
and Model B, over multiple datasets, and we observed that,
under the distance-dependent model, the positioning error
on Model A is less than that on Model B by 20 cm in the
50th percentile (median) and 40 cm in the 90th percentile.
The performance gap widens significantly to 50 cm in the
50th percentile and 140 cm in the 90th percentile when a
less-informed measurement model is used.

B. STEP AND HEADING EKF
We first visually compare the position estimates obtained
with EKF-SH to those obtained with EKF-RW. For a
fair comparison, we use the DD model in both EKF
variations. We assume that the IMU magnetometer, or phone
compass, is calibrated either through figure-8 calibration or
through a software or firmware module. We make a few
key observations in reference to Figure 10. First, EKF-SH
trajectory estimates (purple) are better aligned with their
ground truth (solid black line) than the EKF-RW trajectory
estimates (blue). Second, the EKF-SH trajectory is smoother
than the EKF-RW, which fluctuates a lot around the line of
motion. Third, the EKF-SH trajectory shows discrete, and
in many times equidistant dots corresponding to the regular
steps that the user takes while walking.

Visual evaluation, though more indicative of the user-
perceived experience, is not complete without numerical
evaluation. We compare EKF-SH not only with EKF-RW,
but also with other EKFs using step and heading motion
models, namely (20) and (22), tagged ‘‘Ref. 1’’ and ‘‘Ref.
2’’ respectively. We evaluate the performance of the different
filters through three commonly used metrics as introduced in
Section V, the horizontal error (HE), cross-track error (XTE),
and along-track error (ATE).

1) EKF-SH VERSUS EKF-RW
We plot the CDFs of the three errors in Figure 11 for EKF-SH
and the baseline, EKF-RW, on Models A and B. We observe
that EKF-SH outperforms EKF-RW across the entire curve
through all three metrics, more so at the right end of the
CDF curve corresponding to higher-valued errors, meaning
that EKF-SH has a better worst-case accuracy than EKF-RW.

If we measure performance through the 90th percentile error,
EKF-SH achieves a gain of 30 cm in the HE over EKF-RW,
most of which comes from a gain in the XTE.

2) EKF-SH VERSUS OTHER STEP-AND-HEADING BASED EKFS
In the same figure, we plot the CDFs of the three positioning
error metrics for EKF-SH and two reference EKFs using
motion models based on step and heading, namely Ref. 1 and
Ref. 2 based on the motion equations (20) and (22). The
EKF-SH beats Ref. 1 by 10 cm in the 90th percentile HE,
10 cm in ATE, and 20 cm in XTE. The EKF-SH beats Ref. 2
by a much wider margin across the board.

Measured on any device model or through any error metric,
Ref. 1 sits somewhere between EKF-SH and EKF-RW,
while Ref. 2 significantly underperforms EKF-RW, let alone
EKF-SH. The reason behind the wide performance gap
between Ref. 2 and Ref. 1, to the favor of the latter,
is two-fold. First, two states in Ref. 2 are unobservable, the
motion heading θk and the step size correction factor αk ,
so they cannot be corrected by measurements of those states.
Furthermore, there are no inputs to the transition equations of
these two states, so they cannot be predicted. On the contrary,
Ref. 1 has only one unobservable state, the motion heading
θk , but this state transitions based on the rotation angle φk
measured by sensors on the device, e.g. the gyroscope that
measures rotational velocity, or magnetometer that measures
absolute device orientation. This allows for predicting this
state by reading relevant sensors.

Looking at the swaying range (SR) and rocking range
(RR), we see that EKF-SH reduces the SR significantly, not
so much, though, for RR.

Last but not least, a recurring observation is that position-
ing accuracy, regardless of the used metric, can vary by more
than half a meter from one device model to another.

In summary, EKF-SH beats EKF-RW on all three counts
of positioning errors: horizontal, cross-track, and along-track
errors. This means three things. First, the EKF-SH estimates
are closer to their ground truths than EKF-RW estimates.
Second, EKF-SH estimates are closer to the track alongwhich
the user moves. Third, the EKF-SH estimates keep up with
the user’s walking and react faster to their latest position.
Furthermore, EKF-SH reduces the jitter in position estimates
both along and across the track of motion, making for a more
smooth trajectory and a more pleasant user experience.

There are several factors that may explain why one device
model outperforms the other. To begin with, the parameters of
the FTM session influence ranging accuracy. The FTMmech-
anism, under the 11mc revision, allows the FTM initiator to
request its desired configuration for the FTM session through
the FTM parameters field. For example, the FTM initiator
could request the number of bursts in a session, the duration
of the burst, the number of measurements (FTM frames) per
burst, the time between successive measurements, and the
time between successive bursts. All of these parameters and
more are hidden inside inaccessible, lower-level WiFi driver
implementations, and it is believed that Models A and B
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FIGURE 13. The human body blocks the signals carrying FTM frames, forcing them to take longer longer paths, and causing bigger ranges and farther
position estimates; center figure: scatterplot of estimates of a static position marked by a red ×; left: 2 × 2 array of RTT distances vs. waypoints (time);
right: x and y coordinates of the position estimate vs. waypoints.

have different FTM parameters. Moreover, Models A and
B may be using different methods to calibrate their clock
speeds which is critical for timestamping the transmission
and reception of FTM frames and measuring distances.
Finally, Models A and B have different WiFi chips and IMUs
altogether, so there may be other variables at play.

VII. HUMAN BODY BLOCKAGES
We demonstrate that RTT is highly sensitive to the relative
position of the human body holding the device measuring
it. We present the following case study. A smartphone is
mounted on a 1.5-m-high tripod at the center of a 17m× 13m
empty square exhibition room with a 3-m-high AP at every
corner as can be seen in Figure 13. The one person in the room
stands close to the tripod, changing their position as intended.
The experiment is divided into 4 segments: the first segment
extends from k = 0 → 200 (in waypoints, or equivalently
observation indices), the second segment from k = 200 →

300, the third from k = 300 → 400, and the fourth and final
segment extending till the end of the experiment.

A. FIRST SEGMENT
The user stands far from the tripod mounting the device,
marked with a red ×. Measurements from all 4 APs are
largely present, with the exception of a gap in measurements
from AP 2. The ranges from AP 0 and AP 1 have a 1-2
m offset, resulting in about 1.1 m offset in the estimated
position in the downward vertical direction. Offsets in range
measurements push the position estimate away from its
ground truth. Falling on the same horizontal line, APs
0 and 1 push the estimate to the right and to the left to
similar degrees, effectively canceling out one another in the
horizontal dimension. The two APs, however, both push the
estimates downward, so the net effect the offsets in the ranges
from the two APs have is an offset in position only in the
downward vertical position.

B. SECOND SEGMENT
The user stands between AP 2 (red) and the tripod. As a
result, the RTT distance jumps by 8 m from 12 m to 20 m,
and remains at that level for the remainder of this segment.

Furthermore, the position estimate moves away from AP 2 in
the amount of 1 m to the right (negative x-axis) and 2 m
to the top (negative y-direction). The corresponding position
estimates are circled in a red oval. The reason the position
moves not more than 3 m is the use of the distance-dependent
model that gives little weight to the large RTT distances from
AP 2 in the EKF update step and greater weights to RTT
distances from the remaining 3 APs.

C. THIRD SEGMENT
The user now shifts their position to between the tripod and
AP 0 (yellow). As a result, the RTT distance spikes by 5 m,
falls back down, and spikes for a second time. This time
around, the RTT distance does not stay high for the entire
duration of the segment. The jump in RTT nudges the position
estimate away from AP 0: 1 m to the left (positive x-axis) and
1m to the bottom (positive y-axis).

D. FINAL SEGMENT
The user now shifts their position to between the tripod
and AP 1. Instead of observing a jump in RTT, the FTM
exchanges between the device and AP 1 are lost. The position
estimates are then produced using ranges from APs 0, 2,
and 3. This outcome is more favorable than the outcomes
previously seen: a missing observation can lead to a better
estimate than a biased observation with large weight.

This experiment, among many other experiments we
conducted, substantiates the fact that the position of the
human body relative to the device and AP can have a
detrimental impact on the quality of RTT. When the user
holding the device is facing the AP, RTT fluctuates very little,
and more importantly, has little bias. When the user’s back is
turned to the AP, RTT exhibits a large bias and pushes the
position estimate away from the AP in question.

As the human body blocks the signal to and from the APs,
the FTM frames reach the device through reflection off of the
walls and diffraction around the user, taking multiple, longer
paths to reach the destination and making for a longer RTT.

While the distance-dependent measurement model cor-
rects a measured range in proportion to its value, a distance-
direction model could correct a range in relation to both its
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value and the direction of the user’s motion with respect to
the AP in question. This is deferred to future work.

VIII. CONCLUSION
In this paper, we described two positioning algorithms:
the random walk extended Kalman filter (EKF-RW) which
relies solely on RTT measurements, and the step and
heading extended Kalman filter (EKF-SH) that supplements
these measurements with sensor readings. We proposed two
enhancements. Our first innovation is the distance-dependent
measurement model used in either EKF, which computes the
measurement noise mean and variance in the EKF update
state as a function of the RTT measurements themselves. Our
second innovation is a method to fit the non-Gaussian step
error of the EKF-SH with a Gaussian random variable, which
permits to uphold the efficient Kalman filtering framework.
We benchmarked our algorithms and the enhancements
thereof using three error metrics common to satellite andmar-
itime navigation, the horizontal, cross-track, and along-track
errors. We observed that the EKF-SH outperforms EKF-RW
on all 3 counts and achieves a gain of up to 30 cm in the 90th
percentile, and also that both comfortably beat the expected
2 m target at 80 MHz, making them primed for commercial
deployment. Additionally, we introduced the swaying and
rocking ranges to measure the jitter across and along the track
of motion. We observed that EKF-SH achieves a gain of up to
60 cm over EKF-RW, making for a trajectory that is smoother
and less choppy. Finally, we studied a case of human
body blockage where we showed its detrimental impact
on ranging errors, and as a consequence, on positioning
errors.

The standardization of FTM under IEEE 802.11-2016
followed by the WFA’s release of the WiFi Location
certification sparked research on WiFi ranging as a serious
contender to take over the IPS market, supported by the
ubiquity of WiFi access points and stations alike. Research
and industry continue to match the position resolution
under WiFi RTT to the use case it is targeting, from the
order of the size of a storefront at 40 MHz down to the
order of aisle width at 80 MHz, prompting the IEEE to
standardize enhanced ranging mechanisms and AP vendors
to adopt them. Whether the next round of AP upgrades will
support ranging over 160-MHz-wide channels unlocked by
802.11az Next Generation Positioning or over 320-MHz-
wide channels unlocked by 802.11bk, indoor positioning
is well on its to way to sub-meter and even centimeter-
level accuracy, enabling a plethora of use cases in new
domains.

APPENDIX
We arrived at a value for σP ≈ 3 by taking a theo-
retical approach followed by an experimental validation.
The random walk model assumes a directional step vk
that follows a circular Gaussian distribution N (0, σ 2

P1t2k )
which is equivalent to a uniform velocity that follows a
circular Gaussian distribution N (0, σ 2

P). A uniform velocity

corresponds to a constant speed that is Rayleigh distributed
with a parameter σP, a mean µs and a standard deviation σs,
both of which are functions of σP.

We consider a speed range of 3 mph, or 1 m/s, for walking,
to 7 mph, or 3.3 m/s, for running. We then fit the range by
µs − σs on the slower end and µs − σs and on the faster end,
and arrive at the solution that gives µs = 2.17 and σs = 1.13.
Finally, we solve backwards for the parameter σP from which
the parameters µs and σs are derived and arrive at the value
of σ 2

P = 3.
Common positioning use cases, however, anticipate users

to be walking at slower to moderate speeds. Therefore,
a range of 1 mph, for strolling, to 5 mph, for jogging, would
be more appropriate, and would correspond to a process noise
variance σ 2

P ≈ 1. To see how well theory meets practice,
we swept and evaluated a range of values for the process noise
variance σ 2

P on the 18 hours of data collected by 15 users with
different walking patterns. We observed that, averaged across
all datapoints, there is no significant difference in positioning
accuracy for a σ 2

P range of 1-3.
An alternative to a fixed σP is an adaptive, time-varying

σP that infers the user’s walking speed from the in-device
accelerometer. But if acceleration is readily available, then
more sophisticated, better performing PDR-based methods
can be applied.
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